Improving Systems Development
Productivity and Quality




Improving Systems Development
Productivity and Quality

A Special Report of Best Practice in Europe

Butler Cox ple

LONDON
AMSTERDAM MUNICH PARIS



This book is sold subject to the conditions that it shall
not, by way of trade, or otherwise, be lent, resold,
hired out, or otherwise circulated without the
publisher’s prior consent in any form of binding or
cover other than that in which it is published and
without a similar condition including this condition
being imposed on the subsequent purchaser.

Every effort has been made to ensure that informa-
tion, advice, or comment in this report are correct.
However, Butler Cox plc cannot accept liability for
the consequences of actions based on the informa-
tion or advice provided.

Published by Butler Cox ple
Butler Cox House
12 Bloomsbury Square
London WC1A 2LL
England

Copyright © Butler Cox ple 1990

All rights reserved. No part of this publication may be reproduced by any method
without the prior consent of Butler Cox.

Printed in Great Britain by Flexiprint Ltd., Lancing, Sussex.



Improving Systems Development
Productivity and Quality

A Special Report of Best Practice in Europe

Contents
1 Improving systems development productivity

and quality 1
Developing systems 1
Productivity and quality 2
Purpose and structure of report 3
Research sources 4
2  Putting the right organisation in place 5
Balancing centralisation with decentralisation 5
The trend to systems devolution 5
Clarifying the responsibility of users 8
Grouping systems development responsibilities by function Ll
Reducing the number of management layers 11
Organising central systems development 13
Organising devolved systems development 14
Organising testing 17
Module and integration testing 17
System testing by the project team 19
System testing by a separate department 20
System testing by a joint team 21
Organising maintenance 22
The scope of maintenance 22
The merits of a separate maintenance department 23
The merits of outside maintenance 25
Identifying and resolving common organisational problems 26
Problems having an impact on efficiency 26
Problems having an impact on effectiveness 28
3 Improving staff motivation 30
The high motivating potential of systems development work 30

The motivating potential of different systems
development jobs 31
The motivating potential of specific work factors 35
Improving the motivation of individuals 35
Broadening the scope of jobs 36
Introducing job rotation 36
Introducing a flexible career structure 37
Improving goal-setting and feedback 40
Rewarding achievement with performance-related pay 41
Fitting jobs to people 42
Optimising team size and composition 42
The benefits of small teams 43
The effect on productivity of team composition 44
Encouraging the right style of leadership 47
Characteristics of leadership 47
The role and style of the team leader 48
The strengths required of a team leader 49
Motivating maintenance staff 52
Attitudes to maintenance 52
Selecting and training maintenance staff 54

@ Butler Cox plc 1990

| EEEEEEEE———————————— s




Contents (continued)

4 Using techniques and methods 56
Formalising software testing 56
Whole-cycle testing 56

Testing techniques and aids g?

Controlling maintenance .
Formalising the maintain-or-replace decision 61

Maintenance rating 63
Allocating resources 65
Managing the maintenance process 66
Progress coordination 69
Improving quality 70
Quality-control procedures il
Quality characteristics 72
Quality profile of different applications 75
Establishing a quality-management programme 76
5 Using contemporary tools 82
Fourth-generation languages for new systems work 82
The use of fourth-generation languages 83
The benefits of fourth-generation languages 84
CASE tools 86
The use of CASE tools 86
The benefits of CASE tools 87
Tools for testing systems 91
Conducting testing 91
Managing testing 91
Test-data preparation aids 91
Tools for maintaining existing systems 95
The use of maintenance tools 95
Management tools and testing tools 96
Maintenance-support tools 96
Tools for measuring technical quality 99
Static analysers 99
Dynamic analysers 101
Selecting tools from the tool set 102
The need for a tool-selection procedure 102
Defining the elements of the development
environment 105
Preparing selection tables 107
Preparing documentation 108
Making the procedure part of the development
process 108
Introducing new tools g
Stage 1: Marketing the implementation plan 1ikik
Stage 2: Initiating changes to exploit and support
the tools 112
Stage 3: Implementing a pilot application 113
Stage 4: Modifying the development environment 115
User tools 115
Categorising users 116
Issuing guidelines for different types of application 118
Encouraging users to seek the systems department’s
‘seal of approval’ 119

© Butler Cox plc 1990




Butler Cox plc 1990

Contents (continued)

Measuring productivity and quality
Measuring productivity

Measuring output and input

The productivity index (PI)

The manpower buildup index (MBI)

Function points and language gearing
Measuring quality

Quality characteristics

Quality measures

Assigning priorities to quality measures
Implementing a measurement programme

Collecting information early

Avoiding misinterpreting the measurements

Providing measures at the right level

Conclusion

Organisational actions

Staff motivational actions

Techniques and methods

Tools

Productivity and quality measurement actions

120
120
121
122
124
125
127
127
128
129
131
131
132
132

134
134
135
135
135
136




© Butler Cox plc 1990

Chapter 1

Improving systems development
productivity and quality

Productivity and quality are major concerns for every business
involved in the development and maintenance of substantial
compuler systems. It is mot that current performance is
necessarily poor, but rather that any and every improvement has
a potentially significant benefit.

This report has been prepared by Butler Cox with the aim of
providing systems development managers with practical advice,
based wupon proven best practice, on how to improve their
departments’ productivity and qualily.

The detailed analysis and recommendations are based on Butler
Cox’s own research and consultancy experiences. In particular,
we have drawn extensively on the research carried out for the
Productivity Enhancement Programme (PEP). This is a
continuous programme, with an international membership, an
integral part of which is a research database of over 600 projects.

DEVELOPING SYSTEMS

Until recently, information systems were merely another company
resource. Today, they have become the environment in which
business is transacted. For more and more companies in the
future, they will become the means by which business processes,
markets, and competition are redefined.

Already as much as half of all capital expenditure is going into
information technology. Until recently, a half of the typical
business budget for information technology and services was spent
on equipment. Now, that proportion is falling, and its place as the
major source of spending is being taken by software and the staff
to develop and maintain it.

Although it is true that a growing proportion of this expenditure
is on ready-written software that can be bought off the shelf, the
fact is that, in virtually every major company, that proportion is
still outstripped by home-grown software.

Home-grown software, written to meet the needs of an individual
business, will be with us for years to come. Specialist analyst and
programming staff continue to develop new software for new
applications, to modify and improve (‘maintain’) existing
application software, and, often, to tailor ready-written software
to link to existing (or new) home-grown software.

The work is demanding, time-consuming, and expensive.
Strategically important systems often need to be developed in a
hurry in order to respond to a brief window of competitive
opportunity or to satisfy legislative or regulatory requirements.
Unfortunately, pressures to reduce timescales tend to reduce
productivity and quality as well, turning advantage into




Chapter 1 Improving systems development productivity and quality

disadvantage. Within the systems development community,
delays, overruns, and quality shortfalls are commonplace. Any
and every means of improving this position has a potentially
significant benefit.

The systems development environment is a complex one. While
experience and skills have grown over the years, and new tools
and techniques have been introduced to speed  up the
development process, the demands for computer systems have
become even greater. Speed of reaction to business pressures and
opportunities is at a premium; top-class development skills have
remained in limited supply; the number and variety of different
computing equipment has expanded, each type with its own
programming and operating requirements; the range of existing
systems, each system making its own demands for maintenance,
has grown over the years.

It is against this background of complexity and rapid change that
managers are seeking an answer to a common question — how
to improve two things: productivity and quality.

PRODUCTIVITY AND QUALITY

In systems development, productivity measures the work rate at
which the process is carried out — the output achieved for a given
input. Where output is measured in lines of code, productivity
measures the internal efficiency of systems development; where
it is measured in terms of the functionality of the delivered
system, productivity measures the external efficiency of systems
development.

Quality measures fitness for purpose of the delivered product —
in terms both of technical factors, such as the reliability and
maintainability of the software, and of user-perceived factors,
such as ease of use and correctness.

Improving productivity and quality in systems development means
making changes to one or more of the facets of the task. What
makes this apparently simple challenge so complicated is, first,
the large number of variables that interact within the systems
development environment, and second, the difficulty of
measuring productivity and quality in the first place, and hence,
assessing the effect of any change.

Consider the number of variables that interact within the systems
development environment. They include the precision of the
initial specification of requirements, the skills of the development
staff, how the staff fit together into a team, the techniques and
tools that are available for them to use, the time available to do
the job, testing and quality control factors, and many others. To
understand these variables better and how they interrelate, it
helps to put them into groups. It is better still if these groups
correspond to areas that managers in systems development can
do something about.

Four groups that are relevant are those of organisation, staffing,
techniques and methods, and development tools.

Organisation is to do with the way the systems department is
structured: how it fits into the systems function, how it relates

o

© Butler Cox plc 1990




Chapter 1 Improving systems development productivity and quality

to its customers (the users), and what its internal sub-divisions
and reporting lines are. The issue of staffing has to do with
recruitment, training, development, motivation, and performance
measurement and reward. Techniques, such as structured
programming and data analysis, are the procedures on which
systems development is based; methods specify formally how to
carry out the activities embodied in the techniques (most methods
are proprietary products, such as SSADM and Method/1). Finally,
tools automate the activities within a development method
(programmer workbenches, screen painters, and report writers
are three examples of tools).

PURPOSE AND STRUCTURE OF REPORT

The purpose of this report is to provide systems development
managers with practical advice, based upon proven best practice,
on how to improve the systems development department’s
productivity and quality. The report should prove valuable to
other managers and technicians within the department — indeed,
to anyone concerned about improving the department’s working
efficiency and the value of its end products. Although the report
is aimed principally at medium-sized and large businesses spending
substantial sums on commercial information systems, its findings
are likely to prove beneficial to managers of smaller companies
as well.

The scope of the report is set firmly in the four areas outlined
above: organisation, staffing, techniques and methods, and
development tools. It is in these four areas that Butler Cox has
most recently focused its systems development data collection
research and analysis.

The report is structured into five main chapters. Chapter 2 is about
organisation, and it deals with four main issues. The first is how,
in a decentralised group, to divide responsibilities between the
central systems function, and the functions that are devolved to
the operating business units — in other words, how to balance
centralisation with decentralisation. The second issue is how to
achieve structural simplicity, with clear accountability and the
minimum number of management layers. The two other
organisational issues that deserve special attention and that are
covered in this chapter are those of testing and maintenance.

Chapter 3 is about staff and motivation. Because the single largest
cost element in most systems development departments is staff,
improving the productivity of development staff is a critical
matter. Motivation is an important element in this, and one in
which several improvement opportunities are open to managers.
These opportunities include broadening the scope of the work,
job rotation, flexible career structuring, goal-setting and feedback,
performance-related pay, and job fitting. These are opportunities
that apply at the level of the individual. There are further
opportunities at the level of the team, to do with team size and
composition, and the role and style of the team leader. The
motivation of staff engaged in maintenance is a topic that deserves
attention in its own right, and one that is explored in this chapter.

Chapter 4 is on the subject of techniques and methods. Many
companies have introduced one or other of a wide range of

& Butler Cox plc 1990 3

e




Chapter 1 Improving systems development productivity and quality

technigues and methods that are available on the market. The
benefits, however, are not always clear. Only in three cases have
we found convincing evidence of consistent success with
techniques and methods — when they are used to help formalise
software testing, to help control maintenance, and to establish
a quality-management programme.

Chapter 5 is about using contemporary tools such as fourth-
generation languages like Mantis, CASE tools, and re-engineering
tools. Despite the enormous benefits in productivity and quality.
that are widely claimed by the suppliers of tools, the results that
are achieved in practice are much more ambiguous. CASE tools,
for instance, are failing to deliver reduced development time, or
fewer errors, or even increased reliability — although it is possible
that they do increase productivity over the whole life of a system.
Maintenance tools, too, have yet to make much impact. Because
they are specialised, tools are relatively inflexible. They need to
be selected and matched to the application environment with
great care. Introducing them requires sensitivity and careful
planning, which is best undertaken by implementing a pilot
project.

Chapter 6 deals with the measurement of productivity and quality.
The earlier chapters are about the means of achieving an end —
the improvement of productivity and quality. Yet there is little
point in striving for this end if improvements cannot be measured.
The measurement of productivity and quality is elusive, however,
which goes a long way towards explaining why few companies
have adopted such measurement on a continuing basis. In this
chapter, we explain the essentials of measurement, and provide
some advice on implementing a continuous measurement
programme.

The report concludes with a brief chapter on the next steps to
take — an action checklist for managers.

RESEARCH SOURCES

This report is based on recent research that we confidently believe
to be the most up to date and comprehensive in Europe. The
principal source is Butler Cox’s productivity and quality enhance-
ment programme, PEP. Membership includes some of Europe’s
largest, and acknowledged to be leading, computer systems users.
They represent all the main industry sectors: financial services,
manufacturing, utilities, energy, retailing and distribution, process
and chemicals, and local and central government.

The core component of PEP research is the projects database, now
amongst the largest of its kind in the world, with over 600 projects.
At the time of undertaking the research that forms the basis of
this report, details of some 400 projects were recorded on the
database, each with an average of 41,000 lines of source code.
All the project information is collected by all of the PEP members,
under Butler Cox’s direction.

The PEP database provides an unmatched source of comparative,
across-industry, practical data. Analysing the database allows us
to compare such diverse factors as productivity by type of tool,
error rate according to the technique in use, and delivery rate as
a function of staffing level.

© Butler Cox plc 1990




Chapter 2

Putting the right organisation in place

There is no ‘right’ organisation structure for systems development
that is universally applicable. The one that suits a particular
systems development department will depend on the
characteristics of the parent business, the technological
environment, and the systems environment. As the relative
importance of these factors changes over time, the organisation
of systems development will need to be modified.

Most substantial businesses today are organised as a group of
operating units that are to some extent decentralised. In groups
like this, it is commonplace for the systems function to be
decentralised as well, at least in part. Balancing the activities of
the central function with those at the operating level is the first
organisational priority. Clarifying the responsibilities of users is
the other side of the same coin. For systems development, the
next priority is to ensure that its structure is kept simple, with
the minimum number of management layers. Two other
organisational issues within systems development that deserve
special attention are those of testing and maintenance.

These topics are addressed in turn in this chapter. The chapter
finishes with a section concerned with the identification and
resolution of common organisational problems.

BALANCING CENTRALISATION WITH
DECENTRALISATION

Today, most businesses are managed in a more decentralised way
than was the case 10 years ago. There has been a recent similar
trend towards decentralising the systems function. It is now
increasingly commonplace to find responsibility for developing
and implementing systems devolved to business-unit level, and
responsibility for systems policy and standards retained at the
centre. Although dividing responsibilities is never easy, ground
rules are available that managers can use to their advantage.

THE TREND TO SYSTEMS DEVOLUTION

Faced in recent years by mounting competitive pressures and
rapid market changes, more and more large businesses have
chosen to decentralise. To manage the resulting decentralised
group structure, head offices allow individual business units a
degree of autonomy while remaining involved in the business
units’ strategy planning, in approving their plans and capital
spending, and in overseeing their financial performance.

Decentralisation is widely held to deliver worthwhile benefits.
Breaking up an organisation into smaller business units and
delegating authority and responsibility to the business-unit
managers brings management closer to the customer, helps to

ot

© Butler Cox pic 1990




Chapter 2 Putting the right organisation in place

improve operational flexibility and responsiveness, and
encourages innovation and specialisation. Decentralisation, it is
also claimed, helps to sharpen awareness of market and
competitive trends, because decision-making managers are
brought closer to the action.

Devolving the systems function is just as much in evidence as
decentralising the business itself. Typically centralised until the
late 1970s and early 1980s, systems functions have since followed
the path to devolution. Not to be confused with merely
distributing computer systems physically to divisions and
departments, devolution implies decentralising management
authority as well (see Figure 2.1). Today, it is increasingly
commonplace for business units themselves to buy and operate
computers, and to develop and maintain the systems that run on
them. The trend has been encouraged by advances in computing
technology. The economies of scale that used to favour centralised
installations disappeared years ago, with the advent of
department-supporting minicomputers and personal micro-
computers.

Devolving responsibility for information systems has been
encouraged by most business-unit managers. They have claimed
lots of benefits. Reduced costs, closer control over priorities,
systems better tailored to business needs, and relief from
dependence on the central function with its order backlog and
ageing core systems are some that are often quoted.

As well as benefits, however, there are some very real risks. At
business-unit level, there is the danger of systems staff sacrificing
quality by cutting corners to meet delivery pressure from local
managers. Retaining skilled systems staff can be a problem when
the first allegiance of the staff is to their profession, rather than
to the business. At corporate level, there is the risk of systems

Figure 2.1 Today, the systems function in most large groups is partly
distributed

A Systems development

. Business unit

© Butler Cox plc 1990




© Butier Cox pic

1990

Chapter 2 Putting the right organisation in place

being expensively and unnecessarily replicated between different
business units with common needs. Worse still, different business
units may build their own incompatible ‘islands of automation’,

compounding the difficulty of linking up electronically in the
future.

The common result of these opposing pressures is systems
functions that are divided, in part devolved to business-unit level
and in part remaining centralised at head office. That means a
matrix organisation and, for the centralised part, a new hybrid
role. Most head office top managers now accept this as inevitable,
yet the question remains of how to divide responsibilities between
the centre and the business units.

The typical range of systems development responsibilities is
summarised in Figure 2.2. The figure shows the responsibilities
under four headings: delivering head office services, establishing
the technical infrastructure, developing staff, and developing
business-unit systems.

The first two of these, concerning head office services and the
technical infrastructure, are responsibilities that will often apply
groupwide. (The technical infrastructure consists of the corporate
communications network and the standards that govern the
interworking of systems across the group.) Normally, these
responsibilities should be discharged from the centre. The second
two headings in Figure 2.2, developing staff and developing

Figure 2.2 Systems development responsibilities may be grouped under
four headings

Delivering head office services
Providing systems for head office.
Making central bureau services available.
Watching trends in information technology.
Providing group-wide development support.
Monitoring competitors’ use of systems.

Establishing the technical infrastructure
Developing the infrastructure.
Defining standards and interfaces.
Defining policies and methods.
Quality assurance.

Developing staff
Building management awareness of information technology.
Promoting and catalysing the use of information technology.
Recruiting and developing systems development staff.
Training staff in the use of systems. i

Developing business-unit systems
Budgeting and planning systems.
Designing and implementing systems in accordance with policy and standards.
Providing education and support for end users.
Maintaining systems.
Buying software.




%.

Chapter 2 Putting the right organisation in place

business-unit systems, should normally be discharged at the level
of the business units themselves.

This allocation of responsibilities, combining centralisation with
decentralisation, can be no more than a general guideline, of
course. How, in practice, to divide responsibilities between centre
and business units will vary widely according to specific group
circumstances. One important consideration will be that of the
general management style of the group. Other things being equal,
the style of the group as a whole should be followed by that of
the systems function: the more decentralised the group, the more
decentralised information systems should be.

In practice, however, there are powerful reasons for adopting a
more centralised style of systems development management than
is suggested by the group-management style. One is to take
advantage of economies of scale in equipment purchasing.
Another reason is the trend to integrale systems, which involves
the design of corporate databases to support a variety of business
and executive-support applications. One systems manager
described to us the importance of allowing for future integration.
He explained, ‘“We had nine different computer suppliers, 12
different operating systems, and 16 different programming
languages. We had taken ourselves up a cul-de-sac. Computing
had become the fiefdom of departmental barons. There was
information everywhere but no-one from other departments could
geeessit

A third reason for adopting a management style that is offset to
the centre is the need to preserve flexibility of choice in the
group’s future organisation. Groups with synergistic divisions,
such as multiple retailers, often find a need for cooperation and
shared approaches to business ventures, such as the use of
common credit-card systems. This type of group often restructures
in such a way that, for instance, all manufacturing functions or
all marketing functions are put under one line manager.
Autonomous systems development, with mutually incompatible
hardware or software, hampers the process of re-aligning the
business units.

CLARIFYING THE RESPONSIBILITY OF USERS

As well as balancing centralised and decentralised responsibilities,
it is important to strike a balance in the allocation of responsi-
bilities between systems development specialists and their end-
user customers. In most businesses, this is a contentious issue.

It is often suggested that users are not yet ready or willing to take
on much responsibility for systems development. Sometimes, a
‘damage limitation’ approach is pursued. However, unless the
alignment of responsibilities between specialists and users is
clearly defined and agreed, the systems development function will
be unable to support the business community as it should. Users
will then continue to build their own systems, often un-
documented and probably unmaintainable.

The devolution of control to users is, in fact, already happening.
It began with the proliferation of personal computers, and
continued with the move towards departmental computing in

© Butler Cox pic 1930




@ Butler Cox plc 1990

Chapter 2 Putting the right organisation in place

the mid-1980s. This devolution must be managed in such a way
that order is maintained without initiative being stifled. A useful
way of formalising responsibilities is by reference to three levels
of application that are found in most companies. These can be

described as core systems, non-core systems, and personal
systems.

Core systems

These are the applications that are essential to the day-to-day
operation of the business. In general, they maintain and update
the common corporate databases, and often provide a base for
subsequent applications to use. Clearly, if these systems, which
exploit database technology and commonly process high volumes
of transactions, are to be developed efficiently, skilled technicians
will be needed. The systems they design must be built in
accordance with central policy guidelines to ensure that a
coherent software infrastructure is maintained.

Senior management should take the lead in deciding what systems
should be developed, and also in managing their development and
implementation. These managers should be able to see the
relationship between computer systems and business goals, and
to work out how a computer application could effectively
automate a particular business function. Responsibility for
innovation becomes shared with senior managers, and no longer
the sole preserve of the systems department.

Non-core systems

These are the systems that are used by a business unit, or a
department within a business unit. Their purpose is to achieve
the unique objectives of that business unit, and they do not
normally affect the day-to-day operations of other business units.
It is appropriate, therefore, that business-unit managers have
control over what systems are implemented, but because it is
possible that the data and programs created will be shared by
other departments in the future, the systems should conform to
the company-wide policies and guidelines laid down by central
systems development management.

Development of these applications is frequently undertaken by
the users themselves, who should be encouraged to experiment
with different designs and to explore the possible applications of
the newer technologies, such as end-user computing and office
automation. Three separate studies conducted by the Rand
Corporation in 1988 confirm the wisdom of this approach. All
these studies concentrated on the effective introduction of end-
user computing, and found that success in this area is closely
related to the amount of control exercised by users. This is
particularly significant for business-critical systems, for which
speed of development and close fit to requirements, rather than
technical efficiency, are paramount. The role of the systems
specialist in these developments is to provide education, support,
and guidance.

Personal systems

These are not application systems in the usual sense of the word,
but a variety of tools and techniques that enable users to set up
their own systems. They include the microcomputer-based




Chapter 2 Putting the right organisation in place

systems developed using spreadsheets, word processors, database
managers, and so on. These systems are firmly in the control of
the users, and the role of the systems specialist is limited to
providing them with company-approved packages and training in
their use.

These systems, however, frequently become the business-unit (or
non-core) systems of tomorrow, with subsequent access to the
corporate databases being requested to enable users to manipulate
the information locally. It is important, therefore, that these users
should adhere to conventions established by the systems
development department for the company as a whole, Some
organisations make it a rule that users can choose which suppliers
of personal computer they use, but only standard products will
be connected to the corporate network.

With the division of responsibilities described above, the burden
of providing computer systems for the entire business Is removed
from the systems development department. Most business-unit
projects can be developed by users, while the systems department
concentrates on those that are shared by several business units.
Responsibility and accountability for performance is shifted to the
users for all types of systems development. This places the onus
on business management to become educated in the use, control,
and delivery of computer systems within their organisation, and
to take time to understand the true scope of a systems project
and to devote adequate resources to its completion.

The result of a recent study is depicted in Figure 2.3. It shows
a matrix that can be used to define the respective responsibilities
of users and systems development departments. The matrix takes
into account the strategic importance to the group of future
systems developments and the maturity of the technology
required for these applications (not the stage of assimilation
reached by the particular organisation):

Figure 2.3 The responsibilities of the systems department and users
may be allocated with reference to a matrix

High
Specialist o
dominance | Hverid’
Maturity
of the
technology
Risk j User
dominance dominance
Low

Low Strategic impact of future High
systems applications

(Source: Complex organizations and the information systems function. Oxford
Institute of Information Management, 1987.)

10 © Buller Cox plc 1990




Chapter 2 Putting the right organisation in place

— If the strategic impact of applications is assessed as ‘low’, and
the technology required as ‘mature’, considerations of
operational efficiency are paramount and specialists should
be given responsibility for them, although a user manager will
be ultimately accountable. Such applications might include
support systems, like payroll and general ledger.

— If the strategic impact is low, but new technology is required,
the technical risk is high and the potential benefit to the

business very limited. The application should probably not
be developed.

— The combination of high perceived strategic impact and
relatively mature technology means that the users need to
be in real control of the systems strategy (the ‘what’), while
specialists control the ‘how’ of systems development. These
could be core or non-core applications.

— Applications that have a high strategic impact and use new,
immature technology should be entirely within the users’
control, with ‘an unabashed concentration on effectiveness’.
These are the non-core and personal systems developed using
end-user computing and office technology.

GROUPING SYSTEMS DEVELOPMENT
RESPONSIBILITIES BY FUNCTION

The growing reliance of businesses on computer systems has
resulted in a much greater emphasis on the cost of the systems
development service, and a drive by line managers to obtain value
for money. This puts greater demands on the systems development
department to meet budgets in terms of cost and time, and to
produce high-quality systems. The key to meeting these demands
is to allow greater autonomy to the people who are providing a
service to line management. This involves ‘flattening’ the
management structure, and within the simplified structure,
organising each group to fulfil particular functions.

REDUCING THE NUMBER OF MANAGEMENT LAYERS

It is not uncommon for systems development departments to
introduce more and more layers of management — sometimes in
the belief that this creates a career structure. In fact, career
advancement is a management issue that should be handled
independently of the structure of the systems development
function. Moreover, systems development departments that have
simplified their structures have frequently improved their
productivity.

Figure 2.4, overleaf, shows how such a simplified structure might
work. Staff are divided into several business groups. With a
centralised management style, these will be located at head office.
With a devolved management style, they may be physically
dispersed. Each business group contains up to 50 staff, depending
on the development workload. (Fifty is about the maximum
number of development staff for a business group; beyond this,
staff begin to lose a sense of identity with the group.) Within each
business group, staff are allocated to work on projects under a

© Butler Cox plc 1990 11




Chapter 2 Putting the right organisation in place

+T

(PM = project manager)

Figure 2.4 An efficient organisation structure for systems development has no more than three reporting layers

project manager, depending on their skills, availability, prefer-
ences, and so on. Each team, wherever possible, should be kept
to a maximum of six (see Chapter 3).

Responsibility for developing systems within the policy and
strategy guidelines laid down by the central systems department
should be devolved to the business-group managers. The role of
a business-group manager is to liaise with line managers and to
agree on the scope and type of each systems development service
needed by the business unit. In the past, the systems development
department has been a monopoly supplier of services handed out
to users. This is now changing, both because users are taking
control of some of their own systems developments, and also

because competitive pressures on users are encouraging them to
look for alternative suppliers.

As a result, the systems development department now has to
adopt a more marketing-oriented approach to increase its
credibility with its users, and to retain its status as the main
supplier of development services. The role of the business-group
manager is therefore a difficult one. It requires a person able to
deal effectively with senior business managers, knowledgeable
enough about technical matters to be able to guide approaches
to development, and a diplomatic yet forceful personality. The
advantage to line managers is that they have a single point of
contact for all systems development ideas and problems.

12

© Butler Cox plc 1990




© Butler Cox plc 1920

Chapter 2 Putting the right organisation in place

The situation depicted in Figure 2.4 represents the optimum
structure. Factors such as the overall size of the systems
development function, or geographical dispersion, may suggest
a need for additional management layers. Systems development
managers wanting to improve the efficiency of their departments
should aim for a structure that is as flat as possible.

An example of a company that has successfully done exactly this
is British Airways, an international airline. It has deployed 750
development staff into business groups of around 50 staff, each
one divided into four to six project teams. As a result, motivation
and productivity have increased enormously. While this re-
organisation has been based on lateral rather than vertical
expansion, the control span of each layer of management — that
is, the number of staff under each manager’s direct control — has
been kept manageable by delegating more authority and
responsibility to business-group and team-level managers.

ORGANISING CENTRAL SYSTEMS DEVELOPMENT

Within the simplified structure described above, each business
group must be organised to fulfil its responsibilities in the best
possible way. In the central systems department, the emphasis
should be on three main functional groups: infrastructure
planning, development support, and quality assurance,

Infrastructure planning

The central systems planning group is responsible for planning the
company’s technical infrastructure, which is essential to ensure
that future systems can be integrated. This includes defining the
operating systems, languages, database-management system,
data dictionary, communications protocols, and user-interface
standards that will be used throughout the company. The planning
group should ensure that core applications comply with the
components of the infrastructure to form a flexible basis for
developing non-core applications. Wherever possible, non-core
applications should also comply, although a non-core application
that does not conform to the standards, yet provides a good
business solution, is preferable to one that conforms but is inferior
in business terms.

Development support

Many organisations have found it useful to establish a separate
team of systems professionals who support development teams
in the use of different tools and techniques. The responsibilities
of this development-support group include the provision of
training in the use of modern development tools, project-
management techniques, CASE tools, and so on. They are known
by several different titles including the systems research group,
the advanced technology group, and the development centre. The
aim of the group is to concentrate specialist expertise into a
‘research and development’ type of role, in which the team
members are not distracted by development work. Generally,
these are small teams, and they provide a useful way of
concentrating specialist skills — though care must be taken to
ensure that they stay in close touch with their own customers.

Quality assurance
For many organisations, the quality-assurance group is a recent
addition to the systems development department. With

13




Chapter 2 Putting the right organisation in place

responsibilities for systems development being increasingly
devolved to business-unit level, the role of a quality-assurance
team is a vital part of ensuring company-wide compliance with
central systems development policy. The responsibilities of this
group are, first, to initiate or develop standards, procedures,
systems development and project-management methodologies,
and management practices. The second responsibility is to ensure
that compliance audits are carried out, by reviewing all major
projects within the systems development organisation at
prescribed intervals.

It is not the responsibility of the quality-management group to
carry out quality-control checks itself, nor, indeed, to ensure that
the guidelines are being followed; on the contrary, the group
should arrange for as much of the responsibility as possible to be
devolved to project managers and their teams. The department’s
drive for better-quality systems must centre on making individual
development staff responsible for producing quality output. For
this approach to be successful, everyone in the systems depart-
ment should be committed to it, and take responsibility for the
quality of his or her own contribution to systems development.

ORGANISING DEVOLVED SYSTEMS DEVELOPMENT

Within devolved systems development functions at business-unit
level, the emphasis should be on a further three functional groups:
systems development, education and user support, and systems
maintenance.

Systems development

The systems development group is responsible for the detailed
design, programming, testing, and implementation of all core
systems and for ensuring that the systems conform with the
central systems policy and standards. In the area of testing, the
organisation of development teams can have a particularly strong
influence on effectiveness. This subject is therefore considered
in more detail later in this chapter. The systems development
group is also responsible for those business-unit systems that need
to be developed with traditional third-generation technology, for
which specialist skills are needed. Such projects are, however,
initiated by line managers, who are also the best people to manage
them, because they are committed to the time and cost schedules
and can mobilise user staff during implementation.

Jack Rockart, director of the Center for Information Systems
Research at the Sloan School of Management, believes that,
because of the business-critical nature of many applications being
developed today, line managers should take the lead in both the
conception and implementation stages. He suggests that, because
it is not usually possible to cost-justify competitive-advantage
applications, and because implementation usually provokes
significant organisational changes, the systems development
manager can no longer be responsible for driving these systems
forward. His view of how responsibilities should be allocated
between line and systems managers is depicted in Figure 2.5, Some
organisations report active participation by line managers in
significant development projects already, and it is certainly a trend
that is set to continue. Most systems development departments,

14

© Butler Cox-plc 1990




Chapter 2 Putting the right organisation in place

Figure 2.5 The line manager should take on more responsibility for
systems development

Traditional
responsibility

Suggested
new
responsibilities

i

Conception Design and  Implementation Operation
programming

Lead taken by systems development department

. Lead taken by line manager

(Source: Sloan Management Review, Summer 1988.)

however, have little idea of how to involve line managers in this
process.

One approach that has been successfully adopted by a large
European retailer is illustrated in Figure 2.6. It has the following
elements:

— A project board, consisting of a senior systems representative,
a senior user, and a business representative. The
responsibilities of the board are to authorise, review, and sign

Figure 2.6 A European retailer has created a framework for user-led
projects

Responsible for
managing the
whole project

Responsible for
managing one
stage of the
project

Works for the
stage manager
fo produce the
required end-
products

Assists the stage
manager and
provides continuity

@ Butler Cox plc 1990 15

Ll e b i i ek e e sl e SO




Chapter 2 Putting the right organisation in place

off each ‘stage’ of the project. This includes appointing the
stage managers, approving all plans, and appointing the
project-assurance team.

— A project-assurance team, consisting of a business-assurance
coordinator, a technical-assurance coordinator, and a user-
assurance coordinator. Appointed by the project board, they
work for the stage manager(s) for the life of the project. Their
responsibilities are to help prepare plans, monitor costs
against budget, control change requests, and ensure that the
appropriate development standards are applied.

— Stage managers, who are appointed for each stage by the
project board. For stages that are heavily user-oriented, such
as system specification or installation, a suitable user is
appointed as stage manager. For the technical stages, the
stage manager is normally a systems specialist.

— Stage teams, appointed by the stage manager, and comprising
user and systems staff who report to the stage manager on
all project-related matters, but to their line manager on all
other matters.

The retail company that has adopted this project framework has
noted several benefits from working in this way. Stage managers
have been actively involved in ensuring that the user community
is sufficiently committed to undertake 2 project. For their part,
users have been prepared to make a much greater commitment
of time and effort, and have assumed responsibility for ensuring
that the systems provide all the appropriate facilities. As a result,
better relationships and understanding have developed between
business staff and systems staff.

Education and user support

The most crucial role of the education and user-support group is
to educate and train users in all aspects of developing computer
systems, from selection through to implementation. Its role
includes ensuring that users are aware of the policy guidelines
laid down by the central department on standards and protocols,
back-up and recovery, security, and so on. Without this vital
education and support, users will not be in a position to carry out
their new responsibilities for providing their own systems
adequately, nor to profit by learning from the mistakes previously
made by systems professionals. A second role of the group is to
act as consultants to the users, either providing support and
assistance to help them acquire their own computer systems, or
advising on the appointment of competent outside consultants or
contractors to do so.

The precise role of the group will vary according to the stage of
growth reached by the business in the use of each technology.
Thus, during the initiation and expansion stages, the education
and user-support group will have a limited role, generating ideas
and enthusiasm for new applications, providing education, and
perhaps, supplying packages. During the formalisation and
maturity stages, it will play a bigger role, imposing some order
by ensuring that emerging standards for data security, integrity,
and communications are applied, and facilitating the sharing of
data and programs between business units.

16

© Butler Cox pic 1990




@ Butler Cox plc 1990

Chapter 2 Putting the right organisation in place

The key to the success of this group is the personality of the user-
support staff. The more successful user-support services tend to
be staffed by user-sympathetic and solution-oriented people,
rather than by those who are more interested in technical details.
Obviously, the user-oriented support person needs to be
sufficiently technically competent to advise on the right technical
solution or software package as well, but the emphasis has to be
on business fit rather than technical elegance.

To add wvalue, user-support personnel must be very well
acquainted with the business area. We have found that the most
successful user-support groups are those that are distributed to
the user area, rather than located within the systems department,
regardless of whether management control is devolved. At Ahold,
a Dutch supermarket chain, the user-support staff have become
so vital to the business that many are recruited into line
management positions, where they continue to help users exploit
computer systems.

Systems maintenance :

The way in which systems maintenance is organised can have a
very marked effect on motivation and staff morale. This is a topic
that deserves special attention, so it is explored in greater detail
both in this chapter (beginning on page 22) and in Chapter 3 (see
page 52). First, however, we consider the organisation of testing.

ORGANISING TESTING

For the purpose of organising project teams, most systems
departments distinguish between two kinds of testing: module and
integration testing, which is concerned with testing the behaviour
of the components of a system, and system testing, which is
concerned with the functionality of a system as a whole. Module
and integration testing is normally carried out within the project
team, with some differences in the ways in which responsibilities
are assigned. There are three main ways of organising system
testing — by the project team, by a separate testing department,
and by a joint team of users, operations staff, and systems
developers — and each way has its merits.

MODULE AND INTEGRATION TESTING

Knowledge of the detailed system and program designs is required
to develop module and integration tests. Generally, the specifiers
of program modules should design the module tests, and system
designers should design the integration tests. Few organisations
distinguish clearly between module and integration tests, possibly
because both activities are the responsibility of the project team,
and do not involve users.

Three main team structures for module and integration testing
are commonplace: individuals specify and execute their own tests;
a nominated person within the team is responsible for ensuring
that all tests are carried out to specified standards; a distinct team,
working under the control of the project manager, is responsible
for testing.

17



Chapter 2 Putting the right organisation in place

The first of these is probably the most popular. In three-quarters
of the companies we have surveyed, there was no attempt to
separate testing from production within the development team
(see Figure 2.7). The main problem with allowing individual
programmers to test their own work is thé inconsistency in
quality that usually results. Some programmers are un-
doubtedly good at testing their own modules; others, possibly
because of inexperience or lack of training, perform virtually
no systematic testing. Since a poorly tested module in a
critical part of a system can cause considerable delays and experse
during system testing, uncontrolled individual module testing is
not cost-effective.

Module testing is difficult to do well. It can be very tedious for
a programmer to check that each line of code and all true and
false results of decision statements have been tested by a sample
of test cases. It is equally, if not more, difficult for a programmer
who did not write the code to carry out these tests. It is for this
reason that module testing tends to be done by the programmer
who wrote the code, and it is probably not effective in terms of
cost or staff morale to introduce an independent module-testing
team. However, the use of dynamic-analysis tools (which are
discussed in Chapter 5) can remove most of the tedium from
module testing, and also provide management with a printed
record of the extent of the tests. At the module level, it therefore
seems practical to leave the responsibility for testing with the
programmer, but to provide the tools that make the job easier and
that give management greater project control.

A single team member, or on larger projects, a small team, should
be responsible for ensuring that module and integration testing
is carried out to specified standards, even if the actual testing is
carried out by the programmers themselves. At least one of the
designers of the system should be part of this team. Allocating
specific responsibility for testing within a project team in this way
should not impose additional costs on a project. In fact, the total
development cost should fall, since more reliable modules are
likely to be produced, leading to a reduction in the cost of rework
as a result of errors discovered during system testing and live
operation.

Figure 2.7 Most organisations make no attempt to sepafate module and
integration testing from software production

Percentage of organisations surveyed

Organisation of module ' : : ! I T Trs
and integration testing 10 20 30 40 50 60 70 80

No separation of testing
from software production

Nominated person
responsible for testing

Testing team within the
project

(Source: Butler Cox survey of PEP members)

18 © Butler Cox plc 1930




@ Butler Cox plc 1990

Chapter 2 Putting the right organisation in place

SYSTEM TESTING BY THE PROJECT TEAM

For system testing, the most common organisation structure is for
the project team to take responsibility. This structure, illustrated
in Figure 2.8, has been adopted by about half of the companies
we surveyed. System testing is entirely under the control of the
project manager, and each project team defines its own approach
to system testing. Some project teams may set up a small system-
testing team; others may assign the responsibility for system
testing to an analyst or a designer. Some companies have a policy
on how projects should structure their teams; others allow each
team to define its own structure. Many companies recognise that
there are benefits to be gained from separating testing from
development, and set up testing teams within the project team.
A few ensure that the two activities remain separate by allocating
a different computer for testing.

Occasionally, the quality-assurance group is used as an inde-
pendent authority to carry out random tests on the software
during the main-build phase. The quality-assurance group can play
a major role in defining and monitoring how software should be
tested, but it is unlikely to have the resources to become closely
involved in the design of all the systems under development. As
a testing technique, random tests are unlikely to provide a useful
measurement of each system’s quality, and as a means of finding
errors, they should not be used as an alternative to a properly
defined series of tests.

The main benefits of placing full control of system testing with
the project team are reduced costs and ease of management. In
the short term, it is cheaper to allow each project team to have
full control over its own testing than to incur the additional costs
of a separate group of people, who have to understand the users’
requirements and liaise with the project team. From the manager’s
point of view, assigning total responsibility for testing to the
project team relieves him of the need to devote any effort to
consideration of system testing.

Figure 2.8 Organisation structure: the project team is responsible for
system testing

19



Chapter 2 Putting the right organisation in place

The main disadvantages are also related to cost and management.
If a company has several similar projects under development at
any one time, it should be possible to reduce costs by developing
a common testing environment, or by purchasing a set of software
testing tools that can be used on all projects. Making system testing
the responsibility of individual project teams also has the
disadvantage that systems development management has no
independent measures of the quality of a system. Whether this
is a problem will depend on how reliable the system is required
to be, and how skilled in system testing the members of the projéct
team are.

This structure for system testing can be cost-effective in a
company that develops relatively small applications, with a
requirement for average reliability. Companies choosing to adopt
this structure should ensure that one person within the project
team is given specific responsibility for system testing, and that
this person has expertise in the design of system tests.

SYSTEM TESTING BY A SEPARATE DEPARTMENT

In this organisation structure, illustrated in Figure 2.9, a separate
department carries out the system tests on most of the systems
developed by project teams. Three of the companies in our survey
had a separate system-testing department. These same three also
had the most fully developed procedures for testing, and collected
statistics on the effectiveness and cost of their testing. One
additional company, however, had recently disbanded its system-
testing department because it found tht the project teams became
careless in their own testing, relying on the system-testing team
to find errors. The system-testing team then blamed the
developers for delivering poor-quality work. The general lack of
respect between the two groups led to an overall reduction in
quality and productivity.

The very different experience of the International Stock Exchange
is summarised in Figure 2.10. It created a separate testing group

Figure 2.9 Organisation structure: testing is the responsibility of a
separate department

System
test

System test manager | Project manager
System test D

20

© Butler Cox plc 1890

—~w




© Butler Cox plc 1820

Chapter 2 Putting the right organisation in place

Figure 2.10 The International Stock Exchange set up a separate testing
group and achieved highly reliable systems

In the period leading up to the deregulation of the UK financial services section in
October 1986, the International Stock Exchange was involved in the development
of some large systems that were highly visible to the public, and were essential to
the future operation of the Stock Exchange. The systems department decided to set
up a separate system testing group for the specific purpose of minimising the risk
of implementing systems that might fail. Apart from some well publicised problems
in the first hours of operational use, the systems have performed with a very high
degree of reliability, and the investment in setfing up a system testing group was
considered to be justified.

Some of the factors considered in sefting up a system testing group were:

— Independence: The testing group must be able to retain an objective view of the
development, and should not be subject to pressure to cut short testing to bring
the project in on time. The group should, however, act as advisers to the project
manager, and should not have the final say on when a project is complete.

— Terms of reference: Terms of reference must limit the scope of the testing, because
there can be a tendency for testing to expand to fill the time available.

— Managerial support: Senior systems management support is essential 1o resist
pressures that may arise from the development team fo limit system testing. To
gain this support, management must be supplied with information on the progress
of testing.

— Marketing: The role of the testing group should be marketed internally. The Stock
Exchange produced a brochure describing the facilities offered by the group.

— Cost: An independent testing group is expensive. About 5 per cent of the Stock
Exchange’s systems development staff were in the testing group. The group also
needed its own computer systems for building test environments.

in preparation for testing the systems that were being developed
for the deregulation of the UK financial services sector in October
1986. It was an expensive investment, but in this case, it did result
in the development of very reliable systems. The benefits of a
system-testing department are that staff develop expertise in
testing techniques and that investments can be made in test tools,
simulators, and databases, which may be difficult to justify on
a project-by-project basis.

SYSTEM TESTING BY A JOINT TEAM

In this organisation structure, illustrated overleaf in Figure 2.11,
the project team provides the technical expertise in testing, but
user groups and the operations department define and carry out
their own tests. The user groups examine the functionality and
usability of the system. The operations group considers such
factors as whether the batch run can be completed within the
scheduled time. The decision on whether to accept the system is
made on the basis of these measurements. This structure has many
of the same advantages and disadvantages as the first one. It does,
however, allow at least one set of system tests to be carried out
by a group that is separate from the development team.

A common problem in developing systems is that users are not
sufficiently involved, particularly during the requirements
definition phase. This can lead to an excessive number of change
requests. Involving the users in the specification and execution
of system tests encourages them to examine the specifications
critically, which should help to ensure that any faults in the
specifications are corrected at an early stage, and to reduce the
number of subsequent requests for changes.

21




Chapter 2 Putting the right organisation in place

Figure 2.11 Organisation structure: the project team shares
responsibility for system testing with
other groups

There is no need for a system tester to know how to design or
program software, but testing requires particular skills for which
training and experience are necessary. User groups should
therefore include at least one specialist testing adviser, not
necessarily full-time, if they are to carry out effective tests.

ORGANISING MAINTENANCE

Maintenance accounts for a huge and growing proportion of
programming and analysis effort. In some installations, it can be
as high as 65 per cent. The efficient organisation of this type of
work requires a different approach from that of systems
development. The focus of the systems maintenance group is to
support the daily requirements of the existing business, with
responsiveness and service delivery as foremost considerations.

The organisation of maintenance work in project teams or in a
separate function appears to have little bearing on either the
demand for, or the performance of, that work. Morale is often
better amongst staff who work in a separate maintenance
function. Arranging for some or all of the maintenance workload
to be undertaken outside the systems development department
also has some merit.

Figure 2.12 There are three broad
SCOPE OF MA NANCE categories of main-
THE INTE tenance

Software maintenance is much more than merely correcting errors
in coding. It embraces all of the programming and analysis
activities required to keep a system operational and effective after
it has been accepted and placed in production. The purpose of
maintenance is to protect a company’s investment in systems by
prolonging their useful life and improving the contribution that
they make.

There are, in fact, three broad categories of maintenance, which
are summarised in Figure 2.12. The first is corrective

22

© Butler Cox plc 1990




© Butler Cox plc 1990

Chapter 2 Putting the right organisation in place

maintenance, which is concerned with resolving errors.
Corrective maintenance is a reactive process, usually requiring
rapid action. The second is adaptive maintenance, which is about
enhancing and extending systems to incorporate the evolving
needs of users. The third is perfective maintenance (sometimes
called preventive maintenance), which consists of changes to the
structure of software to improve its performance and
maintainability.

There is widespread disagreement over whether adaptive
maintenance should be considered as part of software
maintenance, or as part of new systems development. This is
important, because adaptive maintenance is by far the largest
maintenance activity. Some companies adopt a clear definition,
one way or the other. For others, it depends on scale — if the
effort exceeds six man-months, for instance, the work is
considered to be new systems development. It is for this reason
that reports of maintenance as a proportion of overall systems
development work vary widely. In one of our own surveys, the
proportion ranged from as low as 5 per cent to as high as 90 per
cent, with an average of about 40 per cent.

THE MERITS OF A SEPARATE MAINTENANCE DEPARTMENT

The relative merits of different ways of organising maintenance
within a systems department have been debated for years, but
a survey of maintenance organisation in 130 businesses in the
United States, undertaken in 1987, identified some common
characteristics. The businesses in which maintenance was
organised in project teams were smaller than the sample average.
In these businesses, although the maintenance backlog was shorter
than average, the software was more difficult to maintain, the
problem of managing maintenance seemed more severe, and the
maintenance staff were less positive than average about their
work. In contrast, where maintenance was undertaken as a
separate activity, the businesses were larger than the sample
average, the maintenance backlog was longer than average, and
the software under maintenance was older, but management and
staff problems seemed less severe than average.

Our own survey revealed that staff morale and motivation were
significantly higher when maintenance was set up as a separate
function. This view is supported by Joseph Izzo, from a California-
based management group that specialises in improving company
efficiency. He suggests that systems departments have two
missions. The first is to maintain today’s systems and to provide
as fast a service to the users as possible. This, he has found, is
seldom achieved. The second mission is to work on tomorrow’s
systems. However, when the schedule on a ‘today’ project slips,
people are inevitably taken away from a ‘tomorrow’ project. The
most efficient way to organise systems maintenance work,
according to Izzo, is to organise it as a separate group, and to
concentrate on measures to improve service levels.

The first step is to set up two teams — one for product support,
and one to deal with ‘intermediate’ requests. The product-support
team deals with requests likely to take less than 160 hours of
effort. A separate project-based group deals with ‘intermediate’

23



Chapter 2 Putting the right organisation in place

requests — those estimated to take between one month and one
year of effort. Requests that are estimated to take more than one
year of effort are deemed to be development rather than
maintenance projects.

The product support group is staffed by senior people who know
how to work with users. They deal with maintenance requests
as they arise. No priorities are set, but requests must be authorised
by a line manager. In companies that have installed such a group,
turnaround is significantly improved, and the systeins
department’s credibility is improved in the user community. The
key to success, Izzo found, is to appoint a service-oriented
manager to run the group. Contrary to normal expectations, he
finds that after about a year, staff actually want to join the team,
because its members are regarded as ‘heroes’ by the user
community. Businesses that have set up such groups confirm this
experience.

The intermediate group is run by a project manager, and the work
is costed and scheduled as for any new development work. These
projects are all authorised and priorities are set by senior line
managers. Because the team is allowed to concentrate on one job,
the typical pattern in installations organising maintenance in this
way is to meet 80 to 90 per cent of the scheduled deadlines.

There are two significant points about this way of organising
maintenance work. The first is that the maintenance group should
be seen as an important part of the systems department. This
means it should be led by a high-profile manager, and should
be staffed by service-oriented personnel. The second is that line
managers should take responsibility for the maintenance func-
tion — requesting, authorising, and setting priorities for the
work. Motivation and productivity will both improve as a result.

No similar characteristics were evident in our own, somewhat
smaller survey. Of the companies we surveyed, maintenance was
undertaken by project-team staff in 15, and by a separate
maintenance function in eight. We detected no significant
differences between the two forms of organisation in terms of
staff experience, the pressure of conflicting demands for staff
time, staff turnover, communications with users, or document-
ation problems. The amount of corrective maintenance as a
proportion of the whole was about the same in both forms of
organisation. Size was not a factor as it was in the US survey. We
found no evidence to support the view that separate maintenance
functions are more likely to be the norm in larger businesses. In
fact, our evidence suggested that higher levels of maintenance
(above 40 per cent of the total development effort) are associated
with project teams.

Our survey showed that, from the managers’ standpoint, the most
significant problem was competing demands for maintenance staff
time, and the least significant was a lack of user interest (see
Figure 2.13). There was no evidence to suggest that the way in
which maintenance was organised made any difference to these
perceptions. On the other hand, both staff morale and motivation
were higher when maintenance was organised in a separate
function rather than in project teams.

24

Y T T . (i e [ e e T A S

© Butler Cox pic 1990




© Butier Cox plc 1990

Chapter 2 Putting the right organisation in place

Figure 2.13 Competing demands for maintenance staff time is the most
significant problem

Problems from the manager’s

: Managers’ rating of significance
standpoint Least

Most
1 2 3 4 5

Most serious problems

Competing demands for
maintenance staff time

User demands for extensions
and enhancements

Meeting scheduled
commitments

Least serious problems

Adhering to programming
standards

Unreliable system software
and hardware

Lack of user interest

(Source: Butler Cox survey of PEP members)

THE MERITS OF OUTSIDE MAINTENANCE

An alternative to maintaining systems within the systems
development department is to arrange for some or all of the work
to be undertaken outside the department.

One source is that of systems users themselves. Advances in
fourth-generation languages are making this an increasingly
practical proposition. It is now commonplace for businesses to
provide users with query languages through which they can derive
data and generate their own reports. It is a small step beyond this
to provide tools sufficiently powerful to enable users to add
functionality to a system — in other words, to undertake their
own adaptive maintenance.

An alternative is to contract maintenance work to a third party.
This offers three benefits: it releases systems development
department resources for other work; it overcomes the
‘technology gap’ problem, when the system being maintained is
based on technology that is no longer current; it introduces a
formal contractual relationship between users and maintainers.

The FI Group, a major systems and software house based in the
United Kingdom, is a good example of a contractor who
undertakes third-party software maintenance work. Maintenance
is contracted out to third parties for numerous reasons. One
assignment involved a leading building society that was obliged
to modify its mortgage-administration system and contracted the
work out so that it could, itself, concentrate on new development
work. In the four-year period to April 1988, the project team
assigned to the work had made 600 separate changes. The team,
which was drawn from a larger pool of staff, all of whom were

25



e e e e e TRl

Chapter 2 Putting the right organisation in place

familiar with this kind of work, varied in size between three and
five according to the nature and priority of the work. Another
assignment was for a local government authority that contracted
to maintain its payroll system because the IBM CICS and
Assembler skills demanded by the work were not available within
the council’s own information systems department. A third client,
amajor life assurance company, contracted to maintain its existing
unit-linked and non-unit-linked systems over a two- to three-year
period, while the information systems department concentrated
on developing replacement systems. ’

While the possibility of contracting out at least some part of a
company’s maintenance work is becoming more feasible and can,
clearly, be a highly successful alternative, most companies will
continue to do a lot of their own maintenance work in-house for
the foreseeable future. Management must therefore turn its
attention seriously to the question of how to attract and retain
good maintenance staff. In short, the answer is to provide an
environment that actively supports them. This may be achieved,
in part, by providing methods, tools, and training programmes,
but changing the technology alone is not enough. An organisation
must create an environment in which maintenance is perceived
to be as important to the operation of the business as any other
function. '

IDENTIFYING AND RESOLVING COMMON
ORGANISATIONAL PROBLEMS

The following problems were frequently mentioned by systems
managers during our research. The suggested solutions are
summarised in Figure 2.14, They fall naturally into two groups:
those that have an impact on the systems department’s
effectiveness, and those that affect its efficiency.

PROBLEMS HAVING AN IMPACT ON EFFICIENCY

Four common problems are low productivity, rising development
costs, high staff turnover, and poor-quality systems development
by users.

Low productivity: Organisational changes can help with pro-
ductivity. They include using smaller teams (no more than six),
introducing more flexible jobs (both discussed in Chapter 3), and
shedding some layers of management.

Rising development costs: These are frequently caused by poor
management of the product-definition and construction stages.
Appointing users to manage projects will usually result in a better
definition of the project objectives, tighter control over project
enhancements, and better marshalling of user-department
resources during implementation. The result should be better
control over costs.

High staff turnover/lack of a suitable career structure: There are
many reasons for high staff turnover that are not within the scope
of an organisational change to cure. A surprisingly consistent body
of research, however, has identified lack of job interest and lack
of a suitable career structure as prime causes of discontent.
(Providing a flexible career structure is discussed in Chapter 3.)

© Butler Cox ple 1990




Chapter 2 Putting the right organisation in place

Figure 2.14 Common organisational problems can be resolved with reference to.:th'e.apprb'abﬁ'isqggésiedi in this report

It isinteresting to note that the highest turnover rates usually occur
amongst the newest recruits. These people have often been

_recruited from a university background in which they enjoyed
considerable autonomy and status. Fitting into a structure with a
steep reporting hierarchy can be daunting and demoralising. In
organisations with fewer layers and flatter structures, turnover is
usually considerably lower.

| : Development of poor-quality systems by users: Users should be
encouraged to experiment with new technology in order to learn
how to apply it appropriately to their business area. As we have
seen, it is a mistake to try to control their efforts too soon. Often, the
reluctance of users to consult systems staff is a legacy of poor
previous service, lack of interpersonal skills in systems staff, and a
poor appreciation of real business problems by the systems
department. The best way to foster a better working partnership is

© Butler Cox plg 1990 . 2%



B e s o e e R g e e s ey M

Chapter 2 Putting the right organisation in place

toset up an education and user-support group, to be located in the
business area and staffed by user-sympathetic personnel. Their role
will be to encourage and guide the users’ efforts. This type of role
is best performed by people with a bias towards business rather than
technical solutions.

PROBLEMS HAVING AN IMPACT ON EFFECTIVENESS

Five common problems concern decentralisation, low presence,
priorities set too low down, absence of infrastructure planning, and
confusion over communications.

Failed attempts to decentralise: A common reason for the f ailure of
attempts to move centralised staff into a business area is lack of
preparation. There are usually cultural barriers to break down for
both systems staff and business-unit staff. One company observed
that “‘when you put a user together with a systems designer, what
you get at first is nothing like either of them had in mind . . . then
they work on it’’. Often, the systems staff are cut off from their
colleagues and unable to integrate successfully with their new
business partners. There are two important prerequisites before this
type of re-organisation can take place. One is to train staff fully for
their new roles, prior to dispersing them. The other is to manage
careers, so that staff in small, decentralised units are given the same
opportunities to move into different posts as their ‘centralised’
colleagues. Frequent job rotation can also prevent feelings of
isolation.

Low ‘presence’ in the business: It is quite possible for a business to
be more critically dependent on systems than line management
recognises. If a particular systems department believes this to be the
case, low presence is clearly a problem. It can often mean that
business management is devolved, while systems development
remains centralised and is thus seen to be remote and irrelevant to
the business. In these circumstances, there is usually a wide cultural
gap to overcome as well, and raising the profile of the department
will inevitably be a slow process.

The most successful way to increase the presence of the department
is to concentrate on a growth area such as sales, marketing, or
production, and to appoint a business manager to foster a more
positive relationship with line management. To build on the
relationship and to ensure that systems are produced that the
department actually wants, some user-support staff could
subsequently be devolved to the business area.

Priorities set too low down: This is really a variation of the previous
problem, and usually implies that line management does not
recognise the value of computer systems to its business area.
Priorities, however, should not be decided by the systems
department. It is senior line management’s responsibility to decide
how much money to invest in systems, and what the business
priorities are for development. This can be achieved only by senior
systems management fostering a partnership with senior business
executives, and encouraging them to agree on a systems strategy
and priorities. This is more easily accomplished if the management
style of systems development is closely aligned with the group
management style.

28

© Butler Cox plc 1990




utler Cox ple 1990

Chapter 2 Putting the right organisation in place

Absence of infrastructure planning: This i1s a common problem
in organisations that have neither laid down clear policies and
guidelines governing the respective responsibilities of users and
systems staff, nor defined a common systems architecture within
which coherent planning can take place. The first priority is to
establish the principle that users should decide what systems are
developed, and that systems staff should provide the standards
required to enable applications to be shared by business units if
needed. A systems-planning group can then be created to develop
and enforce the standards necessary to safeguard flexibility,

compatibility, and consistency in systems development, through a
common software infrastructure.

User confusion over communications: The proliferation of various
‘information centres’ and user-support groups, as well as multiple
development centres, can be confusing for user departments. To
ensure that the most appropriate service is always offered, it is
essential to provide the user with a single point of communication.
This should be the business-group manager.

We have seen, in this chapter, that while there is no direct
correlation between productivity levels and the structure of the
systems department, there are, nevertheless, many things of an
organisational nature that systems managers can do to provide a
better service to the business. Organisational design is not,
however, just about structural form. The behaviour of individuals
in an organisation, and therefore their performance, is influenced

by a variety of factors, which are discussed in detail in the next
chapter.

29



Chapter 3

Improving staff motivation

Because the largest single cost element in most systems
development departments is staff, improving the productivity of
development staff is a critical matter. Motivation itself is an
important element in this. Happily, the nature of the work itself
presents no obstacle: systems development work is intrinsically
highly motivating. Having said that, it is commonplace for systems
development staff to expect more satisfaction from their work
than they actually get. In other words, the reality of motivation
falls short of potential.

To bridge the gap, several options are open to managers. Chief
amongst these are broadening the scope of the work, job rotation,
flexible career structuring, goal-setting and feedback, per-
formance-related pay, and job fitting. These are opportunities that
apply at the level of the individual. Further opportunities for
improving motivation exist at the level of the team. They are to
do with team size and composition, and with the role and style
of the team leader.

A closely related topic, but one which is best handled in its own
right, is that of the motivation of staff engaged in main-
tenance — given the sheer volume of maintenance that occurs
in the typical systems department today.

THE HIGH MOTIVATING POTENTIAL OF SYSTEMS
DEVELOPMENT WORK

Systems development work can be highly motivating, particularly
where an element of staff management is involved, but the
motivating potential varies widely from Jjob to job and between
different companies.

The results of a survey carried out in the United States have been
used to calculate a measure called the Motivating Potential Score
(MPS) for a range of occupations. The MPS derives from the Job-
Diagnostic Survey technique originally developed by two
American researchers, J Richard Hackman and Greg R Oldham.
According to Hackman and Oldham, the motivating potential of
a job is derived from five key measurable Job dimensions: skill
variety, task identity, task significance, personal responsibility,
and work feedback. An equally weighted combination of the first
three dimensions is used to provide a measure of the perceived
importance of the job.

Skill variety is the extent to which the job calls for different skills
and talents. Task identity measures the completeness or
wholeness of the work involved in the Jjob. Task significance is
to do with the job’s impact on other people. The fourth dimension
measures the job holder’s perception of personal responsibility
for the work in terms of freedom, independence, and discretion

30

© Butler Cox plc 1950



© Butler Cox plc 1980

Chapter 3 Improving staff motivation

in determining job procedures. The fifth dimension, work
feedback, is concerned with the job holder’s knowledge of the
outcome or effectiveness of the work. Both the extent and the
timeliness of feedback are important.

Each of the dimensions is rated on a scale of 1 (low) to 7 (high),
and the MPS is defined as the product of the perceived importance
of the job (an equally weighted combination of the first three
dimensions), the personal responsibility of the job holder for the

work done, and work feedback. MPS measures can therefore
range from 1 to 343.

Figure 3.1 shows a sample list of occupations, together with the
MPS for each one. The MPS of 154 for data processing
professionals places the occupation at about the same level as
managerial and other professions, and well ahead of other
occupations in terms of motivating potential.

THE MOTIVATING POTENTIAL OF DIFFERENT SYSTEMS
DEVELOPMENT JOBS

This high overall score for the motivating potential of data
processing work does, however, hide wide variations between
individual jobs within any one organisation, and across
organisations. Figure 3.2, overleaf, shows the MPSs for five
systems development jobs and the average for all systems
development jobs, and compares them with the MPSs of two
further categories of job — other professional staff and other
managers. Of the five systems development jobs, data processing
management has the highest MPS, at 199, and maintenance the
lowest, at 106. Programming scores 137, while analysts and
analyst/programmers are virtually the same at 154 and 152
respectively. Of the dimensions that make up the overall MPS for
each of the five data processing jobs, work feedback scores lowest
in all cases except one.

In our own survey of motivating factors, carried out amongst 600
data processing professionals in seven businesses, we undertook

Figure 3.1 The motivating potential of data processing is quite high

*MPS: Motivating Potential Score, a measure of the motivating potential of jobs.
The higher the score, the more motivating the job.

(Source: Couger, J D and Zawacki, R A. Motivating and managing computer
personnel. Chichester: Wiley, 1980.)

31



oo s SRR AR R T e

Chapter 3 Improving staff motivation

Figure 3.2 There are wide variations in the motivating potential of jobs within syé‘-lems development

Job dimension | Analysts |grz

Skill variety "2’_

Task identity @

Task significance ®

Responsibility. for work do

Knowledge of outcome of wor
(feedback) e

Motivating Pézén;iati'gsqre:(ﬁiéﬁ) G

L

Notes: 1 Data relates to staff who spend more than 80 per cent of their time on maintenance work.
2 The average of the rating for each of these dimensions forms the rating for the importance of the job.
3 MPS is calculated by multiplying the average rating of the first three dimensions by the rating of the last two
dimensions.

(Source: Couger, J D and Zawacki, R A, Motivating and managing computer personnel. Chichester: Wiley, 1980, and Couger, J D
and Colter, M A, Improved productivity through motivation. Prentice Hall, 1985.)

a similar investigation to the one summarised in Figure 3.2. Our
survey respondents also quantified their responses using a seven-
point scale, which we were able to reconcile with the points-
scoring method used in the American surveys. We refer to the
measures of motivation derived from our own survey as Job
Motivation Scores (JMSs) to distinguish them from the MPSs.

In our survey, we asked for two sets of responses to the job-
diagnostic survey questions. One set measured the importance
that respondents attributed to the dimensions in affecting their
ability to work well; the other set measured the level of
satisfaction that they attributed to each Job dimension in the
context of their working environment. There was little correlation
between the two. Most of the dimensions were rated as being quite
important, scoring between five and six (out of seven). Satisfaction
with these factors was, in general, not rated quite as highly (about
four to five), and there was a wide spread between the different
factors. Certain divisions stood out as being relatively important
but satisfaction was relatively low — technology, career
development, user factors, and, to a lesser extent, relationships
with immediate managers. On the other hand, team factors and
personal circumstances scored relatively high on satisfaction but
lower on importance. These satisfaction/importance ratings are
shown in Figure 3.3,

We found both similarities and differences between the J MS and
MPS results. There was considerable agreement between the
surveys over the large difference in the motivating potential of
Jjobs within data processing. Figure 3.4, on page 34, shows the
JMSs of the six jobs that we measured. Both results suggest that
the motivating potential of jobs rises through the ranks from
programmers’ jobs to systems development managers’ jobs.

The dimensions rated as most important in our survey were task
identity, skill variety, and responsibility for the work done.
Feedback about the results of the work done was rated as less

© Butler Cox ple 1990




© Butler Cox plc 1990

Chapter 3 Improving staff motivation

Figure 3.3 There is little correlation between the average ratings of
importance and satisfaction with respect to the factors
affecting development productivity

Key to factors:

CD Career-development Me Methods SM Senior manage-
opportunities NW Nature of work ment relationships

DO Departmental PB Pay and benefits TF Team factors
organisation PC Personalffamily Te Technology

GS Goal setting circumstances TS Training and skills

IM Immediate manager Re Recognition UF User factors
relationship SE Security of employment WE Work environment

(Source: Butler Cox survey of PEP members)

important, and the level of satisfaction with the feedback received
was lower than the level of satisfaction with the other dimensions.
We also asked about the importance of, and satisfaction with,
feedback from the respondents’ immediate managers. Here,
importance was rated much higher than satisfaction than for any
of the five job-motivation dimensions. This emphasises that
systems development managers should be paying much greater
attention to providing feedback about an individual’s performance.

THE MOTIVATING POTENTIAL OF SPECIFIC WORK FACTORS

Our survey also revealed that two further factors — support
responsibility and work variety — have a marked effect on the
motivating potential of a job.

Support responsibility: Responsibility for directly supporting the
user community is a positive motivating factor in systems
development work, as is responsibility for directly supporting an
aspect of the hardware or software. These findings are apparent
both from Figure 3.5, overleaf, and from a comparison of the
motivating scores returned by the different businesses represented

33



Chapter 3 Improving staff motivation

Figure 3.4 The motivating potential of jobs rises through the ranks,
from programmer to systems development manager

JMS*

T T T T T T T T T T T 1

10 20 30 40 50 60 70 80 90 100 110 12

Systems development
manager

Project manager
Project leader
Systems analyst
Analyst programmer

Programmer

*UMS is the product of three ratings, each of which is in the range 1 (low) to
high (7). The three are importance of the job, responsibility for the work done,
and knowledge of the outcome of the work.

(Source: Butler Cox survey of PEP members)

Figure 3.5 Job Motivation Scores (JMSs) vary according to the support
responsibilities of the job

JMS

T T T T T T T ¥ T — ;

10 20 30 40 50 60 70 80 90 100
Job includes some
user-support responsibilities

Job includes some
hardware- and/or software-
support responsibilities

Job has no hardware- and/or
software-support
responsibilities

Job has no user-support
responsibilities

Average of all jobs

(Source: Butler Cox survey of PEP members)

in our survey. Figure 3.5 shows that, when user or technical
support is included, a job has a greater motivating potential than
when it is excluded.

One of the businesses in our survey reported a significantly higher
JMS score for its systems development staff than the other six,
We believe that this is due, in part, to the job-enlargement policy
that this company has adopted. Its systems development staff are
encouraged to become experts not only in systems development
project work, but also in defined areas of software, hardware,

34

© Butler Cox plc 1990



© Butler Cox plc 1990

Chapter 3 Improving staff motivation

and user support. The consequence of the job-enlargement policy

is to increase skill variety, task significance, and personal
responsibility.

Work variety: After a time, any job can become mundane when
it lacks variety. Greater work variety is a positive motivator. Apart
from career development, which by nature introduces individuals
to a changing pattern of work and responsibility, the most obvious
way of introducing variety is through job rotation. Some businesses
take a planned approach to job rotation precisely because of the
benefits it can deliver. One, for instance, moves programmers into
new teams every two to two-and-a-half years, and systems analysts
every three to three-and-a-half years. It further increases work

variety by providing its staff with opportunities to develop
productivity aids.

Figure 3.6 compares the typical internal productivity for each of

‘the businesses in our survey with the average time spent in project

teams. The figure suggests that there is a relationship between
productivity and the time spent in project teams — with internal
productivity decreasing as the average time increases. This does
not necessarily imply a causal relationship — both parameters
could be influenced by project size, for example. The implied
relationship is, however, consistent with the fact that projects of
short duration are more manageable than long ones, and that they
are better for avoiding the troughs in enthusiasm, drive, and vision
that are often the consequence of prolonged project work.

IMPROVING THE MOTIVATION OF INDIVIDUALS

Although it is commonplace for systems development staff to
expect more satisfaction from their work than they actually get,
there are steps that companies can take to improve the situation.
Motivating staff involves equipping them for the new roles that
are emerging from the re-alignment of the systems function to the
business, and taking positive measures to maximise the
contribution of each individual. Six specific actions can be taken

Figure 3.6 Internal productivity* decreases as the average time spent in
a project team increases

A
Internal
50 b productivity :
1
10T
5
1 1 1 I} 1 = 1 1

v

5 10 15 20 25 30 35
Average time spent in team (months)

*See Chapter 6 — Productivity Index
(Source: Butler Cox survey of PEP members)

35



Chapter 3 Improving staff motivation

by systems development managers to ensure that each of their
staff is making the greatest possible contribution — broadening
the scope of jobs, introducing job rotation and flexible career
structures, improving goal-setting and feedback, rewarding
achievement with performance-related pay, and fitting jobs to
people.

BROADENING THE SCOPE OF JOBS

The role of the systems development professional is becoming more
diverse. To develop the types of systems that are being used to
support business activities directly, it will be critical for systems
staff to have some knowledge of the business. The greater
involvement of users in the development process, using modern
development tools, will require systems staff to have people-
oriented skills. Jobs that are usually regarded as more ‘technical’,
such as systems maintenance, are often performed far more
successfully by service-oriented people. These trends point to the
need for staff who are able to operate far more flexibly than has
been the case in the past. The role of the education and user-
support specialist, for example, requires technical programming
skills, business knowledge, analytical ability, and interpersonal
skills. These can be acquired only by enabling as many people as
possible to operate in wider roles.

In response to these pressures, there is an increasing trend to move
away from the traditional role of programmer, analyst, or business
analyst, towards a more ‘hybrid’ role, such as an analyst
programmer who uses modern development tools, There are two
major advantages to widening the scope of systems development
Jjobs. The first is that it creates a more flexible workforce, who
are able to undertake a wider variety of work in response to
changes in demand. The second is that the individual gains greater
Job satisfaction and is likely to be more productive as a
consequence.

INTRODUCING JOB ROTATION

Moving staff between jobs is a useful way of broadening the skills
of the individual, increasing job interest, and improving motivation
and productivity. Philips, an electronics multinational company
based in the Netherlands, provides positive encouragement for job
rotation. Below management grades, staff are expected to spend
no more than two or three years in the same place; at management
level, this is extended to four years, The philosophy is one of
encouraging change, fresh insight, and creativity, while trying to
minimise ‘ownership’ of systems. Turnover of systems staff at
Philips has been very low, at about 2 per cent a year.

SAAB, a Swedish car and aerospace manufacturer, does not expect
systems people to stay in one job for more than a year, and finds
that moving people around encourages them to have a more
flexible outlook and gain a wider appreciation of the business.
Frequently, these moves involve a transfer to a business-support
group from a central development team, and occasionally, systems
staff will move into line-management positions in the business
area.

36

© Butler Cox pic 1990




Chapter 3 Improving staff motivation

INTRODUCING A FLEXIBLE CAREER STRUCTURE

Managing careers is not high on the systems manager’s list of
priorities. This is indicated by the results of one of our own surveys
of systems development staff (see Figure 3.7). It contrasts the
views of systems development managers and their staff about the
staff factors that they thought most important. Managers rated
training and skills as most important, whereas the staff themselves
rated career development, which included acquiring new skills and
opportunities for promotion and advancement, uppermost.

Two further important issues make career planning a matter of
urgent management attention. One is that providing practical
career advancement for dispersed systems staff is one of the
critical features of successful devolution to business units. The
other is that a lack of suitable career options is one of the main
reasons for staff attrition, according to a recent survey (see
Figure 3.8, overleaf).

To provide a flexible career structure, systems development
managers must recognise the wider roles that are emerging for
the systems department, and provide more scope for ‘lateral’
development. An alternative to the traditional vertical career
path, in which the main route to promotion is through the
programmer/analyst/project leader path, is shown in Figure 3.9,
on page 39. The main advantages of such lateral development
paths are described in the following paragraphs.

Figure 3.7 There are marked discrepancies between the views of managers and their staff on the importance of
various people-related factors to productivity

Based on frequency of mention by
systems development managers
in a telephone survey in which they
were asked about the human
factors that are important in
achieving systems development
productivity. For comparison, the
importance rankings given by
systems development staff in
response to the guestionnaires are
also shown.

*Questionnaire respondents were
not asked to rank motivation as a
separate factor

(Source: Butler Cox surveys of PEP members)

© Butler Cox pic 1990

37




Chapter 3 Improving staff motivation

Figure 3.8 Job interest and career paths are rated the most important
considerations by systems staff in changing jobs

Factors influencing
the decision to
change jobs

Job interest

Career path

Job security

Salary

Work environment

Responsibility
Equipment used

Location

Company

Status

Industry

Fringe benefits

Percentage of respondents rating factors as:

Very Fairly Not very —1 Not at all
important important important _| important

(Source: Computer Weekly's Computer Industry Employment Survey 1989)

Alternative, but equal, career paths are provided for technical and
non-technical staff. One result of the traditional career pattern
is that programmers are moved into analyst/programmer and user-
support roles regardless of whether they have the ability to deal
with system users. Business and interpersonal skills are
subordinated to technical skills, yet these are of equal importance
to the systems department that is re-aligning itself to work more
closely with its business partners. The key is to provide a
structured framework of suitable career opportunities for
everyone, recognising the potential value of both technical and
non-technical skills. In most businesses, this will also require a
change in the pattern of recruitment to test for the appropriate
personality traits that will allow recruits to operate successfully
in broader, business-oriented roles. In this structure, promotion
to a senior level is possible for both technical and non-technical
staff, without either having to move into a management post.

38

S-S

© Butler Cox plc 1990



Chapter 3 Improving staff motivation

Figure 3.9 Lateral career-development paths are an alternative to vertical career progression

To business
area

b

From business
area

Manager

4

Level 1

_ Business Technical
Project consultant/ consultant/
manager specialist specialist y
* 7+ years
4-7 years

To business

area

From business Entry level
area (graduate)
Entry level

Professional

0-4 years

-
i

(non-graduate)

© Butler Cox plc 1990

Line and project-management paths are explicitly provided. A
major disadvantage of the typical promotion path, based on
technical performance, is that it leads both to over-promoted
technicians, who are unable to function adequately as managers,
and to unfulfilled managers, whose real talent may be hidden
behind average technical performance. In both cases, valuable
expertise is misdirected, and inefficiency results. People with
limited management ability, who may be excellent technicians,
should be identified early — that is, within the first four years of
their career — so that they can be provided with an equally
satisfying non-management career. Likewise, people with
management potential can be trained for the role early.

Lateral movements are planned and encouraged, both between
major career paths, and to and from business areas. In this model,
all staff spend up to four years gaining a wide knowledge of the
profession. Lateral movements between different roles (maybe in
different business groups) are encouraged, and all junior systems
staff are seconded to business areas as a necessary part of learning
the job. After four to seven years, the individual builds on basic
skills and moves into a career path, with lateral movement still

39




Chapter 3 Improving staff motivation

possible between paths and to business areas. After seven years,
an individual usually finds it extremely difficult to move across
paths. Lateral movements into the business provide systems staff
with much-needed business knowledge, and help to bridge the
cultural gap between systems and business staff. Current evidence
suggests that systems departments are net importers of skills from
line-management functions; unless this inflow is balanced, there
is a danger that systems staff will be demotivated by their
perceived lack of suitability for promotion outside the systems
department. Careers, however, still have to be managed, so that
staff are aware of the opportunities that are available and are
encouraged to exploit them.

IMPROVING GOAL-SETTING AND FEEDBACK

The key to success in goal-setting is that goals are objectively
defined and measured. An example of this is found at Security
Pacific Automation Company, the California-based data processing
arm of Security Pacific Corporation, a bank holding company. As
part of a management-by-results programme, the company
introduced ‘commitment planning’, to motivate and reward people
for achieving the results specified in their service-level
agreements. A commitment plan defined what each employee will
accomplish during a specified time period, the different levels of

performance that the employee can achieve, and the ways in which .

performance will be measured. The plan is negotiated between
the employee and his or her manager.

For example, a financial-management commitment might be to
reduce spending, where an ‘excellent’ rating would mean being
5 per cent under budget, ‘above average’ would mean 3 per cent
under budget, ‘average’ would be on budget, and ‘unsatisfactory’
would be over budget. A few years ago, management felt that the
bank was not promoting enough employees from within. Managers
were then measured on the percentage of job vacancies that they
filled with bank employees. ‘Excellent’ was defined as filling 90
per cent of vacancies from within, ‘above average’ was 85 per cent,
and so on.

IBM in Australia has staff-turnover objectives written into the
performance objectives of every line manager from the chief
executive down. In 1988, IBM Australia’s actual rate of staff
turnover was 8.9 per cent and its objective for 1989 was 6 per cent.
Nothing could be more objective and measurable than that.

We have seen that jobs enabling the individual to obtain feedback
from their work naturally and quickly are intrinsically more
motivating than jobs in which feedback is delayed. The nature of
most systems work is such that a system designer, for example,
may not know for several months whether the design of a system
is good or bad. Systems managers therefore need to find
alternative ways of providing systematic and timely performance
feedback to their staff. The easiest option is to link the feedback
process to the annual appraisal scheme, as most organisations
already have these schemes in place. However, at all but the most
senior level, annual appraisals are probably not frequent enough.
The objective should be to provide continuous feedback on
performance and achievement.

40

e L R e e .

© Butler Cox ple 1990



© Butler Cox plc 1990

Chapter 3 Improving staff motivation

The most satisfactory results, however, are achieved by moving
the process of goal-setting and feedback outside the appraisal
system altogether. One company, characterised by a high
productivity rating, prepares work-assignment briefings to cover
the next 10 to 20 days of work for programmers, and 30 to 40 days
of work for systems analysts. Each work assignment is formally
appraised upon completion, and the appraisal is sent to the human-
resources manager. This work-assignment and appraisal procedure
takes place outside the six-monthly and annual formal appraisals,

which are concerned with training requirements, salary reviews,
and career development.

REWARDING ACHIEVEMENT WITH PERFORMANCE-RELATED PAY

Research has shown that employee incentives, if carefully and
fairly administered, can play a significant role in motivating staff,
because they serve as a means of recognising and rewarding staff
for work well done. If they are paid in a timely manner, they will
also reinforce the goal-setting procedure discussed above.

Probably more job offers are declined for salary reasons than for
any other. Companies in the public sector, with less flexible salary
schemes, have usually experienced a greatly increased rate of
turnover when their salaries fall significantly below private-sector
rates. Nevertheless, there is no evidence that high pay, while
attracting recruits, can motivate staff and reduce turnover rates.

The status of pay as a ‘hygiene’ factor rather than a positive
motivator was examined in the 1960s by Frederick Herzberg at
the University of Utah. Certainly, no research that has been
conducted since has been able to prove otherwise. Cor Alberts,
a divisional director from CAP Gemini in the Netherlands, put it
this way at a recent conference on recruiting and retaining
information technology staff: “‘IT staff want to develop and they
want to have new challenges and to learn new things. The growth
is important and the salary is only a yardstick, at least in the
Netherlands. The salary is questioned because they need to get
enough in comparison to other people in the IT profession, or in
the company itself.”

Professor Robert Zawacki, a human-resources consultant, has
explained that the ‘money’ issue is not how much systems staff
earn, but is concerned more with equity vis-a-vis their perceived
reference group (our italics). In other words, salary is the device
whereby employees measure the comparative value that different
employers put on their skills. But Professor Zawacki has added:
“The foundation is the money, and the job is the home you put
on that foundation, but once the foundation is solid, they [systems
staff] want something else — meaningful work.”” The message is
very clear — it is essential to pay market rates, but when staff
have achieved parity with, or even an advantage over, their
reference group, salary alone does not motivate them.

Bonus schemes have been used for years as a productivity
incentive for blue-collar workers. There is now increasing evidence
that performance-related pay is beginning to be used as a means
of attracting senior managers in industries where competition for
good people is fierce, and can now account for as much as 20 per
cent of total remuneration. Where it is applied more widely,

41



e R T L s T TN o TR R

Chapter 3 Improving staff motivation

however, performance-related pay does reduce staff-turnover
rates. There are three basic types — share options, results-related
bonuses (often based on profitability), and individual merit pay.

Share options: Share-based schemes (which are usually based on
an option to purchase shares in the future at a predetermined
price) are not normally directly performance-related because share
values are subject to all kinds of market pressures. These types
of schemes are not, of course, available to public—sgctor
organisations, and neither are they under the direct control of the
systems department. Nevertheless, where share-option schemes
do exist, as many employees as possible should be encouraged to
Jjoin because they tend to generate loyalty to the company.

Results-related bonus: These can be organised at group (for
example, project-team), department, or company level. At the
project-team level, performance/delivery objectives are set at the
beginning of the project, and bonuses are paid at the end, to an
agreed formula, if the objectives are met. Departmental and
company-level bonuses are similar in concept, but are usually
based on criteria such as profitability. They are typically awarded
separately from normal salary reviews, depend on how well the
company performs, and are paid annually. Such schemes are not
common in non-profit-making organisations, where it may be more
difficult to set performance objectives. )

Individual merit pay: Merit pay is an individual award, paid to
an agreed formula, for meeting pre-agreed standards of
performance. It is highly motivating because it is directly related
to individual performance. While it can be divisive, and it can be
demotivating for the poor performer, it works well for the majority
of employees.

Finally, companies have found four lessons to be of the greatest
importance to the success of a performance-related pay scheme.
The incentives should be paid in a timely manner, and be linked
to short-term goals; the performance payment should be kept
separate from normal salary payments; payments should not be
awarded as a matter of course, but instead should be related to
measurable performance objectives and not awarded for average
results; the goals set for performance should be mutually agreed
and realistic.

FITTING JOBS TO PEOPLE

In times of increasing staff shortages, greater flexibility can be
obtained by fitting jobs to people rather than vice versa. This is
the approach taken by Morgan Guaranty Trust Company of New
York, an international bank with systems staff in Europe and |
America. Whenever a member of staff moves, it is seen as a chance-
to restructure a job, to take account of the new staff member’s
strengths and weaknesses. This does not mean a major re-
organisation every time someone leaves, It is merely an adjustment
to suit a particular situation, which frees Morgan Guaranty from
the usually unsatisfactory attempts to recruit staff who match a
rigid job specification.

OPTIMISING TEAM SIZE AND COMPOSITION

Because team working is commonplace in systems development,
it is important to understand the factors that affect team

42 © Butler Cox ple 1980




@ Butler Cox plc 1920

Chapter 3 Improving staff motivation

productivity. Team size and team composition are two of the most
significant.

THE BENEFITS OF SMALL TEAMS

Most companies undertaking large systems development projects
now usually break the project into a series of smaller, self-
contained ones. One company we talked to estimated that one of
its current projects would require between 100 and 140 work-years
of effort. The project could be phased, but the first phase could
not be reduced to fewer than 80 or 90 man-years. Furthermore,
this phase had to be completed within nine months. To avoid the
difficulties of managing such a large project, the company chose
to split the project into separate sub-projects, each one to be
undertaken by teams of no more than eight people. Another
company has, in the past, used teams of up to 40 staff — but is
seeking ways of avoiding this in future. It has learnt that large
teams lead to problems defining and allocating responsibilities and
accountability, identifying ‘whole’ or ‘complete’ pieces of work,
communicating between team members, and staff involvement.

These companies have recognised the benefits of using small
teams. This may explain why, in one of our surveys, the importance
of team size was ranked very low (77th out of the 84 factors we
assessed). Companies with small project teams no longer perceive
team size as an important issue. Figure 3.10 shows the maximum
number of staff used at any one time in the projects recorded in
the PEP database. The most prominent peak is five. Seventy-five
per cent of projects have a peak staffing of 12 or less.

Our view is that, whenever practical, systems development project
teams should be limited to just five or six people. This view aligns
with the research of Dr R Meredith Belbin of the Industrial

Figure 3.10 Seventy-five per cent of projects have peak staffing of 12
or fewer

& Number of
40 - projects

10 15 20
Maximum number of staff during system-build phase
(Source: Butler Cox PEP database)
43



1 e e e S N L e e [

Chapter 3 Improving staff motivation

Training Research Unit (formerly part of University College,
London). He found that a team of four was the minimum necessary
to accommodate the essential team roles effectively. Teams of six
were found to be best in terms of their stability and endurance,
and their ability to allow either for some overlap in team roles,
or for one or two individuals to concentrate on single roles.

THE EFFECT ON PRODUCTIVITY OF TEAM COMPOSITION

Although much systems development work can be accomplished
by individuals, there are times when genuine team working is
needed in every project, such as during the design phase. Team
composition and ensuring that the roles of the individual are
clearly defined then become crucial. Grouping individuals into
teams helps to ensure that everyone is committed to, and working
towards, achieving the overall objective of developing a successful
system.

There is a considerable body of material about the number of
identifiable roles in a team. A case in point is the work carried
out by Dr Belbin, mentioned above. His research led him to identify
eight team roles, each of which he believed to be essential to the
success of the team (see Figure 3.11). This analysis is based on
the assumption that there is little or no ambiguity in role
definition — something that becomes increasingly difficult to
achieve as the complexity of tasks to be undertaken by a team
increases. In practice, however, Belbin found that one individual
can perform more than one role. According to this research,
therefore, the number of individuals in a team need not be as many
as eight.

Individuals who are brought together in a systems development
team do not immediately form a closely-knit unit. Teams go
through their own stages of development — known as orientation,
internal problem solving, growth and productivity, and evaluation
and control — as we illustrate in Figure 3.12, on page 46. (The
stages are, of course, quite distinet from the development phases
of the project that the team is working on.) Team performance
is heavily influenced by the team-working stage of development
that has been reached. Each stage in the team-development
process is characterised by different behaviour and team
performance.

Team development is likely to stagnate at the internal problem-
solving stage, preventing performance from progressing to the high
point associated with strong cohesion and alignment of individual
and team goals. Moreover, changes in team composition, structure,
and leadership can cause team development to revert to an earlier
stage. Team leaders need to recognise and reduce the impact of
these earlier phases of team development so that the team can
progress as quickly as possible to the most productive phases.

Systems development work tends to be more routine in the later
development phases. This assertion is based on 2 study undertaken
in 1986 of 68 staff from 20 large-sized firms in the United States.
The staff had worked in data processing for five or more years,
and most were systems analysts who had worked earlier as
programmers. Participants in the study were asked to respond to
questions aimed at assessing how routine the work was at each
phase of development. The results, which show that systems

4

© Butler Cox plc 1980




Chapter 3 Improving staff motivation

Figure 3.11 Eight roles are essential for a successful team

(Source: Belbin, R M. Management teams — why they succeed or fail Heinemann, 1981.)

© Butler Cox plc 1990

development work becomes more routine as the phases progress,
are shown in Figure 3.13, overleaf.

Teams consisting of people with similar personalities tend to work
best on simple routine tasks. Such teams encourage cooperation
and communication. Thus, teams made up of people with similar
personalities will be more appropriate during the later

45




Chapter 3 Improving staff motivation

Figure 3.12 Teams go through four stages of development

(Source: Szilagyi, A D and Wallace, M. Organizational behaviour and
performance. Scott, Foresman & Company, 1983.)

Figure 3.13 Earlier phases of
systems development are
less routine than later
phases

(Source: White, K B and Leifer, R.
: Information systems development
success: perspectives from
project team participants. MIS

Quarterly, September 1986.)

development phases, when the extent to which work is routine
is greatest. By contrast, teams made up of unlike individuals work
better during the earlier project phases when the amount of
routine work is smaller. Such teams are good for problem-solving
tasks, and for tasks involving complex decision-making because
the team members stimulate each other, producing a higher level
of performance and quality. Teams made up of unlike individuals
can, however, create a great deal of conflict. On the other hand,
teams of similar people encourage conformity, which can lead to
unproductive activity if the team norms (for work output, quality,
working practices, and so on) are not consistent with team goals.

From the above, it is clear that the formation of a balanced team
requires that account be taken of considerably more than the
technical expertise of individual team members. Those responsible
for forming teams have to be concerned with the personalities of
the members, and to be aware of the need to change the team
composition as a development project progresses. In future, the
composition of project teams may need to become more fluid, with
individuals being assigned to them from time to time and on a part-
time basis, so changing the composition of the team in terms of
personality as well as skill. The need to do this becomes
increasingly important as the size of project teams decreases, as

46

© Butler Cox plc 1990




@ Butler Cex plc 1990

Chapter 3 Improving staff motivation

it will do with the use of contemporary systems development
methods.

Cohesion and self selection are further considerations in team
formation. Cohesion describes the extent to which team members
are able to form a closely knit working unit. Productivity increases
with increasing cohesion, mainly because cohesive teams are
better at conforming to team norms, provided the norms are
aligned with team goals. Cohesion decreases as team size increases.
It also decreases as intrateam competition increases (although it
increases with growing interteam competition).

Self selection, whereby team membership is decided by the team
members themselves, is an approach to team formation that can
be successful. In the publication, Peopleware: productive projects
and teams, T DeMarco and T Lister report on how one company
advertises new projects on the noticeboard and invites staff to
form themselves into teams to bid for the work. The potential
teams are assessed in terms of their suitability to the work, how
well the individuals complement each others’ skills, and the likely
disruption to other work. Cohesion among the members of teams
formed in this way was usually high.

ENCOURAGING THE RIGHT STYLE OF LEADERSHIP

The definition and measurement of leadership remain something
of a mystery. In addition to acting as a driving force, an important
role of team leaders is to influence, assist, and motivate team
members in their work. The team leader’s role in systems
development is somewhat clearer, however. Alongside the directing
and guiding role is a facilitating one. In discharging this role, one
of the prime measures of the leader’s effectiveness is the ability
to resolve conflicts amongst the team members.

CHARACTERISTICS OF LEADERSHIP

Leadership is difficult to define. A composite view of the
characteristics of team leadership is shown in Figure 3.14, overleaf.
This illustrates that the team leader is only one influence on an
individual’s behaviour. The team leader’s behaviour is likewise
influenced by many factors, including that of the individuals in
the team. Team leaders therefore need to take account of the
factors that may be influencing individual performance and act
either to change the factors that are causing unproductive
behaviour or to increase the strength of other influences that
promote productive behaviour. Rather than acting as a driving
force, the primary role of team leaders is to direct, influence, assist,
and motivate team members in their work.

If leadership is difficult to define, it is equally hard to measure.
To date, no attempt has been entirely satisfactory. In the 1940s
and 1950s, measuring leadership traits was fashionable. The idea
was to identify features of successful leaders in terms of physical
characteristics, social background, intelligence, personality, and
task-related and social characteristics. There proved to be little
correlation between these characteristics and a person’s
effectiveness as a leader, but they did point to the importance of
certain characteristics of leaders — alertness, self-confidence,
personal integrity, initiative, self-assurance, dominance, their need

47



Chapter 3 Improving staff motivation

Note that people’s be- * —I

haviour is not directly ; 1

influenced by their Team leader's g
situation — only by their personal needs - 1€aM lea
perception of it. Their " and skills

own personality and
skills, as well as their per-
ception of the work
situation, are all
influenced by their pre-
vious work experience
both within the team and
organisation and from
previous employment.

The arrows represent influences and the directions in which they apply

Figure 3.14 The team leader is only one of several influences on the behaviour of subordinates

for achievement and responsibility, their high task orientation,
their active participation in various activities, their personal-
interaction strengths, and their willingness to cooperate with
others.

In the 1950s, behavioural theories were concerned with leaders’
actions. The theories concentrated on two basic leadership
styles — task orientation and employee orientation. Research at
that time concluded that behaviour alone was an insufficient
explanation of leadership in practice, and that other ‘situational’
factors needed to be taken into account.

By the late 1960s, situational theories were in vogue. These
theories were concerned with results and indicated that leaders’
effectiveness depended on their ability, first, to diagnose a
problem, and then to change either the various situational factors
or to adopt an appropriate leadership style.

THE ROLE AND STYLE OF THE TEAM LEADER

Although the definition and the measurement of leadership
remain something of a mystery, the team leader’s role in systems
development is clearer. Alongside the role of getting the job done
is the facilitating role — it is oriented primarily towards helping
individual team members to increase personal reward and
satisfaction by aligning individual goals with team goals. Four key
behaviour patterns persist, regardless of the style that a particular
leader adopts to suit changing circumstances. The four behaviour
patterns are known as participative, supportive, goal-oriented, and
organisational.

Participative behaviour stresses sharing information, consulting
team members, and using their ideas and suggestions in decision-

48

© Butler Cox pic 1990



@ Butler Cox plc 1920

Chapter 3 Improving staff motivation

making. Supportive behaviour emphasises concern for the welfare
and well being of team members, and the creation of a friendly
and pleasing environment. Goal-oriented behaviour is concerned
with setting challenging goals, expecting team members to perform
at the optimum level, and continually seeking improvements in
performance. Organisational behaviour includes planning,
organising, controlling, and coordinating individuals’ activities.
Planning is also concerned with minimising ambiguity in role
definitions, and minimising role conflict — both problems that
decrease with smaller teams. Different team members will respond
in different ways to the behaviour patterns of the team leader.
An effective team leader will therefore need to adjust his
behaviour to suit specific situations and individuals.

The importance of leadership abilities and styles is certainly clear
to the development staff we have surveyed. Overall, they ranked
the leadership abilities and style of their immediate manager as
sixth out of 84 factors. In general, the level of satisfaction with
the immediate manager’s leadership is lower than the level of
importance that it is accorded by development staff — to a greater
extent than for most other factors studied in our survey. There
are, however, considerable differences from company to company.

A preliminary analysis of the data suggests that at least half of
the companies we surveyed need to pay attention to this area. The
problem appears to lie mainly in the fact that staff do not feel that
they are being given the opportunity to participate sufficiently
in their immediate manager’s decision-making. Some companies
are already well aware of the need to do this, however. One, noted
for its high systems development productivity, emphasised staff
participation in a recent recruitment campaign. This campaign was
based on a survey of existing staff, who identified participation
as a consistent and necessary theme in their working environment.

Another important characteristic of team leadership is the
flexibility to adapt leadership style to suit the circumstance of the
moment. Flexibility becomes increasingly important when project
and team requirements change from phase to phase of systems
development. Flexibility is required for several reasons. One is to
handle the changing nature of work in the different phases.
Another is to handle the development in team working that takes
place between initial orientation and final evaluation. Other
requirements of leadership flexibility are to handle different
situations and individual team members, and to handle different
types of conflict, which is discussed further in the next section.

THE STRENGTHS REQUIRED OF A TEAM LEADER

To substantiate their position, leaders need a portfolio of strengths,
called an influence base. The relative importance of these
influences will determine a leader’s effectiveness in getting his
group to perform well, and in resolving conflicts. According to
some researchers, there are nine separate sources of influence that
can be distinguished within a leader’s influence base.

According to a survey by HJ Thamhain and D L Wilemon, Conflict
management in project life cycles, reported in the Sloan
Management Review, project managers consider the top three
influences to be expertise, authority, and work challenge (see

49




Chapter 3 Improving staff motivation

Figure 3.15). In the research programme of which the survey was
a part, researchers looked at the effect of each influence on two
measures of leaders’ effectiveness — project performance and
conflict resolution. They found that the more that project
managers used expertise and work challenge to influence team
members, the better their overall performance and the greater
their ability to resolve project-related conflict (see Figure 3.16).
Although authority is perceived by project managers to be
important (they rank it second to expertise), their superiors bélieve

Figure 3.15 Nine sources of influence can be distinguished within a
leader’s influence base

(Source: Thamhain, H J and Wilemon, D L. Conflict management in broject life cycles,

Sloan Management Review, vol. 6, no. 3, Spring 1975)

Figure 3.16 The more project managers use expertise and work
challenge to influence team members, the better
their overall performance and the greater their
ability to resolve conflicts

*Kendall rank correlation coefficients, which can range from -1 to +1.

Positive correlations indicate that the source of influence has a positive effect on
effectiveness.

(Source: Thamhain, H J and Wilemon, D L. Confiict management in project life cycles.
Sloan Management Review, vol. 6, no, 3, Spring 1975)

50

© Butler Cox plc 1990




@ Butler Cox plc 1990

Chapter 3 Improving staff motivation

tha1.: its use leads to lower effectiveness ratings in terms of both
project performance and conflict resolution.

The ability to resolve any conflicts that arise is one of the prime
measures of a team leader’s effectiveness. Because teams are
composed of people with different personalities, some conflict is
virtually inevitable. Up to a point, conflict can be beneficial
because it can help to introduce ideas that lead to better decision-
making, but conflict is destructive if it erodes team effort and
spirit, if it results in poor decision-making, or if it introduces
lengthy delays resulting from matters of insignificance. The degree
of conflict between team members therefore has to be managed.

There are five basic ways of managing conflict. One is by
confrontation, in which the disputing parties solve their
differences by focusing on issues, looking at alternative
approaches, and selecting the best one. The second is by
compromise: searching for a solution that brings some degree of
satisfaction to all. The third is by accommodation, in which the
parties seek areas of agreement and pay less attention to areas
of difference. The fourth is called forcing, which involves the
group’s adopting the viewpoint of one party at the expense of
another. Finally, there is withdrawal, in which the group retreats
from the area of conflict.

Figure 3.17 shows how Thamhain and Wilemon’s research found
conflict-handling methods to be favoured or rejected by the project
managers they surveyed. Confrontation was favoured by the
greatest number and rejected by the fewest. Withdrawal was least
popular. Project managers who emphasised expertise and work
challenge as their most important influences were most likely to
resolve conflicts by confrontation, and to avoid withdrawal. Those
favouring withdrawal (and compromise) tended to use friendship
as their most influential means of managing conflict.

Figure 3.17 Most project managers resolve conflic by con'fronta_tion

Percentage of project managers
favouring or rejecting the method

Conflict-handling  Rejecting Favouring

method 40 30 20 10 | 10 20 30 40 50 60 70

Confronting

Compromising

Accommaodating

Forcing

Withdrawing

(Source: Thamhain, H J and Wilemon, D L. Conflict management in project life cycles.
Sloan Management Review, vol. 8, no. 3, Spring 1975.)

51




Chapter 3 Improving staff motivation

Thamhain and Wilemon also found that project managers who
emphasised expertise had to deal with increased conflict on
technical issues. They concluded that project managers were more
concerned about the outcome of a conflict and its impact on
project performance than they were about the intensity of conflict.

The implication for systems development is that team leaders
should be selected on the basis not only of their experience and
technical expertise but also their ability to resolve conflicts among
team members.

MOTIVATING MAINTENANCE STAFF

Software maintenance has long been generally considered as less
important than new systems development. It is often an
afterthought in systems design, and is perceived as demanding
limited skill and enjoying little prestige and attention. Yet the sheer
volume of maintenance work — constituting 50 per cent or more
of the systems development workload — demands that managers
pay particular attention to improving staff motivation in this area.
They may do so in two ways: by avoiding attitudes that are
damaging, and by emphasising staff selection and training.

ATTITUDES TO MAINTENANCE

Maintenance is often, by nature, more difficult and demanding
than new systems development. Maintenance staff do not start
with a clean sheet of paper. Often, they have to work to short
timescales, particularly for corrective maintenance., Testing can
be more demanding when the system being maintained has to fit,
as is often the case, into the tight constraints of surrounding
hardware and software, and when the methods and tools available
to help with maintenance are not as well developed. Yet
programmers tend to avoid maintenance work, preferring instead
to work on new systems development assignments. One of the
reasons for this is the ambivalence of many managers towards
maintenance.,

This perception has been confirmed by one of our own surveys.
It shows that managers attach more importance to systems
development work than they do to maintenance (see Figure 3.18).
Seventy per cent of managers rated systems development as being
more demanding of their time than maintenance: only 14 per cent
rated maintenance as more demanding. These ratings bore no
relation to the current level of maintenance in the organisations.
Nor did they correlate with changes in the levels of maintenance
over the past two years.

Attitudes like these have a damaging effect on staff motivation.
We have examined how the proportion of maintenance work
involved in a job affects the motivation of the person doing that
job. This is illustrated in Figure 3.19, which compares jobs
according to their Job Motivating Score (JMS), which we described
earlier in this chapter. The pattern is one of falling job motivation
as the proportion of maintenance work increases, except for those
staff who are involved full-time, or almost full-time, in
maintenance.

© Butler Cox pic 1990




© Butler Cox plc 1990

Chapter 3 Improving staff motivation

Figure 3.18 Se}renty per cent of managers rated systems development as
being more demanding of their time than maintenance

Use of time Number of managers

S 10

Development mostly

Development somewhat

Equal

Maintenance somewhat

Maintenance mostly

(Source: Butler Cox survey of PEP members)

Figure 3.19 Job Motivation Scores (JMSs) vary according to the amount
of maintenance work performed

JMS

10 20 30 40 50 60 70 80 90
81-100

61-80

Maintenance 41-60
as percentage

of job content
) 21-40

1-20

(Source: Butler Cox survey of PEP members)

High levels of job satisfaction can, however, be obtained from
working in a maintenance environment. Software maintenance
work can be highly motivating because it is challenging, it offers
great variety, and the results are highly visible.

This applies to all three categories of maintenance — corrective,
adaptive, and perfective (see page 22). Corrective maintenance
is often very frustrating, because of the absence of complete
documentation and the difficulties of recreating error conditions.
Often, it has to be completed in a matter of hours. Adaptive
maintenance is similar to new development in terms of its phases,

53



Chapter 3 Improving staff motivation

but the emphasis is different. Analysis is the dominant phase in
adaptive maintenance. The remaining phases of design,
implementation, testing, and system release/integration are no less
important, but they are proportionally smaller. Adaptive
maintenance provides frequent opportunities for maintenance
staff to communicate with users as the changes are implemented.
Perfective maintenance combines some of the main characteristics
of the other two categories. Each category demands technical skill,
combined with an ability to communicate rapidly and
unambiguously. Compared with new systems development,
maintenance offers a broader variety of work, and is equally
demanding in other respects.

Changing systems staff’s perception of maintenance as intrinsically
unmotivating work is not, however, an easy task. It will require
very careful selection and training of staff, and most important,
a change in management attitudes. Five times as many managers
pay more attention to new development work than to
maintenance, than vice versa. Until managers see maintenance
as an important strategic issue, problems of low staff morale are
certain to persist.

SELECTING AND TRAINING MAINTENANCE STAFF

The requirements of maintenance place heavy demands on staff
selection and training. The main staff attributes in maintenance
are sound technical ability, an understanding of past as well as
present development practices, and an ability to communicate and
to work under pressure. The shorter the timescales involved, the
greater the need for good-quality maintenance staff. Compared
with new systems development, maintenance work is probably less
demanding in terms of conceptualising skills (imagination and
creativity) but more demanding in terms of affiliation skills
(patience, adaptability, and willingness to lend support).
Maintenance staff should be selected with these characteristics
in mind.

In practice, maintenance is often allocated to staff with less
experience than average. There is no harm in this, as long as the
staff meet the criteria outlined above and as long as timescales
are not critical. It does provide an opportunity for less experienced
staff to learn about the problems of application changes at first
hand — experience that they can put to good use in development
projects by encouraging designers to think about the implications
for maintenance.

In contrast to conventional wisdom, maintenance demands more
staff training than does new systems development, particularly
when the maintenance staff are relatively inexperienced. In terms
of technical and problem-solving skills and training, there is little
difference between the requirements of maintenance and new
development, but two further considerations point to a difference
in training requirements. The first is the need for maintenance
staff to understand past practices and development methods, in
addition to current best practice. The second consideration is that
of communication, which is as important for maintenance staff
as for their development counterparts.

54

© Butler Cox plc 1990




© Butler Cox plc 1980

Chapter 3 Improving staff motivation

Periodic job rotation between maintenance and new development
should be a component of any training programme. Maintenance
staff will thereby get an opportunity to influence the development
process and to learn about applications that will need to be
maintained in subsequent years. New development staff will get
an insight into current issues of maintenance, and learn to
understand the importance of designing systems that can be easily
maintained.

55



Chapter 4

Using techniques and methods

Most systems development managers would like the systems
development process to become more manageable and less
dependent on the skills of individual analysts and pro-
grammers — experts who are in short supply and expensive to
train. In other words, they would like a well defined, systematic
procedure or set of processes for developing systems.

With this in mind, many companies have introduced one or other
of a.wide range of techniques and methods that are available on
the market. (Techniques, such as data analysis, are rigorous
procedures on which systems development is based. Methods are
ways of implementing the ideas embodied in these techniques.)

The benefits are not clear-cut. Sometimes, they manifest
themselves in the form of lower staff skills than would otherwise
be the case; at other times, in the form of improved ease of use
of the end product. Only in three cases have we found convineing
evidence of consistent success in applying techniques and
methods: when they are used to help formalise software testing,
to help control maintenance, and to help establish a quality-
management programme.

FORMALISING SOFTWARE TESTING

Software testing is a fruitful area for improving both productivity
and quality. The first step is to make sure that testing takes place
throughout the development cycle, rather than merely at the end.
This is called whole-cycle testing, and several testing aids and test-
data preparation aids are available.

WHOLE-CYCLE TESTING

There are well established and widely used life-cycle models for
the software-development process, the best known of which, first
presented in 1970, is the so-called ‘waterfall model’, illustrated
in Figure 4.1. The main feature of this model is that development
proceeds through a series of well defined phases. In an ideal
development, each phase is verified and proved error-free before
the developers proceed to the next. In practice, some iteration
is required when errors introduced in one phase are not detected
until a later phase. This iteration process is represented in
Figure 4.1 by the upward-pointing arrows.

The shortcomings of the approach implied by the waterfall model
have become apparent in recent years. The most significant are
that testing is viewed as a secondary activity, added on to the
end of each phase, and that system testing is not planned until
the final development phase.

56

© Butler Cox plc 1990




© Butler Cox pic 1920

Chapter 4 Using techniques and methods

Figure 4.1 In the traditional ‘waterfall’ model of the software-develop-
ment life cycle, testing is viewed as a secondary activity

An alternative approach is illustrated in Figure 4.2, overleaf. It
shows development occurring in three main, parallel streams of
activities. In each development stream, the first objective is to
produce specifications. The second is to specify what to test. The
third is to develop the test environment. Only then are the
components assembled ready for testing. Testing is thus carried
out at the end of each development stream, and measures
different aspects of the development in each stream, as described
in Figure 4.3, also overleaf. The primary focus is on the testing
activity rather than on the production activity, and the outcome
of each stream of activity is both a product and a measurement
of its quality.

The benefits of this modified approach are four-fold:

— By developing test specifications and the test environment
concurrently with lower-level specifications or program code,
the overall development time is shortened.

— Developing a test specification can highlight deficiencies in
the requirements, design, or module specifications; it
therefore provides a valuable opportunity to review the
specifications.

— Management’s attention is focused at an early stage on
defining the important features of the system.

— Developing the tests is a separate activity from producing the
design or program. It is much easier for people to define

57



Chapter 4 Using techniques and methods

Specify
- reguirements

h 4
h 4

Figure 4.2 In the modified software-development life cycle, the emphasis is on testing rather than production

Code and debug
modules

Figure 4.3 In the modified software-development life cycle, testing is
carried out at the end of each development stream

Module tests

A program module is the smallest testable component of a system. Its specification
comprises a definition of its input data, its output data, and the processes for
transforming one into the other. The purposes of module testing are:

— To verify that the module conforms to specified standards.

— To verify that measures of the module's characteristics, such as complexity, are
within specified ranges. '

— To verify that the module performs its specified functions when executed with
a representative sample of input data.

— Tao verify that each line of code and each of the possible branches have been
successfully executed at least once.

Integration tests

Integration tests are designed to measure the behaviour of combinations of modules.
They are of two types:

— Verifying the consistency of data definitions that are passed between the modules.
This applies both to data that is passed directly, and to data that is passed via
a database or shared memory.

— Verifying that all calling paths through the combinations of modules are exercised.

System tests

System tests are designed to measure the behaviour of the total system. This includes
tests for some or all of the following features:

— The functionality required by the users.
— The ability to start the system.

— The ability to change the hardware configuration of the system. This particularly
applies where there are back-up processors or peripherals that can be substituted
in various combinations in the event of failures.

— The ability to restart the system and to recover lost transactions following a failure.
— Performance characteristics, such as response times, delays, and throughput.
— The behaviour of the system when loaded to the limits of its resources.

— The ability to prevent unauthorised users from gaining access to the system.

58

© Butler Cox ple 1990



® Butler Cox plc 1990

Chapter 4 Using techniques and methods

objective tests of a product that they have not built, and the

test cases developed under these circumstances are likely to
be a better sample.

The most critical question to be decided is what to test.
Management should clearly define the measurements of quality
that it requires, before tests are specified and the test environment
is created. If ease of use is a requirement, for example, tests could
be designed to measure how long it takes to input a transaction,
how quickly the system can be learnt, and how many mistakes
are made; knowing that these aspects will be tested, the system
designers will concentrate on the user interface. If accuracy of
data is stated as an important requirement, the activity of
specifying the tests will highlight whether all the data must have
a high degree of accuracy, or whether some is less critical. As
Figure 4.2 shows, the decision about what to test — the
requirements, design, or module-test specifications — can be taken
as soon as the specifications at the beginning of each development
stream are complete.

TESTING TECHNIQUES AND AIDS

The main techniques are the review processes of inspections and
walkthroughs. These are applicable to testing (or verifying) the
documents associated with software production (that is, program
code, specifications, designs, user manuals, and so on). Inspections
and walkthroughs are less widely used than testing tools, although
our analysis of the PEP database shows that the benefits to be
gained are quite substantial. Formal methods for software
development are widely used, but although testing is a component
of them, it is poorly described, and is not based on the concept
that testing and production are activities to be carried out
concurrently. Software testing methods are, however, beginning
to be produced, and significant developments can be expected in
the future.

No testing aid will, of course, reduce the intellectual effort
involved in designing the test environment and selecting test data.
The use of testing aids will, in itself, do nothing to improve the
quality of testing. Nor will any single aid to testing cover all aspects
of the process.

The quality of every deliverable produced during the development
of a system, including requirements specifications, designs, code,
and test specifications, should be analysed as part of the normal
development process. Various techniques and tools are available
for this purpose. The two most commonly used techniques are
inspections and walkthroughs.

In addition, two types of tools — static analysers and dynamic
analysers — can be used to analyse the quality of the code itself.
These tools are discussed in detail in Chapter 5.

The use of these techniques and tools is essential for almost all
applications with high-reliability requirements, such as those
where human life depends on the successful operation of the
software. These applications should therefore be written only in
a language that can be analysed by these tools.

59



Chapter 4 Using techniques and methods

Inspections: The inspection technique was first developed by
Michael Fagan while he was working at IBM in the early 1970s,
An inspection is carried out by a team, typically of four people,
whose roles are precisely specified. A key to successful inspections
is that the team must identify errors only; it must not be side-
tracked into discussions of solutions, or alternative design
strategies. It is important that the results of the inspection are
recorded, and that all errors are corrected by the original designer
or programmer,

Inspections are time-consuming (typically, between 4 and 8 per
cent of total development effort), and need to be scheduled in
the project plans. The total time (including preparation time) for
an inspection of a design that produces 1,000 lines of code is
10 to 20 man-hours, and for an inspection of the 1,000 lines of
code produced from this design, 20 to 60 man-hours.

In carrying out inspections, each person needs to have a clear
understanding of his individual role, and of the purpose of the
inspection procedure. The techniques are not easy to learn, and
an organisation that intends to introduce inspections should train
its staff on formal courses.

Studies of the effectiveness of performing inspections on source
code indicate that an inspection typically detects up to 60 per cent
of the errors in the code. The reduction in development cost, after
allowing for the additional cost of the inspections, is estimated
at 10 per cent. This is consistent with the results reported earlier
in this chapter; organisations using inspections or walkthroughs
had an internal productivity level about 15 per cent higher than
organisations that did not use them. If the subsequent
maintenance phase is also included, the savings may be
considerably larger.

Walkthroughs: These are a less formal type of inspection and may
have few, if any, of the formal characteristics of inspections.
There are very few rules on how to carry out a walkthrough. At
a minimum, it involves one person checking another’s work.
Because of the lack of formality, walkthroughs are cheaper to
carry out than inspections. They are almost certainly less
effective, although quantitative data is lacking.

There are many tools to help and support the testing process.
These range from tools to help in the process of testing, such as
a test harness, to tools that help in the management of the test.
These and other testing tools are discussed in Chapter 5.

Testing covers both the development process (the process of
producing the first version of the system), and maintenance (the
upgrade and enhancement of the system through the remainder
of its useful life). It is to the last of these areas that we now turn
our attention. Software maintenance accounts for a significant
- proportion of most companies’ systems development efforts. The
more effort that goes on maintenance, the less is available for
developing new systems. Yet, despite the obvious importance of
maintenance, both in its own right and in the context of
productivity enhancement, the attitude of many systems
managers to the subject is strangely ambivalent.

60

© Butler Cox plc 1990




o Butler Cox plc 1990

Chapter 4 Using techniques and methods

CONTROLLING MAINTENANCE

As well as improving software testing, techniques and methods
can help to improve both productivity and quality in software
maintenance. Organising maintenance, and the motivation of
maintenance staff, are topics that are discussed in Chapters 2 and

3 respectively. Here, we are concerned with gaining control over
the maintenance process.

The first step is to formalise the process of deciding whether a
maintenance request justifies a system-replacement decision.
From a procedural standpoint, the way to do this is by adopting
a maintenance-rating method. Next comes the question of what
proportion of total resources to allocate to maintenance.

Managing the maintenance process should itself be formalised by
breaking the process down into a series of steps. These steps need
to be carefully coordinated, not merely monitored individually.

FORMALISING THE MAINTAIN-OR-REPLACE DECISION

Whether to continue maintaining a system or to replace it with
a new one is a critical management decision because operational
systems deteriorate with age. There is a need to audit the system
to determine whether and when to replace it. The auditing
procedure should be formalised, and it should be aligned with the
procedure for evaluating systems for new applications. The tasks
of defining costs and setting priorities will be much easier if there
is some routine maintenance-rating process established within the
company so that systems development departments allocate a
proportion of their capacity exclusively to maintenance. Thus,
choosing the moment to initiate replacement is best done by
subjecting every operating system to a formal and regular review.

After a new system has become operational, there is a continuing
need to maintain it. A system that takes perhaps a year to develop
may have an operational life of five years or more, and more effort
is likely to go into its maintenance than into its original
development. Most maintenance effort is adaptive. In one of our
surveys, adaptive maintenance accounted for 62 per cent of
maintenance effort compared with 20 per cent for corrective
maintenance and 18 per cent for perfective maintenance (see
Figure 4.4, overleaf). Adaptive maintenance results in significant
changes to a system in terms of both structure and coding.

An indication of the nature and extent of these changes is given
in Figure 4.5, also overleaf, which categorises the goals of our
survey respondents in their adaptive maintenance efforts. Many
of these changes are enhancements in the sense of adding new
facilities, providing new reports, and adding data to reports, and
as such, they extend what went before. It is therefore no surprise
that systems get larger as a result of maintenance. This growth
is illustrated in Figure 4.6, on page 63. It compares five features
of a system as they were at the time of our survey, and as they
were two years earlier. All five features have grown in the period;
the number of source statements has increased by 9 per cent, for
instance, and the number of programs by 8 per cent.

Continuous modification can leave a system in a less stable state
than before. Each time the system is modified, it becomes

61



Chapter 4 Using techniques and methods

Figure 4.4  Adaptive maintenance is the main activity

Percentage of maintenance activity

T T T T T T 1

10 20 30 40 50 60 70

Adaptive maintenance

Corrective maintenance

Perfective maintenance

(Source: Butler Cox survey of PEP members)

Figure 4.5 Most adaptive maintenance is to add new features

Percentage of adaptive
maintenance effort

10 20 30 40

Adding new facilities

Providing new reports

Adding data to reports

Reformatting reports

Redefining interfaces

Consolidating data

Consolidating reports

(Source: Butler Cox survey of PEP members)

potentially more difficult to modify it again next time. Ultimately,
this process leads to a situation where maintenance becomes too
expensive or too complex, and operating response times are
severely degraded. Too many systems reach this point without
anyone being aware of what has happened. The deteriorating
condition of the system can, and should, be monitored and
controlled through a process of formal review.

Today, virtually every company has a formal procedure for
Justifying the development of new systems applications, yet few
have a regular, formal procedure for auditing their operational
systems. Reviews of this sort are essential. They help managers
both to identify operational systems that are approaching the point
when they should be redeveloped, and to re-evaluate the
contribution of operational systems to the business. Conducted

62

@ Butler Cox ple 1990




© Butler Cox plc 1990

Chapter 4 Using techniques and methods

Figure 4.6 Maintained systems grow in size over time

Measure of system size Size Percentage growth in size

2 years
ago

Now
Database storage (megabytes)

Number of source statements
(thousands)

Number of programs

Number of files

Number of user reports

(Source: Butler Cox survey of PEP members)

annually, they present an opportunity to re-assess the costs of a
system as well as its benefits. While this concept is not new, it
elevates maintenance to its appropriate place as a significant
management consideration.

The review should follow much the same process as the review
for new applications. Indeed, we believe that cost/benefit analyses
should be undertaken for existing operational systems and for new
applications at the same time, using the same evaluation process.
If the information required to justify (or rejustify) existing systems
in this way is not readily available, it indicates a need for better
control and monitoring.

A good illustration of this process in operation is provided by a
manufacturing company whose systems development department
has a development staff of about 60. The department has been
through a two-year period of strategy formulation and review,
while new systems development work has remained frozen. Now,
the company is beginning to see the benefits of a change in
direction. All user requests to the systems department that exceed
one week of effort have first to be authorised by a steering
committee. Requests for maintenance work and new applications
are examined on exactly the same basis, and resources are
allocated in the same way, on the basis of priorities and costs.
As a result, systems development resources are being made
available to work on replacement systems.

MAINTENANCE RATING

A decision on whether to continue maintaining an operational
system or to replace it must be based on a comparison of
costs — the projected cost of continuing maintenance on the one
hand, and the cost of replacing it on the other. To predict
continuing maintenance costs, a simple rating system, based on
system characteristics, is a useful aid: it may provide either a
comparative rating of operational systems (as a basis for setting
priorities, for instance) or assessments on an absolute scale.

63



Chapter 4 Using techniques and methods

Comparative maintenance rating

A comparative rating might be produced on the basis of a
‘maintenance profile’ of the software, developed from a set of
criteria relating to such features as system age (maintenance gets
harder as systems get older), system size (the larger the system, the
more costly it is to maintain), and complexity. A fuller list of such
features, and of the criteria relating to them, is shown in Figure 4.7.
The maintenance rating of a system can be assessed by allocating,
for each of these features, a score of, say, between one and four.
Because the relative importance of each feature will vary
depending on an organisation’s circumstances, it makes sense to
weight each one (again using scores of one to four, for instance).

Absolute maintenance rating

The absolute maintenance rating is a slightly more sophisticated
version of the simple comparative rating described above. In the
United Kingdom, the Central Computer and Telecommunications
Agency (CCTA), which supplies information and advice to central
government departments on the planning and use of information
technology, has developed a ‘system maintenance profile’ which is
a good example. Criteria are grouped under three headings:
adequacy to user, which assesses the extent to which the system
currently meets user requirements; risk io the business, which
assesses the risk and impact of system failure; support effort, which
assesses the resources required to maintain the system adequately.
Altogether, there are nine criteria in the CCTA’s system

Figure 4.7  Characteristics to consider when preparing a maintenance
rating

64

© Butler Cox ple 1990




© Butler Cox plc-1990

Chapter4 Using techniques and methods

maintenance profile, and a total of 16 measures (between one and
three measures for each criterion), as shown in Figure 4.8. Each
measure delivers a score. The scores are totalled. Systems scoring
100 or more are candidates for renewal.

ALLOCATING RESOURCES

Maintenance-rating procedures of the kind described above help to
establish the costs of and priorities for redeveloping existing
operational systems. Prolonging a system’s life means bearing
heavier maintenance costs, but at the same time, reducing the
workload of the systems development function, thereby freeing
more capacity for developing new applications.

This raises the question of whether the systems department should
allocate a fixed proportion of its development resources to

Figure 4.8  There are nine criteria in the CCTA’s ‘system maintenance
' profile’

(Source: Managing Software Maintenance, CCTA!-.OCtobEf 1987)

65



Chapter 4 Using techniques and methods

maintenance and, if so, how much. We believe that allocating a
fixed share of capacity to maintenance is a sensible approach. The
proportion should be kept under review, however, and it will need
to be changed from time to time.

Limiting maintenance capacity as a matter of policy is, in fact,
commonplace among the companies we surveyed. The purpose is
usually to avoid maintenance work continually displacing new
development work. This limit is sometimes expressed as a
proportion of the budget, and sometimes in terms of the type of
maintenance work that is accepted. The former usually works
better, particularly when the procedure for assessing maintenance
is built into that for assessing new applications, along the lines
discussed above.

An example of how this policy can work in practice is the experience
of apublic utility. A few years ago, it limited the proportion of the
systems department’s budget to be devoted to maintenance work
to 40 per cent. This limit was introduced to help overcome
conflicting demands for new applications. The policy worked well,
but the limit has recently had to be increased to 50 per cent, and
resolving conflicting demands for maintenance is now a more
serious problem than it is for new applications.

This example confirms that formal monitoring of the maintenance
environment is required to implement such a policy successfully,
because the pressure of competing demands for the limited
resources will increase. Restrictions on maintenance, however
rational, will often be seen by users as leading to the provision of an
inadequate service. However, if the limit is imposed as part of an
overall strategy to manage the applications portfolio, a proper
Justification can be made in terms of contribution to the business.

MANAGING THE MAINTENANCE PROCESS

For maintenance work to be effective, it is essential to control the
input to the process — the procedure by which change requests are
notified and managed in the first place. This procedure of change
management is the first of several steps in the maintenance process.
Change management is followed by six further steps: impact
analysis, system release planning, change design,'implementation,
testing, and system release/integration. These steps, which occur
sequentially, are supported by a further activity that continues
concurrently — progress monitoring. The whole process is
illustrated in Figure 4.9,

To appreciate the importance of formalising the steps in the
maintenance process, it helps to understand more precisely what
they are.

Change management

Change management is the critical first step in the maintenance
process. A formal procedure for change management is essential f. or
two reasons: it provides a common communication channel
between maintenance staff, users, project managers, and
operations staff, and it provides a directory of changes to the system
for status reporting, project management, auditing, and quality
control. The basic tool of the change-management procedure is a

66

© Butler Cox plc 1990




Chapter4 Using techniques and methods

formal change-request document that forms the basis of a contract
between the user and the maintainer.

Animportant element of change management is version control (or
software configuration control). It means tracking different
versions of programs, releases of software, and generations of
hardware, and it plays a major role in ensuring the quality of
delivered systems. Version control also ensures that software is not

degraded by uncontrolled or unapproved changes, and provides an
essential audit facility.

Impact analysis

The purpose of impact analysis is to determine the scope of change
requests as a basis for accurate resource planning and scheduling,
and to confirm the cost/benefit justification. Impact analysis can be
broken down into four stages. The first stage is determining the
scope of the change request, by verifying the information contained
within it, converting it into a systems requirement, and tracing the
impact (via documented records) of the change on related systems
and programs. In the second stage, resourcing estimates are
developed, based on considerations such as system size (in
estimated lines of code) and software complexity. Code analysers
that measure the quality of existing code can be helpful at this stage.
The third stage is analysing the costs and benefits of the change
request, in the same way as for a new application. In the fourth
stage, the maintenance project manager advises the users of the
implications of the change request, in business rather than in
technical terms, for them to decide whether to authorise proceeding
with the changes.

Figure 4.9 The formalised maintenance process consists of seven steps

Software configuration management

Documentation S
A A
Y \
Change Impact =
maaagé%nent_’ - analysis }_'

\ A

=P Sequence of steps in the process
— 3 Links between elements invalved in the process

(Source: Butler Cox)

, 67
@ Butler Cox plc 1920



Chapter 4 Using techniques and methods

There are three benefits of impact analysis: improved accuracy of
resourcing estimates and, hence, better scheduling; a reduction in
the amount of corrective maintenance, because of fewer
introduced errors; improved software quality.

System release planning

In this step, the system release schedule is planned. Although well
established amongst software suppliers, system release planningis
not widely practised by organisations, reflecting a difference in the
extent to which formal maintenance contracting is established.

A system release batches together a succession of change requests
into a smaller number of discrete revisions. System releases can take
place according to a timetable that is planned in advance. The
timetable planning gives users the chance to set priorities for their
change requests, and makes testing activities easier to schedule.
The problem with system releases comes, of course, when
corrective maintenance is required urgently.

Software is available to help monitor system releases. The software
records the changesincorporated in, and the date of ,eachrelease,
and provides information for project control, auditing, and
management.

Change design and implementation
The common thread in the work in these two stepsis that they are
undertaken to satisfy an often short-term user requirement.

Corrective maintenance, in particular, will be undertaken in a
limited time and will be concerned primarily with fault repair (with
little regard for careful design and integration of changes).
Emergency repairs must subsequently be linked to the formal
software-maintenance process and be treated as a new change
request. This will ensure that the repairs are correctly implemented
and that the design documentation is updated.

Adaptive maintenance will functionally enhance an existing
system. The design and implementation process is similar but more
restricted than the design and implementation of new application
systems. The major difference is that the design implications of
enhancements must be taken into account in the subsequent
program and module implementation. Failure to design the change
at each level canresult in an increasingly complex, unreliable, and
unmaintainable system. This leads to higher maintenance costs and
reduces the life of the system.

Perfective maintenance is concerned with improving the quality of
existing systems. The effort is applied to software that is the most
expensive to operate and to maintain. The design tasks undertaken
will range from complete redesign and rewrite to partial
restructuring. The process combines the characteristics of the other
two types of maintenance.

Testing

The purpose of maintenance testing is to ensure that the software
complies with both the change request and the original requirement
specification. It forms a major part of a successful quality-assurance
plan. In principle, maintenance testing is much like development
testing. The maintenance-test cases should be created as a direct

68

© Butler Cox plc 1990




© Butler Cox plc 1990

Chapter 4 Using techniques and methods

result of the first stage in the impact analysis. They should be
sequenced according to the principle of incremental testing, so that
defects in the change-request specification and design can be
identified early on. Walkthroughs and inspections should be
implemented routinely as a formal element in the process.

The test-case library itself builds up over time. At first, it contains
the test cases prepared for and validated during original
development. It grows as test cases for suceessive maintenance tests
are added to it. A file of this sort is called a regression-testing file.

System release/integration

This step consists of releasing the revised programs into live
operation. The implications for maintenance staff are significant
because it is their responsibility to ensure that any revised versions
are completely integrated with other parts of the system, which may

never have been revised or which may have been revised at
different times.

Progress monitoring

Progress monitoring takes place concurrently with the other seven
steps in the maintenance process. The sort of data that should be
collected during progress monitoring includes the time taken per
step, the effort involved, and the scope of the change. Improving
software maintenance productivity is difficult if there isno record
of where problems and successes have occurred in the past.

PROGRESS COORDINATION

Most companies claim to have a clearly defined procedure in place
that corresponds to change management. Certainly, every
respondent in our survey examining this issue recorded all user
requests and operational problems, but our respondents admitted
to some failings as well. Periodic formal audits, for instance, were
in place in fewer than half of our survey respondents’ businesses
(see Figure 4.10 overleaf). To achieve improvements in the
maintenance environment, the steps in the process need to be
carefully coordinated, not simply monitored individually.

A good model for the maintenance of a large application system is
provided by Peterborough Software (UK) Ltd, a British software
house (see Figure 4.11 on page 71). The model is particularly
relevant to multisite, multiversion software implementation
amongst a large number of users. The principal lessons from this
case example are as follows:

— Recognition of the cost and of the importance of the post-
release phases of the system life cycle, and the consequent
planning (for example, replacement, migration, and technical
design) for the maintenance effort.

— The rigour applied to pre-release testing and post-release
version identification and control.

—  The formal contractual basis that clearly specifies the
responsibilities of supplier and customer.

—  Recognition of the relative importance of problems that occur
in practice at the operational level (including those deriving

69



Chapter 4 Using techniques and methods

Figure 4.10 Most surveyed organisations have formal control
procedures in place

Control procedures Percentage of organisations
in place

10 20 30 40 50 60 70 80 90 100
User requests logged

Operational problems logged

Program changes logged

Formal retest procedures
in place

User requests cost-justified
Personnel costs charged back
Equipment costs charged back

Periodic implementation

Periodic formal audits

(Source: Butler Cox survey of PEP members)

from imperfect documentation or training), and at the code-
maintenance level, and of the need to provide adequate
support staff at both levels.

A coordinated programme, effective across the whole maintenance
process, and designed to control changes to thesystem, willbecome
more and more critical as the complexity of systems increases.
Formal procedures are essential to ensure that software is not
degraded and to provide an audit facility. At the same time, there
are several automated change- and configuration-control packages
currently being introduced to the market that could help
organisations to reduce administrative overheads and increase their
control over system changes.

IMPROVING QUALITY

Quality-control procedures should be carried out at intermediate
stages of the development in addition to those at the end of the
development cycle. They should focus on four key quality
characteristics, whose emphasis differs depending on the nature of
the application under development.

Within this general framework, our project-database analysis points
so far to only one technique that is clearly beneficial in terms of
improved quality: inspections or walkthroughs. Other methods and
techniques have arole to play, but we have found no evidence that
they improve quality and productivity consistently. Probably the

70

© Butler Cox pic 1990




Chapter4 Using techniques and methods

Figure 4.11

Peterborough Software (UK) Ltd, a software house based in the
United Kingdom, provides an example of how companies can
stuiccessfully coordinate the steps in the software maintenance
process. The problems that it faces are unusually demanding. The
company maintains a range of payroll software packages. The
packages run on avariety of computers, underthe control of different
operating systems, both within the United Kingdom and overseas.
Altogether, Peterborough Software has 250 customers. The software
coding differs from country to country, to take account of local
statutory regulations, such as taxation. Thus, several releases ofthe
same package are currentatatime, and all have to be supportedin
the field. The regulations change frequently and without much
warning, and maintenance changes therefore have to be
implemented swiflly and accurately. The difficulties faced by
Peterborough Software are further compounded when customers
create nonstandard versions of the software by failing to apply
maintenance modifications that are issued to them, or applying them
in the wrong seguence.

How does Peterborough Software arrange its maintenance
procedures against this backgroynd of complexity? The answer lies
in disciplined adherence to procedural steps similar to the ones we
have described here, and in the use of a computer-based program
monitoring system known as the Problem Monitoring System (PMS).

The maintenance procedure is carried out by two divisions within
Peterborough Software. One is the Customer Support Division, which
effectively looks after change management, impact analysis, and
system release planning. The other is the Development Division,
which is responsible for coding, testing, and quality assurance.

Change requests received by the Customer Support Division come
fromthree sources. Thefirstis customers, whose requests take the

Peterborough Software (UK) Ltd provides a good model for the maintenance of large application systems

form of enhancements (called facility requests), queries, and error
reports. The second source is impending legislative changes. The
third isthe market. To survive, Peterborough Software has to compete
by offering products that are constantly being improved.
Maintenance arising from customers is both adaptive and corrective
in nature; from the other two sources, it is mostly adaptive and
perfective.

Customers are the mostimportant source of change requests — the
Customer Support Division receives up to 400 telephone enquiries
a day, for instance. Enquiries are routed to application-support
groups organised by software product and by the kind of equipment
it runs on. Within the application-support groups, consultants familiar
with the way the software can be used, and with the way it works, form
thefirstline of response. They are able to resolve most of ihe enquiries
on the spot, but 20 per cent have to be passed to the Development
Division for resolution. It is here that the PMS comes into its own. It
logs problem reports at every stage of response and resolution, using
customer references and event codes. When a ceding change is
made, for instance, the programmer records the details on the PMS.
These are immediately available to others, so duplication is avoided.
The PMS helps to coordinate adaptive and corrective maintenance

work. It monitors maintenance progress, and produces management
statistics.

The Development Division is organised into groups that specialise
inanalysis, coding, and quality assurance. Tested softwareis batched
for release. Different forms of release reflect the level of support that
Peterborough Software provides. For instance, versions for release
which are necessitated by government legislation get full support.
Any earlier versions still left in the field beyond a certain date no longer
enjoy full support.

most fruitful way to improve quality across the board is by
introducing a quality culture throughout systems development.

QUALITY-CONTROL PROCEDURES

In the past, systems quality-control procedures focused on the
product by checking that a completed computer system met the
original specification. The techniques used include system and
acceptance testing, and a post-implementation review. Few, if any,
quality checks were carried out at intermediate stages of the
development process.

This approach to systems quality assurance is concerned only with
checking that the final system meets the original requirements, and
not with the overall process by which the productis developed. The
result is often that the delivered system meets neither the users’
requirements nor their expectations, in terms of functionality,
operational performance, usability, development cost, and delivery
date. The defects discovered when the final system is inspected are
often caused by mistakes made at the early stages of the

development process — the requirements-definition stage, for
example.

To overcome the shortcomings of this approach to assuring systems
quality, many systems development departments have been
encouraged, by the availability of methods and tools, to concentrate
on improving the effectiveness of the development process. These
methods and tools make it possible to enforce a standard approach

© Butler Cox plc 1990 71



Chapter4 Using techniques and methods

to development and make it easier to check the quality of the
software at various stages of its development. The stages of the
cycle required to complete a project, from initiation to completion,
are precisely defined, as are the deliverables to be produced at each
stage. The deliverables can then be checked before development
staff proceed to the next stage. In this way, defects can be detected
earlier and corrected before the software is delivered to the users.

The role of many systems quality-assurance departments today is
to define the development process that will be used and to carry out
the quality-control checks at the end of each development stage.
The development procedures, and the procedures for carrying out
the checks, are usually defined in great detail and enshrined in the
‘systems development standards manual’. The quality-assurance
staff themselves are perceived as ‘policemen’, whose main role is
to ensure that the procedures are followed and that those who break
the rules are identified.

This is often an inadequate approach to improving the quality of
systems, as we point out in Chapter 2 on pages 13 and 14. Some-
times, the existence of such quality-assurance departments hinders,
rather than helps, the development of new systems. All that is
achieved is the creation of an additional layer of bureaucracy
concerned with enforcing standards, ensuring that rigid procedures
are followed, and insisting that lengthy checklists are completed.

The difficulty arises because traditional systems quality-assurance
concepts are based on too narrow a definition of systems quality.
The procedures typically used are concerned with ensuring that the
final system has the specified functionality. This is insufficient to
ensure that the system meets the users’ real needs. Other equally
important aspects of quality, such as the quality of the user
interface, the operational performance of the system, the ease with
which the system can be modified to meet changing business
requirements, and the quality of the documentation, are largely
ignored by conventional approaches to systems quality assurance.

High-quality systems are ones that conform to users’ expectations,
in terms of its functionality, operational performance, ease of use,
and documentation. Two features of this definition are particularly
important: the emphasis on users’ expectations, and the fact that
quality is not limited to the software itself. It is the entire
package — the software, documentation, manuals, training, and
user-support — that determines the users’ satisfaction and thus
their perception of the quality of the software. This definition does,
of course, encompass traditional concepts of systems quality —in
particular, the need to produce software to budget with the
minimum number of errors. However, the emphasis on the way the
software is constructed is recognition of the fact that quality in
software is also a matter of how easy it is to modify and extend
systems to meet changing business requirements, and how well
systems can meet performance criteria.

QUALITY CHARACTERISTICS

Today, most systems quality-assurance procedures are designed to
ensure that the functionality provided by applications software
meets the users’ requirements. However, even where the quality
of the systemis checked at intermediate stages in the development

@ Butler Cox plc 1990




@© Butler Cox plc 1990

Chapter4 Using techniques and methods

life cycle to ensure that the finished product does meet the
functional requirements, it may still be regarded as being of poor
quality by the user community. This is because the quality-
assurance procedures do not take account of the users’ needs in
other areas — operational performance, ease of use, and the ease
with which the system can be modified are obvious examples.
Figure 4.12 describes how one business with a conventional quality-

assurance function has realised the need to take a broader view of
systems quality.

Four characteristics are particularly important: functional
requirements, operational performance, technical features, and
ease of use. By defining and meeting quality objectives specified in
terms of these characteristics, it is possible to build application
systems that the user community regards as high-quality. Although
the functional requirements of a system are generally defined in
great detail, the other three characteristics are often ignored in
systems specifications. These characteristics are usually
determined by ad hoc decisions made at the analysis and
programming stages.

Functional requirements
The functional requirements define what the application system has
to do, down to the level of describing the data to be entered, the

Figure 4.12 Conventional quality assurance is not sufficient to guaraniee
the quality of systems

Insurance company

This organisation has a large systems department, with more than 100 development staff.
The guality-assurance function resides within the systems department and is staffed by
three people — a manager and two projectmanagers, There is a well established quality-
assurance culture, based on a comprehensive code of practice that covers methods,
techniques, and the use of tools. The code of practice was developed four years ago
and is updated annually.

At the start of a project, user expectations are documented ona project-authorisation
form. This includes a quality plan, although in most cases, the plan indicates only that
the code of practice will be followed. Systems development staff believe that a more
detailed staternent of quality objectives is desirable because it would enhance the value
of post-implementation reviews.

The quality-assurance staff are invited by a useror a departmental manager to review
application systems at regular intervals. An initial review can take several weeks, and
the actions agreed are followed up later. Because of the number of development staff,
the guality-assurance staff are very busy. However, they usually carry outreviews when
a problem is detected rather than at predetermined stages in the development lifecycle,
even though they realise that scheduled reviews are a better means of detecting problems -
earlier in the development process. External consultants have also been employed, with
considerable success, to review particular projects, both from a business and a technical
viewpoint.

The quality-assurance manager considers that quality assurance based solely on
controlling and reviewing the development process is insufficientto provide the quality
required — in particular, for the business aspects of a system. The existing procedures
meanthat insufficient atiention is paid at the beginning of a project to issues such as the
feasibility of changing work practices in user departments. Many of the quality-control
reviews carried out at present are concerned with technical issues — for example,
program walkthroughs require upto 25 per cent of the programming effort. To progress
beyond this to a wider quality-management programme, senior management must lend
their supportto giving quality assurance greater prominence throughout the organ isation.
This support is now being sought.

The quality-assurance manager told us that his aim is to make users responsible for guality
in systems development projects by providing them with a code of practice and making
them accountable for the business success of the projects. He believes that, when the
wider quality-management programme is in place, his department will need fewer staff
becauge the quality-assurance process will be an integral part of the whole organisation.

73



Chapter4 Using techniques and methods

rules for deciding whether to accept or reject the data, and the
processing to be performed once the data has been accepted. Most
systems specifications contain adequate functional requirements,
anditisrelatively straightforward to assess the quality of a system
in terms of how well it meets these.

Operational performance

The operational-performance characteristics of a system define the
expected performance in terms of response times (for online
systems), and the elapsed time required to perform specific
processing loads for batch systems. If these characteristics are
defined at the outset, the quality of the final system can be assessed
against them. However, the objectives should be set bearing in mind
special factors that will degrade performance, such as peak
processing loads or changes in workload.

Technical features

The technical features of a system relate to the way the software
itself is constructed. The technical quality of a system can be
specified in terms of its mean time between failures, the ease with
which it can be maintained and extended, how easy it is to change
the basic system by parameters specified at run time, for example,
and how easy it is to re-use parts of the software in other
applications. Checklists should be constructed for each of these
characteristics, and used to assess the technical quality of the
software. Figure 4.13 shows a sample checklist for assessing how
easy it will be to extend a particular application.

Ease of use

The increasing use of PC-based software packages by the user
community has raised users’ expectations considerably about ease
of use. Despite this, mainstream applications are still developed that
users find boring, tedious, or difficult to use. A pooror inadequate
user interface can mean that a system is regarded as being of poor

Figure 4.13 Technical quality: a checklist for assessing how easy it will be
to extend a system

This checklist can be used to assess How easy it will be to modify or extend a system's
existing computational and/or data-storage limits (field sizes, record length, file sizes,
and so on).

System characteristics indicating that modifications or extensions will be
easy

— The sysiem allows key parameters to be modified at run time. It should also
validate the run-time entries to ensure they are within allowable boundaries.

— Thedocumentation adequately describes what constraints ofthe system may be
altered and how to doit.

— Thesystem specifically tests for each code that can be input to the system, so that
any code not explicitly recognised by the system is rejected.

— There are enough fields of an adequate size to allow for reasonable growth.
System characteristics indicating that modifications or extensions will be
difficult

— Parameters are coded into the program logic.

— Files are sequential or index-sequential.

— Low-level protocols are used for network communications.

— Incompatibilities between system modules have been resolved by linking them via
specially written programs.

(Adapted from: “The Quest for Quality”’, published in Datamation, March 1, 1985.)

74

© Butler Cox plc1990




© Butler Cox plc 1980

Chapter4 Using techniques and methods

quality even though it meets all of the functional requirements, has
high operational performance, and is technically sound.

The quality of a system therefore depends also onits user-interface
characteristics. For example, the quality of the userinterface might
be specified in general terms as one that provides clear,
unambiguous messages for users, that requires the minimum
number of keystrokes to be used, that provides a rapid response
time, and that has simple, unambiguous error-recovery procedures.
These general terms can then be defined in more detail. Clear
messages for users might be defined in terms of clear command
prompts, and the existence of a help facility, a tutorial mode, a terse
mode, audio responses, and pointers to the most likely next activity.
Specifying the user-interface characteristics in these terms will
allow the quality of the user interface to be defined and assessed.

QUALITY PROFILE OF DIFFERENT APPLICATIONS

The full requirements for an application system can be defined in
terms of the four types of system characteristics described above,
and the extent to which these requirements are met provides an
indication of the quality of the system. Itis important to remember,
however, that users’ perceptions of quality are determined largely
by their expectations. Different types of application are used by
different types of user with different expectations. The implication
is that the relative emphasis given to each of the four types of
systems characteristics will vary according to the type of
application. For some types of application, its quality willbe judged
largely on the quality of the user interface; for others, it will be
judged largely on the technical quality of the software.

Different types of application therefore have a different ‘quality
profile’, which can be expressed diagrammatically, as shown in
Figure 4.14, overleaf. Transaction-processing applications, for
example, require a high level of technical quality and highlevels of
operational performance, whereas the quality of an account-
ing package is determined much more by how well it meets
the functional requirements and by the quality of its user
interface.

The different quality profiles also imply that different emphases are
required on checking the quality of the software product being
produced and on assuring the quality of the development process
itself. Ensuring that the software meets the functional require-
ments requires a heavy emphasis on quality-control checks as the
software is developed. High technical quality and good operational
performance are determined more by the quality of the develop-
ment process. Figure 4.15, overleaf, shows the relative emphasis on

product and process quality required for each of the four system
characteristics.

In general, greater emphasis on product quality will increase the
cost of developing an application because it will be necessary to
carry out a greater number of, and more extensive, quality-control
checks. Greater emphasis on process quality means that substantial
initial effortis put into defining a formal development process and
ensuring that it is followed. However, emphasising process quality
will result in better-designed and more flexible software. !



Chapter4 Using techniques and methods

Figure 4.14 Different types of applications have different quality profiles

The characteristics of a system can be expressed interms of the functio_nal requirements,
operational performance, technical quality, and ease of use. The quallt_y pf asystem can
beassessed in terms of howwell the software matchesthese characteristics. The _relatwe
emphasis of each of the characteristics will be different for different types of application.

Transaction-processing

u

Screen-based information retrieval Accounting package

F = Functional requirements

T = Technical quality
P = Operational performance W=

Ease of use

Figure 4.15 Different system characteristics require different emphases on
product and process quality

System characteristic

Functional requirements

.Operational performance

“Technical quality

Ease of use

ESTABLISHING A QUALITY-MANAGEMENT PROGRAMME

In a good quality-management programme, quality checking should
take place at each stage of the development cycle. Of the many
techniques and methods that ar

e available to help with this, only
walkthroughs seem to benefit quality with

_ ! any degree of
consistency, according to our analysis. Techniques and methods,
such as structured analysis and structured design, seem to have a

@ Butler Cox plc 1980



Chapter4 Using techniques and methods

ge_ne_rally adverse effect. The reasons behind this are not clear and
this is an area that we are continuing to investigate.

A gpod way to improve quality is by encouraging it to become a way
of life for all the staff. That requires top management attention and
a good deal of time and effort.

Quality checking

Most systems development departments realise that it is not
sufficient to check the quality of applications software once only,
at the end of the development life cycle. Errors or mistakes
discovered as a system is implemented may have been caused by an
error made right at the beginning of the development process, and
willbe very expensive to correct because much of the work already
done will have to be redone. Barry Boehm asserts in Software
Engineering Economics (published in 1982 by Prentice Hall) that
the cost of correcting an analysis error at the maintenance stage is
100 times more than the cost of detecting and correcting the error
immediately. Other research indicates that the cost of correctingan
error made early in the life cycle increases exponentially the longer
it remains undetected.

These problems can be overcome by applying quality assurance at
each stage of the development cycle. To achieve thismeans that the
stages of the cycle must be clearly defined, so that quality checks
can be carried out at the end of each stage. In this way, errors can
be detected as they occur and can be corrected at minimum cost.

The deliverables at the end of each stage should be specified in detail
and should reflect the four characteristics described earlier in this
chapter. The quality of the application system being developed can
then be assured by checking that the work delivered conforms to
the specification. Figure 4.16 shows the deliverables that may be
specified for various stages of the development cycle.

Structured techniques and formal methods designed to help at
different stages of the cycle seem, according to our database
analysis, to have a generally adverse effect on both productivity and
quality. Thisisshown in Figure4.17 and Figure 4.18, on pages 78 and
79 respectively. The exception is the walkthrough technique.

Figure 4.16 Deliverables must be specified for each stage of the
development life cycle so that quality checks can be made

(Adapted from: “Improving the Productivity of EDP Systerns Development”, published
in Systems Development, September 1988.)

i

© Butler Cox plc 1990



Chapter4 Using techniques and methods

Figure 4.17 Most projects that use techniques and methods have lower-
than-average internal productivity

Each chart shows the difference in internal productivity relative to the average level for
all projects of a similar size. Thus, projects using structured analysis techniques have
anaverage internal productivity level that is 0.3 lower than the average for similar-sized
projects.

Percentage difference from the average internal productivity

Techniques -60 -48 -36 -24 -12 0 12 24 36

T T T T T T T 1

Structured analysis

Structured design

Structured
programming

Data analysis

Walkthroughs

Formal development
methods

(Source: Butler Cox PEP database)

Using walkthroughs

Ourproject database analysis shows that the internal productivity
levels of projects using formal walkthroughs are slightly higher than
the average for projects of a similar size, and about 15 per cent
higher than those not using formal walkthroughs.

The only technique that results in consistently lower error rates is
formal walkthroughs (including inspections). This is clearly shown
in Figure 4.18. The error rate at integration and system testing for
projects using this technique was about 35 per cent below the
average for similar-sized projects, and about 10 per cent below
average in the first month of operation. Thisis a Very encouraging
result because it implies that the lower error rate at integration and
system testing was due to inherently higher quality, not to
insufficient integration and system testing. Formal walkthroughs
are used on 16 per cent of our database projects.

Using other structured techniques

The use of techniques and methods other than structured
walkthroughs seems to have an adverse effect on the technical
quality of projects, according to our database analysis.

78

© Butler Cox plc 1990




@ Butler Cox plc 1990

Chapter 4 Using techniques and methods

Figure 4.18 Most projects that use techniques and methods have higher-
than-average error rates

Each chart shows the difference in error rate relative to the average error rate for all
projects of a similar size. Thus, projects using structured analysis techniques have an
average error rate during systems and integration testing 15 per cent lower than the
average error rate for similar-sized projects, and an average error rate during the first
month of operation 20 per cent higher than the average rate for similar-sized projects.

Error rate as a percentage of the average
for similar-sized projects

Techniques —120 —-80 —40 0 40 80 120 160

r T T T

Structured analysis

Structured design

Structured programming

Data analysis

Walkthroughs

Formal development
methods

- Error rate during integration and system testing

& Error rate during the first month of operation

(Source: Butler Cox PEP database)

Structured analysis: Projects using structured analysis have slightly
lower-than-average internal productivity levels, and more software
errors. (The sample size was small, however.) The use of fourth-
generation languages is marginally lower than average, resulting in
a rate of function delivery of 10 function points per man-month,
about 30 per cent below average. The use of structured-analysis
techniques may, of course, also contribute to a better fit of the
developed systems to business needs, but the data currently stored
about the projects does not allow us to confirm this.

Error rates are available for about half of the projects using
structured-analysis techniques. Error rates in integration and
system testing were lower than average, but higher than average
in the first month of operation.

Structured design: Error rates were higher than average in
integration and system testing, and in the first month of operation,
both by about 40 per cent. (Error rates are available for about two-
thirds of the projects using structured-design techniques.)

79



Chapter4 Using techniques and methods

At 57,000 lines of code, structured-design projects were larger than
the average of 45,000 lines. Internal productivity levels were
15 per cent lower than the average for projects of a similar size, and
the average rate of function delivery, at eight function points per
man-month, was more than 40 per cent below average. This is not
surprising, because such techniques are more likely to be used for
large applications developed in traditional languages. These
measures do not necessarily imply that the use of structured-design
techniques reduces development performance. The main benefit of
structured design is likely to come from easier maintenance.
However, the existing data does not allow us to measure
Improvements in the maintainability of systems.

Structured programming: Error rates, both at integration and
system testing and in the first month of operation, for projects that
use structured-programming techniques were almost exactly the
same as the average for similar-sized projects.

Projects that used structured programming had internal
productivity levels slightly higher than those that did not, and
performed close to average in all other respects. Projects using
Jackson Structured Programming had an average internal
productivity level about 15 per cent higher than those using other
structured programming techniques. Those using this technique will
probably have been doing so for many yvears, and the skills will be
well established. The high level of skill will, to some extent, account
for the better-than-average internal productivity levels of these
projects.

Data analysis: Error rates are available for about half of the projects
using formal data analysis. While the error rate is close to the
average in integration and system testing, it is higher than average
in the first month of operation.

Projects using formal data analysis were larger than average —
47,000 lines of code. Internal productivity levels were 15 per cent
lower than the average for similar-sized projects, resulting in an
average function-delivery rate of 10 function points per
man-month. ‘

Creating a quality culture

The quality-improvement procedures described in this chapter
imply a higher-than-usual number of quality-control checks. One
way to handle thisis to increase the number of staff in the quality-
assurance department.

A better way is to make each member of staff in the systems
department personally responsible for the quality of the work he or
she produces, as we mention in Chapter 2 on page 14. The aim
should be to create a ‘quality culture’ so that quality is ‘a way of life’
for all staff. Creating such a culture requires a commitment to
quality from the organisation’s top management. It takes a good deal
of time and effort, but it produces two main benefits: the quality of
the products is improved, and the cost of assuring quality is
minimised, because it is not necessary to employ a vast army of
quality-control inspectors.

Japanese manufacturing companies are well known for their
quality cultures. Staff have the opportunity to work on different
stages of the production process, experiencing all facets of the work,

80

2 Butler Cox pic 1990




@ Butler Cox ple 1990

Chapter 4 Using techniques and methods

and eventually, gaining knowledge of the complete process. This
means that, when they are working at a particular stage, they
understand the consequences of defects introduced at earlier
stages. It also means that they are in a better position to make
recommendations for improving the process, and are able to check
the quality of the product at each stage in the process.

Suppose, for example, that the production process has five stages
(A, B, C, D, and E). Staff working on stage B would be in a position
toreview the output from stage A; staff working on stage C would
be able to review the output from both stage A and stage B; staff
working on stage E would be able to review the outputs from stages
A, B, C,and D. The cycle is completed because the output from stage
E can be reviewed by the staff who work on stage A. If this concept
istakentoitslogical conclusion, there isno need to employ separate
quality-control inspectors because all staff are involved in checking
the quality of the product at all stages. The major benefit of this
approach is that the staff working on the production process no
longer perceive quality to be the responsibility of a separate quality-
control group.

In asystems development context, the way to apply these principles
is to establish a quality-management programme, which is
coordinated and administered by a quality-management group.
Quality-control techniques will still be used as part of the
programme. The emphasis, however, should be on encouraging
individual development staff to use the techniques and to take
personal responsibility for producing quality software.

81




1
Chapter 5

Using contemporary tools

Tools automate some of the activities within a systems
development method. Cobol is a tool that is well established.
Contemporary tools include fourth-generation languages like
Mantis, CASE tools, and re-engineering tools.

Contemporary tools are widely claimed by their suppliers to
deliver enormous benefits in productivity and quality — even the
imminent redundancy of the programmer. None of these claims
has been achieved in full, however — often because of the absence
of an effective means of measuring benefits and then taking
actions to ensure that the benefits are continually attained.

Although there are benefits to be gained, managers should treat
contemporary tools with caution. Fourth-generation languages are
a case in point. Although some companies consistently achieve
high internal productivities with them, others have been much
less successful. According to our analyses, certain CASE tools are
failing to deliver reduced development time, or fewer errors, or
even increased reliability — though it is possible that they increase
productivity over the whole life of a system. Maintenance tools
have yet to make much impact, though they can prove
advantageous in maintenance management and testing, and can
be justified when used to maintain systems likely to continue in
operation for several years.

Because they are specialised, tools are relatively inflexible. They
need to be selected and matched to the application environment
with great care. Introducing them requires sensitivity and careful
planning, which is best undertaken by implementing a pilot
project.

As well as tools for the specialist system builder, a new breed of
tools designed for the business user is beginning to make its mark.
The systems development department should aim both to
encourage and coordinate their uptake.

FOURTH-GENERATION LANGUAGES FOR NEW
SYSTEMS WORK

Our analysis of the productivity and the levels of use of fourth-
generation languages reveals that most organisations could make
significant improvements by further exploiting fourth-generation
languages. Although fourth-generation languages account for only
10 per cent of code in the projects on our database, they provide
as much as 30 per cent of delivered functionality. Some companies
consistently achieve very high productivity levels in terms of
delivered functionality (external productivity) through the use of
these languages.

82

© Butler Cox plc 1930




Chapter 5 Using contemporary tools

THE USE OF FOURTH-GENERATION LANGUAGES

Fourth-generation languages are syntax-based programming
languages in which an application can be written. Fourth-
generation languages differ from older languages, such as Cobol,
in being more concise (that is, the commands are more powerful),
and in not requiring the developer to have detailed knowledge
of the underlying computer systems.

Fourth-generation languages are used less commonly than third-
generation languages. Forty-four different fourth-generation
languages were identified on projects surveyed during our
research, but none of them is dominant in the way that Cobol is
for third-generation languages. Natural (which comprises 3 per
cent of the total code on our database of projects) is the most
widely used, followed by ADF, Gener/ol, and Guest (1 per cent
each of total code). However, the picture changes when the
contribution of fourth-generation languages to total delivered
functionality is analysed. Natural and Telon each contribute 4 per
cent of the functionality of the projects, Gener/ol about 3 per cent,
and SQL and ADF 2 per cent each. The differences are accounted
for by the different amounts of function delivered per line of code
(language gearing — see Chapter 6) of fourth-generation
languages.

Figure 5.1 shows the distribution of the language gearing of the
surveyed projects, which varies from four to over 60. The
geometric and arithmetic means are about 14 and 17 respectively.
There is a pronounced peak at around 10 function points per

Figure 5.1 The language gearing of the projecis surveyed varies from four to over 60

? Number of
projects

120
100

80

60 Geometric mean

Arithmetic mean

40

20

T T ] ; [. ’
0 5 10 15 20 25 30 35 40 More than 40
Function points per thousand lines of code

(Source: Butler Cox PEP database)

© Butier Cox plc 1990 83



Chapter 5 Using contemporary tools

thousand lines of code, and several other minor peaks. The
principal peak is associated with projects written mainly in Cobol.
The minor peaks coincide with the use of PL/1 and RPG, and the
more widely used fourth-generation languages, such as Natural.

THE BENEFITS OF FOURTH-GENERATION LANGUAGES

Although fourth-generation languages help to raise function-
delivery rates, the internal productivity of projects using these
languages varies widely. Figure 5.2 shows the average internal
productivity levels of projects developed with the leading fourth-
generation languages. It also shows, for each language, the
difference between the internal productivity levels and the
average levels for similar-sized projects. The figure also shows
equivalent data for the leading third-generation languages and for
Assembler.

Few projects are developed just with a fourth-generation
language, however. Code written in fourth-generation languages
is widely scattered among other surveyed projects, and is often
found in conjunction with Cobol code. The projects for which the
average internal productivity levels are shown in Figure 5.2 are
those with a fourth-generation language as the primary or
secondary language. Because of the small number of projects using
each of the different languages, the data shown in the figure can
be taken only as an indicator of the performance of the fourth-
generation languages.

Projects using Mantis, Natural, and Telon have average internal
productivity levels that are better by over 30 per cent than those
for similar-sized projects. Natural and Mantis are fairly well
established languages and development staff are likely to have
become quite skilled in their use. Telon, a Cobol code generator,
is a more recent language, so it is encouraging that the internal
productivity level of projects developed with Telon is already
about 25 per cent higher than the average level for projects of
a similar size.

Interestingly, Figure 5.2 shows that the highest internal pro-
ductivity level (and the highest positive difference) is achieved
with RPG, a third-generation language. The lowest is achieved
with a fourth-generation language (Ideal). This highlights the
difficulty of measuring overall development performance in terms
of lines of code produced, rather than in terms of functionality
delivered. The rate at which functionality is delivered depends
to a large extent on the language gearing of the particular
programming language.

For example, Figure 5.2 shows that the average internal
productivity levels of projects using ADF, Gener/ol, Ideal, and UFO
are between 25 and 60 per cent lower than the average for similar-
sized projects. However, when language gearing is taken into
account, only UFO projects are below the overall average of 13
function points per man-month. The implication is that if
development departments can raise their internal productivity
levels for projects using fourth-generation languages to the
average, they will usually be able to increase their function-
delivery rate to four times that of typical Cobol projects.

34

© Butler Cox pic 1990



© Butler Cox plc 1980

Chapter 5 Using contemporary tools

Figure 5.2 The internal productivity of projects using different types of
programming language varies widely

Internal productivity
Fourth-generation 7|2 O 2 AR B0 12 6 8. 20 R
|anguages T T T T T T T T T T 1
ADF

Application Master

Dataflex

dBASE

Easytrieve

Focus

Gener/ol

Ideal

Mantis

Natural

sQL

Telon

UFO

Third-generation
languages

Cobol

Fortran

PLA

RPG

Assembler
language

B Average

- Relative internal productivity levels indicate the difference between the average
level achieved by projects using the language and the average level for all PEP
projects of a similar size)

(Source: Butler Cox PEP database)

85




Chapter 5 Using contemporary tools

When we examined the levels of external productivity, or
functional delivery, of the various development departments using
fourth-generation languages, it was clear that although most
development departments were making gains in productivity from
fourth-generation languages, only 20 per cent of those surveyed
were consistently achieving the higher levels possible with fourth-
generation languages (see Figure 5.3). Later in this chapter, we
describe some of the initiatives used by more productive
development departments.

CASE TOOLS

Many suppliers of CASE tools claim that very high levels of
productivity and quality are achievable with their products. Our
research shows that the promised benefits are not achieved in terms
of reduced development times and effort, or fewer errors, or
increased reliability. CASE tools may, however, increase
productivity over the whole life of a system (not just the
development phase), or they may improve other quality factors
such as the fit of the final system with the users’ requirements.

THE USE OF CASE TOOLS

CASE tools may be grouped into the following classes: programmer
workbenches, analyst workbenches, screen painters, report
writers, enquiry generators, data dictionaries, project-management
tools, and testing tools.

Seven per cent of the projects we examined used an analyst
workbench, such as Excelerator and Auto-Mate, and about 10 per
centused a programmer workbench, such as Maestro. (Nearly half
of the latter projects were carried out by alarge government-sector
organisation.)

Figure 5.3 Only 20 per cent of the organisations surveyed are
consistently achieving high external productivity

4 Number of
organisations

Average for all those
using third-generation languages

Average for all those using a
mixture of third-generation
languages and fourth-
generation languages

Average for all those
using fourth-generation
languages only

|
|
|
|
|
I
|

| 4——— Those consistently achieving high
: ] T n L s external productivity levels

0 20,000 40,000 60,000 80,000 100,600

External productivity

(Source: Project data submitted to Butler Cox PEP)

86

@ Butler Cox pic 1990




© Butler Cox plc 1990

Chapter 5 Using contemporary tools

Dat_a dictionaries were used on nearly 25 per cent of projects, of
which more than a quarter used Datamanager.

Painters, which automatically generate code to support transaction-
processing applications from screens that are designed
interactively, were used on about 20 per cent of projects. (Since
85 per cent of all projects surveyed are categorised as online
applications, for which screen painters would normally be
appropriate, only one-out-of-four suitable projects made use of
screen painters.) Fewer projects used report generators and enquiry
generators — about 10 per cent and 12.5 per cent respectively.

Testing tools were used on over 40 per cent of projects. The most
popular were Intertest (7 per cent of projects); CEDF, Abendaid,

and Batch Terminal Simulator (5 per cent); and Xpediter (4 per
cent).

THE BENEFITS OF CASE TOOLS

Projects involving five of the eight classes of tools had lower internal
productivity levels than those that did not, by nearly 25 per cent.
Only with programmer workbenches and screen painters was there
asignificant productivity increase. Figure 5.4, overleaf, shows how
the internal productivity of projects using each of the eight classes
of tools differs from the average productivity levels of similar-sized
projects. '

Figure 5.5, on page 89, shows asimilar analysis for each of the eight
classes of tool, this time comparing average error rates. Again,
analyst workbenches and screen painters did best.

Programmer workbenches: The projects using programmer work-
benches are quite distinctive. They are usually enhancement or
maintenance projects of large systems written in traditional
languages, and have good internal productivity levels that are
achieved under severe time pressures. Their new-code content is
lower than average. Their severe time pressures mean that they
delivered functionality at the very low rate of four function points
per man-month (the average from our research is 13). Since most
enhancement or maintenance projects have significantly lower
internal productivity levels, the relatively good levels of pro-
ductivity of projects using programmer workbenches 1is
encouraging.

Error rates were available for about two-thirds of the projects using
programmer workbenches. The errorrates were significantly higher
than average both in integration and system testing (70 per cent
higher), and in the first month of operation (140 per cent higher).
(These high error rates are due, however, to the very high error
rates reported by one organisation in the survey.)

Analystworkbenches: The small proportion of projects using analyst
workbenches were distinguished by being developments of new,
smaller-than-average systems — about 28,000 lines of code. They
were also characterised by their higher-than-average fourth-
generation-language content. The f unction-delivery rate for these
projects, at 19 function points per man-month, was also above
average. Otherwise, their performance was close to average. On
average, the internal productivity levels were slightly below the
average for similar-sized projects, with the smaller projects having

87



Chapter 5 Using contemporary tools

Figure 5.4 Most projects that use tools have lower-than-average internal
productivity

This chart shows the difference in internal productivity level relative to the average for
all projects of a similar size. Thus, projects using analyst workbenches have an average
internal productivity thatis 10 per cent lower than the average for similar-sized projects.

Percentage difference from the average
internal productivity

60 40 20 (6] 20 40
Tools { : d J :

Programmer
workbenches

Analyst workbenches

Screen painters

Report writers

Enquiry generators

Data dictionaries

Project management

Testing tools

(Source: Butler Cox PEP database)

lower levels than larger ones. Like formal development methods,
analyst workbenches may also help to produce systems that are a
better fit with business needs, but again, the data collected does not
at present enable us to measure this.

Error levels for those projects using analyst workbenches are
slightly higher (10 per cent) than average in integration and system
testing, but substantially lower (100 per cent) than average during
the first month of operation. However, error data for the first month
of operation was available only for a quarter of the projects using
analyst workbenches.

Screen painters: Screen painters are usually associated with fourth-
generation languages, particularly code generators such as Telon.
The average size of the projects — 49,000 lines of code — is above
the overall average. Internal productivity levels are nearly 25 per
cent above average for the size of projects and nearly 35 per cent
higher than those projects not using screen painters. This translates
intoatleasta 25 per centreduction in effort, and as much as 40 per
cent. The high internal productivity levels and use of fourth-
generation languages meant that these projects delivered about
21 function points per man-month.

88

© Butler Cox plc 1990



@ Butler Cox plc 1980

Chapter 5 Using contemporary tools

Figure 5.5 Most projects that use tools have higher-than-average
error rates

This chart shows the difference in error rate relative to the average error rate for all projects
ofasimilar size. Thus, projects using analyst workbenches have an average error rate
during systems and integration testing 70 per cent higher than the average error rate
for similar-sized projects, and an average error rate during the first month of operation
140 per cent higher than the average rate for similar-sized projects.

Error rate as a percentage of the average
for similar-sized projects
Tools —-120 -80 —40 0 40 80 120 160

— T T

T T T 1

Programmer
workbenches

Analyst workbenches

Screen painters

Report writers

Enquiry generators

Data dictionaries

Project management

Testing tools

- Error rate during integration and system testing

B Error rate during the first month of operation

(Source: Butler Cox PEP database)

Error data was available for 60 per cent of the projects us:mg screen
painters. Compared with other projects of similgr size, these
projects had about 20 per cent more €rrors inintegration and system
testing, but about 25 per cent fewer errors in the first month of
operation.

Reportwriters: The projects that used report writers arelarger than
average — 56,000 lines of code — and have near-average language
gearing. The internal productivity levels are lower than the average
for the size of project, by over 10 per cent. These projects delivered
functionality at a low rate of six function points per man-month,
owing to the slightly higher-than-average time pressure.

Enquiry generators: The average size of the project§ that used
enquiry generators is close to the average. Their internal
productivity levels are, however, more than 25 per cent belpw
average for the size of project, and the function delivery rate of nine
function points per man-month is nearly 40 per cent below the
average.

89




Chapter 5 Using contemporary tools

The projects that used these types of function-generation aids had
considerably more software errors than the average during the first
month of operation. Itis very likely, however, that the higher error
rates are not directly associated with use of these aids. Error data
was available for 60 per cent of projects using report writers. For
their size, these projects had about 60 per cent more errors in
integration and system testing and 65 per cent more in the first
month of operation. Error data was available for 60 per cent of
projects using enquiry generators. They had fewer-than-average
errors (30 per cent fewer) in integration and system testing, but
higher-than-average error rates in the first month of operation,
which suggests that inadequate integration and system testing was
carried out.

Data dictionaries: Projects using data dictionaries also perform
below average, having an average internal productivity level nearly
25 per cent lower than the average for projects of a similar size.
Although we could expect their use to lead to some reduction in the
internal productivity level, it is not possible to attribute all of the
poorer performance directly to their use. Projects where
Datamanager was used fared slightly better than projects using
other data dictionaries, having an average internal productivity
level only about 10 per cent lower than average for the size of the
project. Many systems development managers will, of course, be
happy to tolerate lower internal productivity levels for projects
using data dictionaries, because of the resulting improvements in
ease of maintenance.

Error data was available for 60 per cent of the projects using data
dictionaries. For their size, these projects produced about 40 per
cent more errors than average, both in integration and system
testing, and in the first month of operation. This implies that the
technical quality of the original development work for these
projects is markedly lower than average. Seventy per cent of the
Datamanager projects reported error data; they had near-average
numbers of errors in integration and system testing, and about
20 per cent fewer errors in the first month of operation.

Project-management tools: Project-management tools were used on
35 per cent of the projects. These projects had an average internal
productivity level slightly lower than the average for projects of a
similar size.

Projects using project-management tools have error rates 20 per
cent above the average (for the size of project) during integration
and system testing, and 25 per cent above average during the first
month of operation.

Testing tools: Testing tools are used on about 40 per cent of the
projects. These projects have lower internal productivity levels (by
more than 10 per cent) than projects of a similar size. The main
reason for using such tools, however, is to improve the technical
quality of systems.

The projects using testing tools had slightly higher error rates both
inintegration and system testing (15 per cent higher), and in the first
month of operation (10 per cent higher). Thus, although the tools
may have helped to identify more errors, the reliability of the

90

© Butler Cox plc 1990



@ Butler Cox pic 1990

Chapter 5 Using contemporary tools

developed applications in the first month of operation was
marginally worse than average.

Measuring and analysing the benefits associated with tools, either
productivity or quality, provides a means of focusing attention, and
hence, effort, on the areas of greatest benefit. It is then the
responsibility of the management to implement initiatives to
increase the levels of benefit.

TOOLS FOR TESTING SYSTEMS

Testing is an area where improvements in both productivity and
quality can be attained. In Chapter 4, we looked at the process of -
formal software testing and various techniques and methods
underlying this. Supporting this process, and the techniques and
methods, are various tools and aids that assist in conducting and

managing testing, and generating and analysing test data and
results.

CONDUCTING TESTING

Two types of tool — debuggers and test harnesses — are used during
module testing to help in the process of debugging and testing:

Debugging is a distinct activity from testing. However, several
debugging tools also include features that enable them to be used
for formal testing. The list in Figure 5.6, overleaf, isnot exhaustive;
we have included only those for which the manufacturer also
supplies another type of testing tool that can be used in conjunction
with it. All the organisations we interviewed use some debugging
tools, since it would be expensive to develop programs without
them. If additional debugging tools are required, it would be worth
considering tools that are also useful for f ormal testing.

Test harnesses provide an environment for running partially
completed software when it is undergoing module tests, or being
debugged. They provide facilities such as simulating incomplete
modules, intercepting calls to external procedures, and defining
external data areas. The use of such a harness could provide amore
uniform approach to module testing throughout a development
team.

MANAGING TESTING

Test-management tools help in the management of the tests rather
than in the process of testing. They are particularly useful if there
are many test cases to manage, and as a long-term investment in
maintaining the test environment for regression testing.

Companies that are already controlling their software develop-
ments using tools for code management and configuration
management should consider extending their scope to include
testing. Companies that are not already using such tools would be
well advised to consider investing in them.

TEST-DATA PREPARATION AIDS

Tools to ease the process of creating and using test data provide one
or more of four functions: capture and playback of test scripts,

91



Chapter 5 Using contemporary tools

Figure 5.6 There is a wide range of testing tools available in the
United Kingdom
The toals in this list have been selected from those that are obtainable and that are
supported in the United Kingdom. Inclusion in this list does notindicate an endorsement
of the product. The criteria for inclusion are that the product should be supported on
Digital, IBM mainframe, or ICL computers and that Cobol or PL/1 should be supported
on language-dependent products. Some static-analysis products, for example, have
been excluded because they are aimed at military systems, and languages such as Coral
and Ada.
{ =
2
®
5| ® :
= 'E 5 o =
7 )
£l 2lsl |2l5 |5
El gl 8l5|l=l=lglB
B(C s B ool Bl e ®
@ - - = — o o
S|5|8|8 35 B¢
o e T Sifals
SR ® S| 5|88l
ABL Europe Ltd
— TIP » o
Advanced Programming Techniques Ltd
— Oliver - |
— Simon T e
€ A Computer Associates Ltd
— CA-Datamacs/Il -
— CA-EZTest/CICS =
— CA-Optimiser -
Compuware
— CICS Playback o -
— File-aid —
Digital Equipment Corporation
— Dec Test Manager - -
Gerrard Software Ltd
— Testgen -
IPL Software Products Ltd
— Softest - - =
John Bell Technical Systems
— Pro-Quest | =g
— Testa P
On-Line Software International
— Datavantage v | e
— InterTest o~ =
— ProEdit ~
— Verify Z =
Program Analysers Ltd
— Testbed |
QA Training Ltd
— Evaluator - - -
Rand Information Systems Ltd
— Testline - )
Sterling Software
— Comparex -
Verilog UK Ltd
— Logiscope v |
XA Systems UK
— Pathvu v~

92 © Butler Cox pic 1990



© Butler Cox ple 1990

Chapter 5 Using contemporary tools

test-data generation, test-database generation, and file and output
comparison.

Tools providing these functions are mainly used during system
testing and during the maintenance phase of a project, where
‘regression’ tests are carried out to check that the system’s

behaviour has not changed unexpectedly as a result of
maintenance activity.

The main benefit provided by these tools is the automation of tasks
that would be tedious and time-consuming to carry out manually.
In some cases, the amount of test data required to carry out a
satisfactory range of tests would be so large as to preclude a
manual approach; the implication of this is that some systems
cannot be adequately tested without the use of such tools. The
use of these tools does not in any way, however, reduce the need
for careful test design. The function of the tool is simply to
automate the process of generating test data within the
parameters defined by the test design.

An important consequence of automating a tedious manual task
is the increase in accuracy that is achieved. If each piece of test
data is designed to test a particular function, any inaccuracy in
the creation of test data is likely to mean that some functions are
not tested as the designer intended.

Capture and playback tools

These tools record users’ inputs and system responses. The user
input can then be replayed, and the system responses compared.
These tools are particularly useful for testing online systems with
significant amounts of data entered by users via screen-based
systems. They greatly simplify the creation of test scripts, and can
save the cost of employing large numbers of unskilled staff to type
in the data. They have their main value during system testing,
but could also be used very effectively during the module and
integration testing of those parts of the system that handle the
user interface. The tools run either on the host computer, or on
a PC that emulates a terminal on the host computer.

The tools contain some or all of the following components:

— Capture and recording of all the user’s inputs, including
mouse movements, where these are used. This input is stored
as a script, which can be edited if required.

— Recording of responses generated by the system.
— Editing capability on the captured input data.
—  Replay of the captured (and edited) script at varying speeds.

— The ability to run multiple copies of the script or scripts on
‘virtual’ visual display units.

— Comparison of the system-generated responses between
different runs of the script, and documentation of the results.

In using a capture/playback tool, each script must be designed to
test particular features of the system. If the tool is used merely
to capture a large amount of unplanned user input, very little
benefit will be gained.

93




Chapter 5 Using contemporary tools

Capture/playback tools can facilitate tests that would otherwise
be very difficult to carry out. A good example is stress testing —
subjecting the system to large volumes of test data, or to high
transaction rates. This particularly applies to systems, such as
ticket-reservation systems, which have large numbers of user
terminals. In the test environment, a large number of terminals
will almost certainly not be available, and even if they were,
organising large numbers of staff to simulate the expected volume
of user inputs would be difficult and expensive.

These tools also have particular benefits during regression testing
because they allow a script of input commands (including
deliberate user errors) to be repeated precisely. To compare the
results of the original test and the test of the modified system,
differences have to be sought on possibly hundreds of screens.
Most capture/playback tools can do this rapidly and without error.
In addition, much less effort is required to carry out regression
tests since the reruns of the script can be carried out in batch mode
without supervision.

Test-data generation tools

These tools facilitate the automatic creation of large files of data.
They are particularly useful for testing systems that process large
volumes of data in sequential files. A comprehensive test of such
systems generally requires each record in the test-data files to be
different from all other records. To generate such files manually
would be very time-consuming and prone to error. It would, of
course, be possible to write a separate file-generation program for
each system that is developed, but it is likely to be more cost-
effective to purchase a data-generation tool if systems developed
by the organisation often use sequential input data files.

Data-generation tools use at least two methods to generate the
files. One is to define the file off-line using a special programming
language. The other is to generate files from within the program
itself, by embedding control statements in the program. These
statements either generate new records, or select and modify
records from existing files.

The generated files contain records in user-defined formats. The
tools allow the values of fields in successive records to be
generated in various ways — random numbers within a specified
range, values clustered about a specified point, sequential values,
dates in various formats, and so on. These features allow the test
designer to include data to test for particular conditions such as
data on, or either side of, boundary values, and also to generate
large numbers of different records which may be used for volume
testing.

Test-database generation tools

These tools provide a means of testing a system on a realistic
database without risking the live database. It is not usually
advisable to use the live database for system testing, but
even where it is possible, it may be more convenient to use
a smaller and more easily monitored subset of the live
database.

94

©'Butler Cox plc 1990



© Butler Cox ple 1990

Chapter 5 Using contemporary tools

Comparison tools

These tools are the only ones that operate on the outputs from
the system under test. Systems that generate significant amounts
of output in the form of files can benefit from the use of these
tools. They can save time and improve accuracy when the tester
is looking for small differences between runs of a test program,
or when he is comparing expected results with actual results. They
can be particularly valuable in the maintenance phase of a
system’s life cycle, where it is essential to verify that a correction
or a change to a program does not have unexpected side effects.
The tools produce printed reports that management can use as

an objective measure that the system has not been degraded by
the change.

File-comparison tools identify records within a file that have been
inserted, deleted, or modified. The ability to make comparisons
in this way is usually included as a feature of capture/playback
tools. In these instances, comparisons are made of outputs sent
to a display screen by the system. Some file-comparison tools are
included in manufacturers’ operating systems — for example, the
‘Difference’ command in Digital’s VMS operating system.

TOOLS FOR MAINTAINING EXISTING SYSTEMS

In addition to fourth-generation languages and CASE tools for
generating software for new systems development and testing
tools, a range of tools is emerging designed to assist with the
maintenance of existing systems. These tools fall into two
categories: management tools and testing tools (covered above),
and maintenance-support tools.

THE USE OF MAINTENANCE TOOLS

Although software tools theoretically help to simplify mainten-
ance by improving the development process, they have yet to
make much impact in this area. Most systems that are currently
being maintained were developed using Cobol, as Figure 5.7
shows. Of 24 companies in a snap survey by Butler Cox, nine
stated that over 90 per cent of their maintained code was written
in Cobol, and another six reported that at least 70 per cent of their
maintained code was in Cobol.

Figure 5.7 Most systems that are currently being maintained were
developed using Cobol

*The entries in the table record the number of respondents wha have that proportion
of code written in the designated language.

(Source: Butler Cox survey of PEP members)

95




Chapter 5 Using contemporary tools

Languages other than Cobol are becoming more common in
maintenance work, however, and are already more widespread
than either PL/1 or Assembler. These other languages comprise
various fourth-generation languages such as Mapper and
Application Master. :

MANAGEMENT TOOLS AND TESTING TOOLS

Although not directly concerned with the task of maintenance,
maintenance-management tools and maintenance-testing tools
have an important complementary role to play.

Maintenance-management tools

Management tools help to improve the planning and control of
maintenance. Tools in this category are of two types. One type
aims to help with the job of estimating (which should take place
during impact analysis). The other type helps to control the
introduction of successive versions of software. Estimating tools
tend to be linked to proprietary systems development methods,
which limits their use in a maintenance environment. Whatever
the tool, the ability to calibrate estimating models to the
characteristics of the maintenance environment is essential.

A range of configuration and change-management tools is
available to control the change process in maintenance work.
These tools ensure that successive versions of software are
progressively introduced into a production environment under
controlled conditions. They also have the ability to generate
management and audit reports. Several of them can also be
applied to the development environment and can then be used
to progress software into the production and maintenance phases.

Maintenance-testing tools

Several of the testing tools described earlier are available to help
with the maintenance task. They provide source and file-
comparison facilities, cross-reference analysis, code analysis, and
test-data operation facilities. The purpose of such tools is to
provide enhanced status reporting, auditing, and quality
assurance, and to improve the efficiency of the testing process.
With a testing environment supported by techniques, methods,
and tools, test data and information is easier to maintain and the
testing process is simpler to administer.

The use of knowledge-based techniques is likely to have an impact
on testing tools — for instance, by using rules to define additional
test cases. Some interesting tools are also being developed that
incorporate the use of hypertext, which acts as a navigational aid
for searching through program structures. (Hypertext allows
‘chunks’ of text to be related to each other so that the user can
decide which relationships to pursue and when to pursue them.)

MAINTENANCE-SUPPORT TOOLS

Maintenance-support tools are having the biggest impact on the
maintenance process. Maintenance tools are aimed at the impact
analysis and design steps of maintenance. They provide a powerful
means of analysis and design, and are valuable where large
amounts of existing code have to be examined or modified,
especially where the code itself has been subject to previous

96

© Butler Cox plc 1990

|



© Butler Cox plc 1920

Chapter 5 Using contemporary tools

modification. Although relatively expensive, maintenance tools can
cost less than renewing the system. They can be justified when the

maintained system is likely to continue in operation for several
years.

Three kinds of maintenance-support tool are currently available:
code analysers, restructuring tools, and re-engineering tools. Some
of the better-known examples are identified in Figure 5.8.

Code analysers: Code analysers report on the degree to which
programs (in the main, Cobol) are syntactically correct, and they
indicate the complexity of the existing code. So-called static code
analysers report, in addition, on departures from programming
standards. Dynamic code analysers report on the results of a test

run; they may, for instance, report the number of untested lines of
code.

The experience of the systems development department of a
Belgian utility highlights the risk of failing to exploit the benefits of
code-analysing tools. To meet one of its application requirements,
the department selected a packaged software product. At first sight,
it seemed to fit the need closely — it was designed to a similar
specification — but experience showed that this first impression was
false. The package has had to be extensively modified to cope with
increased data-storage and transaction volumes, which has led to
significant changes toits internal structure. During the space of just
one year, the maintenance effort has reached half of the original
estimate of developing the complete system from scratch. Code-
analysis tools could have helped to clarify the suitability of the
design in the first place, and to estimate overall life-cycle costs and
resourcing requirements more accurately.

The aspirations of a large agricultural merchant provide a further
illustration of the potential of code analysers. The systems
department has had to face a problem that isnot uncommon — that
of losing many experienced staff in a short space of time, following
an organisational change. Having no alternative but to assign to the
maintenance function staff who had little or no direct knowledge
of the systems, the department turned to a code analyser (in this
case, VIA/Insight). Although it is still too early to assess the impact

Figure 5.8 There are several kinds of maintenance support tools

Category | _ S‘l'.lpp!iéij‘”w‘ =
Code aﬂéiysis. - Peat Mafwxck MoLmiock
. o IBMCorp =
Mamtec SA
‘ViASOFTInc
(Restrﬂétun‘ng :

a7




Chapter 5 Using contemporary tools

of this code analyser, the department is expecting to obtain three
important benefits: transfer of knowledge to the maintenance staff
about the application of the systems, at the code level; improved
code reliability; reduced maintenance turnaround time as a result
of better productivity. )

Code analysers can also be used to measure the technical quality of
asystem. Their use in the area of quality measurement is discussed
later in this chapter.

Restructuring tools: Restructuring tools transform unstructured
code into new, functionally equivalent code that is restructured in
accordance with top-down principles, and is fully documented. The
steps in the restructuring process are the following — analysis (in
much the same way as with a code analyser), code re-organisation
and redesign (done manually with all but the most sophisticated
restructuring tools), code generation from the revised program
design, and verification.

The experience of a major oil company illustrates the use of a
restructuring tool. All of the commercial systems (over 1,200
programs) were written in a programming language no longer in
common use. The level of expertise needed to use the language was
substantial and required very skilled maintenance staff. This
language was very difficult to use and staff required an extensive
amount of training. New programmers would serve an
apprenticeship with the senior staff to learn the language and it
could be aslong as two years before programmers would be allowed
to work unsupervised with the language.

In 1985, the company planned to rewrite all of the applications
written in this language. It estimated that this would cost about
$6 perline and that it would take 10 calendar-years to complete all
the work, at a total cost in excess of $15 million. Management
approval to proceed was granted. However, before goingahead, the
company evaluated the possibility of restructuring its systems as an
alternative to the high-risk, high-cost rewrite strategy, using a
restructuring tool. It chose Recoder as the tool and submitted a new
plan, which indicated that all the code could be restructured and the
existing systems re-engineered in two years.

These tasks were, in fact, completed in less than two years; after
14 months, 850 programs had been restructured. A billing system
of over 500 programs was completed at an average of one to two
hours per program, and the total cost was eight cents per line. On
another system, one of the company’s restructuring goals was to
improve its run-time performance. With the improvements
implemented, the daily run-time was cut by three to four hours, and
the annual production-cost savings were $170,000.

Restructuring tools are relatively expensive, however. Prices range
from $60,000 for Adpac’s PM/SS product, to more than $100,000 for
IBM’s Cobol/SF. Despite the suppliers’ claims of productivity gains
as high as 60 per cent in subsequent maintenance activities,
restructuring tools often prove hard to justify.

Re-engineering tools: Re-engineering tools go one step beyond

restructuring tools. They have the ability to form an entirely new
design from existing code. They work first by translating existing

98

© Butler Cox plc 1990



@ Butler Cox plc 1990

Chapter 5 Using contemporary tools

codebacktoa fiesign-level representation (thisis a process known
asreverse engineering), then by working forward from that point

to create entirely new, restructured code (this is a process known
as forward engineering).

Today, there are several products on the market, such as Pacreverse
from CGI Systems, and Revengg from Advanced Systems
Technology. Although these tools hold great promise in reducing the
maintenance effort, it is not clear yet how much of the ‘engineering’

is carried out automatically by the tool and how much requires
human assistance.

Both maintenance-oriented tools and fourth-generation languages
help toimprove either the productivity or the quality of applications
development. To measure these improvements, current levels of
productivity and quality need to be known. Although most
development departments have the basic information required to
measure the benefits associated with any particular tool, very few
actually carry out any analysis of thisdata. There are many reasons
for this, ranging from lack of time (a false economy), to a lack of
expertise. Although we have not come across a tool that helps
measure productivity, there are tools that help measure the
technical quality of applications. These tools can prove very
effective in measuring quality and highlighting areas that need
further work to improve the quality of a particular application.

TOOLS FOR MEASURING TECHNICAL QUALITY

Two types of tools are available to help analyse the quality of the
code within a system. Called static analysers and dynamic analysers,
they are suitable for use with commercial and scientific
programming languages such as Cobol, PL1, Fortran, and C. Code
written in manufacturer-specific languages, such as Tandem’s TAL,
or in fourth-generation languages, cannot be analysed by these tools
today.

STATIC ANALYSERS

Static-analyser tools examine the structure of code without running
it, and can typically find between 10 and 20 per cent of all errorsin
a program. They are cost-effective tools in the development of
reliable systems, but do not seem to be widely used in the
commercial environment. Much of their use has been in avionics
and military systems. There are considerable benefits to be gained
from the use of these tools in commercial applications, however,
and their use should be considered carefully by all development
departments.

The tools provide managers with objective measurements of
characteristics that are directly related to quality. These help to
identify areas of poorly structured or excessively complex code. It
is advisable to redesign such code before proceeding further with
testing. If part of the codeis unavoidably complex (a complex logical
algorithm, for example), extra attention should be paid toits module
testing since it is likely to contain an above-average number of
errors.

Static analysers typically assess the following characteristics of the
code:

99



Chapter 5 Using contemporary tools

— Conformance to user-specified standards (for example, no
more than a predefined number of lines in a module, or no use
of ‘go to’ statements).

— The paths (or different sequences of instructions) through a
program.

— Complexity analysis. Two of the most widely used measures of
complexity are McCabe’s measure, and the number of knots,
explained in detail in Figure 5.9.

— Data-flow analysis, showing procedure calls, use of procedure
parameters, and unreferenced or unused data items.

Figure 5.9 Two of the most widely used measures of the complexity of
a program are McCabe’s measure and the number of knots

McCabe’s measure

McCabe’s measure is defined as one more than the number of decision statements
in a program. The metric is very simple, but experience shows a significant correlation
between McCabe's measure and the number of bugs, or debugging effort applied
1o a program. Programs with a McCabe value in excess of 10 seem to have
disproportionately more bugs than those with values of less than 10.

Knots

The purpose of looking for *knots’ is to identify unstructured code, which tends to
contain more errors than properly structured code. A control-flow knot is defined as
occurring when two control jumps cross, as illustrated in the diagram. Three types
of knots are depicted. A down-down knot is relatively harmless, and represents an
if ... then ... else’ construct. Up-down knots are more likely to represent unstructured
code, but may arise from ‘do’ or ‘while’ loop constructs, Up-up knots always represent
unstructured code.

Down-down Up-down

Knot

100

@ Butler Cox plc 1990



@ Butler Cox plc 1990

Chapter 5 Using contemporary tools

— Cross-referencing of all data items.

Some training is required in the interpretation of these measures,
but carefully used, they can identify many coding errors before any

attempt is made to run the code. This obviously saves effort and
machine time.

DYNAMIC ANALYSERS

Dynamic-analyser tools provide objective measures of the testing
procedure, commonly known as ‘white-box’ testing. This procedure
is carried out as part of the module-testing phase, and may also be
done during integration testing. The tools monitor the code while
it is being executed, and produce a report at the end of the
execution, giving various statistics. These statistics can be used to
assess the effectiveness of the test cases.

It is essential that white-box testingis carried out, since in a typical
program, over 50 per cent of the code isnot directly related to end-
user functionality, but to the manipulation of internal pointers,
flags, and intermediate results. ‘Black-box’ testing, which views the
system externally in terms of inputs and outputs, cannot be
designed to guarantee complete coverage of this ‘hidden’ code.

One tool, Testbed, provides three measurements, or test-
effectiveness ratios (TERs), resulting from a dynamic analysis of the
code. Other dynamic-analysis tools, which are sometimes also
known as coverage analysers, provide at least the first
measurement. These measurements are:

—  TERI — statement coverage analysis: the percentage of the
lines of code that have been exercised at least once. No
operational system should be released where this measure is
less than 100 per cent.

—  TER2 — branch coverage analysis: the percentage of all
outcomes of branch instructions that have been exercised at
least once. The goal of testing should also be 100 per cent,
although this isnot as easy to achieve as 100 percenton TERIL.

— TERS3 — path coverage analysis: there are several ways of
measuring paths through a system, all of them quite complex.
It is difficult, in practice, to achieve 100 per cent path coverage
during testing, and except in ultra-high-reliability systems, it
is probably not worth attempting it.

An example of output from Testbed for TER2 is shown overleaf in
Figure 5.10.

An experiment carried out on a large military systemin the United
States showed that, when static analysis was combined with
dynamic analysis, 70 per cent of all errors in the system were
discovered. The remaining errors were caused largely by errors in
the specifications or misunderstandings of the written
requirements.

Project managers will find the use of this type of tool particularly
helpful because of their ability to provide reports containing
objective measures of progress, such as “tests covering 78 per cent
of statements and 64 per cent of branches have been successfully

101




Chapter 5 Using contemporary tools

Figure 5.10 The testing tool, Testbed, provides three measurements
resulting from a dynamic analysis of the code

The diagram is an example of output from Testbed for the second of t_he measurements,
or test effectiveness ratios (TERs), that it provides. TER2 is an analysis of
branch coverage.

: Current run

BRANCH EXECUTION PROFILE | 7€vious runs Combined
FROM TO OLD NEW
LINE LINE COUNT COUNT TOTAL

17 18 1 1 2

17 19 List of all the 4 2 6

18 56 branches in the 1 1 2

24 25 program 3 2 5

24 53 1 (| B 1

28 29 2 i 2

28 30 1 2 3

33 34 1 1

33 35 2 1 3

38 39 1 1 2

38 40 2 1 3 Unexecuted

ﬁ 12 % 2 bt i Branches

45 51 1 [ e

47 48 1 2 3

47 50 1 (Lidaid 1

49 51 i 2 3

52 54 3 2 5

55 12 4 2 6

58 1 1 1 2

OLD NEW
SUMMARY COUNT COUNT TOTAL

NUMBER OF BRANCHES IN PROGRAM 20 20 20
NUMBER EXECUTED 20 15 20
NUMBER NOT EXECUTED 0 5 0
TEST EFFECTIVENESS RATIO 2 1.00 0.75 1.00

(Source: Program Analysers Ltd)

completed’’. This gives project managers much better control over
a project than having to rely on a programmer’s typical estimate
that“testing is 95 per cent complete’’.

SELECTING TOOLS FROM THE TOOL SET

Tools should not be selected for use on an application in isolation.
Instead, they should be selected in the context of the wider
development environment in which they are to be used, and in the
light of the development application they are aimed at.

Serious problems with tools are commonplace, frequently as a result
of the selected tool’s inability to develop the required applications
fully. Problems of this sort are rarely attributable to a shortcoming
in the tool itself, but instead to a mistake in selection. If their
potential is to be fully realised, tools should be chosen and
integrated into the development environment with due regard to
the relationships between the application in question, the
development approaches available, and the systems development
technigues and methods that can be used. Failure to observe the
critical nature of these relationships will produce a less-than-
adequate application, and loss of confidence in the tools.

THE NEED FOR A TOOL-SELECTION PROCEDURE
Contemporary tools cannot be used for all typesof applications, and

the range of applications is increasing. It follows that a range of tools
is required, each matched to the characteristics of one or more

102

© Butler Cox plc 1990



© Butler Cox plc 1990

Chapter 5 Using contemporary tools

applications, if the full potential of the tool is to be realised for a
particular development project.

The need to select the right tool for an application rarely arose with
traditional tools such as third-generation languages because they
could be used to develop most types of application. The traditional

procedure for selecting an appropriate third-generation language
is illustrated in the first column of Figure 5.11.

An analogy can be made here with house building. Using the more
traditional tools, such as third-generation tools, was equivalent to
building a house as a traditional craftsman would do, designing and
building each component from basic materials. Using modern tools
is equivalent to building a house by using prefabricated com-
ponents, such as windows, doors, and wall panels, as the basic
elements. As with modern house-building techniques, modern tools
certainly enable the final product to be built much more quickly, but
unless the right set of components is selected, it will not be possible
to build the application according to the original design.

Most organisations are using the procedure that was developed for
third-generation languages to choose which modern tools to use for
an application. In our analogy, this is comparable to selecting the
prefabricated components without considering what type of

Figure 5.11 The revised procedure for selecting development tools
ensures that the capabilities of the tools match the
characteristics of the application

Traditional Revised

Application

i

Development approac

<«—Stage 2—>

<— Stage 3—

Stage 1 Stage 1 S _ _
The type of application determines which The type of application determines which
development approach should be development approach should be
adopted adopted

Stage 2 Stage 2 ;

i his supported
The development approach is supported The developmen_t approac
by various tpechniques and development by various techniques and development

methods methods

Stage 3
Stage 3 ]
The%echniques and methods are The technigues and methods are
supported by various development supported by various development fools,
tools whose capabilities match the

characteristics of the application

103




Chapter 5 Using contemporary tools

building is to be constructed — an apartment, a house, an office
block, or a hospital.

A proper selection procedure should ensure that the contemporary
tool not only supports the systems development techniques and
methods, but also that it is able to develop the required application.
This formal procedure, which is contrasted with the traditional
procedure in Figure 5.11, should be adopted for selecting all tools.
Ifitisimplemented correctly and updated regularly, it will deliver
an effective match between the development environment and the
application. This should ensure that all projects developed with
these tools are successfully completed.

The procedure adopted by Tesco Stores Ltd, a supermarket chain,
isa case in point (see Figure 5.12). Tesco uses three main develop-
ment tools — Telon, Focus, and Cobol. Cobolis used mainly for the
maintenance of existing applications. SDT, a fourth-generation
language from McCormack and Dodge, is used for financial systems.
The company has clear guidelines for deciding which development
tool should be selected for a particular application. These guide-
lines, accompanied by detailed instructions, are issued to
developers in a document entitled, The Development Language
Selection Criteria. This document gives the reasons for selectinga
particular language, and two diagrams, one for new applications

Figure 5.12 Tesco has a procedure for selecting appropriate
development tools for each new application

Reports require

complex calculation E_ Telon
or data manipulation

S — Focus
reports from
Reports QSAM, VSAM or
Batch file IMSOB or Focus OB
handling
L Telon
Reportin same
logical sequenc:
Batch file as?lile = °
handling and handling
Batch reporting Telon
Split into two
Report programs:

in different
sequence
to file handling

Telon for extract &
Focus for report

System runs in conjunction

with or major interface to cics Telon CICS
another system
Telon IMS
Online
Part of the
financial
system SDT
Expected life
Systemis of system:
standalone Telon IMS
Telon CICS

(Source: Tesco Stores Ld)

104

© Butler Cox pic 1990



© Butler Cox plc 1990

Chapter 5 Using contemporary tools

and one for maintenance, indicating which development tools will
be appropriate for applications with certain characteristics.

DEFINING THE ELEMENTS OF THE DEVELOPMENT ENVIRONMENT

Before the procedure for selecting the application-development
environment can be implemented, the elements need to be defined
and the definitions documented so that everyone involved in the
selection procedure has the same basic understanding of the
application-development environment. This document is used
whenever a development project, either maintenance or new, is
started. The elements that need to be defined can be grouped into
four categories:

—  Development approaches: The complete cycle, phases, and
activities of the development of an application. All the major
development approaches used within the organisation should
be briefly described, with an explanation of the objectives and
the actions required at each phase. It should be clear to the
reader how the phases flow from one to another.

—  Systems development techniques and methods: The techniques
are the procedures on which systems development methods
are based. All the systems development techniques and
methods available within the organisation should be briefly
defined, and associated with the development approaches that
they support. Several development approaches may be
supported by a single technique or method, and several
techniques and methods may support one phase of a
development approach.

—  Development tools: The tools, typically computer-based, that
automate parts of or support the development methods and
techniques. All tools should be identified and described in a
similar manner to the systems development techniques and
methods, and associated with the various methods and
techniques that they support. Again, there may be multiple
associations.

—  Application characteristics: To ensure that the tool that is
selected will facilitate the efficient and successful develop-
ment of the application, the nature of the applications
developed by an organisation needs to be clearly understood.
The nature of an application can be defined in terms of a set of
characteristics. Each application can be described in these
terms, and hence, be defined in a consistent manner. Most
applications can be defined for this purpose in terms of
between 10 and 20 characteristics, relating primarily to the
development approaches and the tools currently used by a
particular organisation. Examples of the kinds of
characteristics of an application that will determine whether
or not it is a suitable candidate for a particular development
approach are listed in Figure 5.13, overleaf. Examples of the
kinds of application characteristics that will determine
whether a particular development tool is appropriate are listed
in Figure 5.14, also overleaf. These lists can be amended and
supplemented to suit an individual organisation.

The characteristics must be clearly defined so that they will be
consistently interpreted by different readers. They should not

105




Chapter 5 Using contemporary tools

Figure 5.13 Every application has characteristics that will determine the
suitability of using particular development approaches _

Figure 5.14 Every application has characteristics that wi | determine the
ols !

suitability of using particular developmen :

&

106

© Butler Cox plc 1990



Chapter 5 Using contemporary tools

be too detailed or too technical, because they need to be kept
to a manageable number. The lists should be amended as the
development environment evolves. They provide the basis for

the preparation of the selection tables described in the next
section.

The level of definition and the number of definitions in each
category will vary from one organisation to another. The definitions
should be reviewed on a regular basis to take into account the
evolutionary changes in the development environment, and the
introduction of new types of applications, development

approaches, and systems development techniques, methods, or
tools.

PREPARING SELECTION TABLES

Two tables need to be prepared to serve as the basis for matching
the development approach and the tools with the application. Their
structure and the kinds of information they should contain are
described in this section. Once prepared, the tables can be used for
any development project. They are based on the lists of
characteristics described above, with input from experts in the
areas of development concerned. They will, of course, need to be
updated periodically to reflect changes in the development
environment.

Both tables are organised in a grid format and used in a similar
manner. The first is used to select the development approach fora
specific application. The second is used to ensure that the tools
selected will enable the required application to be developed.

An example of part of the table for selecting tools is shown in
Figure 5.15. The application characteristics are listed on the left-
hand side of the table; the types of tools are listed across the top. The
application characteristics should be listed, as far as possible, in
order of importance. A maximum score should be assigned to each
of the application characteristics to indicate their relative
importance — say, 20 for the most important characteristic, and five

Figure 5.15 Use of the development-tool selection table ensures that
appropriate development tools are used for each application

Low (no;’:i‘me-driti.ééf)
Volume of data (15) -

- Less than 5 megabytes
- More tt;g;ﬁ 5 megabytes

—
© Butler Cox plc 1990 3 107




Chapter 5 Using contemporary tools

for the least important. Each application characteristic is broken
down into a range of options, each of which receives a score. In
Figure 5.15, for example, the ‘expected life’ of the application is
considered one of the most significant characteristics and is given
a maximum score of 20. This is broken down into three options —
‘lessthan one year’, ‘between one and three years’, and ‘overthree
years’.

The numeric value entered onto the grid is an indication of the
ability of the tool to develop an application that supports that
option. If a particular development tool can fully support that
option, it receives the maximum score for that characteristic. If it
provides adequate support, it receives a lower score. If it provides
nosupport, it scores zero. If, for example, the expected life of the
application being considered is over three years, the application
needs to be developed bearing in mind the continuing support that
the tool will be able to provide, and the ease of maintenance of the
application over the longer term. The capability of each tool to
develop such a system is considered in turn. Cobol scores five as it
is not the strategic development tool for this organisation, and it
produces applications that are not the easiest to maintain. Focus
scores 15; although it is not the strategic development tool either,
it does produce applications that are easy to maintain. Telon is the
strategic development tool and produces applications that are easy
to maintain; it scores the maximum of 20.

The procedure for compiling the selection tables is summarised on
the left-hand side of Figure 5.16. This part of the procedure is
carried out only once, before the process is initiated. Once the
selection tables have been finalised, they should be tried out on
several recently completed developments. This should reveal any
errors in the selection tables, and also demonstrate how well the
developments were supported by the development approach, and
systems development techniques, methods, and tools chosen.
Modifications to the selection tables should be made as and when
appropriate.

PREPARING DOCUMENTATION

The elements of the selection procedure should be fully
documented, and regularly updated. The documentation should
consist of:

— The definitions of, and relationships between, the various
development approaches, and systems development
techniques, methods, and tools.

— The approach and development-tool selection tables, and the
instructions for their use.

All the comments and decisions made during the process should also
be documented. If a development should subsequently fail, the
appropriate part of the definitions or selection tables can be
amended by referring to the documentation. In this way, mistakes
will not be repeated.

MAKING THE PROCEDURE PART OF THE DEVELOPMENT PROCESS

The remainder of the selection procedure, illustrated on the right-
hand side of Figure 5.16, should be carried out at the beginning of

108

@ Butler Cox plc 1990



Chapter 5 Using contemporary tools

Figure 5.16 Elements of the development environment should be selected according to a formal procedure

List the approach-
related application

characteristics

4

.

Allocate scores
to each

¥

Break each down
into a range of
options

v

with respect to each

Score each option

approach

List the
development-
toal-related
application
characteristics

4

(

Allocate scores
to each

¥

Break each down
into a range of
options

3

Score each option
with respect fo each
development tool

Part of the procedure

Approach
selection
table

Definitions of
approaches,
technigues,
methods, and
tools, and of the
relationships
between them

Development-toal
selection
table

Definitions of
approaches,
techniques,
methods, and
tools, and of the
relationships
between them

- characteristics, |dentrfy‘t

From the application

optaonthat best relate' (o]

has been awarded

4

if all approaches scc
zero, do not pmeé with
the application: otherwise,

se&ect the approa@h wm

: Mﬁa‘t’best ret t
i freappllcathg'f der

carried out once only, and
medified as necessary

Part of the procedure
carried out for every
individual application

‘ ® Butier Cox plc 1990 109

b R e e ) oo




Chapter 5 Using contemporary tools

each development project and is best done at ameeting attended by
one or two users, the internal technical experts, and several of the
systems development department project managers, all of whom
will contribute from their experience, and one of whom will manage
the development. Everyone present should be acquainted with the
definitions and the selection tables. This part of the procedure is
described below: :

110

For each application characteristic listed on the approach
selection table, identify the option that best relates to the
application under consideration for development. For each
approach, circle the score that that option has been awarded.

Add up the circled numbers to obtain a total score for each
approach. Any column that contains a circled zero will score a
total of zero — in other words, that approach should not be
considered for this particular application because it is incapable
of meeting the requirements of one of the application
characteristics.

The development approach with the highest score is the one
that will enable the application to be developed most
effectively, providing that the development tools available also
support the application. If all the development approaches
score zero, the application should not be developed, asitisnot
supported by any of the existing development environments.
In this case, either the requirements of the application should
be reviewed, or a new development approach should be
adopted that will enable the application to be developed.

Identify the systems development techniques and methods
that support the chosen approach, drawing on the documen-
tation that defines the relationships between the development
approach and the systems development techniques and
methods.

Identify the development tools that support the wvarious
systems development techniques and methods, drawing on the
same documentation.

For each of the application characteristics listed on the
development-tool selection table, identify the option that best
relates to the application under consideration. For each
development tool identified in the previous step, circle the
score that that option has been awarded.

Add up the circled numbers to obtain a total score for each
development tool. Any column that contains a circled zero will
score a total of zero — in other words, that development tool
should not be considered for this particular application,
because it is incapable of meeting the requirements of one of
the application characteristics.

If several development tools support the same technique or
method, select the development tool with the highest score. If
all the development tools supporting a technique or method
score zero, none of the development toolsis applicable. Either
anew development toolisrequired, or a different development
approach should be adopted, with different systems
development techniques, methods, and tools.

utler Cox ple 1980



@ Butler Cox pic 1880

Chapter 5 Using contemporary tools

Review the selected development environment as a whole,
checking that the various development tools that need to
interface with each other are compatible.

INTRODUCING NEW TOOLS

The type and complexity of a tool will have a bearing on how long
it takes to integrate it into the development environment, The

introduction and subsequent integration of a tool must be carefully
planned and managed.

An effective plan for introducing a new tool should consist of the
following four stages (it helps to stay in close contact with the tool’s
supplier throughout all four stages):

—  Stage 1: Marketing the implementation plan internally. This
stage is designed to ensure that all the staff involved with the
new tool know exactly what the implementation plan is, what
their responsibilities are, and how it will affect them.

—  Stage 2: Initiating changes to exploit and support the tool. In
this stage, changes are made to the development environment
s0 that the tool can be optimally supported and exploited.
These changes may be of a ‘one-off’ nature, such as reducing
team sizes, or they may be continuing changes, such as defining
and creating a ‘cook book’ (described later in this chapter).

—  Stage 3: Implementing a pilot application. In Stage 3, the
ability of the tool is tested on a pilot application. If the correct
toolhasbeen selected, and Stages 1 and 2 have been completed
correctly, the pilot application will succeed. Asa consequence
of the pilot, areas may well be identified where changes can be
made to make better use of the tool — for example, areas where
the documentation may be reduced, or where changes in the
procedures may be introduced.

—  Stage%: Modifying the development environment in the light
of the pilot application. In Stage 4, any recommendations
resulting from experience with the pilot application are
implemented.

STAGE 1: MARKETING THE IMPLEMENTATION PLAN

The objective of this stageis to ensure that all the staff involved with
the tool are aware of the implementation plan and of its effects on
their working environment, their roles and responsibilities, job
security, market value, and so on. Earlier in this report, we
identified the staffing factors that are important to productivity;
managers should pay particular attention to these factors when
considering the introduction of a new tool.

The commitment of senior systems department managers to the tool
is important to its successful introduction. To win their support, it
is necessary to demonstrate the tool’s cost justification.

A group should be created to ‘market’ the tool to the rest of the
systems development department. This group should comprise the
proposed technical expert (who will probably be one of the people
who carried out the initial pilot project), a technical expert from the
supplier, a sales representative from the supplier, and a senior

a1




Chapter 5 Using contemporary tools

project manager from within the systems department. This group
will be responsible for introducing the tool to development staff. All
staff involved with the tool — developers, managers, and user
managers — should attend a one-day presentation. Half the day
should be spent introducing the tool, and half should be spent
discussing the plan for introducing it into the organisation. This
should encourage a positive attitude to the tool and its use. .

The supplier should take the lead in the first half-day session,
providing general background information on the tool, showing how
it will be used in the proposed environment, describing the types of
applications it will be used for, and providing details of the benefits
that it can provide. In-house members of the group will participate
in a supporting role.

Inthe second half-day session, the in-house members of the group
will take the lead, clearly defining each stage of the plan and
indicating the proposed timescales. All questions should be
answered either during, orshortly after, the meeting. If outstanding
issues are left unresolved, they may become stumbling blocks at a
laterstage. The pilot application should be described, the expected
timescales should be made clear, and the members of the
development team who will work on it should be announced.

STAGE 2: INITIATING CHANGES TO EXPLOIT AND
SUPPORT THE TOOLS

To maximise the benefits obtained from using tools, various changes
may need to be made to the development department. These
changes could affect any aspect of the development department,
from the computer hardware to the roles of the staff ,and to alarge
extent, are dependent on the type of tool. For instance, with CASE
tools, supporting the development method is critical; with fourth-
generation languages, limiting team size or prototyping may be
critical. Certain changes are applicable, regardless of the type of
tool, because they help to improve understanding about the
capabilities of a tool. Two that have proven very effective in
practice are introducing the role of technical expert, and defining
and implementing a ‘cook book’ and a ‘tool-limitations list’ .

Introducing the role of technical expert

Whenever any new toolis introduced, it is good practice to designate
atechnical expert as a focal point for all enquiries. The trials carried
out during the selection process should provide several of the
development staff with a reasonable knowledge of the tool. One of
them would be the obvious choice to become the technical expert
for the chosen tool. The technical expert will also be responsible for
keeping up to date on the latest enhancements to the tool and for
resolving any problems that arise.

The selection of the technical expert can be difficult, asthe expert
needs both good communications skills and the ability to learn
detailed technicalinformation. One company that has followed this
practice described this person asa ‘human catalyst’ — someone who
is convinced of something and can then encourage its use
throughout the department, with ease. A further factor is that of
personal credibility. The technical expert should have a well
established record within the department — bringing in a new
person sometimes serves to alienate existing staff.

112

© Butler Cox plc 1990



Chapter 5 Using contemporary tools

Implementing a ‘cook book’ and a ‘tool-limitations list’

A ‘cook book’ can be useful to help resolve problems that arise in
using a tool. Figure 5.17 is an extract from one company’s cook
book, specifying how a screen-based system should be developed

with Focus. Normally, compilation of the cook book is the
responsibility of the technical expert.

A similar aid is the ‘tool-limitations list’. This contains detailed
information on the limitations of the various tools currently being
used and is particularly helpful when deciding which tool to use for
a particular application. An example of part of a tool-limitations list
used by aretail company is shown in Figure 5.18, overleaf. Again,
responsibility for compiling the tool-limitations list normally lies
with the technical expert.

STAGE 3: IMPLEMENTING A PILOT APPLICATION

Before a tool is made available for general use, one or more pilot
applications should be developed. The experience gained will be
used to refine the use of the tool and the development methods. If
the selection procedure has been followed correctly, and if
appropriate changes have been made in the development
department to support the tool, no major problems should arise with
the pilot application. It will simply confirm that the tool can develop

Figure 5.17 A cook book advises users and developers on the use of a
fourth-generation tool

Specifying a screen-based system

Do: Keep things simple :
Do you need flashy formatting? The more colours, special formatting, and
highlighting you use, the more complicated the code becomes.

Determine the functions of each screen as you would for athird-generation
language — the more the functions are broken down, the simpler the
coding.

Do: Be precise _
Document the validation required behind each screen, for each field
which requires validation.

Be clear on screen processing — do not be afraid to use program
design language to define the program flow for the screen sequence in
pseudo-English — this is as important as it is with third-generation-
language specifications.

Do: Be careful with PFKEYS
When using PFKEYSto navigate through a system, use the defaultkeys
when possible. If other keys are required for special functions, use PF5,
6,7,8,9 10,11.

Do: Use painter ; . ‘
When designing the screens, use Focus painter. This helps you design,
and saves the programmer time. You will know that the screen can
be used in Focus.

Do: Issue your own information messages i
When the user presses an invalid PFKEY, or invalid data is entered,
issue meaningful error messages.

When an action has been taken (for example, job submitted or record
deleted), issue a confirmation message.

Consider: Response times _ _
Afourth-generation language may be qguicker to code, but will be slower
than a third-generation language to respond. ls this critical to your
system?

113
© Butler Cox plc 1990

e e



Chapter 5 Using contemporary tools

Figure 5.18 The tool-limitations list specifies the limitations of a
particular tool

Limitations of Focus from an organisation’s tool-limitations list.*

Focus cannot update any file except a Focus or a VSAM file. These files cannot be
read by any other language except Focus or Cobol programs making use of Focus
Host Language Interface. However, Focus files can easily be created from QSAM
or VSAM files, or DL/1 databases. Similarly, QSAM files can easily be created from
Focus files.

Without central database control for simultaneous users, only one user can update
a file at a time. Theoretically, a maximum of 128 simultaneous users is possible, but
Information Builders indicates that about 20 is a more realistic limit. The operational
range is between 5 and 20 users; typically, 15 users are supported.

Focus has no facility for automatic forward recovery (which is available in IMS). [t
is possible to code your own back-up logging and recovery routines in Focus.

Alternatively, frequent back-up copies of files can be taken. Inthe svent ofanirretrievable
corruption of the database, the back-up copy would be restored and the user would
have to re-enter his updates from the time the copy was taken.

No audit trail is provided for external files, except for IMS trace (which can be very
large). Limited audit information is available for Focus file modification.

The ‘'non-procedural’ nature of the Focus language makes complex processing difficult
to achieve. Cobol subroutines should be used for complex logic and calculations
whenever necessary.

The 3800 (laser) printerformat character sets (thatis, boxes and lines) are not available
using Focus.

" These are the limitations of the version of Focus that one organigation has experienced in
its:particular environment. Information Builders informs us that the current version of Focus
overcomes most of these limitations.

the required applications, and increase the confidence of the
development department in its ability to do so.

Because the pilot application is an important step in gaining
acceptance of the tool, it should be:

— Areal business application — that is, an application required
by users — but not one that is critical to the success of the
business. It is advisable to become reasonably experienced
with a tool before using it to develop critical business
applications.

— Typi'cal of the type of application for which the tool was
selected.

— Small — that is, an application that can be developed fully
in two to six months. If it takes much longer than this to
produce results, developers will lose sight of the overall
development life cycle and the impact of the tool.

— Asfar as possible, in the normal development environment.

Extra effort will, of course, be required to monitor the project,
to collect detailed information about its progress, and to document
any difficulties that were experienced. This effort should not,
however, be taken into account in measuring the performance
of the tool as it will not be incurred in a normal project. The tool
supplier should also be involved in the first pilot application. This
may be expensive, but in the majority of cases, itis very productive.
One company that failed to do this eventually had to abandon the

114 © Butier Cox pic 1990



Chapter 5 Using contemporary tools

first project that a fourth-generation language was used for. At
the outset, the development department made an inaccurate
estimate of the machine resources that would be required by the
tool. It lost control of the application, as users demanded more
and more functionality at the prototyping stage, and it failed to
delegate responsibility to the user department, where it would
have been appropriate to do so. All these factors contributed to
the failure of the project, and all could have been avoided.

On completion of the pilot application, the whole project should
be assessed to identify any changes that might enhance the use
of the tool. The information gathered can also be used to produce
guidelines for estimating the cost and effort likely to be involved
in future development projects.

STAGE 4: MODIFYING THE DEVELOPMENT ENVIRONMENT

The development environment may need to be changed in some
manner to facilitate the introduction of improvements identified
as a consequence of the pilot application. For example, it may be
necessary to modify standards, to reduce the level of documenta-
tion, or to increase the level of processing capacity. Such changes
should be assessed, and if required, implemented. However, the
temptation to make continual changes should be resisted. We
recommend that suggested changes be fully documented and
reviewed at regular intervals — say quarterly — to decide whether
they are applicable, and to assess the costs and implications of
implementing them.

With all the administrative and organisational changes imple-
mented, the organisation is now in a position to use its set of tools
to best advantage. The only outstanding problem that it might now
face is knowing which of the tools available for use is the most
appropriate for a particular application. Ensuring that the most
appropriate tool is used for a particular application is a far more
complex task than choosing a third-generation programming
language to use on a project, as we explained earlier in this chapter.
If the procedure for selecting tools from the tool set is updated
to include the new tool, this problem should be avoided.

USER TOOLS

So far in this chapter, our interest has been in tools for specialists
in systems development departments. In most companies today,
however, some applications development is being carried out
outside the development department. Systems departments may
ormay not be aware of this work, and may or may not be supporting
it. As a consequence, there is no consensus on either the role of
users in applications development, or on the scope of end-user
computing. :

In the last two years of the 1980s, there were marked improvements
in end-user computing tools. With the growth in the use of PCs,
a wide range of user-oriented tools became available, with
improved user interfaces, automatic validation of information, and
powerful commands making them easier to understand and use.

Further advances are certain to make user tools easier to use and
more business-oriented. More and more users will therefore be

. 115
© Butler Cox plc 1980

e L.



Chapter 5 Using contemporary tools

able to play a constructive role in ensuring that the organisation’s
computing resources are used for the maximum benefit of the
business. The resources of the systems department are, however,
limited, and therefore need to be allocated carefully to ensure
that they are used to the greatest possible effect.

Systems departments should start by categorising the different
types of user so that each category can be provided with the level
of support, guidance, education, and tools that will enable business
users to make the most effective use of the computing resources
available to them. Without such a categorisation, it will be difficult
to allocate resources in the most effective way and to plan for
the growth of end-user computing.

The systems department should then set guidelines for different
types of application, and encourage users to seek the development
department’s ‘seal of approval’ for each application. Encouraging
users to have their developments approved will prevent the
proliferation of poorly documented applications.

CATEGORISING USERS

There are four main ways in which systems departments can classify
different types of business user: by their role, by the type of data
they access, by their department, or by their need for or use of
applications and tools. The last of these ways is the best. It gives
rise to five categories of user:

— Category 1: Potential users, who at present do not use any
computer-based applications.

— Category 2: Those who have a need to use or who use only
applications and packages that have been written for aspecific
task that requires them to input data — for example, an
accounts application.

— Category 3: Those who have a need to use, or who do use,
enquiry and analysis tools to access databases and analyse
the data.

— Category 4: Those who have a need to develop or who use
end-user tools to develop small applications, primarily for
personal use.

— Category 5: Those who have a need to develop, or who do
develop, applications that may be used by many other users.

Each category of user is, in effect, an expansion of the one prior
to it. Users tend to move through Categories 1 to 5 when first
introduced to end-user computing, and regress through the
categories as they move into the higher managerial roles. Each
category refers to the use (actual or potential) made of end-user
tools rather than to the type of tool used. Therefore, someone using
a spreadsheet simply to add up a list of figures would be in
Category 2, a user loading data into a spreadsheet from a database
and analysing it would be in Category 3, and a user writing macros
and developing a spreadsheet for a specified task would be in
Category 4 or b.

Staff can be assigned to the appropriate category by means of a
simple questionnaire that assesses their use of tools as well as

116

© Butler Cox pic 1990



Chapter 5 Using contemporary tools

their needs. There will, of course, need to be some mechanism
for re-assessing at regular intervals the category to which an
individual is assigned, because neither his needs nor the
technologies used will be static. Once staff have been categorised
in this way, the appropriate level of support and resources can
be allocated in the most effective manner. Figure 5.19 suggests
how the various types of support and resources — tools, training,
help, guidance, and so on — might be allocated. In this figure, the

tools shown in the cells on the first row have been classified as
follows:

—  Fizxed-processing tools: These are the applications and
packages used to support the daily work of the users. Most
of the applications will have been developed in-house or
bought as packages. All of these tools carry out a fixed
processing task on specified information.

Flexible processing tools: These are the packages, such as
spreadsheets and financial modelling packages, that allow
users to process data in a predefined manner.

—  Data-access tools: These enable data to be accessed and
retrieved from centralised or corporate databases. They
generally permit ‘read only’ access and the data is transferred
to a local machine if it is to be amended or modified. These
tools use a simple programming language or a pseudo-English
language syntax.

—  Report-generation tools: These generally enable reports to be
generated from a local or centralised database. Again, they
tend to use a simple programming language or a natural-
language syntax.

—  Fourth-generation tools: These are used to develop appli-
cations (sometimes with the cooperation of the development

Figure 5.19 Allocating appropriate resources to the different types of end user will encourage growth in, and
improve, end-user computing

Category of user (Relationship with development department)

1. Potential 2. Current user 3.Data-access 4. Personal 5. User developer
user (None) (Weak) user (Medium) developer (Very strong)
user (Strong)

Type of support needed

Tools — Fixed/flexible PLUS PLUS _ PLUS »
processing tools ~ Data-access tools Report-generation Fourth-generation
tools tools

Machine (access) —

Training IT awareness Use of tools PLUS PLUS PLUS

Basic data Basic Best practice for

processing

= =

: i . Permanenty Permanently Telephone or
Help (you telephone us) T sGfedhelpdesk stafled help desk . iecetoface |
Guidance (we advise you) — Hardly at all Very little Hand-holding Hand-holding

and directing

(Source: Butler Cox Foundation)

117
© Butler Cox plc 1920

e




Chapter 5 Using contemporary tools

department and sometimes without) that tend to be run on
PCs or intelligent workstations.

By way of illustration, an individual classified in Category 2 would
normally be provided, as a minimum, with access to either a dumb
terminal or a PC. A dumb terminal would be adequate for someone
who required access only to fixed-processing tools — that is,
applications that were already fully developed, and that only
required data to be input. A PC, however, would be needed by
someone who required access to the more advanced flexible-
processing tools such as spreadsheets. Such staff would usually
need to attend a standard training course on the use of the tools.
Support would be provided via a permanently staffed help desk
because this type of user typically requires immediate assistance.
There would be little need for any further guidance other than
that provided by the training course.

ISSUING GUIDELINES FOR DIFFERENT TYPES OF APPLICATION

Guidelines for end-user applications should be defined to avoid
constraining users. Applications should be classified by size, the
number of users, the type of data they access, and so on. The
classification can also serve to determine the level of inspection
required to attain the systems department’s ‘seal of approval’,
discussed below.

An example of a matrix that can be used to classify end-user
applications and to define the guidelines for their development
is shown in Figure 5.20. In this example (which is based on work

Figure 5.20 A matrix can be used to classify applications and define the guidelines for their development

Application Associated
Data attributes attributes Project attributes guidelines
Class A ® Personal ® Personal ® One to five ® Obtain authorisation
(simple spreadsheet or ® Non-strategic ® Standalone workdays ® lse password
database query) ® Low-volume ® [ow complexity ® No formal project ® Back up data
® Independent management ® Use common sense
warranted ® Document as
appropriate
® | abel the

application and
output reports

" Class B
(spreadsheet used on
regular basis or data-
base reporting
program used by more
than one person)

Class C

(micro-based DBMS
application, or complex
spreadsheet, or simple
spreadsheet used for
critical decision-
support)

® Departmental

® High-volume

® Used by other
programs

® Sirategic or sensitive
@ Used to update
corporate database

® Corporate
® Used by more than
one person

® Complex

@ Uses non-
recommended
technology

(Source: Based on an example from the Software Management Institute)

® Six to 20 workdays

® Some project
approval/project
management
warranted

® 21 to 40 workdays

® Formal project
approval/project
management
warranted

® More than 40 days
— system develop-
ment standards
apply

Class A guidelines +
® Do recommended
* control analysis
® Document
® Get ‘seal of
approval’ for system
_ security and so on

Class B guidelines +

® Do compulsory
control analysis

® Do feasibility and
cost/benefit analysis

® Get agreement from
development depart-
ment

118

© Butler. Cox plc 1990




© Butler Cox plc 1990

Chapter 5 Using contemporary tools

done at the Software Management Institute), all end-user
applications are classified into one of three classes, according to
their attributes. An application is always allocated to the highest
possible class. If, for instance, it had data and application
attributes in Class A, and project attributes in Class C, it would
be considered as a Class C application. Examples of the types of

applications that might fall into each category are included in the
matrix.

The guidelines associated with that class of application are then
applied, to ensure that the user is not unnecessarily restricted.
For the development of a simple spreadsheet, for example,
categorised as Class A, the following guidelines would apply:

—  Obtain appropriate authorisation to develop the application.
Professionals often have implicit authorisation by virtue of
their job level; clerical staff may have to request it from a
supervisor.

— Use passwords to restrict access to the application.
— Always back up both the data and the application.
— Document the application and procedures for using it.

—  Label the application and any output it produces as ‘Class A’.

For Class B and Class C applications, the guidelines would become
progressively more stringent because the scope of such appli-
cations is wider and the risks are therefore greater. Classifying
end-user applications in this way will ensure that they are
evaluated prior to development, that appropriate development
guidelines are followed, and that future users are aware of the
standards to which each application was developed. In some
organisations, however, it will not be practical to classify all
applications, and the guidelines should be aimed at the riskier
Class B and Class C applications.

ENCOURAGING USERS TO SEEK THE SYSTEMS DEPARTMENT’S
‘SEAL OF APPROVAL’

Systems departments should encourage users to regard the
concept of the ‘seal of approval’ as the equivalent of the
acceptance testing they carry out on applications developed by
systems staff. In providing its approval, the systems department
should be looking for good documentation, comprehensive testing,
consistent use of data, and so on. The systems department will
also have the opportunity to add security, backup, or systems
features that the user may not have considered. Once the
applications have been approved, any subsequent maintenance
and enhancements can be carried out in a controlled manner
either by users or by the development department.

Clearly, not all end-user applications will require the same level
of inspection. Indeed, some will need none at all. If users are
required to submit major applications for inspection, however,
and if the process is conducted effectively, the end-user
development environment can be effectively managed.

119




Chapter 6

Measuring productivity and quality

The preceding four main chapters of this report have been
concerned with the opportunities available to managers to make
both productivity and quality improvements in four main areas
of systems development: departmental organisation, staffing, the
use of techniques and methods, and the adoption of contemporary
tools. Changes in those areas can have a powerful influence on
productivity and quality — yet the scale of the influence will
remain indeterminate if produectivity and quality cannot
themselves be measured.

Measuring project productivity entails comparing output with
input. The task is complicated by the need to account for the
relationship between effort, the size of the project, and its
duration. Fortunately, the three parameters of effort, project size,
and project duration can be linked, enabling project productivities
to be compared across different working environments and
different companies.

Measuring quality similarities and differences between projects
and companies is more difficult, however. The quality
characteristics can be placed in four important categories;
technical, ease of use, operational, and functional fit. The four
entail as many as 11 different measures, whose significance varies
widely between different companies. Although most companies’
interest is focused on just two or three aspects of quality, such
as maintainability, flexibility, and reliability, very few actually
measure any form of quality. The last of these, reliability (in the
form of software error rates), is tracked on a project-by-project
basis by PEP.

The measurement of productivity and quality form the two main
sections of this chapter. The chapter concludes with a section on
implementing a measurement programme, in which three main
requirements are stressed: collecting information early, avoiding
misinterpreting the measurements, and providing measures at the
right level.

MEASURING PRODUCTIVITY

Productivity, which measures the work rate of the systems
development activity, compares the output achieved for a given
input. Assessing productivity is difficult because it is not obvious
how to measure outputs and inputs, and the effects of time
compression and size are highly distorting.

Three project parameters can be related, however, through a
formula known as the software equation. They are manpower
effort, project size, and project duration (elapsed time). The
software equation yields a productivity measure called the

120

© Butler.Cox pic 1990



© Butler. Cox plc 1990

Chapter 6 Measuring productivity and quality

Productivity Index, PI. The same three parameters yield a further
index called the Manpower Buildup Index, MBI.

MEASURING OUTPUT AND INPUT

Take input first. The key is to keep the assessment simple. The
straightforward way is to calculate it in terms of total man-months
of effort by using the staffing profile for each stage of the project.
The project manager can usually sketch this out in five to ten
minutes. There is no need to go into detail in distinguishing
between productive and non-productive contributions, because
broad-brush figures are adequate for most projects. The balance
of total productive versus non-productive man-days per person
in a year is usually very stable, the average being around 200 to
210 productive man-days. The staffing profile is straightforward,
requires little effort to collect, and is readily available.

It is possible to assemble much more detailed data, usually at great
cost, by ecalculating individual resource contributions, and
distinguishing between productive and non-productive time
(holidays, training, and so on). This approach relies on a time-
recording system, and usually, cost accounting. Based on our
experience, we are now cautious about using cost-accounting
data. The information is often inaccurate, too detailed, and lacking
suitable summaries. Cost accounting data is often recorded to
satisfy predefined criteria — for example, everyone records a
7.5-hour day, five days a week of productive work. The reality
may differ considerably. To analyse this data usually takes much
longer than asking the project managers to sketch the staffing
profile.

As an instance of the broad-brush numbers that can be collected,
Figure 6.1 sets out the staffing profile constructed over the key
development stages of feastbility, specification and design, and

Figure 6.1 System development stages: staffing profile

This figure shows the relative magnitudes of staff sizes used in the -
development stages defined for PEP analyses.

Number {\
of staff

Feasibility Specification Main software development build: Date
' and design  detailed design/code/unit test/  live
iintegration/system test

(Source: QSM Inc.)

121




Chapter 6 Measuring productivity and quality

main build. Total staff used each month are shown without
detailing who was on holiday, absent, or engaged in non-
productive activities. Notice that some of the development stages
overlap. The extent of this overlap needs to be assessed (but only
approximately) because separate numbers are required for the
effort used in each phase.

Next, consider the measurement of output. Counting the number
of effective lines of code (ELOC) is one of the easiest ways of
measuring the output (end product). Automating the collection
of the ELOC statistics through a program that scans the
appropriate libraries to count lines of code is relatively
straightforward. The following rules apply:

— Lines are indicated by delimiters.
— Only executable lines are counted, not expansions.
— Comments are not counted.

— Delivered lines only are counted (those eventually discarded
are ignored).

— New or amended lines only are counted, not unchanged lines.

— Data definitions are counted once only.

Another measure of the end product is the total number of
function points. This approach was developed by Albrecht and
involves counting external user inputs, enquiries, outputs, and
master files to be delivered by the development project.
Guidelines are available for counting these function points (which
Albrecht considers to be the outward manifestation of any

application). However, counting is not readily automated although -

using a spreadsheet to sum the values can bhe helpful.

Symons of Nolan Norton has proposed a modified form of
function-point counting, referred to as Mark II. Symons has
attempted to address some of the problems associated with the
Albrecht approach and to make the method more suitable for
modern systems. To date, Mark II is little used outside the UK
government and the Albrecht method remains the de Juacto
standard with the resultant greater availability of knowledge and
supporting material.

We return to the question of function points and their
measurement after first considering the productivity index (PD)
and manpower buildup index (MBI).

THE PRODUCTIVITY INDEX (PI)

Research (originally undertaken by Putnam in the United States)
shows that it is possible to derive a mathematical relationship
(Putnam’s software equation) between the size of a project and
the time and effort needed to complete it. The relationship is non-
linear, not a constant ratio. The software equation, shown in
Figure 6.2, yields a productivity measure which allows us to
compare the productivities of different development projects,
even if they are of different size or duration.

The equation may be re-arranged to calculate the effort required
to complete a project of a given size, given a certain level of

122

© Butler Cox pic 1990



© Butler Cox pic 1990

Chapter 6 Measuring productivity and quality

Figure 6.2 Productivity Index (PI)

The Pl is a measure of a project team's efficiency. It is derived from an empirical

formula (‘software equation’), which defines a parameter called PM, the Productivity
Measure:

PM = Size
(Effort/B)'* x (Time)**

Where:

— Size is the number of source statements.

— Effortis inman-years.

— Time is the duration of the main-build stage in years.

— Bisastaffskillsfactorthattakesaccountofthe pointinthe systemslifecycle at which
peakmanningoccurs. ltvarieswith projectsize, from0.16forsmallprojectsofaround
5,000 lines of code, to 0.39 for projects exceeding 70,000 lines of code.

The Pl is derived from the PM, using the following conversion table:

PM Pl PM Pl
754 1 1T S 14
987 2 21,892 15
1,220 3 28,657 16
1,897 4 35,422 17
1,974 5 46,368 18
2,584 6 57,314 19
3,194 i 75,025 20
4,181 8 92,736 21
5,168 9 121,393 22
6,765 10 150,050 23
8,362 i 196,418 24
10,946 12 242,786 25
13,530 13

(Source: QSM Inc)

productivity. This equation shows that effortrequired for a project
depends on its duration (time) as well as its size, and on the
productivity measure that applies in the particular development
environment.

The productivity measure accounts for all the factors operating
in the development environment. Both the effect of changes in
productivity and compressing or extending the scheduled time for
a project have dramatic effects on the effort required. Changes
in them have large financial consequences because of their critical
effect on effort.

In practice, the value of the productivity measure ranges widely
between projects, typically from around 3,000 to 50,000 and more.
To simplify this somewhat unwieldy range, a number called the
Productivity Index (PI) is used instead. The two are related in a
non-linear way, so that a range of productivity measures from 3,000
to 240,000 is converted to PI values ranging from about 7 to 25
(see Figure 6.2).

In summary, the PI of a project is a measure of the productivity
achieved at the main-build stage by the development team in
producing applications. It is a measure of internal efficiency, and
not of the value or functionality delivered to the business by the
application.

123




Chapter 6 Measuring productivity and quality

The average PI of the 400-or-so projects on the PEP database in
1989 was about 15. PI values below 15 imply lower-than-average
productivity; above 15, they imply higher-than-average
productivity.

Itisimportant to note that, because of its non-linear nature, small
changes in PI value imply big shifts in team performance. Consider,
for example, a typical project of 40,000 lines of code, with the
main-build stage taking 10 months. At a PI of 15, the effort works
out to be 60 man-months. At a PI of 14, the project takes a month
longer and the manpower effort rises by 30 per cent. At a PI of
16, the project takes a month less and manpower effort drops by
about 30 per cent. Thus, a one point movement in PI from around
the average of 15 represents a productivity change of about
30 per cent.

THE MANPOWER BUILDUP INDEX (MBI)

The software equation takes account of the effects of compressing
or extending the project timescale. When the timescale is
compressed, the total manpower effort is increased substantially.
This happensbecause the timescale is often compressed by carrying
out, concurrently, tasks that would usually be done sequentially.
In turn, this means that more staff are working on the project at
any one time, which means that there are more paths of
communication between team members, more opportunities for
errors to arise and to remain undetected, and a greater management
overhead.

The effect of time compression (and expansion) is represented by
a measure called the Manpower Buildup Index (MBI). As with the
PI, the MBI is expressed as a simple integer value, orlevel, ranging
between one and six (see Figure 6.3). Level 1 represents a slow
staff buildup. Projects with an MBI of one take the longest, but
require the least effort. Usually, low MBI values are associated
with projects that are subject to staffing constraints. Level 6
represents the opposite end of the spectrum — the ‘“throw people
at it” approach. On projects of this type, many tasks are carried
out concurrently, with virtually no constraints on money or the
number of staff. For a given size and PI, projects with an MBI of
six usually take the shortest time to develop, but require the most
manpower effort.

In general, MBI values from one to three indicate below-average
rates of manpower buildup; values of between four and six indicate
above-average rates.

Consider, again, a typical project of 40,000 lines of code and a
PI of 15. An MBI value of three leads to a main-build duration
of 10 months and effort of 60 man-months. Reducing the MBI to
one means extending the duration to 12 months, but effort falls
to only 25 man-months. Raising the MBI to five saves time by
reducing the duration to eight months, but the effort nearly doubles
to 115 man-months.

Low MBI values reduce project manpower effort and increase
project duration. The disadvantage of projects with low MBIs is
that the extended timescales mean that there is a greater chance

@ Butler Cpx pic 1990



© Butler Cox plc 1980

Chapter 6 Measuring productivity and quality

Figure 6.3 Manpower Buildup Index (MBI)

Thg MBI is a measure of manpower buildup. It is derived from an empirical formula
defining a parameter called MM, the Manpower Buildup Measure:
MM = Effort
B x Time’

Where:

— Effort is in man-years.

— Time is the duration of the main-build stage in years.
— B is the same staff skills factor as for the PI.

The MBI is derived from the MM, using the following conversion table:
MM MBI
7.8
14.7
26.9
55.0
89.0
233.0

oo b WN =

(Source: QSM Inc)

of the requirements changing before a project is completed, and
that it is often more difficult to keep the project team constant
and motivated.

The MBI measure can be used by systems development managers,
when they are planning projects, to assess whether a project can
realistically be completed in a given time. High MBI valuesidentified
at the planning stage point to potential problems and high risks.
A few systems development departments can consistently achieve
above-average PIs under considerable time pressures, but they
are a small minority.

FUNCTION POINTS AND LANGUAGE GEARING

The PI measures the efficiency of a project team. Itisan important

measure for systems development managers interested in assessing

the internal efficiency of their departments. A second, equally-
important, measure is departmental effectiveness, which is

concerned with the functionality delivered to the business, per

unit of effort.

Internal efficiency is analogous to the fitness of a cyclist, which
determines the effort that is put into pushing the pedals. What
really matters, however, is the distance the cycle travels for the
effort that is put in, and this is determined by the gears on the
cycle. The cyclist may not be at peak fitness, but a high gear will
enable him to travel, say, 10 times the distance for a given effort.
High-level languages are analogous to high gears; the higher the
language gearing, the fewer the number of lines of code that will
be required to produce a given level of system functionality.

This does not mean, however, that programming languages with
the highest language gearing should always be used. Just as trying
to cycle uphill in an inappropriate high gear will result in
significantly slower speed or not being able to peddle at all, so




Chapter 6 Measuring productivity and quality

a failure to match the language to the application can result in
significantly more effort being used.

The best known unit of measure of system functionality for com-
mercial data processing systemsis the function point, the measure
of end-product value we referred to on page 122, If function points
are not counted directly, it is possible to estimate delivered
functionality by multiplying the number of thousands of lines of
code by the appropriate language gearing, using the values shown
inFigure 6.4. This table must be used with caution as the multipli-
cation can result in very inaccurate estimates. The average number
of source lines of code needed to generate one function point works
out to be 70 for all the projects in the PEP database, but the range
varies widely from as few as 10 or less (high language gearing)
up to 200 or more (low language gearing). We recommend that
both lines of code and function points are counted and that the
table is used only to identify potential inaccuracies in these counts.

Knowing the effort required to develop a project and the language
gearings for the programming languages used, it is possible to
calculate the functional delivery rate, expressed as function points
per man-month. The functional delivery rate can be calculated

Figure 6.4 Language gearing
The list shows the language gearing, expressed in terms of the number of function
points per thousand lines of code, for the high-level languages used in PEP projects.
Language Language
Language gearing Language gearing
Acumen 35 Guest 35
ADF 50 Ideal 35
ADS/Online 50 Keyplus 25
Algol 10 Lotus 100
APL 35 M204 35
Application Factory 50 Magna8 35
Application Master 35 Mantis 70
APS 60 Mapper 18
Artemis 33 Mark IV 25
Ask 30 MFS 25
Basic (Compiled) 13 Natural 18
@© 8 Nomad 25
CA-Earl 35 Pascal 11
CBAS 13 PL/M 13
CLI ' 25 PLDS 30
Clipper 25 PPL 25
Cobol 10 QMF 70
CSP 35 Quickbuild 35
Culprit 65 Quiz 70
Data 25 Rally 35
Dataflex 25 Ramis 25
Datatrieve 50 Rapidgen 35
dBASE 30 RDB 25
DCL 6 RPG 17
DDL 35 SAS 30
EAL 35 SIR 35
Easytrieve 65 SQL 70
Enform 50 Sybol 14
FCS 25 Telon 70
Filetab 17 TIG 10
FMS 20 Transact 35
Focus 25 UFO 30
Fortran 10 Whip 10
Gener/ol 70 Wizard 35
(Source: Software Productivity Research, Inc)

126

© Butler Cox plc 1990



@ Butler Cox plc 1980

Chapter 6 Measuring productivity and quality

for the main-build and for other phases of the life cycle. The PEP
database provides average functional delivery rates, but it should
beremembered that thisrate is influenced by the size of the system,
its duration, and the internal efficiency of the team. The functional
delivery rate alone can be misleading to systems managers.

MEASURING QUALITY

Many systems departments have initiated software quality-
assurance programmes to increase the effectiveness of applications
development. The majority of systems departments find, however,
that it is very difficult to direct such programmes and to justify
their cost when there is no quantitative evidence of their benefits.
The missing component of many software quality-assurance
programmes is software quality measurement.

Software quality measurement enables the qualities of applications,
such as reliability, ease of use, maintainability, and so on, to be
quantified in useful and consistent terms. Properly implemented,
a measurement programme will help the systems department to
specify and produce applications of the quality that users require,
toidentify where improvements might be made to the development
process, and to justify the costs of a software quality-assurance
programme. In effect, software quality measurement provides
essential management information to the systems department.

In practice, however, software quality measurement has met with
mixed success. In many systems departments, there is considerable
resistance to the concept, generally based on misunderstandings
about its purpose, its cost, and the level of effort required to
introduce it. In others, where quality measurement programmes
have been implemented, only limited benefits have been gained,
because the scope of the programmes has been too narrow. While
there is a wealth of material available on the subject of software
quality measurement, much of it is of a very academic nature,
not well suited to the commercial environment, and much of it
is applicable only to particular aspects of applications development.

What is required is a practical, consistent, and comprehensive
approach to measuring software quality, ensuring that both users
and developers are satisfied with the applications that are
delivered. To appreciate how to put such a programme in place,
it helps first to understand the characteristics of quality, then the
quality measures that support those characteristics, and finally
how to assign priorities to the measures.

QUALITY CHARACTERISTICS

Today, most systems quality-assurance procedures are designed
to ensure that the functionality provided by applications software
meets the users’ requirements. However, even where the quality
of the system is checked at intermediate stages of the development
cycle to ensure that the finished product does meet the functional
requirements, it may still be regarded as being of poor quality by
the user community. This is because the quality-assurance
procedures do not take account of the users’ needs in other
areas — operational performance, ease of use, and the ease with
which the system can be modified are obvious examples.

127




Chapter 6 Measuring productivity and quality

Analyses of users’ expectations for applications software have been
carried out by Barry W Boehm and his colleagues. In their early
work, Characteristics of Software Quality (published by Oxford:
North Holland in 1978), they identified a large number of software
characteristics that contribute to users’ overall perceptions of
software quality.

Four of these characteristics are particularly important, as we
mentioned in Chapter 4: functional requirements, operational
performance, technical features, and ease of use (see Figure 6.5).
By defining and meeting quality objectives specified in terms of
these characteristics, it is possible to build application systems that
the user community regards as high-quality. Although the
functional requirements of a system are generally defined in great
detail, the other three characteristics are often ignored in systems
specifications. These characteristics are usually determined by
ad hoc decisions made at the analysis and programming stages.

QUALITY MEASURES

Different software quality characteristics have varying degrees
of measurability. Ease of use, for example, can be assessed by the
user only in subjective terms, and in any case, will be defined
differently from application to application. Constraints such as
these should be considered when selecting the measures to be used.

Several research projects into quality assurance have produced
lists of quality measures. One of the most widely accepted among
software quality-assurance experts, and the one that we
recommend to PEP members, is that developed originally in the
United States for the Rome Air Development Center, and known
asthe RADC approach. Although the RADC approach was originally
defined for military applications, it has been applied successfully
to the development of commercial computing applications.

The RADC approach defines a set of 11 user-oriented quality
factors — reliability, flexibility, maintainability, re-usability,
correctness, testability, efficiency, usability, integrity (which
actually refers to security), interoperability, and portability —
which extend throughout the software life cycle. It is important
to define each characteristic fully to avoid confusing different
factors.

Figure 6.5 Four software characteristics are important in defining and

meeting quality objectives

Functional Define what the application system has to do, down to the

requirements level of describing the data to be entered, the rules for
accepting/rejecting the data, and the processing of accepted
data.

Operational Defines performance in terms of response time and elapsed

performance time (for baich systems).

Technical Define meantime between failures, ease of maintenance, ease

features of parametric change, and ease of re-use of software
elements.

Ease of use Defines user interface in terms such as number of keystrokes,
error recovery procedures, help iacilities, and message
clarity.

128

@ Butler Cox plc 1990



© Butler Cox plc 1990

Chapter 6 Measuring productivity and quality

Figure 6.6 shows how the 11 RADC quality factors match the four
quality characteristics referred to above. The 11 quality factors
were originally defined to help predict the quality of a final
application asitis being developed. We have devised an appropriate
user-oriented measure for each of the factors so that the quality
of existing applications can also be assessed.

These measures are summarised in Figure 6.7, overleaf. It lists
the basic data items that need to be captured from the application
in order to produce the measures. The final ‘calculation’ column
gives the formula for calculating each quality measure from the
basic data items. The calculations ensure that the measures are
normalised so that they can be used to compare the quality of
different applications, where practical.

ASSIGNING PRIORITIES TO QUALITY MEASURES

When developing a new application, it is not always possible to
meet all of the quality requirements desired by all groups of users.
There are two main reasons for this. First, a high level of quality
in one of the 11 RADC quality factors may imply a low level of
quality in one of the other factors. For example, a high level of
portability will usually imply a low level of efficiency, and vice
versa. Second, the project manager will often have to make trade-
offs between the time, cost, and quality of the application.

The implication is that quality should not be specified at a higher
level than the application warrants. For example, the
maintainability requirements of the application can be reduced
if the lifetime of the application is known to be short.

The conflicts in quality priorities occur because of the conflicting
requirements of the main groups who get involved in the use of
an application — the application’s users, their managers, the
development managers, the maintenance and support teams, and
computer operations staff. Figure 6.8, on page 131, shows which
of the 11 quality factors are of mostinterest to each of these groups.
Because of the complexity of these conflicting interests, most
systems departments will need to select just two or three of the
quality factors that they need to control during development. The
cost of controlling more qualities than this becomes prohibitive.

Usually, the most important quality factors to concentrate on are
the three that will increase user satisfaction through reduced costs
and better service — maintainability, flexibility, and reliability.

Figure 6.6 The 11 RADC quality factors can be categorised in terms of
the four quality characteristics defined in PEP Paper 9

129



Chapter 6 Measuring productivity and quality

Figure 6.7 Most qualities of existing applications can be quantified directly or indirectly

The choice will, however, depend on the nature of the system

in question. Typical quality requirements for specific types of
application are:

— Systems with a long life: maintainability, flexibility, and
portabﬂity-.

— Publicly accessed systems: usability, integrity, and reliability.

— Systems that can cause damage to property or lives if they go
wrong: reliability, correctness, and testability.

— Systems that use advanced technology: portability.

130




Chapter 6 Measuring productivity and quality

Figure 6.8 Different groups of users have different quality needs

Group of users =

Quality factor

Application User Development - l\/:_]aintenan'ce‘;:“ o —

users management management and support
Reliability v :
Efficiency
Usability v

Operations

Integrity
Correctness v

&%
b

Interoperability

Maintainability

Flexibility
Portability

Testability

<<=

Re-usability

=
b B B 8 s

A valuable technique for minimising the cost of providing high
(user perceived) quality is to develop an operational-use profile.
Such a profile shows the expected level of use of each of the
functions of the application. Suppose, for example, that an
application has two main functions, one of which will be used for
90 per cent of the time and the other for 10 per cent of the time.
In this situation, it is obviously better to concentrate on improving
the quality of the most frequently used part of the application
rather than to spread the quality-assurance effort evenly over both
of the application’s functions.

IMPLEMENTING A MEASUREMENT PROGRAMME

Implementing a measurement programine and taking action on
the basis of the results can boost internal systems productivity
by as much as 20 per cent a year. Organisations can achieve one-
off benefits soon after the introduction of a measurement
programme, but sustained improvements will not be realised unless
the measurement and improvement programme remains in place
for several years — that is, where organisations take a strong
initiative to manage productivity and quality, and are able to justify
expenditure on improving the development process.

Implementing a measurement programine, like implementing an
application, requires careful planning. It is important to start
collecting information early; there is no merit in waiting until the
development environment is established and stable. It is also
important to ensure that measurements are not misinterpreted,
and that they are provided at a level appropriate for the person
who will be using them.

COLLECTING INFORMATION EARLY

By collecting measurement data as soon as possible, systems
managers have a basis on which to plan future developments.

® Butler Cox plc 1990 131




Chapter 6 Measuring productivity and quality

Waiting until the development environment is stable is not Jjustified;
if software measurement is to be of value in the long term, it must
be implemented in such a way that it is still useful in a changing
environment.

Collecting the data required to measure productivity and software
quality properly need not be an onerous task — useful benefits
can be gained by spending the equivalent of 1 or 2 per cent of
development effort on gathering measurement data. In many
systems departments, much of the data will already be available
in a machine-readable form from systems used to manage
development resources, change requests, and correct software
faults.

AVOIDING MISINTERPRETING THE MEASUREMENTS

It is important that all staff with access to the measurements
understand how to interpret them correctly, and how objectives
for improvement are set on the basis of this interpretation. In one
company, the development manager was particularly interested
in the improvements in productivity that had resulted from the
introduction of a fourth-generation language. He examined the
internal productivity measures, which showed a decline owing
to the learr irg curve, and initiated an internal enquiry. If he had
looked at the external productivity measures, he would have seen
that the fourth-genevation language had actually improved the
function delivery rate by over 50 per cent. As a direct result of
misinterpreting the measurements, he wasted a lot of money and
time examining a problem that did not exist.

Ensuring that staff are aware of the measurements and the
objectives may require an awareness campaign or a training
programme. Hewlett-Packard, which introduced a company-wide
software metrics programme, set up a training course that gives
hands-on experience to those who will be involved in the collection
and use of metrics. They believe that this training greatly
contributes to the success of the programme. Cranfield IT Institute
(part of the Butler Cox Group) also provides several educational
courses in this area of measuring the performance of the systems
development department.

Staff should understand that measurements will not be used to
judge the performance of individuals and to reward those who
do well, although some organisations pay a bonus related to the
performance of the whole department.

PROVIDING MEASURES AT THE RIGHT LEVEL

Information about the development department will typically be
collected at a very low or detailed level, processed, analysed, and
combined to produce measures at progressively higher levels. At
each level, the measures provide different benefits to different
staff. Development staff, for instance, will be interested in the
number of errors and function points produced. The business
manager, on the other hand, will be more interested in percentage
increases or decreases in productivity and quality, and time and
cost savings.

132

© Butler Cox plc 1990



© Butler Cox plc 1990

Chapter 6 Measuring productivity and quality

No single set of management measures will satisfy all managers,
nor should a single set of measures be imposed across the board.
Different companies should take into account the needs of each
manager and select an appropriate set of measures. At least three
points of view should be considered — those of the development

team, those of the departmental managers, and those of the
business customer.

These measures can be presented very effectively in a variety of
ways. Several of the more popular presentations of measures are:

Trend line charts show the variation in a software measure
(such as reliability) over time. They are useful for determining
if there is a trend or pattern in the occurrence of any measure.

Histograms show frequency of data by various categories and
classifications. They are used, for example, to show the
distribution of productivity over a range of projects.

Pareto diagrams are a particular type of histogram that can
be used to show various measures by type and frequency.

Scatter diagrams show the existence (or lack) of a relationship
between two factors. If a straight line is apparent in the plot,
there is likely to be a relationship between the factors.

Control charts show a software measurement plotted over
time within statistical control limits. If the plotted line exceeds
either of the limits, there is a strong possibility that something
is going wrong with the development process. A control chart
of error rates helps to determine if a processis either ‘in control’
(with only random errors occurring) or ‘out of control’ (with
errors occurring more generally).

133



Chapter 7

Conclusion

In this report, we have presented the independent analysis of over
400 projects, and the experience of over 100 of Europe’s largest
organisations that are involved in the development of computer-
based applications.

We have shown that the search for improvements in the pro-
ductivity and quality of the development department needs to
be a continuous one, and that it is a complex task. An organisation
is not ‘productive’ or ‘unproductive’; it lies somewhere on a
continuous and moving path between the best and the worst.

Every organisation can improve the productivity and quality of
its development activities. What the research has shown is that
there is no single answer, and that, indeed, obsessive pursuit of
a single solution can lead to an overall downturn in productivity
or quality. For example, introducing new tools into a badly
structured environment will not give an uplift in performance.
Moreover, the step usually leads to a subsequent rejection of the
tools while the organisation moves on to seek the next instant
solution, overlooking the real and often multiple constraints on
greater productivity.

Amongst the many possible routes to better performance, this
report has identified the following:

ORGANISATIONAL ACTIONS

— In a divisionalised group, dividing responsibilities between
central and devolved parts of the overall systems
development function, offsetting the division more towards
the centre than is implied by the general management style
of the group as a whole.

— Clarifying the responsibilities of users by formalising
responsibilities with reference to three levels of application:
core systems, non-core systems, and personal systems.

— Flattening the management structure of systems develop-

ment and organising groups to fulfil particular functions
within the simplified structure.

— Identifying a member of each project team to take
responsibility for ensuring that module and integration testing
is carried out to preset standards.

— Weighing the relative merits of different approaches to
system testing — testing by the project team, by a separate
department, and by a joint team — and adopting that best
suited to the circumstances.

134

> Butler Cox ple 1990



Chapter 7 Conclusion

Organising maintenance as a separate department under a

qualified manager, thereby helping to improve staff morale
and motivation.

STAFF MOTIVATIONAL ACTIONS

— Boosting staff motivation in several ways: broadening the
scope of jobs, introducing job rotation, providing a flexible
career structure, improving goal-setting and feedback,
rewarding achievement with performance-related pay, and
paying attention to fitting jobs to people.

— Limiting project-team sizes wherever possible to six staff at
most, and breaking down large projects into self-contained
sub-projects of smaller size. (Despite evidence that
productivity decreases with project size, there are clear
benefits to be gained — such as reduced development time,
reduced staff turnover, fewer requirements changes, and less
risk of overrunning.) J

— Taking account of individuals’ personalities as well as
technical skills when forming project teams. (Teams of people
with similar personalities are most appropriate for the later
development phases; with dissimilar personalities, for the
earlier phases.)

— Selecting project-team leaders on the basis not of their
technical skills, but more of their strengths in participation,
flexibility, and ability to manage conflict.

TECHNIQUES AND METHODS

Replacing the long-established waterfall model of the systems
development process by a different model that emphasises
testing rather than production.

—  Formalising software testing. Making full use of walkthroughs
and inspections. Using test-management aids and test-data
preparation aids.

— Formalising the decision on whether to maintain or replace
existing systems. (To help with this, perhaps introducing a
maintenance-rating system.)

— Allocating a set proportion of resources to maintenance, to
avoid maintenance work continually displacing new
development work.

— Introducing a seven-step maintenance process: change
management, impact analysis, system-release planning,
change design, implementation, testing, and system
release/integration.

— Establishing a quality-management programme. Helping to
improve quality across the board by introducing a quality
culture throughout the development department.

TOOLS

— Introducing or extending the use of fourth-generation
languages. (Although they do little, if anything, by themselves

© Butler Cox plc 1990 135



Chapter 7 Conclusion

to increase internal productivity, they can do a lot to boost
external effectiveness by increasing the rate of functional
delivery. Adapting methods, techniques, and management
style to exploit the fourth-generation languages will improve
internal productivity.)

— Avoiding reliance exclusively or excessively on CASE. (The
promised benefits are not yet being achieved either in terms
of reduced development time and effort, or fewer errors, or
increased reliability.)

— Using maintenance-support tools, which support the impact-
analysis and change-design steps of maintenance. (They can
be justified when the maintained system is likely to continue
in operation for several more years.)

— Using static- and dynamic-analysis tools to help assess the
quality of code within a system.

— Avoiding the selection of system development tools from the
tool set in isolation. (Instead, they should be selected in the
context of the wider development environment in which they
are to be used, and in the light of a specific development
application.)

— Recognising productivity and quality problems arising from
the misuse of techniques and tools. (Paying particular
attention to technique and tool selection, and to staff
training.)

— Adopting a four-stage plan to smooth the introduction of new
development tools: internal marketing, environmental

adjustments, pilot application, and environmental
modification.

— Encouraging the use of non-specialist development tools by
the user community, but coordinating their uptake through
a process of categorising users, allocating tools to categories,
and promoting the idea of the system department’s ‘seal of
approval’.

What is also clear is that for the opportunities for improvement
to be clearly identified and for improvement to be systematically
pursued, a better understanding of both the present and the
changed situation needs to be established. To this end, the
research has shown that there is scope for measuring and
monitoring productivity and quality in every organisation.

A measure need not be precise, or be on an absolute scale, to be
of value: it simply needs to give a reliable basis for comparison
and to show the relative levels of improvement in a consistent
manner. The research has shown that this can clearly be done
today.

PRODUCTIVITY AND QUALITY MEASUREMENT
ACTIONS

— Putting in place a productivity-measurement programme.
(The easiest way to do this is to measure effort, project
duration, and project size. Measuring project size in lines of
code can yield an internal efficiency rating in the form of a

136

© Butler Cox.plc 1990



Chapter 7 Conclusion

Productivity Index (PI). Measuring it in terms of delivered
functionality yields a broader rating. Both form the basis of
a common yardstick.)

— Avoiding rapid rates of manpower buildup (MBI) unless
business pressures or legislation dictates otherwise — in which
case the effect needs to be recognised. (High MBIs mean
increasing the manpower effort while shortening the
timescale of a project, but more than 50 per cent of
development effort can be squandered by adding staff to a
project to reduce elapsed time.)

— Implementing a quality-measurement programme, taking care
to identify the most appropriate quality measures.

No organisation, and no manager, is alone in being concerned
about development productivity, and rightly so. In terms of the
potential effects on today’s business, such colicern is fully
Jjustified. It is not just a matter of the high investment involved
in computer systems. Rather, it is the fact that the health of most
businesses now rests on the timely delivery of effective and
reliable systems. Fortunately, as this report has demonstrated,
there are many practical routes to improvement.

© Butler Cox plc 1990 137




Butler Cox

Butler Cox is an independent, international con-
sulting company specialising in areas relating to
information technology.

The company offers a unique blend of high-level
commercial perspective and in-depth technical
expertise, a capability which in recent years has
been put to the service of many of the world’s
largest and most successful organisations.

Butler Cox provides a range of consulting services
both to organisations that are major users of
information technology and to suppliers of infor-
mation technology products.

Consulting for Users

Supporting clients in establishing the right oppor-
tunities for the use of information technology,
selecting appropriate equipment and software,
and managing its introduction and development.

Consulting for Suppliers

Supporting major information technology and
telecommunications suppliers in assessing oppor-
tunities, formulating market strategies, and com-
pleting acquisitions and mergers.

Fducation

The Cranfield IT Institute, now a wholly owned
subsidiary of the Butler Cox Group, educates
systems specialists, IT managers, line managers,
and professionals to understand more fully how
to apply and use today’s technology.

Foundation

The Foundation is a service for senior managers
responsible for information management in major
enterprises. It provides insights and guidance to
help them to manage information systems and
technology more effectively for the benefit of
their organisations.

The Foundation carries out a programme of
syndicated research that focuses on the business
implications of information systems, and on the
management of the information systems function,
rather than on the technology itself. It distributes
a range of publications to its members that
includes research reports, management sum-
maries, directors’ briefings, and position papers.
It also arranges events at which members can
meet and exchange views, such as conferences,

@ Butler Cox plc 1990

management briefings, research reviews, study
tours, and specialist forums.

Recent Foundation publications and events have
covered such topics as:

— Assessing the value of information technology
investments.

— Managing multivendor environments.
— Staffing the systems function.

— Pan-European communications: threats and
opportunities.

— Systems security.
— Emerging technologies.

Managing information systems in a decentral-
ised business.

PEP

The Productivity Enhancement Programme (PEP)
is a participative service whose goal is to improve
productivity in application systems development.
It provides practical help to systems development
managers and identifies the specific problems that
prevent them from using their development
resources effectively. At the same time, the pro-
gramme keeps the managers abreast of the latest
thinking and experience of experts and practi-
tioners in the field.

The programme consists of individual guidance for
each member in the form of a productivity assess-
ment, and publications and forum meetings that
are available and open to all members.

Recent PEP publications and events have covered
such topics as:

— The influence on productivity and quality of
staff personality and team working.

— Managing software maintenance.
— Quality assurance in systems development.

— Making effective use of modern development
tools.

— Organising the systems development depart-
ment.

— Trends in systems development among PEP
members.

— Software testing.
— Software quality measurement.




Butler Cox ple
Butler Cox House, 12 Bloomsbury Square,
London WCIA 2LL; England
= (071) 831 0101, Telex 8813717 BUTCOX G
Fax (071) 831 6250

Cranfield IT Institute Limited
Fairways, Pitfield, Kiln Farm, Milton Keynes,
Buckinghamshire MK11 3LG, England
= (0908) 569333, Fax (0908) 569807

Belgium and the Netherlands
Butler Cox Benelux bv
Prins Hendriklaan 52,
1075 BE Amsterdam, The Netherlands
‘@ (020) 75 51 11, Fax (020) 75 53 31

France
Butler Cox SARL
Tour Akzo, 164 Rue Ambroise Croizat,
93204 St Denis-Cédex 1, France
= (1) 48.20.61.64, Télécopieur (1) 48.20.72.58

Germany (FR)
Butler Cox GmbH
Richard-Wagner-Str. 13, 8000 Miinchen 2, Germany
= (089) 5 23 40 01, Fax (089) 5 23 35 15

Australia and New Zealand
Mr J Cooper
Butler Cox Foundation
Level 10, 70 Pitt Street, Sydney, NSW 2000, Australia
= (02) 223 6922, Fax (02) 223 6997

Treland
SD Consulting
72 Merrion Square, Dublin 2, Ireland
= (01) 766088/762501, Telex 31077 EI,
Fax (01) 767945




	Page 1 
	Page 2 
	Page 3 
	Page 4 
	Page 5 
	Page 6 
	Page 7 
	Page 8 
	Page 9 
	Page 10 
	Page 11 
	Page 12 
	Page 13 
	Page 14 
	Page 15 
	Page 16 
	Page 17 
	Page 18 
	Page 19 
	Page 20 
	Page 21 
	Page 22 
	Page 23 
	Page 24 
	Page 25 
	Page 26 
	Page 27 
	Page 28 
	Page 29 
	Page 30 
	Page 31 
	Page 32 
	Page 33 
	Page 34 
	Page 35 
	Page 36 
	Page 37 
	Page 38 
	Page 39 
	Page 40 
	Page 41 
	Page 42 
	Page 43 
	Page 44 
	Page 45 
	Page 46 
	Page 47 
	Page 48 
	Page 49 
	Page 50 
	Page 51 
	Page 52 
	Page 53 
	Page 54 
	Page 55 
	Page 56 
	Page 57 
	Page 58 
	Page 59 
	Page 60 
	Page 61 
	Page 62 
	Page 63 
	Page 64 
	Page 65 
	Page 66 
	Page 67 
	Page 68 
	Page 69 
	Page 70 
	Page 71 
	Page 72 
	Page 73 
	Page 74 
	Page 75 
	Page 76 
	Page 77 
	Page 78 
	Page 79 
	Page 80 
	Page 81 
	Page 82 
	Page 83 
	Page 84 
	Page 85 
	Page 86 
	Page 87 
	Page 88 
	Page 89 
	Page 90 
	Page 91 
	Page 92 
	Page 93 
	Page 94 
	Page 95 
	Page 96 
	Page 97 
	Page 98 
	Page 99 
	Page 100 
	Page 101 
	Page 102 
	Page 103 
	Page 104 
	Page 105 
	Page 106 
	Page 107 
	Page 108 
	Page 109 
	Page 110 
	Page 111 
	Page 112 
	Page 113 
	Page 114 
	Page 115 
	Page 116 
	Page 117 
	Page 118 
	Page 119 
	Page 120 
	Page 121 
	Page 122 
	Page 123 
	Page 124 
	Page 125 
	Page 126 
	Page 127 
	Page 128 
	Page 129 
	Page 130 
	Page 131 
	Page 132 
	Page 133 
	Page 134 
	Page 135 
	Page 136 
	Page 137 
	Page 138 
	Page 139 
	Page 140 
	Page 141 
	Page 142 
	Page 143 
	Page 144 
	Page 145 

