

 Improving Systems Development
Productivity and Quality

eeeeeeeeeeeeaenseeeeeee\eeeeeea@#eeeeeeeeeeeenevuvvvve

Improving Systems Development
Productivity and Quality

A Special Report of Best Practice in Europe

Butler Cox ple
LONDON

AMSTERDAM MUNICH PARIS

This bookis sold subject to the conditions thatit shall
not, by wayof trade, or otherwise, be lent, resold,
hired out, or otherwise circulated without the
publisher's prior consent in any form of binding or
cover other than that in which it is published and
without a similar condition includingthis condition
being imposed on the subsequent purchaser.
Every effort has been made to ensure that informa-
tion, advice, or commentin this report are correct.
However, Butler Cox ple cannotaccept liabilityfor
the consequencesof actions based on the informa-
tion or advice provided.

Published by Butler Cox ple
Butler Cox House

12 Bloomsbury Square
London WC1A 2LL

England

Copyright © Butler Cox ple 1990
All rights reserved. No part of this publication may be reproduced by any method

without the prior consent of Butler Cox.

Printed in Great Britain by Flexiprint Ltd., Lancing, Sussex.

Improving Systems Development
Productivity and Quality

A Special Report of Best Practice in Europe

Contents
1 Improving systems development productivity

and quality 1
Developing systems 1
Productivity and quality 2
Purposeand structure of report 3
Research sources 4

2 Putting the right organisation in place 5
Balancing centralisation with decentralisation 5

The trend to systems devolution 5
Clarifying the responsibility of users 8

Grouping systems development responsibilities by function 11
Reducing the numberof management layers 11
Organising central systems development 13
Organising devolved systems development 14

Organising testing 17
Module and integration testing 17
System testing by the project team 19
System testing by a separate department 20
System testing by a joint team 21

Organising maintenance 22
The scope of maintenance 22
The merits of a separate maintenance department 23
The merits of outside maintenance 25

Identifying and resolving commonorganisational problems 26
Problems having an impact on efficiency 26
Problems having an impact on effectiveness 28

3 Improving staff motivation 30
Thehigh motivating potential of systems development work 30

The motivating potentialof different systems
development jobs 31

The motivating potential of specific work factors 33
Improving the motivation of individuals 35

Broadening the scopeofjobs 36
Introducing job rotation 36
Introducing a flexible career structure 37
Improving goal-setting and feedback 40
Rewarding achievement with performance-related pay 41
Fitting jobs to people 42

Optimising team size and composition 42
The benefits of small teams 43
The effect on productivity of team composition 44

Encouraging the right style of leadership 47
Characteristics of leadership AT
The role and style of the team leader 48
The strengths required of a team leader 49

Motivating maintenancestaff 52
Attitudes to maintenance 52
Selecting andtraining maintenancestaff 54

utler Cox pic 1990

Contents (continued)

4 Using techniques and methods
Formalising software testing

Whole-cycle testing
Testing techniques and aids

Controlling maintenance
Formalising the maintain-or-replace decision
Maintenance rating
Allocating resources
Managing the maintenance process
Progress coordination

Improving quality
Quality-control procedures
Quality characteristics
Quality profile of different applications
Establishing a quality-management programme

5 Using contemporary tools
Fourth-generation languages for new systems work

The use of fourth-generation languages
The benefits of fourth-generation languages

CASEtools
The use of CASE tools
The benefits of CASE tools

Tools for testing systems
Conducting testing
Managing testing
Test-data preparation aids

Tools for maintaining existing systems
The use of maintenance tools
Managementtools andtesting tools
Maintenance-support tools

Tools for measuring technical quality
Static analysers
Dynamic analysers

Selecting tools from the tool set
The need for a tool-selection procedure
Defining the elements of the development
environment

Preparing selection tables
Preparing documentation
Making the procedure part of the development
process

Introducing new tools
Stage 1: Marketing the implementation plan
Stage 2: Initiating changes to exploit and support
the tools

Stage 3: Implementing a pilot application
Stage 4: Modifying the development environment

Usertools
Categorising users
Issuing guidelines for different types of application
Encouraging users to seek the systems department’s

‘seal of approval’

105

108
111
111
112
113
115
115
116
118
119

© Butler Cox pic 1990

 Butler Cox pic 1990

Contents (continued)

Measuring productivity and quality
Measuring productivity

Measuring output and input
The productivity index (PI)
The manpowerbuildup index (MBI)
Function points and language gearing

Measuring quality
Quality characteristics
Quality measures
Assigning priorities to quality measures

Implementing a measurement programme
Collecting information early
Avoiding misinterpreting the measurements
Providing measuresat the right level

Conclusion
Organisational actions
Staff motivational actions
Techniques and methods
Tools
Productivity and quality measurement actions

120
120
121
122
124
125
127
127
128
129
131
131
132
132
134
134
135
135
135
136

© Butler Cox pic 1990

Chapter 1

Improving systems development
productivity and quality

Productivity and quality are major concernsfor every business
involved in the development and maintenance of substantial
computer systems. It is not that current performance is
necessarily poor, but rather that any and every improvement has
a potentially significant benefit.
This report has been prepared by Butler Cox with the aim of
providing systems development managers with practical advice,
based upon proven best practice, on how to improve their
departments’ productivity and quality.
The detailed analysis and recommendations are based on Butler
Cox’s own research and consultancy experiences. In particular,
we have drawn extensively on the research carried out for the
Productivity Enhancement Programme (PEP). This is a
continuous programme, with an international membership, an
integral part of which is a research database ofover 600 projects.

DEVELOPING SYSTEMS
Until recently, information systems were merely another company
resource. Today, they have become the environment in which
business is transacted. For more and more companies in the
future, they will become the meansby which business processes,
markets, and competition are redefined.
Already as muchashalf of all capital expenditure is going into
information technology. Until recently, a half of the typical
business budget for information technology and services was spent
on equipment. Now,that proportionis falling, andits place as the
major source of spendingis being taken by software and the staff
to develop and maintainit.
Althoughit is true that a growing proportion ofthis expenditure
is on ready-written software that can be boughtoff the shelf, the
fact is that, in virtually every major company, that proportionis
still outstripped by home-grown software.
Home-grownsoftware, written to meet the needs of an individual
business, will be with usfor years to come. Specialist analyst and
programming staff continue to develop new software for new
applications, to modify and improve (‘maintain’) existing
application software, and, often,to tailor ready-written software
to link to existing (or new) home-grown software.
The work is demanding, time-consuming, and expensive.
Strategically important systems often need to be developed in a
hurry in order to respond to a brief window of competitive
opportunity or to satisfy legislative or regulatory requirements.
Unfortunately, pressures to reduce timescales tend to reduce
productivity and quality as well, turning advantage into

Chapter 1 Improving systems development productivity and quality

disadvantage. Within the systems development community,
delays, overruns, and quality shortfalls are commonplace. Any
and every means of improving this position has a potentially
significant benefit.
The systems development environmentis a complex one. While
experience andskills have grown overthe years, and new tools
and techniques have been introduced to speed up the
development process, the demands for computer systems have
become even greater. Speed of reaction to business pressures and
opportunitiesis at a premium; top-class developmentskills have
remainedin limited supply; the numberand variety of different
computing equipment has expanded, each type with its own
programming and operating requirements; the range of existing
systems, each system making its own demandsfor maintenance,
has grown over the years.
It is against this background of complexity and rapid change that
managers are seeking an answer to a common question — how
to improve two things: productivity and quality.

PRODUCTIVITY AND QUALITY
In systems development, productivity measures the work rate at
which the process is carried out — the output achieved for a given
input. Where output is measuredin lines of code, productivity
measuresthe internal efficiency of systems development; where
it is measured in terms of the functionality of the delivered
system, productivity measures the external efficiency of systems
development.
Quality measures fitness for purpose of the delivered product —
in terms both of technical factors, such as the reliability and
maintainability of the software, and of user-perceived factors,
such as ease of use and correctness.
Improving productivity and quality in systems development means
making changes to one or more of the facets of the task. What
makes this apparently simple challenge so complicatedis, first,
the large numberof variables that interact within the systems
development environment, and second, the difficulty of
measuring productivity and quality in the first place, and hence,
assessing the effect of any change.
Considerthe numberof variables that interact within the systems
development environment. They include the precision of the
initial specification of requirements,the skills of the development
staff, how the staff fit together into a team, the techniques and
tools that are available for them to use, the time available to do
the job, testing and quality control factors, and many others. To
understand these variables better and how theyinterrelate, it
helps to put them into groups.It is betterstill if these groups
correspond to areas that managers in systems development can
do something about.
Fourgroups that are relevantare those of organisation, staffing,
techniques and methods, and development tools.
Organisation is to do with the way the systems department is
structured: how it fits into the systems function, how it relates

1)

© Butler Cox ple 1990

Chapter 1 Improving systems development productivity and quality

to its customers (the users), and what its internal sub-divisions
and reporting lines are. The issue of staffing has to do with
recruitment, training, development, motivation, and performance
measurement and reward. Techniques, such as structured
programming and data analysis, are the procedures on which
systems developmentis based; methods specify formally how to
carry out the activities embodied in the techniques (most methods
are proprietary products, such as SSADM and Method/1). Finally,
tools automate the activities within a development method
(programmer workbenches, screen painters, and report writers
are three examples of tools).

PURPOSE AND STRUCTURE OF REPORT
The purpose of this report is to provide systems development
managers with practical advice, based upon provenbestpractice,
on how to improve the systems development department’s
productivity and quality. The report should prove valuable to
other managers and technicians within the department — indeed,
to anyone concerned about improving the department’s working
efficiency and the valueof its end products. Although the report
is aimed principally at medium-sized andlarge businesses spending
substantial sums on commercial information systems, its findings
are likely to prove beneficial to managers of smaller companies
as well.
The scope of the report is set firmly in the four areas outlined
above: organisation, staffing, techniques and methods, and
developmenttools. It is in these four areas that Butler Cox has
most recently focused its systems development data collection
research and analysis.
Thereport is structured into five main chapters. Chapter 2 is about
organisation, and it deals with four main issues. Thefirst is how,
in a decentralised group, to divide responsibilities between the
central systems function, and the functions that are devolvedto
the operating business units — in other words, how to balance
centralisation with decentralisation. The second issue is how to
achieve structural simplicity, with clear accountability and the
minimum number of management layers. The two other
organisationalissues that deserve special attention and that are
covered in this chapter are those of testing and maintenance.
Chapter 3 is about staff and motivation. Becausethesingle largest
cost element in most systems development departmentsis staff,
improving the productivity of development staff is a critical
matter. Motivation is an important element in this, and one in
whichseveral improvement opportunities are open to managers.
These opportunities include broadening the scope of the work,
job rotation,flexible career structuring, goal-setting and feedback,
performance-related pay, and job fitting. These are opportunities
that apply at the level of the individual. There are further
opportunities at the level of the team, to do with team size and
composition, and the role and style of the team leader. The
motivation of staff engaged in maintenanceis a topic that deserves
attention in its ownright, and one thatis exploredin this chapter.
Chapter 4 is on the subject of techniques and methods. Many
companies have introduced one or other of a wide range of

© Butler Cox ple 1990 3

i

Chapter 1 Improving systems development productivity and quality

techniques and methodsthat are available on the market. The
benefits, however, are not alwaysclear. Only in three cases have
we found convincing evidence of consistent success with
techniques and methods — whenthey are used to help formalise
software testing, to help control maintenance, and to establish
a quality-management programme.
Chapter 5 is about using contemporary tools such as fourth-
generation languages like Mantis, CASE tools, and re-engineering
tools. Despite the enormousbenefits in productivity and quality,
that are widely claimed by the suppliers oftools, the results that
are achieved in practice are much more ambiguous. CASE tools,
for instance,are failing to deliver reduced developmenttime, or
fewererrors,or even increasedreliability — although it is possible
that they doincrease productivity over the whole life of a system.
Maintenancetools, too, have yet to make much impact. Because
they are specialised, tools are relatively inflexible. They need to
be selected and matched to the application environment with
great care. Introducing them requires sensitivity and careful
planning, which is best undertaken by implementing a pilot
project.
Chapter 6 deals with the measurementof productivity and quality.
The earlier chapters are about the means of achieving an end —
the improvement of productivity and quality. Yet there is little
pointin striving for this end if improvements cannot be measured.
The measurementof productivity and quality is elusive, however,
which goes a long way towards explaining why few companies
have adopted such measurement on a continuing basis. In this
chapter, we explain the essentials of measurement, and provide
some advice on implementing a continuous measurement
programme.
The report concludes with a brief chapter on the next steps to
take — an action checklist for managers.

RESEARCH SOURCES
This report is based on recent research that we confidently believe
to be the most up to date and comprehensive in Europe. The
principal source is Butler Cox’s productivity and quality enhance-
ment programme, PEP. Membership includes some of Europe’s
largest, and acknowledgedto be leading, computer systems users.
They representall the main industry sectors: financial services,
manufacturing,utilities, energy, retailing and distribution, process
and chemicals, and local and central government.
The core component of PEP researchis the projects database, now
amongst the largest ofits kind in the world, with over 600 projects.
At the time of undertaking the research that forms the basis of
this report, details of some 400 projects were recorded on the
database, each with an average of 41,000 lines of source code.
All the project informationis collected by all of the PEP members,
under Butler Cox’s direction.
The PEP database provides an unmatched source of comparative,
across-industry, practical data. Analysing the database allows us
to compare such diverse factors as productivity by type of tool,
error rate according to the technique in use, and delivery rate as
a function of staffing level.

© Butler Cox ple 1990

Chapter 2

Putting the right organisation in place

Thereis no ‘right’ organisation structure for systems development
that is universally applicable. The one that suits a particular
systems development department will depend on the
characteristics of the parent business, the technological
environment, and the systems environment. As the relative
importance of these factors changes overtime, the organisation
of systems developmentwill need to be modified.
Most substantial businesses today are organised as a group of
operating units that are to some extent decentralised. In groups
like this, it is commonplace for the systems function to be
decentralised as well, at least in part. Balancingthe activities of
the central function with those at the operating level is the first
organisational priority. Clarifying the responsibilities of usersis
the other side of the same coin. For systems development, the
next priority is to ensure that its structure is kept simple, with
the minimum number of management layers. Two other
organisational issues within systems development that deserve
special attention are those of testing and maintenance.
These topics are addressed in turn in this chapter. The chapter
finishes with a section concerned with the identification and
resolution of common organisational problems.

BALANCING CENTRALISATION WITH
DECENTRALISATION
Today, most businesses are managedin a more decentralised way
than was the case 10 years ago. There has been a recent similar
trend towards decentralising the systems function. It is now
increasingly commonplaceto find responsibility for developing
and implementing systems devolved to business-unit level, and
responsibility for systems policy and standards retained at the
centre. Although dividing responsibilities is never easy, ground
rules are available that managers can use to their advantage.

THE TREND TO SYSTEMS DEVOLUTION

Faced in recent years by mounting competitive pressures and
rapid market changes, more and more large businesses have
chosen to decentralise. To manage the resulting decentralised
group structure, head offices allow individual business units a
degree of autonomy while remaining involved in the business
units’ strategy planning, in approving their plans and capital
spending, andin overseeing their financial performance.
Decentralisation is widely held to deliver worthwhile benefits.
Breaking up an organisation into smaller business units and
delegating authority and responsibility to the business-unit
managers brings management closer to the customer, helps to

Butler Cox pic 1990 5

Chapter 2 Putting the right organisation in place

improve operational flexibility and responsiveness, and
encourages innovation andspecialisation. Decentralisation,it is
also claimed, helps to sharpen awareness of market and
competitive trends, because decision-making managers are
brought closer to the action.
Devolving the systems function is just as much in evidence as
decentralising the business itself. Typically centralised until the
late 1970s and early 1980s, systems functions have since followed
the path to devolution. Not to be confused with merely
distributing computer systems physically to divisions anddepartments, devolution implies decentralising management
authority as well (see Figure 2.1). Today, it is increasingly
commonplace for business units themselves to buy and operatecomputers, and to develop and maintain the systems that run onthem. The trend has been encouraged by advancesin computingtechnology. The economies ofscale that used to favour centralisedinstallations disappeared years ago, with the advent ofdepartment-supporting minicomputers and personal micro-
computers.

Devolving responsibility for information systems has beenencouraged by most business-unit managers. They have claimedlots of benefits. Reduced costs, closer control over priorities,systems better tailored to business needs, and relief fromdependence on the central function with its order backlog andageing core systems are somethat are often quoted.
As well as benefits, however, there are someveryrealrisks. Atbusiness-unit level, there is the danger of systemsstaff sacrificingquality by cutting corners to meet delivery pressure from localmanagers. Retainingskilled systems staff can be a problem whenthefirst allegiance of thestaffis to their profession, rather thanto the business. At corporate level, there is the risk of systems

Figure 2.1 Today, the systems function in most large groupsis partlydistributed

A Systems development

[a] Business unit
 © Butler Cox pic 1990

© Butler Cox pic 1990

Chapter 2 Putting the right organisation in place

being expensively and unnecessarily replicated betweendifferent
business units with common needs. Worsestill, different business
units may build their own incompatible ‘islands of automation’,
compounding the difficulty of linking up electronically in the
future.
The common result of these opposing pressures is systems
functionsthat are divided,in part devolved to business-unit level
and in part remaining centralised at head office. That means a
matrix organisation and, for the centralised part, a new hybrid
role. Most head office top managers now acceptthis as inevitable,
yet the question remains of how to divide responsibilities between
the centre and the businessunits.
The typical range of systems development responsibilities is
summarised in Figure 2.2. The figure showsthe responsibilities
underfour headings: delivering head office services, establishing
the technical infrastructure, developing staff, and developing
business-unit systems.
Thefirst two of these, concerning head office services and the
technical infrastructure, are responsibilities that will often apply
groupwide.(The technical infrastructure consists of the corporate
communications network and the standards that govern the
interworking of systems across the group.) Normally, these
responsibilities should be discharged from the centre. The second
two headings in Figure 2.2, developing staff and developing

Figure 2.2 Systems development responsibilities may be grouped under
four headings

Delivering head office services
Providing systems for head office.
Making central bureau services available.
Watching trendsin information technology.
Providing group-wide development support
Monitoring competitors’ use of systems.

Establishing the technicalinfrastructure
Developing the infrastructure.
Defining standards and interfaces.
Defining policies and methods.
Quality assurance.

Developing staff
Building management awarenessof information technology
Promoting and catalysing the use of information technology
Recruiting and developing systems developmentstaff.
Training staff in the use of systems.

Developing business-unit systems
Budgeting and planning systems.
Designing and implementing systems in accordancewith policy and standards.
Providing education and support for end users.
Maintaining systems.
Buying software.

Chapter 2. Putting the right organisation in place

business-unit systems, should normally be discharged at the levelof the business units themselves.
This allocation of responsibilities, combining centralisation withdecentralisation, can be no more than a general guideline, ofcourse. How,in practice, to divide responsibilities between centreand business units will vary widely according to specific groupcircumstances. One important consideration will be that of thegeneral managementstyle of the group. Other things being equal,the style of the group as a whole should be followed by that ofthe systems function: the more decentralised the group, the moredecentralised information systems should be.
In practice, however, there are powerful reasons for adopting amorecentralised style of systems development managementthanis suggested by the group-management style. One is to takeadvantage of economies of scale in equipment purchasing.Anotherreasonis the trend to integrate systems, which involvesthe design of corporate databases to support a variety of businessand executive-support applications. One systems managerdescribedto us the importance of allowing for future integration.He explained, ‘‘We had nine different computer suppliers, 12different operating systems, and 16 different programminglanguages. We had taken ourselves up a cul-de-sac. Computinghad become the fiefdom of departmental barons. There wasinformation everywhere but no-one from other departments couldaccess it.””
A third reason for adopting a managementstyle that is offset tothe centre is the need to preserve flexibility of choice in thegroup’s future organisation. Groups with synergistic divisions,such as multiple retailers, often find a need for cooperation andshared approaches to business ventures, such as the use ofcommon credit-card systems. This type of group often restructuresin such a waythat, for instance, all manufacturing functions orall marketing functions are put under one line manager.Autonomous systems development, with mutually incompatiblehardware or software, hampers the process of re-aligning thebusiness units.

CLARIFYING THE RESPONSIBILITY OF USERS
As well as balancing centralised and decentralised responsibilities,it is important to strike a balance in the allocation of responsi-bilities between systems development specialists and their end-user customers. In most businesses, this is a contentious issue.
It is often suggested that users are not yet readyorwilling to takeon muchresponsibility for systems development. Sometimes, a‘damagelimitation’ approachis pursued. However, unless thealignment of responsibilities between specialists and users isclearly defined and agreed, the systems developmentfunction willbe unable to support the business community as it should. Userswill then continue to build their own systems, often un-documented and probably unmaintainable.
The devolution of control to users is, in fact, already happening.It began with the proliferation of personal computers, andcontinued with the move towards departmental computing in

© Butler Cox pic 1990

© Butler Cox pie 1990.

Chapter 2 Putting the right organisation in place

the mid-1980s. This devolution must be managed in such a way
that order is maintained withoutinitiative beingstifled. A useful
wayof formalising responsibilities is by reference to three levels
of application that are found in most companies. These can be
described as core systems, non-core systems, and personal
systems.

Core systems
These are the applications that are essential to the day-to-day
operation of the business. In general, they maintain and update
the commoncorporate databases, and often provide a base for
subsequent applications to use. Clearly, if these systems, which
exploit database technology and commonly process high volumes
of transactions, are to be developed efficiently, skilled technicians
will be needed. The systems they design must be built in
accordance with central policy guidelines to ensure that a
coherent software infrastructure is maintained.
Senior managementshould take the lead in deciding what systems
should be developed, and also in managing their development and
implementation. These managers should be able to see the
relationship between computer systems and businessgoals, and
to work out how a computer application could effectively
automate a particular business function. Responsibility for
innovation becomes shared with senior managers, and no longer
the sole preserve of the systems department.

Non-core systems
These are the systems that are used by a business unit, or a
department within a business unit. Their purpose is to achieve
the unique objectives of that business unit, and they do not
normally affect the day-to-day operations of other business units.
It is appropriate, therefore, that business-unit managers have
control over what systems are implemented, but because it is
possible that the data and programscreated will be shared by
other departments in the future, the systems should conform to
the company-wide policies and guidelines laid down by central
systems development management.
Development of these applications is frequently undertaken by
the users themselves, who should be encouraged to experiment
with different designs and to explore the possible applications of
the newertechnologies, such as end-user computing and office
automation. Three separate studies conducted by the Rand
Corporation in 1988 confirm the wisdom of this approach. All
these studies concentrated on the effective introduction of end-
user computing, and found that success in this area is closely
related to the amount of control exercised by users. This is
particularly significant for business-critical systems, for which
speed of developmentandclose fit to requirements, rather than
technical efficiency, are paramount. The role of the systems
specialist in these developments is to provide education, support,
and guidance.
Personal systems
Theseare not application systemsin the usual sense of the word,
but a variety of tools and techniques that enable users to set up
their own systems. They include the microcomputer-based

aE

ee

Chapter 2 Putting the right organisation in place

systems developed using spreadsheets, word processors, database]managers, and so on. These systemsare firmly in the control ofthe users, and the role of the systems specialist is limited toproviding them with company-approved packages and training intheir use.
These systems, however, frequently becomethe business-unit (ornon-core) systems of tomorrow, with subsequent access to thecorporate databases being requested to enable users to manipulatethe informationlocally.It is important, therefore, that these usersshould adhere to conventions established by the systemsdevelopment department for the company as a whole. Someorganisations makeit a rule that users can choose which suppliersof personal computer they use, but only standard products willbe connected to the corporate network.
Withthe division of responsibilities described above, the burdenof providing computer systemsfor the entire business is removedfrom the systems development department. Most business-unitprojects can be developedbyusers, while the systems department |concentrates on those that are shared by several business units. |Responsibility and accountability for performanceis shifted to theusers for all types of systems development. This places the onus |on business management to become educatedin the use, control, |and delivery of computer systems within their organisation, and |to take time to understand the true scope of a systems projectand to devote adequate resourcesto its completion.
The result of a recent study is depicted in Figure 2.3. It shows |a matrix that can be used to define the respective responsibilitiesof users and systems development departments. The matrix takesinto account the strategic importance to the group of futuresystems developments and the maturity of the technologyrequired for these applications (not the stage of assimilationreached by the particular organisation):

Figure 2.3. The responsibilities of the systems department and users |maybeallocated with reference to a matrix

High

Maturity
of the

technology

Low ee ‘|
pactof future High

systems applications
(Source: Complex organizations and the information systems function. OxfordInstitute of Information Management, 1987.)

10

|
utler Cox plc 1990 |

|

©Butler Cox pic 1990

Chapter 2 Putting the right organisation in place

— Ifthe strategic impact of applicationsis assessed as ‘low’, and
the technology required as ‘mature’, considerations of
operational efficiency are paramount and specialists should
be given responsibility for them, although a user managerwill
be ultimately accountable. Such applications might include
support systems, like payroll and general ledger.

— Ifthe strategic impactis low, but new technology is required,
the technical risk is high and the potential benefit to the
business very limited. The application should probably not
be developed.

— The combination of high perceived strategic impact and
relatively mature technology means that the users need to
be in real control of the systemsstrategy (the ‘what’), while
specialists control the ‘how’ of systems development. These
could be core or non-core applications.

— Applications that have a high strategic impact and use new,
immature technology should be entirely within the users’
control, with ‘an unabashed concentration on effectiveness’.
Theseare the non-core and personal systems developed using
end-user computing and office technology.

GROUPING SYSTEMS DEVELOPMENT
RESPONSIBILITIES BY FUNCTION
The growing reliance of businesses on computer systems has
resulted in a much greater emphasis on the cost of the systems
developmentservice, and a drive by line managersto obtain value
for money. This puts greater demandson the systems development
department to meet budgets in terms of cost and time, and to
producehigh-quality systems. The key to meeting these demands
is to allow greater autonomy to the people who are providing a
service to line management. This involves ‘flattening’ the
management structure, and within the simplified structure,
organising each group to fulfil particular functions.

REDUCING THE NUMBER OF MANAGEMENT LAYERS

It is not uncommon for systems development departments to
introduce more and morelayers of management — sometimesin
the belief that this creates a career structure. In fact, career
advancement is a management issue that should be handled
independently of the structure of the systems development
function. Moreover, systems development departments that have
simplified their structures have frequently improved their
productivity.
Figure 2.4, overleaf, shows how sucha simplified structure might
work. Staff are divided into several business groups. With a
centralised managementstyle, these will be located at head office.
With a devolved management style, they may be physically
dispersed. Each business group contains up to 50 staff, depending
on the development workload. (Fifty is about the maximum
number of developmentstaff for a business group; beyondthis,
staff begin to lose a sense of identity with the group.) Within each
business group, staff are allocated to work on projects under a

11

 ee

ee

Chapter 2 Putting the right organisation in place

Figure 2.4 Anefficient organisation structure for systems development has no morethanthree reporting layers

 (PM = project manager) project manager, depending on their skills, availability, prefer-ences, and so on. Each team, wherever possible, should be keptto a maximum ofsix (see Chapter 3).
Responsibility for developing systems within the policy andstrategy guidelines laid downbythe central systems departmentshould be devolved to the business-group managers. The role ofa business-group manageris to liaise with line managers and toagree on the scope and type of each systems development serviceneededby the business unit. In the past, the systems developmentdepartment has been a monopoly supplier of services handed outto users. This is now changing, both because users are takingcontrol of some of their own systems developments, and alsobecause competitive pressures on users are encouraging them tolook for alternative suppliers.
Asa result, the systems development department now has toadopt a more marketing-oriented approach to increase itscredibility with its users, and to retain its status as the mainsupplier of developmentservices. Therole of the business-groupmanageris therefore a difficult one.It requires a person able todeal effectively with senior business managers, knowledgeableenough about technical matters to be able to guide approachesto development, and a diplomatic yet forceful personality. Theadvantage to line managersis that they have a single point ofcontact for all systems development ideas and problems.

12

©

Butler Cox pic 1990

©Butler Cox ple 1990

Chapter 2 Putting the right organisation in place

The situation depicted in Figure 2.4 represents the optimum
structure. Factors such as the overall size of the systems
developmentfunction, or geographical dispersion, may suggest
a need for additional management layers. Systems development
managers wanting to improvethe efficiency of their departments
should aim for a structure that is as flat as possible.
An example of a company that has successfully done exactly this
is British Airways, an internationalairline. It has deployed 750
development staff into business groups of around 50 staff, each
one dividedinto fourto six project teams. As a result, motivation
and productivity have increased enormously. While this re-
organisation has been based on lateral rather than vertical
expansion, the control span of each layer of management — that
is, the numberof staff under each manager’s direct control — has
been kept manageable by delegating more authority and
responsibility to business-group and team-level managers.

ORGANISING CENTRAL SYSTEMS DEVELOPMENT
Within the simplified structure described above, each business
group must be organised to fulfil its responsibilities in the best
possible way. In the central systems department, the emphasis
should be on three main functional groups: infrastructure
planning, development support, and quality assurance.
Infrastructure planning
The central systems planning groupis responsible for planning the
company’s technical infrastructure, which is essential to ensure
that future systems can be integrated. This includes defining the
operating systems, languages, database-management system,
data dictionary, communications protocols, and user-interface
standardsthat will be used throughout the company. The planning
group should ensure that core applications comply with the
components of the infrastructure to form a flexible basis for
developing non-core applications. Wherever possible, non-core
applications should also comply, although a non-core application
that does not conform to the standards, yet provides a good
businesssolution, is preferable to one that conformsbutis inferior
in business terms.
Development support
Manyorganisations have found it useful to establish a separate
team of systems professionals who support development teams
in the use of different tools and techniques. The responsibilities
of this development-support group include the provision of
training in the use of modern development tools, project-
management techniques, CASE tools, and so on. They are known
by several different titles including the systems research group,
the advanced technology group, and the developmentcentre. The
aim of the group is to concentrate specialist expertise into a
‘research and development’ type of role, in which the team
members are not distracted by development work. Generally,
these are small teams, and they provide a useful way of
concentrating specialist skills — though care must be taken to
ensure that they stay in close touch with their own customers.
Quality assurance
For many organisations, the quality-assurance groupis a recent
addition to the systems development department. With

13

Chapter 2 Putting the right organisation in place

responsibilities for systems development being increasingly
devolved to business-unit level, the role of a quality-assurance
team is a vital part of ensuring company-wide compliance withcentral systems development policy. The responsibilities of thisgroup are, first, to initiate or develop standards, procedures,systems development and project-management methodologies,
and managementpractices. The second responsibility is to ensurethat compliance audits are carried out, by reviewingall majorprojects within the systems development organisation atprescribed intervals.
It is not the responsibility of the quality-management group tocarry out quality-control checksitself, nor, indeed,to ensure thatthe guidelines are being followed; on the contrary, the groupshould arrange for as much of the responsibility as possible to bedevolved to project managers andtheir teams. The department’sdrive for better-quality systems must centre on making individualdevelopmentstaff responsible for producing quality output. Forthis approach to be successful, everyone in the systems depart-ment should be committed to it, and take responsibility for thequality of his or her own contribution to systems development.
ORGANISING DEVOLVED SYSTEMS DEVELOPMENT
Within devolved systems development functions at business-unitlevel, the emphasis shouldbe on

a

further three functional groups:systems development, education and user support, and systemsmaintenance.

Systems developmentThe systems development group is responsible for the detaileddesign, programming, testing, and implementation of all coresystems and for ensuring that the systems conform with thecentral systems policy and standards. In the area of testing, theorganisation of development teams can have a particularly stronginfluence on effectiveness. This subject is therefore consideredin more detail later in this chapter. The systems developmentgroupis also responsible for those business-unit systems that needto be developed with traditional third-generation technology, forwhich specialist skills are needed. Such projects are, however,initiated by line managers, whoarealso the best people to managethem, because they are committedto the time and cost schedulesand can mobilise user staff during implementation.
Jack Rockart, director of the Center for Information SystemsResearch at the Sloan School of Management, believes that,because of the business-critical nature of many applications beingdeveloped today, line managers should take the lead in both theconception and implementation stages. He suggests that, becauseit is not usually possible to cost-justify competitive-advantageapplications, and because implementation usually provokessignificant organisational changes, the systems developmentmanager can no longerbe responsible for driving these systemsforward. His view of how responsibilities should be allocatedbetween line and systems managers is depictedin Figure 2.5. Someorganisations report active participation by line managers insignificant developmentprojects already,anditis certainly a trendthatis set to continue. Most systems development departments,

14

eS

eae

eeaae

© Butler Cox ple 1990

 © Butler Cox plc 1990

Chapter 2 Putting the right organisation in place

Figure 2.5 The line manager should take on more responsibility for
systems development

Traditional
responsibility

Suggested
new
responsibilities [

Conception Design and Implementation Operation
programming

Lead taken by systems development department

a Lead taken by line manager

(Source: Sloan Management Review, Summer 1988.)
however,havelittle idea of how to involve line managersin this
process.
One approach that has been successfully adopted by a large
Europeanretailer is illustrated in Figure 2.6. It has the following
elements:
— A project board, consisting of a senior systems representative,

a senior user, and a business representative. The
responsibilities of the board are to authorise, review, and sign

Figure 2.6 A Europeanretailer has created a frameworkfor user-led
projects

Responsible for
managing the
whole project

Responsible for
managing one
stage of the
project

Works for the
stage manager
to produce the
required end-
products

Assists the stage
manager and

provides continuity

15

ie

ee

enaee

Chapter 2 Putting the right organisation in place

off each ‘stage’ of the project. This includes appointing thestage managers, approving all plans, and appointing the
project-assurance team.

— A project-assurance team, consisting of a business-assurancecoordinator, a technical-assurance coordinator, and a user-assurance coordinator. Appointed by the project board, theyworkfor the stage manager(s) for the life of the project. Theirresponsibilities are to help prepare plans, monitor costsagainst budget, control change requests, and ensure that theappropriate development standards are applied.
— Stage managers, who are appointed for each stage by theproject board. For stages that are heavily user-oriented, suchas system specification or installation, a suitable user isappointed as stage manager. For the technical stages, thestage manageris normally a systems specialist.
— Stage teams, appointed by the stage manager, and comprisinguser and systemsstaff who report to the stage manager onall project-related matters, but to their line manageron allother matters.
Theretail companythat has adoptedthis project framework hasnoted several benefits from workingin this way. Stage managershave been actively involved in ensuring that the user communityis sufficiently committed to undertake a project. For their part,users have been prepared to make a much greater commitmentof time and effort, and have assumed responsibility for ensuringthat the systems provideall the appropriate facilities. Asa result,better relationships and understanding have developed betweenbusiness staff and systemsstaff.
Education and user supportThe most crucial role of the education and user-support groupisto educate andtrain users in all aspects of developing computersystems, from selection through to implementation. Its roleincludes ensuring that users are aware of the policy guidelineslaid down bythe central department on standards and protocols,back-up and recovery, security, and so on. Without this vitaleducation and support, users will not be ina position to carry outtheir new responsibilities for providing their own systemsadequately, nor to profit by learning from the mistakes previouslymadeby systemsprofessionals. A secondrole of the groupis toact as consultants to the users, either providing support andassistance to help them acquire their own computersystems, oradvising on the appointment of competent outside consultants orcontractors to do so.
Theprecise role of the group will vary accordingto the stage ofgrowth reached by the business in the use of each technology.Thus, during theinitiation and expansion stages, the educationanduser-support groupwill havea limited role, generating ideasand enthusiasm for new applications, providing education, andperhaps, supplying packages. During the formalisation andmaturity stages, it will play a bigger role, imposing some orderby ensuring that emerging standardsfor data security, integrity,and communications are applied, and facilitating the sharing ofdata and programs between business units.

16 ©Butler Coxpic 1990

© Butler Cox pic 1990

Chapter 2 Putting the right organisation in place

The key to the successof this groupis the personality of the user-
support staff. The more successful user-support services tend to
be staffed by user-sympathetic and solution-oriented people,
rather than by those whoare moreinterested in technical details.
Obviously, the user-oriented support person needs to be
sufficiently technically competent to advise on the right technical
solution or software package as well, but the emphasis has to be
on business fit rather than technical elegance.

To add value, user-support personnel must be very well
acquainted with the business area. We have found that the most
successful user-support groups are those that are distributed to
the userarea, rather than located within the systems department,
regardless of whether managementcontrol is devolved. At Ahold,
a Dutch supermarket chain, the user-supportstaff have become
so vital to the business that many are recruited into line
management positions, where they continue to help users exploit
computer systems.

Systems maintenance
The wayin which systems maintenanceis organised can have a
very marked effect on motivation and staff morale. Thisis a topic
that deservesspecial attention, so it is explored in greater detail
both in this chapter (beginning on page 22) and in Chapter 3 (see
page 52). First, however, we considerthe organisation of testing.

ORGANISING TESTING

For the purpose of organising project teams, most systems
departmentsdistinguish between two kindsof testing: module and
integration testing, which is concerned with testing the behaviour
of the components of a system, and system testing, which is
concerned with the functionality of a system as a whole. Module
andintegration testing is normally carried out within the project
team, with some differences in the ways in which responsibilities
are assigned. There are three main ways of organising system
testing — by the project team, by a separate testing department,
and by a joint team of users, operations staff, and systems
developers — and each wayhas its merits.

MODULE AND INTEGRATION TESTING

Knowledgeof the detailed system and program designsis required
to develop module andintegration tests. Generally, the specifiers
of program modules should design the module tests, and system
designers should design the integration tests. Few organisations
distinguish clearly between module andintegration tests, possibly
because both activities are the responsibility of the project team,
and do not involveusers.

Three main team structures for module and integration testing
are commonplace: individuals specify and execute their own tests;
a nominated person within the team is responsible for ensuring
that all tests are carried out to specified standards; a distinct team,
working underthe control of the project manager, is responsible
for testing.

Lv

Chapter 2 Putting the right organisation in place

The first of these is probably the most popular. In three-quartersof the companies we have surveyed, there was no attempt toseparate testing from production within the development team(see Figure 2.7). The main problem with allowing individualprogrammers to test their own work is thé inconsistency inquality that usually results. Some programmers are un-doubtedly good at testing their own modules; others, possiblybecause of inexperience or lack of training, perform virtuallyno systematic testing. Since a poorly tested module in acritical part of a system can cause considerable delays and expenseduring system testing, uncontrolled individual module testing isnot cost-effective.
Module testingis difficult to do well. It can be very tedious fora programmer to check that each line of code and all true andfalse results of decision statements have been tested by a sampleof test cases.It is equally,if not more, difficult for a programmerwhodid not write the code to carry out thesetests. It is for thisreason that module testing tends to be done by the programmerwho wrote the code,andit is probably not effective in terms ofcost or staff morale to introduce an independent module-testingteam. However, the use of dynamic-analysis tools (which arediscussed in Chapter 5) can remove most of the tedium frommodule testing, and also provide management with a printedrecord of the extentof the tests. At the module level, it thereforeseemspractical to leave the responsibility for testing with theprogrammer, but to provide the tools that make the job easier andthat give management greater project control.
A single team member, or on larger projects, a small team, shouldbe responsible for ensuring that module and integration testingis carried out to specified standards, even if the actual testing iscarried out by the programmers themselves. At least one of thedesigners of the system should be part of this team. Allocatingspecific responsibility for testing within a project team in this wayshould not impose additional costs on a project. In fact, the totaldevelopment cost should fall, since more reliable modules arelikely to be produced, leading to a reduction in the cost of reworkas a result of errors discovered during system testing and liveoperation.

 Figure 2.7 Most organisations make no attempt to separate module andintegration testing from software production

Percentage of organisations surveyed Organisation of module
andintegration testing 80
No separation of testing
from software production

Nominated person
responsible for testing
Testing team within the
project

(Source: Butler Cox survey of PEP members)
18

eo

ee

Butler Cox pic 1990

© Butler Cox ple 1990

Chapter 2 Putting the right organisation in place

SYSTEM TESTING BY THE PROJECT TEAM

For system testing, the most commonorganisation structure is for
the project team to take responsibility. This structure,illustrated
in Figure 2.8, has been adopted by about half of the companies
we surveyed. System testing is entirely under the control of the
project manager, and each project team defines its own approach
to system testing. Some project teams may set up a small system-
testing team; others may assign the responsibility for system
testing to an analyst or a designer. Some companies havea policy
on how projects should structure their teams; others allow each
team to define its own structure. Many companiesrecognise that
there are benefits to be gained from separating testing from
development, and set up testing teams within the project team.
A fewensurethat the twoactivities remain separate by allocating
a different computer for testing.
Occasionally, the quality-assurance group is used as an inde-
pendent authority to carry out random tests on the software
during the main-build phase. The quality-assurance group can play
a majorrole in defining and monitoring how software should be
tested, but it is unlikely to have the resources to becomeclosely
involved in the design ofall the systems under development. As
a testing technique, random tests are unlikely to provide a useful
measurement of each system’s quality, and as a meansof finding
errors, they should not be used as an alternative to a properly
defined series of tests.
The main benefits of placing full control of system testing with
the project team are reduced costs and ease of management. In
the short term,it is cheaper to allow each project team to have
full control over its own testing than to incur the additional costs
of aseparate group of people, who have to understandthe users’
requirements andliaise with the project team. From the manager’s
point of view, assigning total responsibility for testing to the
project team relieves him of the need to devote any effort to
consideration of system testing.

Figure 2.8 Organisation structure: the project team is responsible for
system testing

19)

Chapter 2 Putting the right organisation in place

The main disadvantagesare also related to cost and management.If a company has several similar projects under development atanyonetime, it should be possible to reduce costs by developinga commontesting environment, or by purchasinga set of softwaretesting tools that can be usedonall projects. Making system testingthe responsibility of individual project teams also has thedisadvantage that systems development management has noindependent measures of the quality of a system. Whetherthisis a problem will depend on howreliable the system is requiredto be, and howskilled in system testing the membersofthe projéctteam are.
This structure for system testing can be cost-effective in acompany that develops relatively small applications, with arequirementfor average reliability. Companies choosing to adoptthis structure should ensure that one person within the projectteam is given specific responsibility for system testing, and thatthis person has expertise in the design of system tests.
SYSTEM TESTING BY A SEPARATE DEPARTMENT
In this organisationstructure, illustrated in Figure 2.9, a separatedepartment carries out the system tests on most of the systemsdeveloped by project teams. Threeof the companiesin our surveyhad a separate system-testing department. These samethree alsohad the most fully developed procedures for testing, and collectedstatistics on the effectiveness and cost of their testing. Oneadditional company, however, had recently disbandedits system-testing departmentbecauseit found that the project teams becamecareless in their own testing, relying on the system-testing teamto find errors. The system-testing team then blamed thedevelopersfor delivering poor-quality work. The general lack ofrespect between the two groups led to an overall reduction inquality and productivity.
The very different experienceof the International Stock Exchangeis summarisedin Figure 2.10. It created a separate testing group

Figure 2.9 Organisation structure: testing is the responsibility of aseparate department

20

eee

© Butler Cox pic 1990

 Butler Cox pic 1990

Chapter 2 Putting the right organisation in place

Figure 2.10 The International Stock Exchange set up a separate testing
group and achievedhighly reliable systems

In the period leading up to the deregulation of the UK financial services section in
October 1986,the International Stock Exchange was involved in the development
of somelarge systems that were highly visible to the public, and were essential to
the future operation of the Stock Exchange. The systems departmentdecided to set
up a separate system testing groupfor the specific purpose of minimising the risk
of implementing systems that mightfail. Apart from some well publicised problems
in the first hours of operational use, the systems have performed with a very high
degreeofreliability, and the investmentin setting up a system testing group was
considered to bejustified.
Some of the factors considered in setting up a system testing group were:
— Independence:Thetesting group mustbe able to retain an objective view of the

development, and should notbe subjectto pressure to cut short testing to bring
the projectin on time. The group should, however, act as advisers to the project
manager, and should not havethefinal say on when a project is complete.

— Termsof reference: Termsof reference mustlimit the scopeof the testing, because
there can be a tendency for testing to expandtofill the time available.

— Managerial support: Senior systems management support is essential to resist
pressuresthat mayarise from the developmentteam tolimit system testing. To
gain this support, management must be supplied with information on the progress
of testing.

— Marketing: Therole of the testing group should be marketed internally. The Stock
Exchange produced a brochure describing the facilities offered by the group.

— Cost: An independenttesting group is expensive. About 5 per centof the Stock
Exchange’s systems developmentstaff werein the testing group. The groupalso
needed its own computer systems for building test environments.

in preparation for testing the systems that were being developed
for the deregulation of the UK financial services sector in October
1986. It was an expensive investment, but in this case, it did result
in the developmentof very reliable systems. The benefits of a
system-testing department are that staff develop expertise in
testing techniques and that investments can be madein test tools,
simulators, and databases, which may be difficult to justify on
a project-by-project basis.

SYSTEM TESTING BY A JOINT TEAM

In this organisationstructure, illustrated overleaf in Figure 2.11,
the project team provides the technical expertise in testing, but
user groups and the operations department define and carry out
their owntests. The user groups examine the functionality and
usability of the system. The operations group considers such
factors as whether the batch run can be completed within the
scheduled time. The decision on whetherto accept the system is
made onthe basis of these measurements. This structure has many
of the same advantages and disadvantagesas thefirst one. It does,
however,allow at least one set of system tests to be carried out
by a group that is separate from the development team.
A common problem in developing systems is that users are not
sufficiently involved, particularly during the requirements
definition phase. This can lead to an excessive numberof change
requests. Involving the users in the specification and execution
of system tests encourages them to examine the specifications
critically, which should help to ensure that any faults ‘in the
specifications are corrected at an early stage, and to reduce the
number of subsequent requests for changes.

21

——e

eee

Chapter 2 Putting the right organisation in place

Figure 2.11 Organisation structure: the project team sharesresponsibility for system testing withother groups

There is no need for a system tester to know how to design orprogram software, but testing requires particular skills for whichtraining and experience are necessary. User groups shouldtherefore include at least one specialist testing adviser, notnecessarily full-time, if they are to carry outeffective tests.
ORGANISING MAINTENANCE
Maintenance accounts for a huge and growing proportion ofprogramming and analysis effort. In some installations, it can beas high as 65 per cent. The efficient organisation of this type ofwork requires a different approach from that of systemsdevelopment. The focus of the systems maintenance groupis tosupport the daily requirements of the existing business, withresponsiveness and service delivery as foremost considerations.
The organisation of maintenance work in project teams or in aseparate function appears to havelittle bearing on either thedemandfor, or the performance of, that work. Morale is oftenbetter amongst staff who work in a separate. maintenancefunction. Arranging for some orall of the maintenance workloadto be undertaken outside the systems development departmentalso has some merit.

Figure 2.12 There are three broadCategories of main-tenance
 THE SCOPE OF MAINTENANCE

 Software maintenance is much more than merely correcting errorsin coding. It embraces all of the programming and analysisactivities required to keep a system operational andeffective afterit has been accepted and placed in production. The purpose ofmaintenanceis to protect a company’s investmentin systems byprolonging their useful life and improving the contribution thatthey make.
Thereare, in fact, three broad categories of maintenance, whichare summarised in Figure 2.12. The first is corrective

22
© Butler Cox pie 1990

© Butler Cox pie 1990

Chapter 2 Putting the right organisation in place

maintenance, which is concerned with resolving errors.
Corrective maintenance is a reactive process, usually requiring
rapid action. The secondis adaptive maintenance, which is about
enhancing and extending systems to incorporate the evolving
needs of users. The third is perfective maintenance (sometimes
called preventive maintenance), which consists of changes to the
structure of software to improve its performance and
maintainability.
There is widespread disagreement over whether adaptive
maintenance should be considered as part of software
maintenance, or as part of new systems development. This is
important, because adaptive maintenanceis by far the largest
maintenance activity. Some companies adopt a clear definition,
one wayor the other. For others, it depends on scale — if the
effort exceeds six man-months, for instance, the work is
considered to be new systems development.It is for this reason
that reports of maintenance as a proportion of overall systems
development work vary widely. In one of our own surveys, the
proportion ranged from as low as 5 per cent to as high as 90 per
cent, with an average of about 40 per cent.

THE MERITS OF A SEPARATE MAINTENANCE DEPARTMENT

The relative merits of different ways of organising maintenance
within a systems department have been debated for years, but
a survey of maintenance organisation in 130 businesses in the
United States, undertaken in 1987, identified some common
characteristics. The businesses in which maintenance was
organised in project teams were smaller than the sample average.
In these businesses, although the maintenance backlog was shorter
than average, the software was moredifficult to maintain, the
problem of managing maintenance seemed moresevere, and the
maintenance staff were less positive than average about their
work. In contrast, where maintenance was undertaken as a
separate activity, the businesses were larger than the sample
average, the maintenance backlog was longer than average, and
the software under maintenance was older, but management and
staff problems seemedless severe than average.
Our ownsurveyrevealed that staff morale and motivation were
significantly higher when maintenance wasset up as a separate
function. This view is supported by Joseph Izzo, from a California-
based managementgroup that specialises in improving company
efficiency. He suggests that systems departments have two
missions. Thefirst is to maintain today’s systems and to provide
as fast a service to the users as possible. This, he has found,is
seldom achieved. The second mission is to work on tomorrow’s
systems. However, whenthe schedule on a ‘today’ project slips,
people are inevitably taken away from a ‘tomorrow’project. The
most efficient way to organise systems maintenance work,
according to Izzo, is to organise it as a separate group, and to
concentrate on measures to improve service levels.
Thefirst step is to set up two teams — one for product support,
and one to deal with ‘intermediate’ requests. The product-support
team deals with requests likely to take less than 160 hours of
effort. A separate project-based group deals with ‘intermediate’

23

Chapter 2. Putting the right organisation in place

requests — those estimated to take between one month and oneyearof effort. Requests that are estimated to take more than oneyear of effort are deemed to be development rather thanmaintenance projects.
The product support group is staffed by senior people who knowhow to work with users. They deal with maintenance requestsas they arise. No priorities are set, but requests must be authorisedby a line manager. In companies that have installed such a group,turnaround is significantly improved, and the systemsdepartment's credibility is improvedin the user community. Thekey to success, Izzo found, is to appoint a service-orientedmanagerto run the group. Contrary to normal expectations, hefindsthat after about a year, staff actually wanttojoin the team,because its members are regarded as ‘heroes’ by the usercommunity. Businesses that have set up such groupsconfirm thisexperience.
The intermediategroup is run by a project manager, and the workis costed and scheduled as for any new development work. Theseprojects are all authorised and priorities are set by senior linemanagers. Becausethe team is allowed to concentrate on onejob,the typical pattern in installations organising maintenancein thisway is to meet 80 to 90 per cent of the scheduled deadlines.
There are twosignificant points about this way of organisingmaintenance work. Thefirst is that the maintenance group shouldbe seen as an important part of the systems department. Thismeansit should be led by a high-profile manager, and shouldbe staffed by service-oriented personnel. The secondis that linemanagers should take responsibility for the maintenance func-tion — requesting, authorising, and setting priorities for thework. Motivation and productivity will both improveasa result.
Nosimilar characteristics were evident in our own, somewhatsmaller survey. Of the companies we surveyed, maintenance wasundertaken by project-team staff in 15, and by a separatemaintenance function in eight. We detected no significantdifferences between the two forms of organisation in terms ofstaff experience, the pressure of conflicting demandsfor stafftime, staff turnover, communications with users, or document-ation problems. The amount of corrective maintenance as aproportion of the whole was about the same in both forms oforganisation. Size wasnot a factoras it was in the US survey. Wefound no evidenceto support the view that separate maintenancefunctions are more likely to be the norm in larger businesses. Infact, our evidence suggested that higherlevels of maintenance(above 40percentof thetotal developmenteffort) are associatedwith project teams.
Our survey showedthat, from the managers’ standpoint, the mostsignificant problem was competing demandsfor maintenancestafftime, andthe least significant was a lack of user interest (seeFigure 2.13). There was no evidence to suggest that the way inwhich maintenance was organised made any difference to theseperceptions. On the otherhand, both staff morale and motivationwere higher when maintenance was organised in a separatefunction rather than in project teams.

24

ae

aae

Butler Cox pic 1990

© Butler Cox pic 1990

Chapter 2 Putting the right organisation in place

 Figure 2.13 Competing demands for maintenancestaff time is the most
significant problem

Problems from the manager’s Managers’ rating of significance
standpoint Least Most

Most serious problems
Competing demands for
maintenancestaff time
User demands for extensions
and enhancements
Meeting scheduled
commitments

Least serious problems
Adhering to programming
standards
Unreliable system software
and hardware

Lack of user interest

(Source: Butler Cox survey of PEP members)

THE MERITS OF OUTSIDE MAINTENANCE

An alternative to maintaining systems within the systems
development departmentis to arrange for someorall of the work
to be undertaken outside the department.
One source is that of systems users themselves. Advances in
fourth-generation languages are making this an increasingly
practical proposition. It is now commonplace for businesses to
provideusers with query languages through whichthey can derive
data and generate their ownreports.It is a small step beyond this
to provide tools sufficiently powerful to enable users to add
functionality to a system — in other words, to undertake their
own adaptive maintenance.
An alternative is to contract maintenance work to a third party.
This offers three benefits: it releases systems development
department resources for other work; it overcomes the
‘technology gap’ problem, when the system being maintainedis
based on technology that is no longer current; it introduces a
formal contractual relationship between users and maintainers.
The FI Group, a major systems and software house based in the
United Kingdom, is a good example of a contractor who
undertakesthird-party software maintenance work. Maintenance
is contracted out to third parties for numerous reasons. One
assignmentinvolved

a

leading building society that was obliged
to modify its mortgage-administration system and contracted the
work out sothatit could,itself, concentrate on new development
work. In the four-year period to April 1988, the project team
assigned to the work had made 600 separate changes. The team,
which was drawn from a larger poolof staff, all of whom were

25

Chapter 2. Putting the right organisation in place

familiar with this kind of work, varied in size between three andfive according to the nature and priority of the work. Anotherassignment wasfora local governmentauthority that contractedto maintain its payroll system because the IBM CICS andAssemblerskills demanded by the work were not available withinthe council’s own information systems department. A third client,a majorlife assurance company,contracted to maintain its existingunit-linked and non-unit-linked systems over a two- to three-yearperiod, while the information systems department concentratedon developing replacement systems. “
While the possibility of contracting out at least some part of acompany’s maintenance workis becoming more feasible and can,clearly, be a highly successful alternative, most companies willcontinueto do a lot of their own maintenance work in-house forthe foreseeable future. Management must therefore turn itsattention seriously to the question of how to attract and retaingood maintenance staff. In short, the answer is to provide anenvironmentthat actively supports them. This may be achieved,in part, by providing methods, tools, and training programmes,but changingthe technology aloneis not enough. An organisationmust create an environment in which maintenanceis perceivedto be as important to the operation of the business as any otherfunction. :

IDENTIFYING AND RESOLVING COMMONORGANISATIONAL PROBLEMS
The following problems were frequently mentioned by systemsmanagers during our research. The suggested solutions aresummarised in Figure 2.14. They fall naturally into two groups:those that have an impact on the systems department’seffectiveness, and those that affect its efficiency.
PROBLEMS HAVING AN IMPACT ON EFFICIENCY
Four common problems are low productivity, rising developmentcosts, high staff turnover, and poor-quality systems developmentby users.
Low productivity: Organisational changes can help with pro-ductivity. They include using smaller teams (no more than six),introducing moreflexible jobs (both discussed in Chapter3), andshedding somelayers of management.
Rising developmentcosts: These are frequently caused by poormanagement of the product-definition and construction stages.Appointing users to manage projects will usually result in a betterdefinition of the project objectives, tighter control over projectenhancements, and better marshalling of user-departmentresources during implementation. The result should be bettercontrol over costs.
High staffturnover/lack ofa suitable career structure: There aremanyreasonsforhigh staff turnoverthat are not within the scopeof an organisational change to cure. A surprisingly consistent bodyof research, however,hasidentified lack of job interest and lackof a suitable career structure as prime causes of discontent.(Providinga flexible career structure is discussed in Chapter3.)

26

ee

ee

ee

Butler Cox plo 1990

Chapter 2 Putting the right organisation in place

Figure 2.14 Commonorganisational problemscan beresolved with reference to the approach suggestedinthis report

Organisational problems ee Suggested actions

Failed attempts to decentralise

Low ‘presence’in the business

Problemsthat
affect the systems
department's weeBroctiverese Priorities set too low

No overall systemsplanning

User confusion over communications

Low productivity

Problemsthat :
affect the systems : ;
department's Highstaffturnover/lackof suitable
efficiency careerstructure : oS

Set up an educati nantDevelopmentof poor-qualitysystems _ business-oriented perby users ©

It is interesting to note that the highest turnoverrates usually occur
amongst the newest recruits. These people have often been
recruited from a university background in which they enjoyed
considerable autonomyandstatus. Fitting into a structure witha
steep reporting hierarchy can be daunting and demoralising. In
organisations with fewerlayers andflatter structures, turnoveris
usually considerably lower.

Development of poor-quality systems by users: Users should be
encouraged to experiment with new technologyin orderto learn
how to apply it appropriately to their business area. As we have
seen,it is a mistaketotry to controltheir efforts too soon. Often, the
reluctance of users to consult systemsstaff is a legacy of poor
previousservice, lack of interpersonalskills in systemsstaff, anda
poor appreciation of real business problems by the systems
department. The best way to foster a better workingpartnership is

27

aoe

Se

ee
Chapter 2 Putting the right organisation in place

to set up an education and user-support group,to be located in thebusiness area andstaffed by user-sympathetic personnel. Their rolewill be to encourage and guidetheusers’efforts. This type of roleis best performed by people with a bias towards business rather thantechnical solutions.

PROBLEMS HAVING AN IMPACT ON EFFECTIVENESS
Five common problems concern decentralisation, low presence,priorities set too low down,absenceofinfrastructure planning, andconfusion over communications.
Failed attempts to decentralise: A commonreasonfor the failure ofattempts to movecentralised staff into a business area is lack ofpreparation. There are usually cultural barriers to break downforboth systemsstaff and business-unit staff. One company observedthat ‘“‘when you puta user together witha systems designer, whatyou getat first is nothinglike either of them had in mind... thenthey workonit’’. Often, the systemsstaff are cut off from theircolleagues and unable to integrate successfully with their newbusinesspartners. There are two important prerequisites beforethistype of re-organisation can take place. Oneistotrain staff fully fortheir new roles, prior to dispersing them. The otheris to managecareers, so that staff in small, decentralised units are given the sameopportunities to move into different posts as their ‘centralised’colleagues. Frequent job rotation can also prevent feelings ofisolation.
Low ‘presence’ in the business:It is quite possible for a business tobe morecritically dependent on systems than line managementrecognises. If a particular systems departmentbelieves this to be thecase, low presenceis clearly a problem. It can often meanthatbusiness managementis devolved, while systems developmentremains centralised andis thus seen to be remote and irrelevant tothe business. In these circumstances,thereis usually a wide culturalgap to overcomeaswell, andraisingthe profile of the departmentwill inevitably be a slow process.
The most successful wayto increase the presenceofthe departmentis to concentrate on a growth area such as sales, marketing, orproduction, and to appoint a business manager to foster a morepositive relationship with line management. To build on therelationship and to ensure that systems are produced that thedepartment actually wants, some user-support staff couldsubsequently be devolvedto the business area.
Priorities set too low down:Thisis really a variation of the previousproblem, and usually implies that line Management does notrecognise the value of computer systems to its business area.Priorities, however, should not be decided by the systemsdepartment. It is senior line management’s responsibility to decidehow much moneyto invest in systems, and what the businesspriorities are for development. This can be achieved only by seniorsystems managementfostering a partnership with senior businessexecutives, and encouraging themto agree ona systemsstrategyandpriorities. This is more easily accomplishedif the managementstyle of systems developmentis closely aligned with the groupmanagementstyle.

28

Butler Cox ple 1990

Chapter 2 Putting the right organisation in place

Absence of infrastructure planning: This is a common problem
in organisations that have neither laid downclear policies and
guidelines governing the respective responsibilities of users and
systemsstaff, nor defined a commonsystemsarchitecture within
which coherent planning can take place. Thefirst priority is to
establish the principle that users should decide what systems are
developed, and that systems staff should provide the standards
required to enable applications to be shared by businessunits if
needed. A systems-planning group can then be created to develop
and enforce the standards necessary to safeguard flexibility,
compatibility, and consistency insystems development, througha
commonsoftware infrastructure.

Userconfusion over communications: The proliferation of various
‘information centres’ and user-support groups, as well as multiple
development centres, can be confusing for user departments. To
ensure that the most appropriate service is always offered,it is
essential to providethe userwith a single point of communication.
This should be the business-group manager.

We have seen, in this chapter, that while there is no direct
correlation between productivity levels and the structure of the
systems department, there are, nevertheless, many things of an
organisational nature that systems managerscan do to provide a
better service to the business. Organisational design is not,
however, just about structural form. The behaviourof individuals
in an organisation, and therefore their performance,is influenced
by a variety of factors, which are discussed in detail in the next
chapter.

29

Neee

i

ec

Chapter 3

Improving staff motivation

Because the largest single cost element in most systemsdevelopment departmentsisstaff, improving the productivity ofdevelopment staff is a critical matter. Motivation itself is animportant elementin this. Happily, the nature of the workitselfpresents no obstacle: systems development work is intrinsicallyhighly motivating. Havingsaid that, it is commonplacefor systemsdevelopmentstaff to expect moresatisfaction from their workthan they actually get. In other words, the reality of motivationfalls short of potential.
To bridge the gap, several options are open to managers. Chiefamongst these are broadeningthe scope of the work,job rotation,flexible career structuring, goal-setting and feedback, per-formance-related pay, and job fitting. These are opportunities thatapply at the level of the individual. Further opportunities forimproving motivation exist at the level of the team. They are todo with team size and composition, and with the role and styleof the team leader.
A closely related topic, but one which is best handled in its ownright, is that of the motivation of staff engaged in main-tenance — given the sheer volume of maintenance that occursin the typical systems department today.

THE HIGH MOTIVATING POTENTIAL OF SYSTEMSDEVELOPMENT WORK
Systems development work can be highly motivating, particularlywhere an element of staff management is involved, but themotivating potential varies widely from job to job and betweendifferent companies.
Theresults of a survey carried out in the United States have beenusedto calculate a measurecalled the Motivating Potential Score(MPS)for a range of occupations. The MPS derives from the Job-Diagnostic Survey technique originally developed by twoAmerican researchers, J Richard Hackman and Greg R Oldham.According to Hackman and Oldham, the motivating potential ofa job is derived from five key measurable job dimensions: skill |variety, task identity, task significance, personal responsibility, |and work feedback. An equally weighted combination of the firstthree dimensionsis used to provide a measure of the perceivedimportance of the job.
Skill variety is the extent to which the job calls for differentskillsand talents. Task identity measures the completeness orwholeness of the work involved in the job. Task significance isto do with the job’s impact on other people. The fourth dimensionmeasures the job holder’s perception of personal responsibilityfor the work in termsof freedom, independence, and discretion

30
©Butler Cox pic 1980

Chapter 3 Improving staff motivation

in determining job procedures. The fifth dimension, work
feedback, is concerned with the job holder’s knowledge of the
outcomeor effectiveness of the work. Both the extent and the
timeliness of feedback are important.
Each of the dimensionsis rated on a scale of 1 (low) to 7 (high),
andthe MPSis defined as the product of the perceived importance
of the job (an equally weighted combination of the first three
dimensions), the personal responsibility of the job holder for the
work done, and work feedback. MPS measures can therefore
range from 1 to 343.
Figure 3.1 shows a samplelist of occupations, together with the
MPS for each one. The MPS of 154 for data processing
professionals places the occupation at about the samelevel as
managerial and other professions, and well ahead of other
occupations in terms of motivating potential.

THE MOTIVATING POTENTIAL OF DIFFERENT SYSTEMS
DEVELOPMENT JOBS

This high overall score for the motivating potential of data
processing work does, however, hide wide variations between
individual jobs within any one organisation, and across
organisations. Figure 3.2, overleaf, shows the MPSs for five
systems development jobs and the average for all systems
development jobs, and compares them with the MPSs of two
further categories of job — other professional staff and other
managers. Of the five systems developmentjobs, data processing
managementhas the highest MPS, at 199, and maintenance the
lowest, at 106. Programming scores 137, while analysts and
analyst/programmers are virtually the same at 154 and 152
respectively. Of the dimensions that make up the overall MPS for
each of the five data processingjobs, work feedback scores lowest
in all cases except one.

In our ownsurvey of motivating factors, carried out amongst 600
data processing professionals in seven businesses, we undertook

Figure 3.1 The motivating potential of data processing is quite high

*MPS: Motivating Potential Score, a measure of the motivating potential of jobs.

The higher the score, the more motivating the job.

(Source: Couger, J D and Zawacki, R A. Motivating and managing computer
personnel. Chichester: Wiley, 1980.)

© Butler Cox ple 1990 31

er

ce

eee

Chapter 3 Improving staff motivation

Figure 3.2 There are widevariations in the motivating potential of jobs within systems development

Notes: 1 Data relates to staff who spend more than 80 per cent oftheir time on maintenance work.2 The average of the rating for each of these dimensions forms the rating for the importance of the job.3 MPSis calculated by multiplying the average rating of the first three dimensions by the rating of the last twodimensions.
(Source: Couger, J D and Zawacki, R A. Motivating and managing computer personnel. Chichester: Wiley, 1980, and Couger, J Dand Colter, M A. Improved productivity through motivation. Prentice Hall, 1985.)

a similar investigation to the one summarised in Figure 3.2. Oursurvey respondentsalso quantified their responses using a seven-point scale, which we were able to reconcile with the points-scoring method used in the American surveys. Werefer to themeasures of motivation derived from our own survey as JobMotivation Scores (JMSs) to distinguish them from the MPSs.
In our survey, we asked for twosets of responses to the job-diagnostic survey questions. One set measured the importancethat respondentsattributed to the dimensions in affecting theirability to work well; the other set measured the level ofsatisfaction that they attributed to each job dimension in thecontext of their working environment. There was little correlationbetween the two.Mostof the dimensions were rated as being quiteimportant, scoring betweenfive andsix (outof seven). Satisfactionwith these factors was, in general, not rated quite as highly (aboutfour to five), and there was a wide spread betweenthe differentfactors. Certain divisions stood out as being relatively importantbut satisfaction was relatively low — technology, careerdevelopment, user factors, and, to a lesser extent, relationshipswith immediate managers. On the other hand, team factors andpersonal circumstances scored relatively high on satisfaction butlower on importance. These satisfaction/importance ratings areshownin Figure 3.3.
Wefoundbothsimilarities and differences between the JMS andMPSresults. There was considerable agreement between thesurveys over the large difference in the motivating potential ofjobs within data processing. Figure 3.4, on page 34, shows theJMSsof the six jobs that we measured. Both results suggest thatthe motivating potential of jobs rises through the ranks fromprogrammers’ jobs to systems development managers’ jobs.
The dimensionsrated as most important in our survey were taskidentity, skill variety, and responsibility for the work done.Feedback about the results of the work done was rated as less

32
© Butler Cox pic 1990

 © Butler Cox ple 1990

Chapter 3 Improving staff motivation

Figure 3.3 There is little correlation between the average ratingsofimportance andsatisfaction with respecttothe factors

affecting development productivity

Key to factors:
CD Career-development Me Methods SM Senior manage-

opportunities NW Nature of work mentrelationships —
DO Departmental PB Pay and benefits _ TF Team factors

organisation PC Personal/family Te Technology
GS Goalsetting circumstances TS Training and skills
IM Immediate manager Re Recognition UF Userfactors

relationship SE Security of employment WE Work environment

(Source: Butler Cox survey of PEP members)

important, and the level of satisfaction with the feedback received
was lowerthan thelevelof satisfaction with the other dimensions.
We also asked about the importance of, and satisfaction with,
feedback from the respondents’ immediate managers. Here,
importance was rated muchhigherthansatisfaction than for any
of the five job-motivation dimensions. This emphasises that
systems development managers should be paying much greater
attention to providing feedback aboutan individual’s performance.

THE MOTIVATING POTENTIAL OF SPECIFIC WORK FACTORS

Our survey also revealed that two further factors — support
responsibility and work variety — have a marked effect on the
motivating potential of a job.
Support responsibility: Responsibility for directly supporting the
user community is a positive motivating factor in systems
development work,as is responsibility for directly supporting an
aspect of the hardwareorsoftware. These findings are apparent
both from Figure 3.5, overleaf, and from a comparison of the
motivating scores returned by the different businesses represented

33

Chapter 3 Improving staff motivation

Figure 3.4 The motivating potential of jobs rises through the ranks,from programmerto systems development manager

JMS*
ir al
10 20 30 40 50 60 70 80 90 100 110 12
 Systems developmentmanager

Project manager

Project leader

Systems analyst

Analyst programmer

Programmer

“JMS is the product of three ratings, each of which is in the range 1 (low) tohigh (7). The three are importance of the Job, responsibility for the work done,and knowledge of the outcome of the work.
(Source: Butler Cox survey of PEP members)

 Figure 3.5 Job Motivation Scores (JMSs)vary according to the supportresponsibilities of the job

JMS
10 20 30 40 50 60 70 80 90 100 Jobincludes some :

user-support responsibilities
Jobincludes somehardware- and/or software-support responsibilities
Job has no hardware- and/or
software-supportresponsibilities
Job has no user-supportresponsibilities

Averageofall jobs

(Source: Butler Cox survey of PEP members) |
in our survey. Figure 3.5 shows that, when user or technicalsupport is included, ajob has a greater motivating potential thanwhenit is excluded.
Oneof the businesses in our survey reported

a

significantly higherJMSscore for its systems developmentstaff than the other six.Webelieve that this is due, in part, to thejob-enlargement policythat this companyhas adopted.Its systems developmentstaff areencouraged to become experts not only in systems developmentproject work, but also in defined areas of software, hardware,

34

© Butler Cox ple 1990

© Butler Cox ple 1990

Chapter 3 Improving staff motivation

and user support. The consequenceof the job-enlargementpolicy
is to increase skill variety, task significance, and personal
responsibility.
Work variety: After a time, any job can become mundane when
it lacks variety. Greater work variety is a positive motivator. Apart
from career development, which by nature introducesindividuals
to a changing pattern of work and responsibility, the most obvious
way of introducing varietyis throughjob rotation. Some businesses
take a planned approachto job rotation precisely because of the
benefits it can deliver. One, for instance, moves programmers into
new teams every two to two-and-a-half years, and systems analysts
every three to three-and-a-half years. It further increases work
variety by providing its staff with opportunities to develop
productivity aids.
Figure 3.6 comparesthe typical internal productivity for each of
‘the businessesin our survey with the average time spentin project
teams. The figure suggests that there is a relationship between
productivity and the time spent in project teams — with internal
productivity decreasing as the average time increases. This does
not necessarily imply a causal relationship — both parameters
could be influenced by project size, for example. The implied
relationship is, however, consistent with the fact that projects of
short duration are more manageable than long ones, and that they
are better for avoiding the troughsin enthusiasm,drive, and vision
that are often the consequence of prolonged project work.

IMPROVING THE MOTIVATION OF INDIVIDUALS

Although it is commonplace for systems development staff to
expect more satisfaction from their work than they actually get,
there are steps that companies can take to improve the situation.
Motivating staff involves equipping them for the new roles that
are emerging from the re-alignmentof the systems function to the
business, and taking positive measures to maximise the
contribution of each individual. Six specific actions can be taken

Figure 3.6 Internal productivity* decreases as the average time spent in
a project team increases

Internal
20 productivity

15

10

5.
1 1 1 L 1 L 1
5 10 15 20 25 30 35

Average time spent in team (months)

Vv

*See Chapter 6 — Productivity Index
(Source: Butler Cox survey of PEP members)

35

ee

eS

eeOe

Chapter 3 Improving staff motivation

by systems development managers to ensure that each of theirstaff is making the greatest possible contribution — broadeningthe scope of jobs, introducing job rotation and flexible careerstructures, improving goal-setting and feedback, rewardingachievement with performance-related pay, and fitting jobs topeople.

BROADENING THE SCOPE OF JOBS

Therole of the systems developmentprofessionalis becoming morediverse. To develop the types of systems that are being used tosupport businessactivities directly, it will be critical for systemsstaff to have some knowledge of the business. The greaterinvolvementof users in the development process, using moderndevelopment tools, will require systems staff to have people-oriented skills. Jobs that are usually regarded as more‘technical’,such as systems maintenance, are often performed far moresuccessfully by service-oriented people. These trends pointto theneed for staff who are able to operate far more flexibly than hasbeen the case in the past. The role of the education and user-support specialist, for example, requires technical programmingskills, business knowledge, analytical ability, and interpersonalskills. These can be acquired only by enabling as many people aspossible to operate in widerroles.

In response to these pressures, there is an increasing trend to moveaway from thetraditionalrole of programmer, analyst, or businessanalyst, towards a more ‘hybrid’ role, such as an analystprogrammer who uses modern developmenttools. There are twomajor advantages to widening the scope of systems developmentjobs. Thefirst is that it creates a more flexible workforce, whoare able to undertake a wider variety of work in response tochanges in demand.Thesecondis that the individual gains greaterjob satisfaction and is likely to be more productive as aconsequence.

INTRODUCING JOB ROTATION

Movingstaff between jobsis a useful wayof broadeningtheskillsof the individual, increasingjob interest, and improving motivationand productivity. Philips, an electronics multinational companybasedin the Netherlands, provides positive encouragementforjobrotation. Below managementgrades, staff are expected to spendno more than twoorthree years in the same place; at managementlevel, this is extended to four years. The philosophy is one ofencouraging change, fresh insight, and creativity, while trying tominimise ‘ownership’ of systems. Turnover of systems staff atPhilips has been very low, at about 2 per cent a year.
SAAB, a Swedishcarand aerospace manufacturer, does not expectsystems people to stay in one job for more than a year, and findsthat moving people around encourages them to have a moreflexible outlook and gain a wider appreciation of the business.Frequently, these moves involve a transfer to a business-supportgroup from a central development team,and occasionally, systemsstaff will move into line-management positions in the businessarea.

36 ©Butler Cox pie 1990

Chapter 3 Improving staff motivation

INTRODUCING A FLEXIBLE CAREER STRUCTURE

Managing careers is not high on the systems manager’s list of
priorities. This is indicated by the results of one of our own surveys
of systems developmentstaff (see Figure 3.7). It contrasts the
views of systems development managers andtheir staff about the
staff factors that they thought most important. Managers rated
training and skills as most important, whereas the staff themselves
rated career development, which included acquiring new skills and
opportunities for promotion and advancement, uppermost.

Two further important issues make career planning a matter of
urgent management attention. One is that providing practical
career advancement for dispersed systems staff is one of the
critical features of successful devolution to business units. The
otheris that a lack of suitable career options is one of the main
reasons for staff attrition, according to a recent survey (see
Figure 3.8, overleaf).

To provide a flexible career structure, systems development
managers must recognise the widerroles that are emerging for
the systems department, and provide more scope for ‘lateral’
development. An alternative to the traditional vertical career
path, in which the main route to promotion is through the
programmer/analyst/project leader path, is shown in Figure 3.9,
on page 39. The main advantages of such lateral development
paths are described in the following paragraphs.

Figure 3.7 There are marked discrepancies between the views of managers andtheir staff on the importanceof

various people-related factors to productivity
Based on frequency of mention by
systems development managers
ina telephone survey in which they
were asked about the human
factors that are important in
achieving systems development
productivity. For comparison, the
importance rankings given by
systems development staff in
responseto the questionnaires are
also shown.

*Questionnaire respondents were
not asked to rank motivation as a
separate factor

 (Source: Butler Cox surveys of PEP members)

© Butler Cox pic 1990 BT

Chapter 3 Improving staff motivation

Figure 3.8 Job interest and career paths are rated the most importantconsiderations by systemsstaff in changing jobs

Factors influencing
the decision to
change jobs
Jobinterest

Career path oS |

Job security : 2A

Salary |

Work environment a

Responsibility |]

Equipment used

Location

Company

Status

Industry

Fringe benefits ie

Percentage of respondentsrating factors as:
Very Fairly Not veryimportant important important Notatall

important (Source: Computer Weekly's Computer Industry Employment Survey 1989)

Alternative, but equal, careerpaths areprovidedfor technical andnon-technical staff. One result of the traditional career patternis that programmers are movedinto analyst/programmerand user-supportroles regardless of whether they have the ability to dealwith system users. Business and interpersonal skills aresubordinated to technicalskills, yet these are of equal importanceto the systems departmentthatis re-aligningitself to work moreclosely with its business partners. The key is to provide astructured framework of suitable career opportunities foreveryone, recognising the potential value of both technical andnon-technical skills. In most businesses, this will also require achangein the pattern of recruitmentto test for the appropriatepersonality traits that will allow recruits to operate successfullyin broader, business-oriented roles. In this structure, promotionto a seniorlevel is possible for both technical and non-technicalstaff, without either having to move into a managementpost.

38
© Butler Cox plc 1990

Chapter 3 Improving staff motivation

To business
area

a
From business
area

Figure 3.9 Lateral career-developmentpathsare an alternative to vertical career progression

: Business Technical
Project consultant/ consultant/

Manager manager specialist specialist
; Fe 7+ years

4 a

3 47 years
2

Level4 Level1 |

Professional
To businessarea 0-4 years

From business
area

a
Entry level
(graduate)
Entry level
(non-graduate)

© Butler Cox pie 1990

Line and project-management paths are explicitly provided. A
major disadvantage of the typical promotion path, based on
technical performance, is that it leads both to over-promoted
technicians, who are unable to function adequately as managers,
and to unfulfilled managers, whose real talent may be hidden
behind average technical performance. In both cases, valuable
expertise is misdirected, and inefficiency results. People with
limited managementability, who may be excellent technicians,
should beidentified early — that is, within the first four years of
their career — so that they can be provided with an equally
satisfying non-management career. Likewise, people with
managementpotential can be trained for the role early.

Lateral movements are planned and encouraged, both between
majorcareerpaths, and to and from businessareas.In this model,
all staff spend upto four years gaining a wide knowledge of the
profession. Lateral movements betweendifferent roles (maybe in
different business groups) are encouraged,and all junior systems
staff are seconded to business areas as a necessary part of learning
the job. After four to seven years, the individual builds on basic
skills and moves into a career path, with lateral movementstill

39

Chapter 3 Improving staff motivation

possible between paths andto business areas. After seven years,an individual usually finds it extremely difficult to move across
paths. Lateral movementsinto the business provide systemsstaffwith much-needed business knowledge, and help to bridge thecultural gap between systemsand businessstaff. Current evidencesuggests that systems departments are net importers ofskills fromline-managementfunctions; unless this inflow is balanced, thereis a danger that systems staff will be demotivated by theirperceived lack of suitability for promotion outside the systemsdepartment. Careers, however, still have to be managed,so thatstaff are aware of the opportunities that are available and areencouraged to exploit them.

IMPROVING GOAL-SETTING AND FEEDBACK
The key to success in goal-setting is that goals are objectivelydefined and measured. An example of this is found at SecurityPacific Automation Company, the California-based data processingarm of Security Pacific Corporation, a bank holding company. Aspart of a management-by-results programme, the companyintroduced ‘commitment planning’, to motivate and reward peoplefor achieving the results specified in their service-levelagreements. A commitmentplan defined what each employee willaccomplish during a specified time period, the different levels ofperformancethat the employee can achieve, and the ways in whichperformance will be measured. Theplan is negotiated betweenthe employee and his or her manager.
For example, a financial-management commitment might be toreduce spending, where an ‘excellent’ rating would mean being5 per cent under budget, ‘above average’ would mean 3 per centunder budget,‘average’ would be on budget, and ‘unsatisfactory’would beover budget. A few years ago, managementfelt that thebank was not promoting enough employees from within. Managerswere then measured on the percentage ofjob vacancies that theyfilled with bank employees. ‘Excellent’ was defined as filling 90per centof vacancies from within, ‘above average’ was 85 percent,and so on.
IBM in Australia has staff-turnover objectives written into theperformance objectives of every line manager from the chiefexecutive down. In 1988, IBM Australia’s actual rate of staffturnoverwas8.9 percent and its objective for 1989 was 6 per cent.Nothing could be more objective and measurable than that.
We haveseenthatjobs enabling the individual to obtain feedbackfrom their work naturally and quickly are intrinsically moremotivating than jobs in which feedbackis delayed. The nature ofmost systems work is such that a system designer, for example,may not know for several months whetherthe design of a systemis good or bad. Systems managers therefore need to findalternative ways of providing systematic and timely performancefeedback to their staff. The easiest optionis to link the feedbackprocess to the annual appraisal scheme, as most organisationsalready have these schemesin place. However, at all but the mostsenior level, annual appraisals are probably not frequent enough.The objective should be to provide continuous feedback onperformance and achievement.

40

ae

Sa

ee

© Butler Cox ple 1990

©Butler Cox ple 1990

Chapter 3 Improving staff motivation

The most satisfactory results, however, are achieved by moving
the process of goal-setting and feedback outside the appraisal
system altogether. One company, characterised by a high
productivity rating, prepares work-assignment briefings to cover
the next 10 to 20 days of work for programmers, and 30 to 40 days
of work for systems analysts. Each work assignment is formally
appraised upon completion, and the appraisalis sent to the human-
resources manager. This work-assignment and appraisal procedure
takes place outside the six-monthly and annual formal appraisals,
which are concerned with training requirements, salary reviews,
and career development.

REWARDING ACHIEVEMENT WITH PERFORMANCE-RELATED PAY
Research has shown that employee incentives, if carefully and
fairly administered, can play a significantrole in motivating staff,
because they serve as a meansof recognising and rewarding staff
for work well done.If they are paid in a timely manner, they will
also reinforce the goal-setting procedure discussed above.
Probably more job offers are declined for salary reasons than for
any other. Companiesin the public sector, with less flexible salary
schemes, have usually experienced a greatly increased rate of
turnover whentheir salaries fall significantly below private-sector
rates. Nevertheless, there is no evidence that high pay, while
attracting recruits, can motivate staff and reduce turnoverrates.
The status of pay as a ‘hygiene’ factor rather than a positive
motivator was examined in the 1960s by Frederick Herzberg at
the’ University of Utah. Certainly, no research that has been
conducted since has been able to prove otherwise. Cor Alberts,
a divisional director from CAP Gemini in the Netherlands, putit
this way at a recent conference on recruiting and retaining
information technology staff: ‘‘IT staff want to develop and they
want to have new challenges and to learn new things. The growth
is important and the salary is only a yardstick, at least in the
Netherlands. The salary is questioned because they need to get
enough in comparison to other people in theIT profession, or in
the companyitself.”
Professor Robert Zawacki, a human-resources consultant, has
explained that the ‘money’issue is not how muchsystemsstaff
earn, but is concerned morewith equity vis-d-vis their perceived
reference group (ouritalics). In other words, salary is the device
whereby employees measure the comparative value that different
employers put on their skills. But Professor Zawacki has added:
“The foundation is the money, and the job is the home you put
on that foundation, but once the foundationis solid, they [systems
staff] want something else — meaningful work.’ The message is
very clear — it is essential to pay market rates, but when staff
have achieved parity with, or even an advantage over, their
reference group, salary alone does not motivate them.
Bonus schemes have been used for years as a productivity
incentive for blue-collar workers. There is now increasing evidence
that performance-related pay is beginning to be used as a means
of attracting senior managers in industries where competition for
good peopleis fierce, and can now accountfor as much as 20 per
cent of total remuneration. Where it is applied more widely,

Al

SSeece

eee

eeae

Chapter 3 Improving staff motivation

however, performance-related pay does reduce staff-turnoverrates. There are three basic types — share options, results-relatedbonuses(often based on profitability), and individual merit pay.
Share options: Share-based schemes(which are usually based onan option to purchase shares in the future at a predeterminedprice) are not normally directly performance-related because sharevalues are subject to all kinds of market pressures. These typesof schemes are not, of course, available to public-sectororganisations, and neitherare they underthe direct control of thesystems department. Nevertheless, where share-option schemesdo exist, as many employeesas possible should be encouraged tojoin because they tend to generate loyalty to the company.
Results-related bonus: These can be organised at group (forexample, project-team), department, or company level. At theproject-team level, performance/delivery objectives are set at thebeginning of the project, and bonuses are paid at the end, to anagreed formula, if the objectives are met. Departmental andcompany-level bonuses are similar in concept, but are usuallybased on criteria such as profitability. They are typically awardedseparately from normalsalary reviews, depend on how well thecompany performs, and are paid annually. Such schemesare notcommon in non-profit-making organisations, where it may be moredifficult to set performance objectives.
Individual merit pay: Merit pay is an individual award, paid toan agreed formula, for meeting pre-agreed standards ofperformance.It is highly motivating becauseit is directly relatedto individual performance. While it can be divisive, and it can bedemotivating for the poor performer, it works well for the majorityof employees.
Finally, companies have found four lessons to be of the greatestimportanceto the success of a performance-related pay scheme.Theincentives should be paid in a timely manner, and be linkedto short-term goals; the performance payment should be keptseparate from normalsalary payments; payments should not beawarded as a matter of course, but instead should be related tomeasurable performance objectives and not awarded for averageresults; the goals set for performance should be mutually agreedand realistic.
FITTING JOBS TO PEOPLE
In times of increasing staff shortages, greater flexibility can beobtained by fitting jobs to people rather than vice versa. This isthe approach taken by Morgan Guaranty Trust Company of NewYork, an international bank with systems staff in Europe andAmerica. Whenever a memberofstaff moves, it is seen as a chance-to restructure a job, to take account of the new staff member’sstrengths and weaknesses. This does not mean a major re-organisation every time someoneleaves,It is merely an adjustmentto suit a particularsituation, which frees Morgan Guaranty fromthe usually unsatisfactory attempts to recruit staff who match arigid job specification.

OPTIMISING TEAM SIZE AND COMPOSITION
Because team workingis commonplace in systems development,it is important to understand the factors that affect team

42 ©Butler Cox ple 1990

 ©Butler Cox ple 1990

Chapter 3 Improving staff motivation

productivity. Team size and team composition are two of the most
significant.

THE BENEFITS OF SMALL TEAMS

Most companies undertaking large systems development projects
now usually break the project into a series of smaller, self-
contained ones. One companywetalked to estimated that one of
its current projects would require between 100 and 140 work-years
of effort. The project could be phased, but the first phase could
not be reduced to fewer than 80 or 90 man-years. Furthermore,
this phase had to be completed within nine months. To avoid the
difficulties of managing such large project, the company chose
to split the project into separate sub-projects, each one to be
undertaken by teams of no more than eight people. Another
company has, in the past, used teams of up to 40 staff — butis
seeking ways of avoiding this in future. It has learnt that large
teamslead to problemsdefining and allocating responsibilities and
accountability, identifying ‘whole’ or ‘complete’ pieces of work,
communicating between team members, and staff involvement.

These companies have recognised the benefits of using small
teams. This may explain why,in one of our surveys, the importance
of team size was ranked very low (77th out of the 84 factors we
assessed). Companies with small project teams no longer perceive
team size as an important issue. Figure 3.10 shows the maximum
numberof staff used at any one timein the projects recorded in
the PEP database. The most prominentpeakis five. Seventy-five
per cent of projects have a peak staffing of 12 orless.

Our view is that, wheneverpractical, systems developmentproject
teams should belimited to just five or six people. This view aligns
with the research of Dr R Meredith Belbin of the Industrial

Figure 3.10 Seventy-five per cent of projects have peakstaffing of 12

or fewer

Numberof
40 +projects

30

20

10

 _ io 15 a20
Maximum numberofstaff during system-build phase (Source: Butler Cox PEP database)

43

a

re

eeee

Chapter 3 Improving staff motivation

Training Research Unit (formerly part of University College,London). He found that a team of four was the minimum necessaryto accommodatethe essential team roles effectively. Teams of sixwere found to be best in terms of their stability and endurance,andtheirability to allow either for some overlap in team roles,or for one or two individuals to concentrate on single roles.
THE EFFECT ON PRODUCTIVITY OF TEAM COMPOSITION
Although much systems development work can be accomplishedby individuals, there are times when genuine team working isneededin every project, such as during the design phase. Teamcomposition and ensuring that the roles of the individual areclearly defined then becomecrucial. Grouping individuals intoteamshelps to ensure that everyone is committed to, and workingtowards, achieving the overall objective of developing a successfulsystem.
There is a considerable body of material about the number ofidentifiable roles in a team. A case in point is the work carriedout by Dr Belbin, mentioned above.His research led him to identifyeight team roles, each of which he believed to be essential to thesuccess of the team (see Figure 3.11). This analysis is based onthe assumption that there is little or no ambiguity in roledefinition — something that becomes increasingly difficult toachieve as the complexity of tasks to be undertaken by a teamincreases. In practice, however, Belbin found that one individualcan perform more than onerole. According to this research,therefore, the numberofindividuals in a team need not be as manyas eight.
Individuals who are brought together in a systems developmentteam do not immediately form a closely-knit unit. Teams gothrough their own stages of development — known as orientation,internal problemsolving, growth and productivity, and evaluationand control — as weillustrate in Figure 3.12, on page 46. (Thestages are, of course, quite distinct from the development phasesof the project that the team is working on.) Team performanceis heavily influenced by the team-working stage of developmentthat has been reached. Each stage in the team-developmentprocess is characterised by different behaviour and teamperformance.
Team developmentislikely to stagnate at the internal problem-solving stage, preventing performance from progressing to the highpoint associated with strong cohesion and alignmentof individualand team goals. Moreover, changes in team composition, structure,andleadership can cause team developmentto revertto an earlierstage. Team leaders need to recognise and reduce the impact ofthese earlier phases of team developmentso that the team canprogress as quickly as possible to the most productive phases.
Systems development work tends to be more routinein the laterdevelopmentphases. This assertion is based on a study undertakenin 1986 of 68 staff from 20 large-sized firmsin the United States.The staff had workedin data processing for five or more years,and most were systems analysts who had worked earlier asprogrammers. Participants in the study were asked to respond toquestions aimed at assessing how routine the work was at eachphase of development. The results, which show that systems

44 ©Butler Cox ple 1990

Chapter 3 Improving staff motivation

 Figure 3.11 Eight roles are essential for a successful team

 Role Typical characteristics Positive qualities Allowable weakne:

 Company worker:
turning concepts and plans into practical Conservative, dutiful, Organising Lackofflexi
working procedures; carrying out agreed predictable. practical common sense, unresponsiv
plans automatically andefficiently. - hard-working, self- 5

discipline.

 Chairman:
controlling the way in which a team moves
towards the group objectives by making
best use of team resources; recognising
where team’s strengths and weaknesses
are; ensuring best use of members’
potentials.

Calm, self-confident, A capacity for treatin
controlled. and welcomingall.

potential contributors on
their merits and without
prejudice. A strong
sense ofobjectives.

possible breaks in approachto the
problems with which group is confronted.

Shaper: 2
shaping the way team effort is applied; Highly strung, outgoing, Drive anda readiness to
directing attention generally to the setting of dynamic. challenge inertia,
objectives and priorities; seeking to impose ineffectiveness, —
some shape or pattern on group discussion complacency, or self-
and on outcome of group activities. deception. :

Plant: :
advancing new ideas andstrategies with Individualistic, serious- Genius, imagination, 5
specialattention to major issues; looking for

|

minded, unorthodox. intellect, and knowledge.

Resource investigator:

exploring and reporting on ideas,
developments, and resources outside the
group; creating external contacts that may
be useful to the team and conducting any
subsequent negotiations.

 Extroverted, enthusiastic, |A capacity for contacti |
curious, communicative.

Monitor-evaluator:

analysing problem; evaluating ideas and
suggestions so that team is better placed to
take balanced decisions. Sober, unemotional,

prudent. ‘hard-headedness

Team-worker:
supporting membersin their strengths;
underpinning members in their short-
comings; improving communications
generally.
between members, and fostering team spirit |

 Socially orientated, rather| Anability to resp } Indecisivene

mild, sensitive. peopleand t ‘situations, “momentsof crisis.
: 2 andto promotete: im. :

Completer-finisher:ensuring team is protected as far as
commission; actively searching for aspects

of attention; maintaining a sense of urgency
within the team. possible from mistakesof both omission and col cientiou

or work that need a more than usual degree

Pai stal <ing, order
5 anxious

(Source: Belbin, R M. Management teams — why they succeed orfail. Heinemann, 1981.)

 © Butler Coxple 1990

development work becomes more routine as the phases progress,
are shownin Figure 3.13, overleaf.
Teamsconsisting of people withsimilar personalities tend to work
best on simple routine tasks. Such teams encourage cooperation
and communication. Thus, teams madeup of people with similar
personalities will be more appropriate during the later

45

Chapter 3 Improving staff motivation

Figure 3.12 Teams go through four stages of development

(Source: Szilagyi, A D and Wallace, M. Organizational behaviour andperformance. Scott, Foresman & Company, 1983.)
Figure 3.13 Earlier phases of

(Source:
systems developmentare
less routine thanlater
phases

White, K B and Leifer, R.
Information systems development
success: perspectives from
project team participants. MIS Quarterly, September 1986.)

development phases, when the extent to which work is routineis greatest. By contrast, teams madeup of unlike individuals workbetter during the earlier project phases when the amount ofroutine workis smaller. Such teamsare goodfor problem-solvingtasks, and for tasks involving complex decision-making becausethe team members stimulate each other, producing a higherlevelof performance and quality. Teams made up of unlike individualscan, however, create a great deal of conflict. On the other hand,teams of similar people encourage conformity, which can lead tounproductiveactivity if the team norms(for work output, quality,workingpractices, and so on) are not consistent with team goals.
From the above,it is clear that the formation of a balanced teamrequires that account be taken of considerably more than thetechnical expertise of individual team members. Those responsiblefor forming teams haveto be concerned with the personalities ofthe members, and to be aware of the need to change the teamcomposition as a development project progresses. In future, thecomposition of project teams may need to become more fluid, withindividuals being assigned to them from time to time and ona part-time basis, so changing the composition of the team in terms ofpersonality as well as skill. The need to do this becomesincreasingly importantas the size of project teams decreases, as

46

© Butler Cox pic 1990

 © Butler Cox pic 1990

Chapter 3 Improving staff motivation

it will do with the use of contemporary systems development
methods.
Cohesion and self selection are further considerations in team
formation. Cohesion describes the extent to which team members
are able to form a closely knit working unit. Productivity increases
with increasing cohesion, mainly because cohesive teams are
better at conforming to team norms, provided the norms are
aligned with team goals. Cohesion decreases as team size increases.
It also decreases as intrateam competition increases (althoughit
increases with growing interteam competition).
Self selection, whereby team membership is decided by the team
members themselves, is an approach to team formation that can
be successful. In the publication, Peopleware: productive projects
and teams, T DeMarco and Lister report on how one company
advertises new projects on the noticeboard and invites staff to
form themselves into teams to bid for the work. The potential
teams are assessed in termsof their suitability to the work, how
well the individuals complement each others’ skills, and the likely
disruption to other work. Cohesion among the members of teams
formed in this way was usually high.

ENCOURAGING THE RIGHT STYLE OF LEADERSHIP
The definition and measurementof leadership remain something
of a mystery. In additionto acting as a drivingforce, an important
role of team leaders is to influence, assist, and motivate team
members in their work. The team leader’s role in systems
developmentis somewhatclearer, however. Alongside the directing
and guidingroleis a facilitating one. In discharging this role, one
of the prime measures ofthe leader’s effectivenessis the ability
to resolve conflicts amongst the team members.

CHARACTERISTICS OF LEADERSHIP

Leadership is difficult to define. A composite view of the
characteristics of team leadership is shown in Figure 3.14, overleaf.
This illustrates that the team leaderis only one influence on an
individual’s behaviour. The team leader’s behaviouris likewise
influenced by manyfactors, including that of the individuals in
the team. Team leaders therefore need to take account of the
factors that may be influencing individual performance and act
either to change the factors that are causing unproductive
behaviour or to increase the strength of other influences that
promote productive behaviour. Rather than acting as a driving
force, the primary role of team leaders is to direct, influence, assist,
and motivate team members in their work.
If leadership is difficult to define, it is equally hard to measure.
To date, no attempt has been entirely satisfactory. In the 1940s
and 1950s, measuring leadership traits was fashionable. The idea
wasto identify features of successful leaders in termsof physical
characteristics, social background, intelligence, personality, and
task-related and social characteristics. There proved to belittle
correlation between these characteristics and a person’s
effectiveness as a leader, but they did point to the importance of
certain characteristics of leaders — alertness, self-confidence,
personalintegrity, initiative, self-assurance, dominance,their need

47

Chapter 3 Improving staff motivation

 Figure 3.14 The team leaderis only one ofseveral influences on the behaviourof subordinates

Note that people's be-
haviour is not directly
influenced by their
situation — only by their
perception of it. Their
Own personality and
skills, as well as their per-
ception of the work
situation, are all
influenced by their pre-
vious work experience
both within the team and
organisation and from
Previous employment.

The arrows represent influences andthe directions in which they apply

for achievement and responsibility, their high task orientation,their active participation in various activities, their personal-interaction strengths, and their willingness to cooperate withothers.
In the 1950s, behavioural theories were concerned with leaders’actions. The theories concentrated on two basic leadershipstyles — task orientation and employee orientation. Research atthat time concluded that behaviour alone was an insufficientexplanation of leadership in practice, and that other ‘situational’factors needed to be taken into account.
By the late 1960s, situational theories were in vogue. Thesetheories were concerned with results andindicated that leaders’effectiveness depended on their ability, first, to diagnose aproblem, and then to changeeither the various situational factorsor to adopt an appropriate leadership style.
THE ROLE AND STYLE OF THE TEAM LEADER
Although the definition and the. measurement of leadershipremain something of a mystery, the team leader’s role in systemsdevelopmentis clearer. Alongsidetherole of getting the job doneis the facilitating role — it is oriented primarily towards helpingindividual team members to increase personal reward andsatisfaction by aligning individual goals with team goals. Four keybehaviourpatternspersist, regardless of the style that a particularleaderadopts to suit changing circumstances. The four behaviourpatterns are knownas participative, supportive, goal-oriented, andorganisational.
Participative behaviourstresses sharing information, consultingteam members,and usingtheir ideas and suggestions in decision-

48

utler Cox ple 1990

 © Butler Cox pic 1980

Chapter 3 Improving staff motivation

making. Supportive behaviour emphasises concern for the welfare
and well being of team members, and the creation of a friendly
andpleasing environment. Goal-oriented behaviouris concerned
with setting challenging goals, expecting team members to perform
at the optimum level, and continually seeking improvements in
performance. Organisational behaviour includes planning,
organising, controlling, and coordinating individuals’ activities.
Planning is also concerned with minimising ambiguity in role
definitions, and minimising role conflict — both problems that
decrease with smaller teams. Different team members will respond
in different ways to the behaviour patterns of the team leader.
An effective team leader will therefore need to adjust his
behaviourto suit specific situations and individuals.
The importance of leadership abilities andstylesis certainly clear
to the developmentstaff we have surveyed. Overall, they ranked
the leadership abilities and style of their immediate manager as
sixth out of 84 factors. In general, the level of satisfaction with
the immediate manager’s leadership is lower than the level of
importance thatit is accorded by developmentstaff — to a greater
extent than for most other factors studied in our survey. There
are, however, considerable differences from company to company.
A preliminary analysis of the data suggests that at least half of
the companies we surveyed need to pay attention to this area. The
problem appears to lie mainly in the fact that staff do notfeel that
they are being given the opportunity to participate sufficiently
in their immediate manager’s decision-making. Some companies
are already well aware of the need to do this, however. One, noted
for its high systems development productivity, emphasised staff
participation in a recent recruitment campaign. This campaign was
based on a survey of existing staff, who identified participation
as a consistent and necessary themein their working environment.

Another important characteristic of team leadership is the
flexibility to adaptleadership style to suit the circumstance of the
moment. Flexibility becomes increasingly important when project
and team requirements change from phase to phase of systems
development. Flexibility is required for several reasons. Oneis to
handle the changing nature of work in the different phases.
Anotheris to handle the developmentin team workingthat takes
place between initial orientation and final evaluation. Other
requirements of leadership flexibility are to handle different
situations and individual team members, and to handle different
types of conflict, which is discussed further in the next section.

THE STRENGTHS REQUIRED OF A TEAM LEADER

To substantiate their position, leaders needa portfolio of strengths,
called an influence base. The relative importance of these
influences will determine a leader’s effectiveness in getting his
group to perform well, and in resolving conflicts. According to
some researchers, there are nine separate sources of influence that
can be distinguished within a leader’s influence base.

According to a survey by H J Thamhain and D L Wilemon, Conflict
management in project life cycles, reported in the Sloan
Management Review, project managers consider the top three
influences to be expertise, authority, and work challenge (see

49

Chapter 3 Improving staff motivation

Figure 3.15). In the research programmeof which the survey wasa part, researchers looked at the effect of each influence on twomeasures of leaders’ effectiveness — project performance andconflict resolution. They found that the more that projectmanagers used expertise and work challenge to influence teammembers, the better their overall performance and the greatertheir ability to resolve project-related conflict (see Figure 3.16).Although authority is perceived by project managers to beimportant(they rank it second to expertise), their superiors bélieve
 Figure 3.15 Nine sourcesofinfluence can be distinguished within aleader’s influence base

(Source: Thamhain, H J and Wilemon, D L. Conflict managementin projectlife cycles]Sloan ManagementReview, vol. 6, no. 3, Spring 1975.)

 Figure 3.16 The more project managers use expertise and workchallenge to influence team members,the bettertheir overall performance and the greater theirability to resolve conflicts

“Kendall rank correlation coefficients, which can range from —1 to +1.Positive correlations indicate that the source of influence has a Positive effect oneffectiveness.
(Source: Thamhain, H J and Wilemon, DL. Conflictmanagementin projectlife cycles.Sloan ManagementReview,vol. 6, no. 3, Spring 1975.)

50

© Butler Cox ple 1990

 utler Cox ple 1990

Chapter 3 Improving staff motivation

that its use leads to lower effectiveness ratings in terms of both
project performance and conflict resolution.
The ability to resolve any conflicts that arise is one of the prime
measures of a team leader’s effectiveness. Because teams are
composed of people with different personalities, some conflict is
virtually inevitable. Up to a point, conflict can be beneficial
becauseit can help to introduce ideasthat lead to better decision-
making, but conflict is destructive if it erodes team effort and
spirit, if it results in poor decision-making, or if it introduces
lengthy delays resulting from matters of insignificance. The degree
of conflict between team members therefore has to be managed.
There are five basic ways of managing conflict. One is by
confrontation, in which the disputing parties solve their
differences by focusing on issues, looking at alternative
approaches, and selecting the best one. The second is by
compromise: searching for a solution that brings some degree of
satisfaction to all. The third is by accommodation, in which the
parties seek areas of agreement and pay less attention to areas
of difference. The fourth is called forcing, which involves the
group’s adopting the viewpoint of one party at the expense of
another. Finally, there is withdrawal, in which the groupretreats
from the area of conflict.
Figure 3.17 shows how Thamhain and Wilemon’s research found
conflict-handling methods to be favouredor rejected by the project
managers they surveyed. Confrontation was favoured by the
greatest numberandrejected by the fewest. Withdrawal was least
popular. Project managers who emphasised expertise and work
challenge as their most important influences were most likely to
resolve conflicts by confrontation, and to avoid withdrawal. Those
favouring withdrawal (and compromise) tended to use friendship
as their most influential means of managing conflict.

Figure 3.17 Most project managers resolve conflic by confrontation

Percentage of project managers
favouring orrejecting the method

Conflict-handling Rejecting Favouring
mete 40 30 20 10 10 20 30 40 50 60 70

Confronting

Compromising

Accommodating

Forcing

Withdrawing

(Source: Thamhain, H J and Wilemon, DL. Conflict managementin project life cycles.

Sloan Management Review,vol. 6, no. 3, Spring 1975.)

51

Chapter 3 Improving staff motivation

Thamhain and Wilemon also found that project managers who
emphasised expertise had to deal with increased conflict on
technical issues. They concluded that project managers were more
concerned about the outcome of a conflict and its impact on
project performance than they were aboutthe intensity of conflict.
The implication for systems development is that team leadersshould be selected on the basis not only of their experience andtechnical expertise butalso their ability to resolve conflicts amongteam members.

MOTIVATING MAINTENANCE STAFF
Software maintenance has long been generally considered as lessimportant than new systems development. It is often anafterthought in systems design, and is perceived as demandinglimited skill and enjoyinglittle prestige and attention. Yet the sheervolume of maintenance work — constituting 50 per cent or moreof the systems development workload — demandsthat managerspay particular attention to improvingstaff motivationin this area.They may do so in two ways: by avoiding attitudes that aredamaging, and by emphasising staff selection and training.

ATTITUDES TO MAINTENANCE

Maintenanceis often, by nature, more difficult and demandingthan new systems development. Maintenance staff do not startwith a clean sheet of paper. Often, they have to work to shorttimescales, particularly for corrective maintenance. Testing canbe more demanding whenthe system being maintained hastofit,as is often the case, into the tight constraints of surroundinghardware and software, and when the methodsand tools availableto help with maintenance are not as well developed. Yetprogrammers tend to avoid maintenance work, preferring insteadto work on new systems development assignments. One of thereasons for this is the ambivalence of many managers towardsmaintenance.
This perception has been confirmed by one of our own surveys.It shows that managers attach more importance to systemsdevelopment work than they do to maintenance (see Figure 3.18).Seventy per cent of managers rated systems developmentas beingmore demanding oftheir time than maintenance; only 14 per centrated maintenance as more demanding. These ratings bore norelation to the current level of maintenance in the organisations.Nor did they correlate with changesin the levels of maintenanceover the past two years.
Attitudeslike these have a damaging effect on staff motivation.We have examined how the proportion of maintenance workinvolved in a job affects the motivation of the person doing thatJob. This is illustrated in Figure 3.19, which compares jobsaccording to their Job Motivating Score (JMS), which we describedearlierin this chapter. The patternis one of falling job motivationas the proportion of maintenance work increases, except for thosestaff who are involved full-time, or almost full-time, inmaintenance.

52

© Butler Cox pie 1990

© Butler Cox ple 1990

Chapter 3 Improvingstaff motivation

 Figure 3.18 Seventy per cent of managers rated systems development as
being more demanding of their time than maintenance

Use of time Number of managers
5 10

Development mostly :

Development somewhat

Equal

Maintenance somewhat

Maintenance mostly (Source: Butler Cox survey of PEP members)

Figure 3.19 Job Motivation Scores (JMSs)vary according to the amount

of maintenance work performed

JMS
 10 20 30 40 60 60 70 80 90

81-100
61-80

Maintenance 41-60as percentage
of job content 21-40

1-20

(Source: Butler Cox survey of PEP members)
High levels of job satisfaction can, however, be obtained from
working in a maintenance environment. Software maintenance
work can be highly motivating because it is challenging,it offers
great variety, and the results are highly visible.

This applies to all three categories of maintenance — corrective,
adaptive, and perfective (see page 22). Corrective maintenance
is often very frustrating, because of the absence of complete
documentation andthedifficulties of recreating error conditions.
Often, it has to be completed in a matter of hours. Adaptive
maintenanceis similar to new developmentin termsof its phases,

53.

Chapter 3 Improving staff motivation

but the emphasis is different. Analysis is the dominant phase in
adaptive maintenance. The remaining phases of design,implementation, testing, and system release/integration are no lessimportant, but they are proportionally smaller. Adaptivemaintenance provides frequent opportunities for maintenancestaff to communicate with users as the changes are implemented.Perfective maintenance combines someof the main characteristicsof the othertwo categories. Each category demandstechnical skill,combined with an ability to communicate rapidly andunambiguously. Compared with new systems development,maintenance offers a broader variety of work, and is equallydemandingin other respects.

Changingsystemsstaff’s perception of maintenance as intrinsicallyunmotivating work is not, however, an easy task. It will requirevery careful selection and trainingof staff, and most important,a change in managementattitudes. Five times as many managerspay more attention to new development work than tomaintenance, than vice versa. Until managers see maintenanceas an important strategic issue, problems of low staff morale arecertain to persist.

SELECTING AND TRAINING MAINTENANCE STAFF

The requirements of maintenance place heavy demandsonstaffselection and training. The main staff attributes in maintenanceare sound technicalability, an understanding of past as well aspresent developmentpractices, and an ability to communicate andto work underpressure. The shorter the timescales involved,thegreater the need for good-quality maintenancestaff. Comparedwith new systems development, maintenance workis probably lessdemanding in terms of conceptualising skills (imagination andcreativity) but more demanding in terms of affiliation skills(patience, adaptability, and willingness to lend support).Maintenancestaff should be selected with these characteristicsin mind.

In practice, maintenance is often allocated to staff with lessexperience than average. There is no harm in this, as long as thestaff meet the criteria outlined above and as long as timescalesare notcritical. It does provide an opportunity for less experiencedstaff to learn about the problems of application changesat firsthand — experiencethat they can putto good use in developmentprojects by encouraging designers to think about the implicationsfor maintenance.

In contrast to conventional wisdom, maintenance demands morestaff training than does new systems development, particularlywhen the maintenancestaffare relatively inexperienced. In termsof technical and problem-solvingskills and training, thereislittledifference between the requirements of maintenance and newdevelopment, but two further considerations point to a differencein training requirements. Thefirst is the need for maintenancestaff to understand past practices and development methods,inaddition to current best practice. The second considerationis thatof communication, which is as important for maintenance staffas for their development counterparts.

54

© Butler Cox pic 1990

© Butler Cox ple 1990

Chapter 3 Improving staff motivation

Periodic job rotation between maintenance and new development
should be a componentof any training programme. Maintenance
staff will thereby get an opportunity to influence the development
process and to learn about applications that will need to be
maintained in subsequent years. New developmentstaff will get
an insight into current issues of maintenance, and learn to
understand the importanceof designing systemsthat can be easily
maintained.

55

Chapter 4

Using techniques and methods

Most systems development managers would like the systemsdevelopment process to become more manageable and lessdependent on the skills of individual analysts and pro-grammers — experts who are in short supply and expensive totrain. In other words, they wouldlike a well defined, systematicprocedure or set of processes for developing systems.
With this in mind, many companies have introduced oneor otherof a.wide range of techniques and methodsthat are available onthe market. (Techniques, such as data analysis, are rigorousprocedures on which systems developmentis based. Methods areways of implementing the ideas embodied in these techniques.)
The benefits are not clear-cut. Sometimes, they manifestthemselvesin the form of lowerstaff skills than would otherwisebe the case; at other times, in the form of improvedease of useof the end product. Only in three cases have we found convincingevidence of consistent success in applying techniques andmethods: when they are used to help formalise software testing,to help control maintenance, and to help establish a quality-management programme.

FORMALISING SOFTWARE TESTING
Softwaretesting is a fruitful area for improving both productivityand quality. Thefirst step is to make sure that testing takes placethroughout the developmentcycle, rather than merely at the end.This is called whole-cycle testing, and several testing aids andtest-data preparation aids are available.

WHOLE-CYCLE TESTING

There are well established and widely used life-cycle models forthe software-developmentprocess, the best known of which, firstpresented in 1970, is the so-called ‘waterfall model’, illustratedin Figure 4.1. The main featureof this modelis that developmentproceeds through a series of well defined phases. In an idealdevelopment, each phaseis verified and provederror-free beforethe developers proceed to the next. In practice, some iterationis required whenerrors introducedin one phaseare not detecteduntil a later phase. This iteration process is represented inFigure 4.1 by the upward-pointing arrows.
The shortcomings of the approach implied by the waterfall modelhave become apparentin recent years. The most significant arethat testing is viewed as a secondary activity, added on to theend of each phase, and that systemtesting is not planned until
the final development phase.

56

utler Cox ple 1990

©Butler Cox pic 1990

Chapter 4 Using techniques and methods

 Figure 4.1 In the traditional ‘waterfall’ model of the software-develop-
mentlife cycle, testing is viewed as a secondary activity

Analternative approachis illustrated in Figure 4.2, overleaf.It
shows development occurring in three main, parallel streams of
activities. In each development stream, the first objective is to
producespecifications. The second is to specify whatto test. The
third is to develop the test environment. Only then are the
components assembled ready for testing. Testing is thus carried
out at the end of each development stream, and measures
different aspects of the developmentin each stream, as described
in Figure 4.3, also overleaf. The primary focusis on the testing
activity rather than on the productionactivity, and the outcome
of each stream ofactivity is both a product and a measurement
of its quality.
The benefits of this modified approach are four-fold:
— By developing test specifications and the test environment

concurrently with lower-level specifications or program code,
the overall development time is shortened.

— Developing a test specification can highlight deficiencies in
the requirements, design, or module specifications; nts
therefore provides a valuable opportunity to review the
specifications.

— Management’s attention is focused at an early stage on
defining the important features of the system.

— Developingthetestsis a separate activity from producing the
design or program. It is much easier for people to define

57

Chapter 4 Using techniques and methods

Figure 4.2 In the modified software-developmentlife cycle, the emphasis is on testing rather than production

Code and debugmodules

Figure 4.3 In the modified software-developmentlife cycle, testing iscarried out at the end of each development stream

 Module tests
A program module is the smallest testable componentof a system.Its specificationcomprises a definition of its input data, its output data, and the processes fortransforming oneinto the other. The purposes of moduletesting are:— Toverify that the module conforms to specified standards.— To verify that measures of the module's characteristics, such as complexity, arewithin specified ranges.
— Toverify that the module performsits specified functions when executed witha representative sample of input data.
— To verify that each line of code and each of the Possible branches have beensuccessfully executed at least once.
Integration tests
Integration tests are designed to measure the behaviourof combinations of modules.They are of two types:
— Verifying the consistencyof data definitions that are passed between the modules.This applies both to data that is passed directly, and to data that is passed viaa database or shared memory.
— Verifying that all calling paths through the combinations of modules are exercised.
System tests
System tests are designed to measure the behaviourof the total system.This includestests for someorall of the following features:
— The functionality required by the users.
— Theability to start the system.
— Theability to change the hardware configuration of the system.This particularlyapplies where there are back-up processors or Peripherals that can be substitutedin various combinationsin the eventoffailures.
— Theability to restart the system andto recoverlosttransactions following

a

failure.— Performance characteristics, such as responsetimes, delays, and throughput.— The behaviourof the system when loaded to thelimits ofits resources.— Theability to prevent unauthorised users from gaining access to the system.

58 ‘©Butler Cox pic 1990

 © Butler Cox ple 1990

Chapter 4 Using techniques and methods

objective tests of a product that they have not built, and the
test cases developed underthese circumstancesarelikely to
be a better sample.

The most critical question to be decided is what to test.
Managementshould clearly define the measurements of quality
that it requires, before tests are specified and the test environment
is created. If ease of use is a requirement, for example, tests could
be designed to measure how longit takes to input a transaction,
how quickly the system can be learnt, and how many mistakes
are made; knowingthat these aspects will be tested, the system
designers will concentrate on the user interface. If accuracy of
data is stated as an important requirement, the activity of
specifying the tests will highlight whetherall the data must have
a high degree of accuracy, or whether someisless critical. As
Figure 4.2 shows, the decision about what to test — the
requirements, design, or module-test specifications — can be taken
as soon as the specifications at the beginning of each development
stream are complete.

TESTING TECHNIQUES AND AIDS

The main techniques are the review processesof inspections and
walkthroughs. These are applicable to testing (or verifying) the
documents associated with software production(that is, program
code,specifications, designs, user manuals, and so on). Inspections
and walkthroughs are less widely used thantesting tools, although
our analysis of the PEP database shows that the benefits to be
gained are quite substantial. Formal methods for software
developmentare widely used, but although testing is a component
of them,it is poorly described, and is not based on the concept
that testing and production are activities to be carried out
concurrently. Software testing methods are, however, beginning
to be produced,andsignificant developments can be expected in
the future.
No testing aid will, of course, reduce the intellectual effort
involved in designingthe test environmentand selecting test data.
Theuseof testing aids will, in itself, do nothing to improve the
quality of testing. Nor will anysingle aid to testing coverall aspects
of the process.
The quality of every deliverable produced during the development
of asystem,including requirementsspecifications, designs, code,
and test specifications, should be analysed as part of the normal
developmentprocess. Various techniques andtools are available
for this purpose. The two most commonly used techniques are
inspections and walkthroughs.

In addition, two types of tools — static analysers and dynamic
analysers — can be used to analyse the quality of the code itself.
These tools are discussed in detail in Chapter 5.

The use of these techniques and tools is essential for almost all
applications with high-reliability requirements, such as those
where humanlife depends on the successful operation of the
software. These applications should therefore be written only in
a language that can be analysed by thesetools.

59

Chapter 4 Using techniques and methods

Inspections: The inspection technique was first developed byMichael Fagan while he was working at IBM in the early 1970s.Aninspectionis carried out by a team, typically of four people,whoserolesare precisely specified. A key to successfulinspectionsis that the team must identify errors only; it must not be side-tracked into discussions of solutions, or alternative designstrategies. It is important that the results of the inspection arerecorded, andthatall errors are corrected by the original designeror programmer.
Inspections are time-consuming (typically, between 4 and 8 percent of total developmenteffort), and need to be scheduled inthe project plans. The total time (including preparation time) foran inspection of a design that produces 1,000 lines of code is10 to 20 man-hours, and for an inspection of the 1,000 lines ofcode produced from this design, 20 to 60 man-hours.
In carrying out inspections, each person needs to have a clearunderstanding of his individual role, and of the purpose of theinspection procedure. The techniquesare not easy to learn, andan organisation that intendsto introduce inspections should trainits staff on formal courses.
Studies of the effectiveness of performing inspections on sourcecodeindicate that an inspection typically detects up to 60 per centof the errors in the code. The reduction in developmentcost, afterallowing for the additional cost of the inspections, is estimatedat 10 per cent. This is consistent with the results reported earlierin this chapter; organisations using inspections or walkthroughshad aninternal productivity level about 15 per cent higher thanorganisations that did not use them. If the subsequentmaintenance phase is also included, the savings may beconsiderably larger.
Walkthroughs: Theseare a less formal type ofinspection and mayhave few, if any, of the formal characteristics of inspections.There are very few rules on how to carry out a walkthrough. Ata minimum, it involves one person checking another’s work.Because of the lack of formality, walkthroughs are cheaper tocarry out than inspections. They are almost certainly lesseffective, although quantitative data is lacking.
There are many tools to help and support the testing process.These range from tools to help in the process of testing, such asa test harness, to tools that help in the management of the test.These and othertesting tools are discussed in Chapter 5.
Testing covers both the development process (the process ofproducingthefirst version of the system), and maintenance (theupgrade and enhancementof the system through the remainderofits usefullife). It is to the last of these areas that we now turnour attention. Software maintenance accounts for a significantproportion of most companies’ systems developmentefforts. Themore effort that goes on maintenance, the less is available fordeveloping new systems. Yet, despite the obvious importanceofmaintenance, both in its own right and in the context ofproductivity enhancement, the attitude of many systemsmanagers to the subject is strangely ambivalent.

60
© Butler Cox pic 1990

utler Cox ple 1990

Chapter 4 Using techniques and methods

CONTROLLING MAINTENANCE
As well as improving software testing, techniques and methods
can help to improve both productivity and quality in software
maintenance. Organising maintenance, and the motivation of
maintenancestaff, are topics that are discussed in Chapters 2 and
3 respectively. Here, we are concerned with gaining control over
the maintenance process.
Thefirst step is to formalise the process of deciding whether a
maintenance request justifies a system-replacement decision.
From a procedural standpoint, the way to do this is by adopting
a maintenance-rating method. Next comes the question of what
proportion of total resources to allocate to maintenance.
Managing the maintenanceprocess shoulditself be formalised by
breaking the process downinto a series of steps. These steps need
to be carefully coordinated, not merely monitored individually.

FORMALISING THE MAINTAIN-OR-REPLACE DECISION

Whetherto continue maintaining a system or to replace it with
anew oneisa critical managementdecision because operational
systems deteriorate with age. There is a need to audit the system
to determine whether and when to replace it. The auditing
procedure should be formalised, andit should bealigned with the
procedure for evaluating systems for new applications. Thetasks
of defining costs and setting priorities will be mucheasier if there
is some routine maintenance-rating process established within the
company so that systems development departments allocate a
proportion of their capacity exclusively to maintenance. Thus,
choosing the momentto initiate replacement is best done by
subjecting every operating system to a formaland regular review.
After a new system has becomeoperational, there is a continuing
need to maintain it. A system that takes perhapsa year to develop
may havean operationallife of five years or more, and more effort
is likely to go into its maintenance than into its original
development. Most maintenanceeffort is adaptive. In oneof our
surveys, adaptive: maintenance accounted for 62 per cent of
maintenance effort compared with 20 per cent for corrective
maintenance and 18 per cent for perfective maintenance (see
Figure 4.4, overleaf). Adaptive maintenanceresults in significant
changes to a system in terms of both structure and coding.
An indication of the nature and extent of these changes is given
in Figure 4.5, also overleaf, which categorises the goals of our
survey respondentsin their adaptive maintenance efforts. Many
of these changes are enhancementsin the sense of adding new
facilities, providing new reports, and addingdatato reports, and
as such, they extend what wentbefore.It is therefore no surprise
that systems get larger as a result of maintenance. This growth
is illustrated in Figure 4.6, on page 63. It comparesfive features
of a system as they were at the time of our survey, and as they
were twoyearsearlier. All five features have grownin the period;
the numberof source statements has increased by 9 per cent, for
instance, and the number of programs by8 per cent.
Continuous modification can leave a system in a less stable state
than before. Each time the system is modified, it becomes

61

Chapter 4 Using techniques and methods

Figure 4.4 Adaptive maintenanceis the mainactivity

Percentage of maintenanceactivity

Adaptive maintenance

Corrective maintenance

Perfective maintenance

(Source: Butler Cox survey of PEP members)

 Figure 4.5 Most adaptive maintenance is to add new features

Percentage of adaptive
maintenanceeffort

10 20 30 40

Adding newfacilities

Providing new reports

Adding data to reports

Reformatting reports

Redefining interfaces

Consolidating data

Consolidating reports (Source: Butler Cox survey of PEP members)
potentially moredifficult to modify it again next time. Ultimately,this processleadsto a situation where maintenance becomestooexpensive or too complex, and operating response times areseverely degraded. Too many systemsreach this point withoutanyone being aware of what has happened. The deterioratingcondition of the system can, and should, be monitored andcontrolled through a process of formal review.
Today, virtually every company has a formal procedure forjustifying the developmentof new systems applications, yet fewhave a regular, formal procedure for auditing their operationalsystems. Reviewsofthis sort are essential. They help managersbothto identify operational systemsthat are approaching the pointwhen they should be redeveloped, and to re-evaluate thecontribution of operational systems to the business. Conducted

62

© Butler Cox pic 1990

© Butler Cox pic 1990

Chapter 4 Using techniques and methods

 Figure 4.6 Maintained systems growin size over time

Measure of system size Size Percentage growthin size
2 yearsva0 GeNGW 5 10 15

Database storage (megabytes)

Numberof source statements
(thousands)

Numberof programs

Numberoffiles

Numberof user reports (Source: Butler Cox survey of PEP members)

annually, they present an opportunity to re-assess the costs of a
system as well as its benefits. While this concept is not new,it
elevates maintenance to its appropriate place as a significant
management consideration.
The review should follow much the same process as the review
for new applications. Indeed, webelieve that cost/benefit analyses
should be undertakenfor existing operational systems and for new
applications at the same time, using the same evaluation process.
If the information requiredto justify (or rejustify) existing systems
in this wayis not readily available, it indicates a need for better
control and monitoring.
A good illustration of this process in operation is provided by a
manufacturing company whose systems development department
has a developmentstaff of about 60. The department has been
through a two-year period of strategy formulation and review,
while new systems development work has remained frozen. Now,
the company is beginning to see the benefits of a change in
direction. All user requests to the systems departmentthat exceed
one week of effort have first to be authorised by a steering
committee. Requests for maintenance work and newapplications
are examined on exactly the same basis, and resources are
allocated in the same way, on the basis of priorities and costs.
As a result, systems development resources are being made
available to work on replacement systems.

MAINTENANCE RATING

A decision on whether to continue maintaining an operational
system or to replace it must be based on a comparison of
costs — the projected cost of continuing maintenance on the one
hand, and the cost of replacing it on the other. To predict
continuing maintenancecosts, a simple rating system, based on
system characteristics, is a useful aid: it may provide either a
comparative rating of operational systems(as a basis for setting
priorities, for instance) or assessments on an absolutescale.

63

Chapter 4 Using techniques and methods

Comparative maintenancerating
A comparative rating might be produced on the basis of a
‘maintenance profile’ of the software, developed from a set of
criteria relating to such features as system age (maintenance getsharder as systemsget older), system size (the larger the system,themorecostly it is to maintain), and complexity. A fullerlist of suchfeatures, andofthe criteria relating to them,is showninFigure4.7.The maintenancerating of a system can be assessed by allocating,for each of these features, a score of, say, between one andfour.Because the relative importance of each feature will varydependingon an organisation’s circumstances, it makes sense toweight each one(again using scoresof oneto four, for instance).

Absolute maintenance rating
The absolute maintenancerating is a slightly more sophisticatedversionof the simple comparative rating described above. In theUnited Kingdom, the Central Computer and TelecommunicationsAgency (CCTA), which supplies information and advice to centralgovernment departments on the planning anduse of informationtechnology,has developed a ‘system maintenanceprofile’ which isa good example. Criteria are grouped under three headings:adequacy to user, which assesses the extent to which the systemcurrently meets user requirements; risk to the business, whichassesses the risk and impactofsystemfailure; support effort, whichassesses the resources required to maintain the system adequately.Altogether, there are nine criteria in the CCTA’s system
 Figure 4.7 Characteristics to consider when preparing a maintenancerating

 64

© Butler Cox pie 1990

 © Buller Cox ple 1990

Chapter 4 Using techniques and methods

maintenanceprofile, and a total of 16 measures (between one and
three measures for each criterion), as shownin Figure 4.8. Each
measure delivers a score. The scoresare totalled. Systemsscoring
100 or more are candidates for renewal.

ALLOCATINGRESOURCES

Maintenance-rating proceduresofthe kind described abovehelp to
establish the costs of and priorities for redeveloping existing
operational systems. Prolonging a system’s life means bearing
heavier maintenance costs, but at the same time, reducing the
workload of the systems development function, thereby freeing
more capacity for developing new applications.
This raises the question ofwhether the systems department should
allocate a fixed proportion of its development resources to

Figure 4.8 There are ninecriteria in the CCTA’s ‘system maintenance
profile’

 (Source: Managing Software Maintenance, CCTA,October 1987)

65

Chapter 4 Using techniques and methods

maintenanceand,if so, how much. Webelieve that allocating a
fixed share of capacity to maintenanceis asensible approach. The
proportion should be kept under review, however, andit willneed
to be changedfrom timeto time.
Limiting maintenance capacity as a matter of policy is, in fact,
commonplace among the companies we surveyed. The purposeis
usually to avoid maintenance work continually displacing new
development work. This limit is sometimes expressed as aproportion of the budget, and sometimesin terms of the type ofmaintenance work that is accepted. The former usually worksbetter, particularly whenthe procedurefor assessingmaintenanceis built into that for assessing new applications, along the linesdiscussed above.
Anexampleofhowthis policy can workin practice is the experienceof a publicutility. A few yearsago,it limited the proportionof thesystems department’s budget to be devoted to maintenance workto 40 per cent. This limit was introduced to help overcomeconflicting demandsfornew applications. The policy worked well,but the limit has recently had to be increased to 50 per cent, andresolving conflicting demands for maintenance is now a moreserious problem thanit is for new applications.
This example confirmsthat formal monitoring ofthe maintenanceenvironmentis required to implement such a policy successfully,because the pressure of competing demands for the limitedresources will increase. Restrictions on maintenance, howeverrational, will often be seen byusers as leadingto the provision of aninadequate service. However,if the limit is imposedaspart of anoverall strategy to manage the applications portfolio, a properjustification can be madein termsof contribution to the business.
MANAGINGTHE MAINTENANCE PROCESS
For maintenance work to be effective, it is essential to control theinputto the process — the procedure by which change requests arenotified and managedinthefirst place. This procedureof changemanagementisthefirst of several steps in the maintenance process.Change managementis followed by six further steps: impactanalysis, system release planning, change design, implementation,testing, and system release/integration. These steps, which occursequentially, are supported by a further activity that continuesconcurrently — progress monitoring. The whole process isillustrated in Figure 4.9.
To appreciate the importance of formalising the steps in themaintenanceprocess,it helps to understand more precisely whattheyare.

Change management
Change managementis thecritical first step in the maintenanceprocess. A formal procedure for change managementis essential fortwo reasons: it provides a common communication channelbetween maintenance staff, users, project managers, andoperationsstaff, andit providesa directory of changes to the systemfor status reporting, project management, auditing, and qualitycontrol. The basictool of the change-management procedureis a

66

© Butler Cox pic 1990

Chapter 4 Using techniques and methods

formal change-request documentthat formsthebasis of a contract
betweenthe user and the maintainer.

An important elementofchange managementis version control(or
software configuration control). It means tracking different
versions of programs, releases of software, and generations of
hardware, and it plays a major role in ensuring the quality of
delivered systems. Version control also ensuresthat softwareis not
degraded by uncontrolled or unapproved changes, and provides an
essential audit facility.

Impact analysis
The purposeofimpact analysis is to determine the scope of change
requests as a basis for accurate resource planning and scheduling,
and to confirm the cost/benefitjustification. Impactanalysis can be
broken downinto four stages. Thefirst stage is determining the
scope of the change request, by verifying the information contained
withinit, converting it into asystems requirement, and tracing the
impact (via documentedrecords)of the change on related systems
and programs. In the second stage, resourcing estimates are
developed, based on considerations such as system size (in
estimated lines of code) and software complexity. Code analysers
that measurethe quality of existing code can be helpfulatthis stage.
The third stage is analysing the costs and benefits of the change
request, in the same wayas for a new application. In the fourth
stage, the maintenance project manager advises the users of the
implications of the change request, in business rather than in
technical terms, for them to decide whetherto authorise proceeding
with the changes.

Figure 4.9 The formalised maintenance process consists of seven steps

Software configuration management

Change
 Imanagement| A

=Sequenceof stepsin the process
—¥ Links betweenelementsinvolved in the process

(Source: Butler Cox)

 Cox ple 1990

67

Chapter 4 Using techniques and methods

Thereare three benefits of impact analysis: improved accuracy of
resourcing estimates and, hence, better scheduling; a reduction in
the amount of corrective maintenance, because of fewer
introducederrors; improved software quality.
System release planning
In this step, the system release schedule is planned. Although wellestablished amongst software suppliers, system release planningisnot widely practised by organisations, reflecting a difference in theextent to which formal maintenance contracting is established.
Asystem release batches together a succession of change requestsinto asmaller numberofdiscrete revisions. System releases can takeplace according to a timetable that is planned in advance. Thetimetable planninggives users the chanceto set priorities for theirchange requests, and makestesting activities easier to schedule.The problem with system releases comes, of course, whencorrective maintenanceis required urgently.
Softwareis available to help monitor system releases. The softwarerecords the changesincorporatedin, and the date of, each release,and provides information for project control, auditing, andmanagement.
Changedesign and implementationThe commonthreadin the workin these two stepsis that they areundertakento satisfy an often short-term user requirement.
Corrective maintenance,in particular, will be undertaken in alimited time andwill be concerned primarily with fault repair (withlittle regard for careful design and integration of changes).Emergency repairs must subsequently be linked to the formalsoftware-maintenance process and be treated as a new changerequest. This will ensure that the repairs are correctly implementedand that the design documentation is updated.
Adaptive maintenance will functionally enhance an existingsystem. The design and implementation processis similar but morerestricted than the design and implementation of new applicationsystems. The major differenceis that the design implications ofenhancements must be taken into account in the subsequentprogram and module implementation. Failure to design the changeat each level canresult in an increasingly complex, unreliable, andunmaintainable system. This leads to higher maintenancecosts andreducesthelife of the system.
Perfective maintenanceis concerned with improving the quality ofexisting systems. Theeffort is applied to software that is the mostexpensive to operate and to maintain. The design tasks undertakenwill range from complete redesign and rewrite to partialrestructuring. The process combinesthe characteristics of the othertwo types of maintenance.
Testing
The purpose of maintenancetesting is to ensure that the softwarecomplies with both the change requestandthe original requirementspecification. It forms a major partof a successful quality-assuranceplan. In principle, maintenancetesting is muchlike developmenttesting. The maintenance-test cases should be created as a direct

68

© Butler Cox pic 1990

Chapter 4 Using techniques and methods

result of the first stage in the impact analysis. They should be
sequenced accordingto the principle of incrementaltesting, so that
defects in the change-request specification and design can be
identified early on. Walkthroughs and inspections should be
implemented routinely as a formal elementin the process.
The test-caselibrary itself builds up over time. Atfirst, it contains
the test cases prepared for and validated during original
development. It grows astest cases for successive maintenancetests
are addedtoit. A file of this sort is called a regression-testingfile.

System release/integration
This step consists of releasing the revised programsinto live
operation. The implications for maintenancestaff are significant
becauseit is their responsibility to ensure that any revised versions
are completely integrated with otherpartsofthe system, which may
never have been revised or which may have been revised at
different times.
Progress monitoring
Progress monitoring takes place concurrently with the other seven
steps in the maintenanceprocess.The sort of data that should be
collected during progress monitoring includes the time taken per
step, the effort involved, and the scopeof the change. Improving
software-maintenanceproductivityis difficult if there is no record
of where problemsandsuccesses have occurredin thepast.

PROGRESS COORDINATION

Most companiesclaim to have a clearly defined procedurein place
that corresponds to change management. Certainly, every
respondent in our survey examiningthis issue recorded all user
requests and operational problems,but our respondents admitted
to somefailings as well. Periodic formal audits, for instance, were
in place in fewer thanhalf of our survey respondents’ businesses
(see Figure 4.10 overleaf). To achieve improvements in the
maintenance environment, the steps in the process need to be
carefully coordinated, not simply monitored individually.

A good modelfor the maintenanceof a large application system is
provided by Peterborough Software (UK) Ltd, a British software
house (see Figure 4.11 on page 71). The model is particularly
relevant to multisite, multiversion software implementation
amongst a large numberof users. Theprincipallessons from this
case example are as follows:

— Recognition of the cost and of the importance of the post-
release phases of the system life cycle, and the consequent
planning (for example, replacement, migration, and technical
design) for the maintenanceeffort.

— Therigour applied to pre-release testing and post-release
version identification and control.

— The formal contractual basis that clearly specifies the
responsibilities of supplier and customer.

— Recognition of the relative importance of problemsthat occur
in practice at the operational level (including those deriving

69

Chapter 4 Using techniques and methods

Figure 4.10 Most surveyed organisations have formal control
proceduresin place

Control procedures Percentageof organisationsin place 10 20 30 40 50 60 70 80 90 100
User requests logged

Operational problems logged

Program changeslogged

Formalretest procedures
in place

User requests cost-justified

Personnel costs charged back

Equipmentcosts charged back

Periodic implementation

Periodic formal audits (Source: Butler Cox survey of PEP members)
from imperfect documentation or training), and at the code-maintenance level, and of the need to provide adequatesupport staff at both levels.

A coordinated programme,effective across the whole maintenanceprocess,anddesignedto control changes to thesystem, will becomemore and morecritical as the complexity of systems increases.Formal procedures are essential to ensure that software is notdegraded andto provide an audit facility. At the same time, thereare several automated change- and configuration-control packagescurrently being introduced to the market that could helporganisationsto reduce administrative overheads andincrease theircontrol over system changes.

IMPROVING QUALITY
Quality-control procedures should becarried out at intermediatestages of the developmentin addition to those at the end of thedevelopment cycle. They should focus on four key qualitycharacteristics, whose emphasis differs depending on the nature ofthe application under development.
Within this general framework,our project-database analysis pointsso far to only one techniquethatis clearly beneficial in terms ofimprovedquality: inspections or walkthroughs. Othermethods andtechniques have a role to play, but we have found no evidence thatthey improve quality and productivity consistently. Probably the

70

© Butler Cox pic 1990

Chapter 4 Using techniques and methods

 Figure 4.11

Peterborough Software (UK) Ltd, a software house basedin the
United Kingdom, provides an example of how companies can
successfully coordinate the steps in the software maintenance
process. The problemsthatit faces are unusually demanding. The
company maintains a range of payroll software packages. The
packages run ona variety of computers, underthe control of different
operating systems, both within the United Kingdom andoverseas.
Altogether, Peterborough Software has 250 customers.The software
coding differs from country to country, to take accountof local
statutory regulations, suchastaxation. Thus, several releasesof the
same packageare currentatatime,andall have to be supported in
the field. The regulations change frequently and without much
warning, and maintenance changes therefore have to be
implemented swiftly and accurately. The difficulties faced by
Peterborough Softwareare further compounded when customers
create nonstandard versions of the software by failing to apply
maintenance modifications that are issued to them,or applying them
in the wrong sequence.
How does Peterborough Software arrange its maintenance
procedures againstthis backgroynd of complexity? The answerlies
in disciplined adherenceto proceduralstepssimilarto the ones we
have described here, and in the use of a computer-based program
monitoring system knownasthe Problem Monitoring System (PMS).
The maintenance procedureis carried out by two divisions within
Peterborough Software. Oneis the Customer Support Division, which
effectively looks after change management, impactanalysis, and
system release planning. The otheris the Development Division,
whichis responsiblefor coding, testing, and quality assurance.
Change requests received by the Customer Support Division come from three sources.Thefirst is customers, whose requests take the

Peterborough Software (UK) Ltd provides a good modelfor the maintenanceof large application systems

form of enhancements(calledfacility requests), queries, and error
reports. The second sourceis impendinglegislative changes. The
third is the market. To survive, Peterborough Software has to compete
by offering products that are constantly being improved.
Maintenancearising from customersis both adaptive and corrective
in nature; from the other two sources, it is mostly adaptive and
perfective.
Customersare the most important source of change requests — the
Customer Support Division receives upto 400 telephone enquiries
a day, for instance. Enquiries are routed to application-support
groupsorganised bysoftware productand by the kind of equipment
itruns on. Within the application-support groups, consultants familiar
with the waythe software can be used, andwith the wayit works,form
thefirst line of response. Theyare able to resolve mostof the enquiries
onthe spot, but 20 per cent have to be passed to the Development
Divisionfor resolution. It is here that the PMS comesintoits own.It
logs problem reports at every stage of response andresolution, using
customer references and event codes. When a coding changeis
made,for instance, the programmerrecordsthe details onthe PMS.
Theseare immediately available to others, so duplication is avoided.
The PMShelpsto coordinate adaptive and corrective maintenance
work.It monitors maintenanceprogress, and produces management
statistics.
The DevelopmentDivisionis organised into groupsthat specialise
inanalysis, coding, and quality assurance. Tested software is batched
for release. Different formsof releasereflect the level of support that
Peterborough Software provides. Forinstance, versionsfor release
which are necessitated by governmentlegislation getfull support.
Anyearlier versionsstill left in thefield beyond a certain date no longer
enjoyfull support.

most fruitful way to improve quality across the board is by
introducing a quality culture throughout systems development.

QUALITY-CONTROL PROCEDURES

In the past, systems quality-control procedures focused on the
product by checking that a completed computer system met the
original specification. The techniques used include system and
acceptancetesting, and apost-implementation review. Few,ifany,
quality checks were carried out at intermediate stages of the
development process.
This approachto systems quality assurance is concerned only with
checking that the final system meetsthe original requirements, and
not withthe overall process by which the product is developed. The
result is often that the delivered system meets neither the users’
requirements nor their expectations, in terms of functionality,
operational performance,usability, developmentcost, and delivery
date. The defects discovered whenthefinal system is inspected are
often caused by mistakes made at the early stages of the
development process — the requirements-definition stage, for
example.
To overcome the shortcomingsofthis approach to assuring systems
quality, many systems development departments have been
encouraged,by the availability ofmethods andtools, to concentrate
onimprovingthe effectiveness of the developmentprocess. These
methodsand tools makeitpossible to enforce a standard approach

© Butler Cox ple 1990 71

Chapter 4 Using techniques and methods

to development and makeit easier to check the quality of the
software at various stages of its development. The stages of the
cycle required to complete a project, from initiation to completion,
are precisely defined,as are the deliverables to be produced at each
stage. The deliverables can then be checked before development
staff proceed to the nextstage. In this way, defects can be detected
earlier and corrected before the softwareis deliveredto the users.
Therole of many systems quality-assurance departmentstodayis
to define the developmentprocessthat will be used and to carry out
the quality-control checksat the end of each developmentstage.
The developmentprocedures,and the proceduresfor carrying out
the checks,are usually defined in great detail and enshrined in the‘systems development standards manual’. The quality-assurance
staff themselvesare perceived as ‘policemen’, whose mainroleisto ensure that the proceduresare followed andthat those who break
the rulesare identified.
This is often an inadequate approach to improving the quality ofsystems, as we point out in Chapter 2 on pages 13 and 14. Some-times, the existence of such quality-assurance departments hinders,rather than helps, the development of new systems. All that isachieved is the creation of an additional layer of bureaucracyconcerned with enforcing standards, ensuringthat rigid proceduresare followed, andinsisting that lengthy checklists are completed.
The difficulty arises because traditional systems quality-assuranceconcepts are based on too narrowa definition of systems quality.The procedurestypically used are concerned with ensuring that thefinal system has the specifiedfunctionality.Thisis insufficient toensure that the system meetsthe users’ real needs. Other equallyimportant aspects of quality, such as the quality of the userinterface, the operational performanceofthe system, the ease withwhich the system can be modified to meet changing businessrequirements, and the quality of the documentation, are largelyignored by conventional approachesto systems quality assurance.
High-quality systemsare ones that conform to users’ expectations,in termsofits functionality, operational performance,easeofuse,and documentation. Twofeaturesofthis definition are particularlyimportant: the emphasis on users’ expectations, and the fact thatquality is not limited to the softwareitself. It is the entirepackage — the software, documentation, manuals, training, anduser-support — that determines the users’ satisfaction and thustheir perception ofthe quality of the software.This definition does,of course, encompasstraditional concepts of systems quality —inparticular, the need to produce software to budget with theminimum numberoferrors. However, the emphasis on the way thesoftware is constructed is recognition of the fact that quality insoftwareis also a matter of how easyit is to modify and extendsystems to meet changing business requirements, and how wellsystems can meet performancecriteria.

QUALITY CHARACTERISTICS
Today, most systems quality-assurance procedures are designed toensure that the functionality provided by applications softwaremeets the users’ requirements. However, even where the qualityof the system is checkedat intermediate stages in the development

72

©Butler Cox pic 1990

 © Butler Coxple 1990

Chapter 4 Using techniques and methods

life cycle to ensure that the finished product does meet the
functional requirements, it may still be regarded as being of poor
quality by the user community. This is because the quality-
assurance procedures do not take account of the users’ needs in
other areas — operational performance, ease of use, and the ease
with which the system can be modified are obvious examples.
Figure 4.12 describes how one business with a conventional quality-
assurance function hasrealised the need to take a broader view of
systems quality.
Four characteristics are particularly important: functional
requirements, operational performance, technical features, and
ease of use. By defining and meeting quality objectives specified in
terms of these characteristics, it is possible to build application
systemsthat the user community regards as high-quality. Although
the functional requirements of a system are generally defined in
great detail, the other three characteristics are often ignored in
systems specifications. These characteristics are usually
determined by ad hoc decisions made at the analysis and
programmingstages.
Functional requirements
The functional requirements define what the application system has
to do, downto the levelof describing the data to be entered,the

Figure 4.12 Conventional quality assuranceis not sufficient to guarantee

the quality of systems

Insurance company
This organisation hasa large systems department, with more than 100 developmentstaff.
The quality-assurance function resides within the systems department andis staffed by
three people — amanagerand twoproject managers. There isa well established quality-
assurance culture, based on a comprehensive codeof practice that covers methods,
techniques,and the useof tools. The codeof practice was developed four years ago
and is updated annually.
At thestart of a project, user expectations are documented ona project-authorisation
form. This includes a quality plan, although in most cases,the plan indicates only that
the code of practice will be followed. Systems development staff believe that a more
detailed statementof quality objectivesis desirable becauseit would enhancethe value
of post-implementation reviews.
The quality-assurancestaff are invited by a user or a departmental managerto review
application systemsat regularintervals. Aninitial review can take several weeks, and
the actions agreedarefolloweduplater. Because of the numberof development staff,
the quality-assurancestaff are very busy. However, they usually carry out reviews when
aproblemis detectedratherthanat predeterminedstagesin the developmentlife cycle,
eventhoughtheyrealise that scheduled reviewsare a better meansofdetecting problems
earlier in the developmentprocess. External consultants have also been employed, with
considerable success,to review particular projects, both froma business and

a

technical
viewpoint.
The quality-assurance manager considers that quality assurance based solely on
controlling and reviewing the developmentprocessis insufficientto provide the quality
required — in particular, for the business aspects of a system. The existing procedures
meanthatinsufficient attentionis paid at the beginning ofa projectto issues such as the
feasibility of changing work practicesin user departments. Manyof the quality-control
reviews carried out at present are concerned with technical issues — for example,
program walkthroughs require up to 25per cent of the programmingeffort. To progress
beyondthis to a wider quality-management programme,senior management mustlend
their supportto giving quality assurance greater prominencethroughout the organisation.
This support is now being sought.
The quality-assurance managertold usthat his aim is to makeusers responsible for quality
in systems developmentprojects by providing them with a codeofpractice and making
them accountableforthe business successofthe projects. He believes that, when the
wider quality-management programmeisin place, his departmentwill need fewerstaff
becausethe quality-assurance processwill be anintegral part ofthe whole organisation.

73

Chapter 4 Using techniques and methods

rules for deciding whetherto accept or reject the data, and theprocessing to be performedoncethe data has been accepted. Mostsystemsspecifications contain adequate functional requirements,anditis relatively straightforwardto assess the quality of asystem
in terms of how wellit meets these.
Operationalperformance
The operational-performancecharacteristics of a system define theexpected performance in terms of response times (for onlinesystems), and the elapsed time required to perform specificprocessing loads for batch systems. If these characteristics aredefined at the outset, the quality of the final system can be assessedagainst them. However,the objectives should be set bearing in mindspecial factors that will degrade performance, such as peakprocessing loads or changesin workload.
Technical features
The technical features of a system relate to the waythe softwareitself is constructed. The technical quality of a system can bespecified in termsofits mean time between failures, the ease withwhichit can be maintained and extended,howeasyit is to changethe basic system by parametersspecified at run time, for example,and how easy it is to re-use parts of the software in otherapplications. Checklists should be constructed for each of thesecharacteristics, and used to assess the technical quality of thesoftware. Figure 4.13 shows a sample checklist for assessing howeasyit will be to extend a particular application.
Ease ofuse
The increasing use of PC-based software packages by the usercommunityhasraised users’ expectations considerably about easeof use. Despite this, mainstream applicationsarestill developed thatusersfind boring, tedious,or difficult to use. A pooror inadequateuser interface can meanthat a system is regarded as being of poor
 Figure 4.13 Technical quality: a checklist for assessing howeasyit will beto extend asystem

This checklist can be used to assess how easyit will be to modify or extenda system'sexisting computational and/or data-storagelimits (field sizes, record length, file sizes,and so on).
System characteristics indicating that modifications or extensions will beeasy
— The system allows key parameters to be modified at run time. It should alsovalidate the run-time entries to ensuretheyare within allowable boundaries.— The documentation adequately describes whatconstraints of the system may bealtered and howto doit.
— Thesystem specifically tests for each code that can be inputto the system, so thatany codenotexplicitly recognised bythe system is rejected.— There are enoughfields of an adequatesize to allow for reasonable growth.System characteristics indicating that modifications or extensionswill bedifficult
— Parameters are codedinto the program logic.
— Files are sequential or index-sequential
— Low-level protocols are used for network communications.— _Incompatibilities between system modules have beenresolved bylinking them viaspecially written programs.
(Adapted from:‘The Questfor Quality”, published in Datamation, March 1, 1985.)

74

©Butler Cox ple 1990

 Butler Cox pic 1990

Chapter 4 Using techniques and methods

quality even though it meetsall of the functional requirements, has
high operational performance,andis technically sound.
The quality of asystem therefore dependsalsoonits user-interface
characteristics. For example, the quality of the user interface might
be specified in general terms as one that provides clear,
unambiguous messages for users, that requires the minimum
numberof keystrokes to be used, that provides a rapid response
time, and that has simple, unambiguous error-recovery procedures.
These general terms can then be defined in more detail. Clear
messages for users might be defined in terms of clear command
prompts, and the existenceof a help facility, a tutorial mode, aterse
mode, audio responses, and pointers to the mostlikely next activity.
Specifying the user-interface characteristics in these terms will
allow the quality of the user interfaceto be defined and assessed.

QUALITY PROFILE OF DIFFERENT APPLICATIONS

Thefull requirements for an application system can be defined in
termsof the four types of system characteristics described above,
and the extent to which these requirements are met provides an
indication of the quality of the system.It is important to remember,
however, that users’ perceptionsof quality are determinedlargely
by their expectations. Different types of application are used by
different typesof user with different expectations. The implication
is that the relative emphasis given to each of the four types of
systems characteristics will vary according to the type of
application. For sometypesof application,its quality willbejudged
largely on the quality of the user interface; for others,it will be
judgedlargely on the technical quality of the software.

Different types of application therefore havea different ‘quality
profile’, which can be expressed diagrammatically, as shown in
Figure 4.14, overleaf. Transaction-processing applications, for
example, require a high level of technical quality andhighlevels of
operational performance, whereas the quality of an account-
ing package is determined much more by how well it meets
the functional requirements and by the quality of its user
interface.
The different quality profiles also imply that different emphases are
required on checking the quality of the software product being
produced and on assuringthe quality of the development process
itself. Ensuring that the software meets the functional require-
ments requires a heavy emphasis on quality-control checks as the
software is developed. High technical quality and good operational
performanceare determined more by the quality of the develop-
mentprocess. Figure 4.15, overleaf, showstherelative emphasis on
product and process quality required for eachof the four system
characteristics.

In general, greater emphasis on product quality will increase the
cost of developing an application becauseit will be necessary to
carry out a greater numberof, and more extensive, quality-control
checks. Greater emphasis onprocess quality means that substantial
initial effort is put into defining a formal developmentprocess and
ensuringthatit is followed. However, emphasising process quality
will result in better-designed and moreflexible software.

75

Chapter 4 Using techniques and methods

Figure 4.14 Different types of applications have differentquality profiles x

The characteristics of asystem can beexpressed in termsofthefunctional requi irements,
operational performance,technical quality, andeaseof use. The quality ofasystemcan
beassessed in termsofhow well the software matchesthesecharacteristics. The relative
emphasisof eachof the characteristics will be differentfordifferent types of application.

F

T Pp

U PU
Transaction-processing Online reservation system :

F

T P

U U
Screen-based informationretrieval Accounting package

F = Functional requirements T = Technical qualityP= Operational performance v= Ease of use

 Figure 4.15 Different system characteristics re:quire different emphases onproductandprocess quality

ESTABLISHINGA QUALITY-MANAGEMENT PROGRAMME
Ina good quality-management programme, quality checking shouldtake place at each stage of the developmentcycle. Of the manytechniques and methodsthat are available to help withthis, onlywalkthroughs seem to benefit quality with any degree ofconsistency, according to ouranalysis. Techniques and methods,such as structured analysis and structured design, seem to havea

76

© Butler Cox pic 1990

Chapter 4 Using techniques and methods

generally adverse effect. The reasons behindthis are not clear and
this is an area that weare continuingto investigate.
A good way to improvequality is by encouraging it to become a way
oflife forall the staff. That requires top managementattention and
a good dealof time and effort.
Quality checking
Most systems development departments realise that it is not
sufficient to check the quality of applications software once only,
at the end of the development life cycle. Errors or mistakes
discovered as asystem is implementedmayhave been caused by an
error maderight at the beginning of the developmentprocess, and
willbe very expensive to correct because muchofthe work already
done will have to be redone. Barry Boehm asserts in Software
Engineering Economics (published in 1982 by Prentice Hall) that
the cost of correcting an analysis error at the maintenancestageis
100 times more than the cost of detecting and correcting the error
immediately. Other researchindicatesthat the cost of correcting an
error madeearly in thelife cycle increases exponentially the longer
it remains undetected.
These problems can be overcomeby applying quality assurance at
eachstage of the developmentcycle. To achieve this meansthat the
stagesof the cycle must be clearly defined, so that quality checks
can be carried out at the end of each stage. In this way, errors can
be detected as they occur and can be corrected at minimum cost.
The deliverables at the endofeach stage should be specified in detail
and should reflect thefour characteristics described earlier in this
chapter. The quality of the application systembeing developed can
then be assured by checking that the work delivered conforms to
the specification. Figure 4.16 showsthe deliverables that may be
specified for various stagesof the developmentcycle.

Structured techniques and formal methods designed to help at
different stages of the cycle seem, according to our database
analysis, to have a generally adverseeffect on both productivity and
quality. This is showninFigure 4.17 and Figure 4.18, on pages 78 and
79 respectively. The exceptionis the walkthrough technique.

Figure 4.16 Deliverables must be specified for each stageof the
developmentlife cycle so that quality checks can be made

(Adapted from:‘Improving the Productivity of EDP Systems Development”, published
in Systems Development, September 1988.)

ee© Butler Cox ple 1990

Chapter 4 Using techniques and methods

Figure 4.17 Mostprojects that use techniques and methodshave lower-than-averageinternal productivity

Each chart showsthedifferencein internal productivity relative to the averagelevelforall projects of a similar size. Thus, projects using structured analysis techniques havean averageinternal productivity level that is 0.3 lowerthan the averageforsimilar-sizedprojects.

Percentagedifference from the averageinternal productivity
Techniques =60 =48 =36) =24- = 12 0 12 24 36r T T r u T \ i

Structured analysis

Structured design

Structured
Programming

Data analysis

Walkthroughs

Formal development
methods

(Source: Butler Cox PEP database)

Using walkthroughs
Ourproject database analysis showsthatthe internal productivitylevels of projects using formal walkthroughsare slightly higher thanthe average for projects of a similar size, and about 15 per centhigher than those not using formal walkthroughs.
Theonly technique that results in consistently lowererrorratesisformal walkthroughs(including inspections). This is clearly shownin Figure 4.18. The errorrate at integration and system testing forprojects using this technique was about 35 per cent below theaverage for similar-sized projects, and about 10 per cent belowaveragein thefirst monthofoperation.This is a very encouragingresult becauseit implies that the lowererror rate at integrationandsystem testing was due to inherently higher quality, not toinsufficient integration and system testing. Formal walkthroughsare used on16 per cent of our databaseprojects.

Using other structured techniques
The use of techniques and methods other than structuredwalkthroughs seemsto have an adverse effect on the technicalquality of projects, according to our database analysis.

78

© Butler Cox ple 1990

 © Butler Cox plc 1990

Chapter 4 Using techniques and methods

Figure 4.18 Mostprojects that use techniques and methodshavehigher-

than-averageerrorrates

Each chart showsthe differencein error rate relative to the averageerrorrate for all
projects of a similar size. Thus, projects using structured analysis techniques have an
averageerrorrate during systems andintegration testing 15 per cent lower than the
averageerrorrate for similar-sized projects, and an averageerrorrate duringthefirst
month of operation 20 per cent higher than the averagerate for similar-sized projects.

Error rate as a percentageof the average
for similar-sized projects

Techniques -120 -80 -—40 0 40 80 120 160r T T T T T

Structured analysis

Structured design

Structured programming

Data analysis

Walkthroughs

Formal development
methods

B Error rate during integration and system testing
& Errorrate during thefirst month of operation (Source: Butler Cox PEP database)

Structured analysis: Projects using structured analysis haveslightly
lower-than-average internal productivity levels, and more software
errors. (The sample size was small, however.) The use of fourth-
generation languagesis marginally lowerthan average, resulting in
arate of function delivery of 10 function points per man-month,
about 30 per cent below average. The use of structured-analysis
techniques may, of course, also contribute to a better fit of the
developed systemsto business needs, but the data currently stored
about the projects doesnotallow usto confirm this.

Error rates are available for about half of the projects using
structured-analysis techniques. Error rates in integration and
system testing were lower than average, but higher than average
in the first month of operation.

Structured design: Error rates were higher than average in
integration and system testing, and in thefirst month of operation,
both by about 40 percent. (Errorrates are available for about two-
thirds ofthe projects using structured-design techniques.)

79

Chapter 4 Using techniques and methods

At 57,000 linesof code,structured-design projects were larger thanthe average of 45,000 lines. Internal productivity levels were15 per cent lower than the averageforprojects of asimilar size, andthe average rate of function delivery, at eight function points perman-month, was more than 40per cent below average.This is notsurprising, because such techniques are more likely to be used forlarge applications developed in traditional languages. Thesemeasures do not necessarily implythat the useofstructured-designtechniques reduces development performance. The main benefit of
structured design is likely to come from easier maintenance.However, the existing data does not allow us to measureimprovements in the maintainability of systems.
Structured programming: Error rates, both at integration andsystem testingandin the first month ofoperation, for projects thatuse structured-programming techniques were almost exactly thesameas the averageforsimilar-sized projects.
Projects that used structured programming had internalproductivity levels slightly higher than those that did not, andperformedclose to averagein all other respects. Projects usingJackson Structured Programming had an average internalproductivity level about 15 percent higher than those using otherstructured programmingtechniques. Those using this techniquewillprobably have been doing so for many years, and theskills will bewell established. The high levelofskill will, tosome extent, accountfor the better-than-average internal productivity levels of theseprojects.
Data analysis: Error rates are available for about half of the projectsusing formal data analysis. While the error rate is close to theaverage in integration and system testing, itis higher than averagein thefirst month of operation.
Projects using formal data analysis were larger than average —47,000 lines of code. Internal productivity levels were 15 per centlowerthan the averageforsimilar-sized projects, resulting in anaverage function-delivery rate of 10 function points perman-month.
Creating a quality culture
The quality-improvement procedures described in this chapterimply a higher-than-usual numberof quality-control checks. Onewayto handle thisis to increase the numberofstaff in the quality-assurance department.
A better way is to make each memberofstaff in the systemsdepartmentpersonally responsible for the quality of the work he orshe produces, as we mention in Chapter 2 on page 14. The aimshould be to create a ‘quality culture’ so that quality is ‘a wayoflife’for all staff. Creating such a culture requires a commitment toquality from theorganisation’s top management.It takesa good dealof time andeffort, but it produces two main benefits: the quality ofthe products is improved, and the cost of assuring quality isminimised, becauseit is not necessary to employ a vast army ofquality-control inspectors.
Japanese manufacturing companies are well known for theirquality cultures. Staff have the opportunity to work on differentstagesof the productionprocess, experiencingall facets of the work,

80

> Butler Cox pic 1990

©Butler Cox ple 1990

Chapter 4 Using techniques and methods

and eventually, gaining knowledgeof the complete process. This
means that, when they are working at a particular stage, they
understand the consequences of defects introduced at earlier
stages. It also means that they are in a better position to make
recommendations for improving the process, and are able to check
the quality of the product at each stage in the process.
Suppose,for example, that the production processhasfive stages
(A, B, C, D, and E). Staff working on stage B would be ina position
to review the output from stage A; staff working on stage C would
be able to review the output from both stage A and stage B; staff
working on stage E would be able to review the outputs from stages
A,B,C, and D. The cycle is completed because the output from stage
Ecan be reviewed by the staff who work on stage A.If this concept
is taken to its logical conclusion,there is no need to employ separate
quality-control inspectors becauseall staff are involved in checking
the quality of the productat all stages. The major benefit of this
approachis that the staff working on the production process no
longerperceive quality to be the responsibility of a separate quality-
control group.
Inasystems developmentcontext, the way to apply theseprinciples
is to establish a quality-management programme, which is
coordinated and administered by a quality-management group.
Quality-control techniques will still be used as part of the
programme. The emphasis, however, should be on encouraging
individual developmentstaff to use the techniques and to take
personalresponsibility for producing quality software.

81

Chapter 5

Using contemporary tools

Tools automate some of the activities within a systemsdevelopment method. Cobol is a tool that is well established.Contemporary tools include fourth-generation languages likeMantis, CASE tools, and re-engineering tools.
Contemporary tools are widely claimed by their suppliers todeliver enormousbenefits in productivity and quality — even theimminent redundancy of the programmer. Noneof these claimshas been achieved in full, however — often becauseof the absenceof an effective means of measuring benefits and then takingactions to ensure that the benefits are continually attained.
Although there are benefits to be gained, managers should treatcontemporary tools with caution. Fourth-generation languagesarea case in point. Although some companies consistently achievehigh internal productivities with them, others have been muchless successful. According to our analyses, certain CASE tools arefailing to deliver reduced development time, or fewererrors, oreven increasedreliability — thoughit is possible that they increaseproductivity over the whole life of a system. Maintenance toolshave yet to make much impact, though they can proveadvantageous in maintenance managementand testing, and canbe justified when used to maintain systemslikely to continue inoperation for several years.
Because they are specialised, tools are relatively inflexible. Theyneedto be selected and matched to the application environmentwith great care. Introducing them requiressensitivity and carefulplanning, which is best undertaken by implementing a pilotproject.

As well as tools for the specialist system builder, a new breed oftools designed for the business useris beginning to makeits mark.The systems development department should aim both toencourage and coordinate their uptake.

FOURTH-GENERATION LANGUAGES FOR NEWSYSTEMS WORK
Our analysis of the productivity and the levels of use of fourth-generation languages reveals that most organisations could makesignificant improvements by further exploiting fourth-generationlanguages. Although fourth-generation languages account for only10 per cent of codein the projects on our database, they provideas muchas 30 per cent of delivered functionality. Some companiesconsistently achieve very high productivity levels in terms ofdelivered functionality (external productivity) through the use ofthese languages.

82

©Butler Cox ple 1990

Chapter 5 Using contemporary tools

THE USE OF FOURTH-GENERATION LANGUAGES
Fourth-generation languages are syntax-based programming
languages in which an application can be written. Fourth-
generation languages differ from older languages, such as Cobol,
in being more concise (that is, the commands are more powerful),
and in not requiring the developer to have detailed knowledge
of the underlying computer systems.
Fourth-generation languages are used less commonly than third-
generation languages. Forty-four different fourth-generation
languages were identified on projects surveyed during our
research, but none of them is dominant in the way that Cobolis
for third-generation languages. Natural (which comprises 3 per
cent of the total code on our database of projects) is the most
widely used, followed by ADF, Gener/ol, and Guest (1 per cent
each of total code). However, the picture changes when the
contribution of fourth-generation languages to total delivered
functionality is analysed. Natural and Telon each contribute 4 per
cent of the functionality of the projects, Gener/ol about 3 per cent,
and SQL and ADF2 percent each. The differences are accounted
for by the different amounts of function deliveredperline of code
(language gearing — see Chapter 6) of fourth-generation
languages.
Figure 5.1 showsthe distribution of the language gearing of the
surveyed projects, which varies from four to over 60. The
geometric and arithmetic means are about 14 and17 respectively.
There is a pronounced peak at around 10 function points per

- Numberof
projects120

100

80

60

40

20
Figure 5.1 The language gearing of the projects surveyed varies from four to over 60

Geometric mean
Arithmetic mean

0 z= sd
0 5 10 15 20 25 30 35 40 More than 40

Function points per thousandlines of code

(Source: Butler Cox PEP database)

©Butler Cox ple 1990 83

Chapter 5 Using contemporary tools

thousand lines of code, and several other minor peaks. The
principal peak is associated with projects written mainly in Cobol.
The minor peakscoincide with the use of PL/1 and RPG,and the
more widely used fourth-generation languages, such as Natural.

THE BENEFITS OF FOURTH-GENERATION LANGUAGES

Although fourth-generation languages help to raise function-
delivery rates, the internal productivity of projects using these
languages varies widely. Figure 5.2 shows the average internal
productivity levels of projects developed with the leading fourth-
generation languages. It also shows, for each language, the
difference between the internal productivity levels and theaverage levels for similar-sized projects. The figure also shows
equivalent data for the leading third-generation languages and forAssembler.
Few projects are developed just with a fourth-generationlanguage, however. Codewritten in fourth-generation languagesis widely scattered among other surveyed projects, and is oftenfound in conjunction with Cobol code. The projects for which theaverage internal productivity levels are shownin Figure 5.2 arethose with a fourth-generation language as the primary orsecondary language. Because of the small number of projects usingeach of the different languages, the data shownin the figure canbe taken only as an indicator of the performance of the fourth-generation languages.
Projects using Mantis, Natural, and Telon have average internalproductivity levels that are better by over 30 per cent than thosefor similar-sized projects. Natural and Mantis are fairly wellestablished languages and developmentstaff are likely to havebecomequite skilled in their use. Telon, a Cobol code generator,is a more recent language,so it is encouraging that the internalproductivity level of projects developed with Telon is alreadyabout 25 per cent higher than the average level for projects ofa similarsize.
Interestingly, Figure 5.2 shows that the highest internal pro-ductivity level (and the highest positive difference) is achievedwith RPG,a third-generation language. The lowest is achievedwith a fourth-generation language (Ideal). This highlights thedifficulty of measuring overall development performance in termsof lines of code produced,rather than in terms of functionalitydelivered. The rate at which functionality is delivered dependsto a large extent on the language gearing of the particularprogramming language.
For example, Figure 5.2 shows that the average internalproductivity levels of projects using ADF, Gener/ol, Ideal, and UFOare between 25 and 60 per cent lower thanthe averagefor similar-sized projects. However, when language gearing is taken intoaccount, only UFO projects are below the overall average of 13function points per man-month. The implication is that ifdevelopment departments can raise their internal productivitylevels for projects using fourth-generation languages to theaverage, they will usually be able to increase their function-delivery rate to four times that of typical Cobol projects.

84

© Butler Cox pic 1990

 © Butler Cox ple 1990

Chapter 5 Using contemporary tools

Figure 5.2 The internal productivity of projects using different types of

programminglanguage varies widely
Internal productivity

Fourth-generation 207 2-4 6 810 12 14216 18 20 2ienaueces oe
ADF

Application Master

Dataflex

dBASE

Easytrieve

Focus

Gener/ol

Ideal

Mantis

Natural

SQL

Telon

UFO
Third-generation
languages
Cobol

Fortran

PLA

RPG

Assembler
language
BB Average
a Relative internal productivity levels indicate the difference between the average

level achieved by projects using the language andthe average level for all PEP
projects of a similar size) (Source: Butler Cox PEP database)

85

Chapter 5 Using contemporary tools

When we examined the levels of external productivity, or
functionaldelivery,ofthe various development departmentsusing
fourth-generation languages, it was clear that although most
development departments were makinggainsin productivity from
fourth-generation languages, only 20 per cent of those surveyed
were consistently achieving the higherlevels possible with fourth-
generation languages (see Figure 5.3). Later in this chapter, we
describe some of the initiatives used by more productive
development departments.

CASE TOOLS
Many suppliers of CASE tools claim that very high levels ofproductivity and quality are achievable with their products. Ourresearch showsthat the promised benefits are not achieved in termsof reduced development times and effort, or fewer errors, orincreased reliability. CASE tools may, however, increaseproductivity over the whole life of a system (not just thedevelopment phase), or they may improve other quality factorssuch asthe fit of the final system with the users’ requirements.

THE USE OF CASE TOOLS

CASEtools may be groupedinto the following classes: programmerworkbenches, analyst workbenches, screen painters, reportwriters, enquiry generators, data dictionaries, project-managementtools, and testing tools.
Seven per cent of the projects we examined used an analystworkbench,such as Excelerator and Auto-Mate, and about 10 percent used a programmer workbench,suchas Maestro. (Nearly halfof the latter projects were carried out by alarge government-sectororganisation.)

Figure 5.3 Only 20 per cent of the organisations surveyed areconsistently achieving high external productivity

Numberof
organisations

Averageforall those
using third-generation languages
Averageforall those using amixture of third-generationlanguages andfourth-
generation languages
Averageforall those
using fourth-generation
languagesonly

 x external productivity levels
0 20,000 40,000 60,000 80,000 100,000

Externalproductivity

(Source: Project data submitted to Butler Cox PEP)
86

<—_— Those consistently achieving high

© Butler Cox pic 1990

© Butler Cox pic 1990

Chapter 5 Using contemporary tools

Data dictionaries were used on nearly 25 per centof projects, of
which more than a quarter used Datamanager. :
Painters, which automatically generate code to support transaction-
processing applications from screens that are designed
interactively, were used on about 20 per cent of projects. (Since
85 per cent of all projects surveyed are categorised as online
applications, for which screen painters would normally be
appropriate, only one-out-of-four suitable projects made use of
screen painters.) Fewer projects used report generators and enquiry
generators — about 10 per cent and 12.5 per cent respectively.
Testing tools were used onover 40 per cent of projects. The most
popular were Intertest (7 per cent of projects); CEDF, Abendaid,
and Batch Terminal Simulator (5 per cent); and Xpediter (4 per
cent).

THE BENEFITS OF CASE TOOLS
Projects involvingfiveof theeight classes of tools had lowerinternal
productivity levels than those that did not, by nearly 25 per cent.
Only with programmer workbenchesandscreenpainters was there
asignificant productivity increase. Figure 5.4, overleaf, showshow
the internal productivity of projects using eachof theeight classes
of tools differs from the average productivitylevels of similar-sized
projects. 4
Figure 5.5, on page 89, showsa similar analysis for eachofthe eight
classes of tool, this time comparing average error rates. Again,
analyst workbenchesandscreen paintersdid best.
Programmer workbenches: The projects using programmer work-
benchesare quite distinctive. They are usually enhancement or
maintenance projects of large systems written in traditional
languages, and have good internal productivity levels that are
achieved undersevere time pressures. Their new-code content is
lower than average. Their severe time pressures mean that they
delivered functionality at the very low rate of four function points
per man-month (the average from our researchis 13). Since most
enhancement or maintenance projects havesignificantly lower
internal productivity levels, the relatively good levels of pro-
ductivity of projects using programmer workbenches is
encouraging.
Error rates were available for about two-thirdsofthe projects using
programmer workbenches.Theerrorrates were significantly higher
than average both in integration and system testing (70 per cent
higher), and in the first month of operation (140 per cent higher).
(These higherror rates are due, however, to the very high error
rates reported by one organisation in the survey.)

Analystworkbenches: The small proportion ofprojects using analyst
workbenches weredistinguished by being developments of new,
smaller-than-average systems — about 28,000 lines of code. They
were also characterised by their higher-than-average fourth-
generation-language content. The function-delivery rate for these
projects, at 19 function points per man-month, was also above
average. Otherwise, their performance was close to average. On
average, the internal productivity levels were slightly below the
averagefor similar-sized projects, with the smaller projects having

87

Chapter 5 Using contemporarytools

Figure 5.4 Most projects that use tools have lower-than-averageinternal
productivity

This chart showsthedifferencein internal productivity levelrelative to the average for
all projects ofa similarsize. Thus, projects using analyst workbenches have an average
internal productivity that is 10 per cent lower than the averageforsimilar-sized projects.

Percentagedifference from the average
internal productivity

60 40 20 0 20 40Tools E u i z s
Programmer
workbenches

Analyst workbenches

Screen painters

Report writers

Enquiry generators

Data dictionaries

Project management

Testing tools

(Source: Butler Cox PEP database)
lowerlevels than larger ones. Like formal development methods,analyst workbenchesmayalso help to produce systemsthat are abetter fit with business needs, but again, the data collected does notat present enable us to measurethis.
Error levels for those projects using analyst workbenches areslightly higher (10 per cent) than averagein integration and systemtesting, but substantially lower (100 per cent) than average duringthefirst month of operation. However,error data for the first monthof operation was available only fora quarterof the projects usinganalyst workbenches.
Screenpainters: Screen painters are usually associated with fourth-generation languages, particularly code generators such as Telon.The averagesize of the projects — 49,000 lines of code — is abovethe overall average. Internal productivity levels are nearly 25 percent above average for thesize of projects and nearly 35 per centhigherthan thoseprojects not usingscreen painters. This translatesinto at least a 25 per cent reductionin effort, and as much as 40 percent. The high internal productivity levels and use of fourth-generation languages meant that these projects delivered about21 function points per man-month.

88

© Butler Cox pic 1990

 © Butler Cox ple 1990

Chapter5 Using contemporary tools

 Figure 5.5 Most projectsthat use tools have higher-than-average
error rates

This chart showsthe differencein errorrate relative to the averageerrorrate forall projects
ofasimilar size. Thus, projects using analyst workbencheshave an averageerrorrate
during systems andintegration testing 70 per cent higher than the average errorrate
for similar-sized projects, and an averageerrorrate during thefirst month of operation
140 percent higher than the averagerate for similar-sized projects.

Errorrate as a percentageof the average
for similar-sized projects

Tools =120" =80 —40 0 40 80 120 160

Programmer
workbenches

Analyst workbenches

Screenpainters

Report writers

Enquiry generators

Data dictionaries

Project management

Testing tools

B Error rate during integration and system testing
Ba Errorrate duringthefirst month of operation

(Source: Butler Cox PEP database)

Error datawas available for 60 percentof the projects using screen
painters. Compared with other projects of similar size, these
projects had about 20 per cent more errors in integration and system
testing, but about 25 per cent fewererrors in the first month of
operation.
Report writers: The projects that used report writersare larger than
average — 56,000lines of code — and have near-average language
gearing. The internal productivity levels are lowerthan the average
for the size of project, by over 10 per cent. These projects delivered
functionality at a low rateof six function points per man-month,
owing to the slightly higher-than-average timepressure.
Enquiry generators: The average size of the projects that used
enquiry generators is close to the average. Their internal
productivity levels are, however, more than 25 per cent below
averageforthesize of project, and the function delivery rate of nine
function points per man-monthis nearly 40 per cent below the
average.

89

Chapter 5 Using contemporarytools

Theprojects that used these types of function-generation aids had
considerably more softwareerrors than the average duringthefirst
monthofoperation.Itis very likely, however,that the higher error
rates are not directly associated with use of these aids. Error data
wasavailable for 60 per cent of projects using report writers. For
their size, these projects had about 60 per cent more errors inintegration and system testing and 65 per cent morein thefirst
month of operation. Error data was available for 60 per cent ofprojects using enquiry generators. They had fewer-than-average
errors (30 per cent fewer) in integration and system testing, buthigher-than-averageerrorrates in the first month of operation,whichsuggeststhat inadequate integration and system testing wascarried out.
Data dictionaries: Projects using data dictionaries also performbelow average, having an average internal productivity level nearly25 per cent lower than the average for projects of a similarsize.Although we could expect their use to lead to some reduction in theinternal productivity level, it is not possible to attributeall of thepoorer performance directly to their use. Projects whereDatamanager was used fared slightly better than projects usingother data dictionaries, having an average internal productivitylevel only about10 per cent lower than averagefor thesize of theproject. Many systems development managerswill, of course, behappy to tolerate lowerinternal productivity levels for projectsusing data dictionaries, because of the resulting improvements inease of maintenance.
Error data wasavailable for 60 per cent of the projects using datadictionaries. For their size, these projects produced about 40 percent more errors than average, both in integration and systemtesting, and in the first month of operation. This implies that thetechnical quality of the original development work for theseprojects is markedly lower than average. Seventy per cent of theDatamanagerprojects reported error data; they had near-averagenumbersof errors in integration and system testing, and about20 per cent fewererrors in the first month of operation.
Project-managementtools: Project-managementtools were used on35 percentof the projects. These projects had an averageinternalproductivity levelslightly lower than the average for projects of asimilarsize.
Projects using project-managementtools have error rates 20 percent above the average (for thesize of project) during integrationand system testing, and 25 per cent above average duringthefirstmonth of operation.
Testing tools: Testing tools are used on about 40 per cent of theprojects. These projects have lower internal productivity levels (bymore than 10 per cent) than projects of a similar size. The mainreasonfor using such tools, however,is to improve the technicalquality of systems.
The projectsusingtestingtools hadslightly higher error rates bothin integration and system testing (15 per cent higher), andinthe firstmonthof operation (10 per cent higher). Thus, althoughthetoolsmay have helped to identify more errors, the reliability of the

90

© Butler Cox pic 1990

 Butler Cox ple 1990

Chapter 5 Using contemporary tools

developed applications in the first month of operation was
marginally worse than average.
Measuring and analysingthe benefits associated with tools, either
productivity or quality, provides ameansof focusing attention, and
hence, effort, on the areas of greatest benefit. It is then the
responsibility of the management to implement initiatives to
increase thelevels of benefit.

TOOLS FOR TESTING SYSTEMS
Testing is an area where improvements in both productivity and
quality can be attained. In Chapter4, we lookedat the process of
formal software testing and various techniques and methods
underlying this. Supporting this process, and the techniques and
methods, are varioustools and aids that assist in conducting and
managing testing, and generating and analysing test data and
results.

CONDUCTING TESTING

Twotypesoftool — debuggersandtest harnesses — are used during
moduletesting to help in the process of debugging andtesting:
Debugging is a distinct activity from testing. However, several
debugging tools also include features that enable them to be used
for formaltesting. Thelist in Figure 5.6, overleaf, is not exhaustive;
we have included only those for which the manufacturer also
supplies anothertype of testing tool that can be usedin conjunction
withit. All the organisations we interviewed use some debugging
tools, since it would be expensive to develop programs without
them.If additional debugging tools are required, it would be worth
consideringtools thatare also useful for formaltesting.

Test harnesses provide an environment for running partially
completed software whenit is undergoing moduletests, or being
debugged. They provide facilities such as simulating incomplete
modules, interceptingcalls to external procedures, and defining
external data areas. The use of sucha harness could provide amore
uniform approach to module testing throughout a development
team.

MANAGING TESTING

Test-managementtools help in the management of the tests rather
than in theprocessoftesting. Theyare particularly usefulif there
are many test cases to manage, and as a long-term investmentin
maintainingthe test environmentfor regressiontesting.

Companies that are already controlling their software develop-
ments using tools for code management and configuration
management should consider extending their scope to include
testing. Companiesthat are not already using such tools would be
well advised to considerinvesting in them.

TEST-DATA PREPARATION AIDS

Tools to ease the processof creating and usingtest data provide one
or more of four functions: capture and playbackoftest scripts,

91

Chapter 5 Using contemporary tools

Figure 5.6 There is a wide range oftesting tools available in theUnited Kingdom

Thetoolsin this list have been selected from those that are obtainable and that aresupported in the United Kingdom. Inclusionin this list does not indicate an endorsementof the product. Thecriteria for inclusion are that the product should be supported onDigital, IBM mainframe,or ICL computers and that Cobolor PL/1 should be supportedon language-dependentproducts. Somestatic-analysis products,for example, havebeen excluded becausetheyare aimedat military systems, and languages such as Coraland Ada.

Cap
tur

e/p
lay

bac
k

Tes
t d

ata
gen

era
tio

n
Tes

t d
at
ab
as
e g

ene
rat

ion
Co
mp
ar
is
on

Sta
tic

ana
lys

is
Dyn

ami
c a

na
ly
si
s

De
bu
gg
in
g

Tes
t m

an
ag
em
en
t

 ABL Europe Ltd— TIP N X

Advanced Programming TechniquesLtd— Oliver
— Simon NI

N
NN

 C A Computer Associates Ltd— CA-Datamacsi|l Ea— CA-EZTest/CICS -— CA-Optimiser -

 Compuware
— CICS Playback ee -— File-aid Za
 Digital Equipment Corporation
— Dec Test Manager a Z
Gerrard Software Ltd
— Testgen Pe
IPL Software Products Ltd
— Softest v S

 John Bell Technical Systems
— Pro-Quest ele— Testa -
 On-Line’ Software International
— Datavantage ele— InterTest Za— ProEdit -— Verify ey -

 Program Analysers Ltd
— Testbed ele
QATraining Ltd
— Evaluator v va -

 Rand Information Systems Ltd
— Testline - z
 Sterling Software
— Comparex e
Verilog UK Ltd
— Logiscope Pale
XA Systems UK

 — Pathvu Ca

92

© Butler Cox pic 1990

j ©Butler Cox pic 1990

Chapter 5 Using contemporary tools

test-data generation, test-database generation, and file and output
comparison.
Tools providing these functions are mainly used during system
testing and during the maintenance phase of a project, where
‘regression’ tests are carried out to check that the system’s
behaviour has not changed unexpectedly as a result of
maintenance activity.
The main benefit provided by thesetools is the automation of tasks
that would be tedious and time-consuming to carry out manually.
In some cases, the amount of test data required to carry out a
satisfactory range of tests would be so large as to preclude a
manual approach; the implication of this is that some systems
cannot be adequately tested without the use of such tools. The
use of these tools does not in any way, however, reduce the need
for careful test design. The function of the tool is simply to
automate the process of generating test data within the
parameters defined by the test design.
An important consequence of automating a tedious manual task
is the increase in accuracy that is achieved. If each piece of test
data is designed to test a particular function, any inaccuracy in
the creation of test data is likely to mean that some functionsare
not tested as the designer intended.

Capture and playback tools
These tools record users’ inputs and system responses. The user
input can then be replayed, and the system responses compared.
Thesetools are particularly usefulfor testing online systems with
significant amounts of data entered by users via screen-based
systems. They greatly simplify the creation of test scripts, and can
save the cost of employing large numbers of unskilledstaff to type
in the data. They havetheir main value during system testing,
but could also be used very effectively during the module and
integration testing of those parts of the system that handle the
user interface. The tools run either on the host computer, or on
a PC that emulates a terminal on the host computer.
The tools contain someorall of the following components:
— Capture and recording of all the user’s inputs, including

mouse movements, where theseare used. This input is stored
as a script, which can be edited if required.

— Recording of responses generated by the system.
— Editing capability on the captured input data.
— Replay of the captured(and edited)script at varying speeds.
— Theability to run multiple copies of the script or scripts on

‘virtual’ visual display units.
— Comparison of the system-generated responses between

different runs of the script, and documentation of the results.
In using a capture/playback tool, each script must be designed to
test particular features of the system. If the tool is used merely
to capture a large amount of unplanned user input, very little
benefit will be gained.

93

Chapter 5 Using contemporary tools

Capture/playback tools can facilitate tests that would otherwise
be very difficult to carry out. A good example is stress testing —
subjecting the system to large volumes of test data, or to high
transaction rates. This particularly applies to systems, such asticket-reservation systems, which have large numbers of user
terminals. In the test environment, a large number of terminals
will almost certainly not be available, and even if they were,
organising large numbersofstaff to simulate the expected volumeof user inputs would be difficult and expensive.

These tools also haveparticular benefits during regression testingbecause they allow a script of input commands (includingdeliberate user errors) to be repeated precisely. To compare theresults of the original test and the test of the modified system,differences have to be sought on possibly hundredsof screens.Most capture/playback tools can do this rapidly and withouterror.In addition, muchless effort is required to carry out regressiontests since the rerunsofthescript can be carried out in batch modewithout supervision.

Test-data generation tools
Thesetools facilitate the automatic creation of large files of data.Theyare particularly useful for testing systems that process largevolumesof data in sequentialfiles. A comprehensive test of suchsystems generally requires each recordin the test-data files to bedifferent from all other records. To generate suchfiles manuallywould be very time-consuming and prone to error. It would, ofcourse, be possible to write a separate file-generation program foreach system that is developed, but it is likely to be more cost-effective to purchase a data-generation tool if systems developedby the organisation often use sequential input data files.
Data-generation tools use at least two methods to generate thefiles. Oneis to definethefile off-line using a special programminglanguage. The otheris to generate files from within the programitself, by embedding control statements in the program. Thesestatements either generate new records, or select and modifyrecords from existingfiles.

The generatedfiles contain recordsin user-defined formats. Thetools allow the values of fields in successive records to begenerated in various ways — random numberswithin a specifiedrange, values clustered abouta specified point, sequential values,dates in various formats, and so on. These features allow thetestdesigner to include data to test for particular conditions such asdata on,or eitherside of, boundary values, and also to generatelarge numbersof different records which may be used for volumetesting.

Test-database generation tools
These tools provide a meansoftesting a system on

a

realisticdatabase without risking the live database. It is not usuallyadvisable to use the live database for system testing, buteven where it is possible, it may be more convenient to usea smaller and more easily monitored subset of the livedatabase.

94

© Butler Cox plc 1990

 © Butler Cox ple 1990

Chapter 5 Using contemporary tools

Comparison tools
These tools are the only ones that operate on the outputs from
the system undertest. Systems that generate significant amounts
of output in the form of files can benefit from the use of these
tools. They can save time and improve accuracy whenthetester
is looking for small differences between runsof a test program,
or whenhe is comparing expected results with actual results. They
can be particularly valuable in the maintenance phase of a
system’s life cycle, where it is essential to verify that a correction
or a change to a program does not have unexpectedside effects.
The tools produce printed reports that management can use as
an objective measure that the system has not been degraded by
the change.
File-comparison tools identify records withina file that have been
inserted, deleted, or modified. The ability to make comparisons
in this way is usually includedas a feature of capture/playback
tools. In these instances, comparisons are made of outputs sent
to a display screen by the system. Somefile-comparison tools are
included in manufacturers’ operating systems — for example, the
‘Difference’ command in Digital’s VMS operating system.

TOOLS FOR MAINTAINING EXISTING SYSTEMS

In addition to fourth-generation languages and CASE tools for
generating software for new systems development and testing
tools, a range of tools is emerging designed to assist with the
maintenance of existing systems. These tools fall into two
categories: managementtools andtesting tools (covered above),
and maintenance-support tools.

THE USE OF MAINTENANCE TOOLS

Although software tools theoretically help to simplify mainten-
ance by improving the development process, they have yet to
make muchimpact in this area. Most systems that are currently
being maintained were developed using Cobol, as Figure 5.7
shows. Of 24 companies in a snap survey by Butler Cox, nine
stated that over 90 percentof their maintained code was written
in Cobol, and anothersix reported that at least 70 per cent of their
maintained code was in Cobol.

Figure 5.7 Most systemsthat are currently being maintained were

developed using Cobol

*The entriesin the table record the number of respondents who havethat proportion
of code written in the designated language. (Source: Butler Cox survey of PEP members)

95

Chapter 5 Using contemporary tools

Languages other than Cobol are becoming more common in
maintenance work, however, and are already more widespread
than either PL/1 or Assembler. These other languages comprise
various fourth-generation languages such as Mapper and
Application Master. :
MANAGEMENTTOOLS AND TESTING TOOLS
Although not directly concerned with the task of maintenance,maintenance-management tools and maintenance-testing toolshave an important complementary role to play.
Maintenance-managementtools
Managementtools help to improve the planning and control ofmaintenance. Tools in this category are of two types. One typeaims to help with the job of estimating (which should take placeduring impact analysis). The other type helps to control theintroduction of successive versions of software. Estimating toolstendto be linked to proprietary systems development methods,whichlimits their use in a maintenance environment. Whateverthe tool, the ability to calibrate estimating models to thecharacteristics of the maintenance environmentis essential.
A range of configuration and change-management tools isavailable to control the change process in maintenance work.These tools ensure that successive versions of software areprogressively introduced into a production environment undercontrolled conditions. They also have the ability to generatemanagement and audit reports. Several of them can also beapplied to the development environment and can then be usedto progress software into the production and maintenance phases.
Maintenance-testing toolsSeveralof the testing tools described earlier are available to helpwith the maintenance task. They provide source and file-comparison facilities, cross-reference analysis, code analysis, andtest-data operation facilities. The purpose of such tools is toprovide enhanced status reporting, auditing, and qualityassurance, and to improve the efficiency of the testing process.With a testing environment supported by techniques, methods,and tools, test data and informationis easier to maintain and thetesting process is simpler to administer,
The use of knowledge-based techniquesis likely to have an impacton testing tools — for instance, by using rules to define additionaltest cases. Some interesting tools are also being developed thatincorporate the use of hypertext, which acts as a navigational aidfor searching through program structures. (Hypertext allows‘chunks’of text to be related to each other so that the user candecide whichrelationships to pursue and when to pursue them.)
MAINTENANCE-SUPPORT TOOLS
Maintenance-supporttools are having the biggest impact on themaintenanceprocess. Maintenancetools are aimed at the impactanalysis and design steps of maintenance. They provide a powerfulmeans of analysis and design, and are valuable where largeamounts of existing code have to be examined or modified,especially where the code itself has been subject to previous

96

© Butler Cox ple 1990

Chapter 5 Using contemporary tools

modification. Although relatively expensive, maintenance tools can
cost less than renewingthe system. They can bejustified when the
maintained system is likely to continue in operation for several
years.
Three kinds of maintenance-supporttool are currently available:
code analysers, restructuring tools, and re-engineering tools. Some
of the better-known examples are identified in Figure 5.8.
Code analysers: Code analysers report on the degree to which
programs(in the main, Cobol) are syntactically correct, and they
indicate the complexity of the existing code. So-called static code
analysers report, in addition, on departures from programming
standards. Dynamic codeanalysersreport on the results of a test
run; they may, forinstance, report the numberof untested lines of
code.
The experience of the systems development department of a
Belgianutility highlights the risk offailing to exploit the benefits of
code-analysing tools. To meet oneof its application requirements,
the departmentselected a packaged software product. Atfirst sight,
it seemed to fit the need closely — it was designed to a similar
specification — but experience showedthatthisfirst impression was
false. The package hashadto be extensively modified to cope with
increased data-storage and transaction volumes, whichhasled to
significant changesto its internal structure. During the space ofjust
one year, the maintenanceeffort has reachedhalf of the original
estimate of developing the complete system from scratch. Code-
analysis tools could have helpedto clarify the suitability of the
designin thefirst place, and to estimate overall life-cycle costs and
resourcing requirements more accurately.
The aspirationsof a large agricultural merchant provide a further
illustration of the potential of code analysers. The systems
departmenthas hadto face a problem that is not uncommon — that
of losing many experiencedstaff in a short spaceof time, following
an organisational change. Havingno alternative but to assign to the
maintenancefunction staff who hadlittle or no direct knowledge
of the systems, the department turned to a code analyser(in this
case, VIA/Insight). Althoughitis still too early to assess the impact

Figure 5.8 There are several kinds of maintenance support tools

‘Category 2

Code analysis

Restructuring

9%

Chapter 5 Using contemporary tools

of this code analyser, the departmentis expecting to obtain three
importantbenefits: transfer of knowledgeto the maintenancestaff
about the application of the systems, at the code level; improved
codereliability; reduced maintenance turnaround time as a result
of better productivity.
Code analyserscan also be used to measure the technical quality of
asystem. Theiruse in the area of quality measurementis discussed
later in this chapter.
Restructuring tools: Restructuring tools transform unstructuredcode into new,functionally equivalent code that is restructured inaccordancewith top-downprinciples, andis fully documented. Thesteps in the restructuring process are the following — analysis (inmuch the same wayas with a code analyser), code re-organisationand redesign (done manually with all but the most sophisticatedrestructuring tools), code generation from the revised programdesign, andverification.
The experience of a major oil companyillustrates the use of arestructuring tool. All of the commercial systems (over 1,200programs) were written in a programming language nolongerincommonuse. Thelevelof expertise neededto use the language wassubstantial and required very skilled maintenance staff. Thislanguage wasvery difficult to use and staff required an extensiveamount of training. New programmers would serve anapprenticeship with the senior staff to learn the languageanditcould be as long as two years before programmers would be allowedto work unsupervised with the language.
In 1985, the company plannedto rewrite all of the applicationswritten in this language. It estimated that this would cost about$6 per line andthat it would take 10 calendar-years to complete allthe work, at a total cost in excess of $15 million. Managementapprovalto proceed was granted. However, before going ahead,thecompanyevaluated thepossibility of restructuring its systems as analternative to the high-risk, high-cost rewrite strategy, using arestructuring tool. It chose Recoderas the tool and submitted a newplan, whichindicated thatall the code could be restructured and theexisting systemsre-engineered in twoyears.
These tasks were, in fact, completed in less than two years; after14 months, 850 programshad been restructured. A billing systemof over 500 programs was completed at an average of one to twohours per program, andthetotal cost was eight cents per line. Onanother system, one of the company’s restructuring goals was toimprove its run-time performance. With the improvementsimplemented,the daily run-time was cut by three to four hours, andthe annual production-cost savings were $170,000.
Restructuringtools are relatively expensive, however.Prices rangefrom $60,000 for Adpac’s PM/SSproduct, to more than $100,000 forIBM’s Cobol/SF. Despite the suppliers’ claims of productivity gainsas high as 60 per cent in subsequent maintenance activities,restructuring tools often provehard tojustify.
Re-engineering tools: Re-engineering tools go one step beyondrestructuring tools. They havethe ability to form an entirely newdesign from existing code. They workfirst by translating existing

98

©Butler Cox pic 1990
|

 Butler Cox ple 1990

Chapter 5 Using contemporary tools

code back toa design-level representation(this is a process known
as reverse engineering), then by working forward from that point
to create entirely new, restructured code(this is a process known
as forward engineering).
Today, there are several products on the market, such as Pacreverse
from CGI Systems, and Revengg from Advanced Systems
Technology. Althoughthese tools hold great promise in reducingthe
maintenanceeffort, it is not clear yet how muchofthe ‘engineering’
is carried out automatically by the tool and how much requires
humanassistance.
Both maintenance-oriented tools and fourth-generation languages
help to improveeither the productivity or the quality of applications
development. To measure these improvements, current levels of
productivity and quality need to be known. Although most
development departments havethebasic information required to
measurethe benefits associated with any particulartool, very few
actually carry out any analysisofthis data. There are many reasons
for this, ranging from lack of time (a false economy), to a lack of
expertise. Although we have not come across a tool that helps
measure productivity, there are tools that help measure the
technical quality of applications. These tools can prove very
effective in measuring quality and highlighting areas that need
further work to improvethe quality of a particular application.

TOOLS FOR MEASURINGTECHNICAL QUALITY

Twotypesoftools are available to help analyse the quality of the
code within asystem. Called static analysers and dynamic analysers,
they are suitable for use with commercial and_ scientific
programminglanguages such as Cobol, PL1, Fortran, and C. Code
written in manufacturer-specific languages, such as Tandem’s TAL,
or in fourth-generation languages, cannot be analysed bythesetools
today.

STATIC ANALYSERS

Static-analyser tools examine the structure of code without running
it, and can typically find between 10 and 20 percentof all errors in
a program. They are cost-effective tools in the development of
reliable systems, but do not seem to be widely used in the
commercial environment. Much of their use has beenin avionics
and military systems. There are considerable benefits to be gained
from the use of these tools in commercial applications, however,
and their use should be considered carefully by all development
departments.
The tools provide managers with objective measurements of
characteristics that are directly related to quality. These help to
identify areas of poorly structured or excessively complex code.It
is advisable to redesign such code before proceeding further with
testing.Ifpart ofthe codeis unavoidably complex (a complexlogical
algorithm, for example), extra attention should be paid to its module
testing since it is likely to contain an above-average numberof
errors.

Static analysers typically assess the following characteristics of the
code:

99

Chapter 5 Using contemporary tools

— Conformance to user-specified standards (for example, no
more than a predefined numberoflines ina module, or no use
of ‘go to’ statements).

— Thepaths(or different sequencesof instructions) through a
program.

— Complexity analysis. Two ofthe most widely used measures ofcomplexity are McCabe’s measure, and the numberof knots,
explainedin detail in Figure 5.9.

— Data-flow analysis, showing procedurecalls, use ofprocedureparameters, and unreferenced or unuseddata items.
 Figure 5.9 Two of the most widely used measures of the complexity ofa program are McCabe’s measure and the numberof knots

McCabe’s measure
McCabe's measureis defined as one more than the numberof decision statementsin a program. The metric is very simple, but experience showsa significantcorrelationbetween McCabe's measure and the number of bugs, or debuggingeffort appliedto a program. Programs with a McCabe value in excess of 10 seem to havedisproportionately more bugs than those with values of less than 10.

Knots
The purpose of looking for ‘knots’is to identify unstructured code, which tends tocontain moreerrors than properly structured code. A control-flow knotis defined asoccurring when two control jumpscross,asillustrated in the diagram. Three typesof knots are depicted. A down-down knotis relatively harmless, and represents an‘if... then ... else’ construct. Up-downknots are more likely to represent unstructuredcode, but mayarise from ‘do’ or‘while’ loop constructs. Up-upknots always representunstructured code.

Down-down Up-down Up-upknot knot knot

)) KnotKnot 100

© Butler Cox pic 1990

© Butler Cox pic 1990

Chapter 5 Using contemporary tools

— Cross-referencingof all data items.
Sometraining is requiredin the interpretation of these measures,
but carefully used, they can identify many codingerrors before any
attempt is made to run the code. This obviously saves effort and
machine time.

DYNAMIC ANALYSERS.

Dynamic-analysertools provide objective measuresof the testing
procedure, commonly known as ‘white-box’ testing. This procedure
is carried out as part of the module-testing phase, and may also be
done during integration testing. The tools monitor the code while
it is being executed, and produce a report at the end of the
execution,giving variousstatistics. These statistics can be used to
assess the effectiveness of the test cases.
It is essential that white-box testing is carried out, since ina typical
program, over 50 per centofthe codeis not directly related to end-
user functionality, but to the manipulation of internal pointers,
flags, and intermediateresults. ‘Black-box’testing, whichviewsthe
system externally in terms of inputs and outputs, cannot be
designed to guarantee complete coverageofthis ‘hidden’ code.

One tool, Testbed, provides three measurements, or test-
effectiveness ratios (TERs), resulting from a dynamicanalysisof the
code. Other dynamic-analysis tools, which are sometimes also
known as coverage analysers, provide at least the first
measurement. These measurementsare:
— TERI

—

statement coverage analysis: the percentage of the
lines of code that have been exercised at least once. No
operational system should be released where this measureis
less than 100 per cent.

— TER2 — branch coverage analysis: the percentage of all
outcomesof branch instructions that have been exercised at
least once. The goal of testing should also be 100 per cent,
although thisis not as easy to achieve as 100 percent on TERI.

— TER3 — path coverage analysis: there are several ways of
measuring paths through

a

system, all of them quite complex.
It is difficult, in practice, to achieve 100 per cent path coverage
duringtesting, and except in ultra-high-reliability systems,it
is probably not worth attemptingit.

Anexample of output from Testbed for TER2 is shownoverleaf in
Figure 5.10.
An experiment carried out on a large military system in the United
States showed that, when static analysis was combined with
dynamic analysis, 70 per cent of all errors in the system were
discovered. The remainingerrors were causedlargely by errors in
the specifications or misunderstandings of the written
requirements.

Project managerswill find the use ofthis type of tool particularly
helpful because of their ability to provide reports containing
objective measures of progress, suchas“‘tests covering 78per cent
ofstatements and 64 per cent of branches have been successfully

101

Chapter 5 Using contemporary tools

Figure 5.10 Thetesting tool, Testbed, provides three measurements
resulting from a dynamicanalysis of the code

The diagram is an exampleof output from Testbed for the second ofthe measurements,
or test effectiveness ratios (TERs), that it provides. TER2 is an analysis of
branch coverage.

Previous runs Current runBRANCH EXECUTION PROFILE Combined

FROM TO OLD NEWLINE LINE COUNT COUNT TOTAL
7 18 . 1 1 217 19 List of all the 4 2 618 56 branches in the 1 1 2AEs, program 3 2 524 53 1 OFeer: 1238 29 2 Geese: 228 30 1 2 333 34 1 133)) 535 2 1 338 (39 1 1 B38 40 2 1 3 Unexecuted43 44 1 sees 1 Branches4 46 2 2 445 51 1 Oeste47 48 1 2 34750 1 Ossie 149 51 1 2 352 54 3 2 555 12 4 2 658 1 1 1 2

OLD NEWSUMMARY COUNT COUNT TOTAL
NUMBEROF BRANCHES IN PROGRAM 20 20 20NUMBER EXECUTED 20 15 20NUMBERNOT EXECUTED 0 5 0
TEST EFFECTIVENESS RATIO 2 1.00 0.75 1.00 (Source: Program AnalysersLtd)

completed”’. This gives project managers much better control overa project than havingto rely on a programmer’s typical estimatethat“testing is 95per cent complete”’.

SELECTING TOOLS FROM THE TOOL SET
Tools should not be selected for use on an applicationin isolation.Instead, they should be selected in the context of the widerdevelopment environmentin which they are to be used, and inthelight of the development application they are aimed at.
Serious problemswith tools are commonplace, frequently asa resultof the selected tool’s inability to develop the required applicationsfully. Problemsofthis sort are rarely attributable to a shortcomingin the tool itself, but instead to a mistake in selection. If theirpotential is to be fully realised, tools should be chosen andintegratedinto the development environment with due regard tothe relationships between the application in question, thedevelopment approachesavailable, and the systems developmenttechniques and methodsthat can be used. Failure to observe thecritical nature of these relationships will produce a less-than-adequate application, and loss of confidence in the tools.
THE NEED FOR A TOOL-SELECTION PROCEDURE
Contemporary tools cannot be usedforall typesof applications, andthe range of applicationsis increasing.It follows that a rangeoftoolsis required, each matched to the characteristics of one or more

102

© Butler Cox pic 1990

© Butler Cox ple 1990

Chapter 5 Using contemporary tools

applications, if the full potential of the toolis to be realised for a
particular developmentproject.
The need to select the right tool for an application rarely arose with
traditional tools such as third-generation languages because they
could be used to develop most typesof application. Thetraditional
procedure for selecting an appropriate third-generation language
is illustrated in the first column of Figure 5.11.
Ananalogy can be made here with house building. Using the more
traditional tools, such as third-generation tools, was equivalent to
building houseas a traditional craftsman would do, designing and
building each componentfrom basic materials. Using modern tools
is equivalent to building a house by using prefabricated com-
ponents, such as windows, doors, and wall panels, as the basic
elements. As with modern house-building techniques, modern tools
certainly enable thefinal product to be built much more quickly, but
unless the right set of componentsis selected, it will not be possible
to build the application accordingto the original design.
Mostorganisationsare using the procedure that was developed for
third-generation languagesto choose which moderntoolsto use for
an application. In our analogy, this is comparableto selecting the
prefabricated components without considering what type of

Figure 5.11 The revised procedureforselecting developmenttools

ensuresthatthe capabilities of the tools match the
characteristics of the application

Traditional Revised
 Application

Stage 1 Stage 1 a : :
Thetype of application determines which Thetype of application determines which
development approach should be development approach should be
adopted adopted
Stage 2 Stage 2

i h is supportedThe development approach is supported The development approac'
enone jahnigues and development by various techniques and development
methods methods

Stage 3Stage 3 :
acrenneiauee and methodsare The techniques and methods are
supported by various development supported byvarious developmenttools,
tools whose capabilities match the

characteristics of the application

103

Chapter5 Using contemporary tools

building is to be constructed — an apartment, a house, an office
block, or a hospital.
A properselection procedureshould ensurethat the contemporary
tool not only supports the systems development techniques and
methods,but also thatit is able to develop the required application.
This formal procedure, which is contrasted with the traditional
procedurein Figure 5.11, should be adoptedfor selectingall tools.
If it is implemented correctly and updated regularly,it will deliver
an effective match between the development environment and theapplication. This should ensure thatall projects developed with
these tools are successfully completed.
The procedure adopted by Tesco Stores Ltd, asupermarket chain,is a case in point(see Figure 5.12). Tesco uses three main develop-menttools — Telon, Focus, and Cobol. Cobolis used mainly for themaintenance of existing applications. SDT, a fourth-generationlanguage from McCormackandDodge,is usedforfinancial systems.The companyhasclear guidelines for deciding which developmenttool shouldbe selected fora particular application. These guide-lines, accompanied by detailed instructions, are issued todevelopers in a document entitled, The Development LanguageSelection Criteria. This documentgives the reasons for selectingaparticular language, and two diagrams, one for new applications

Figure 5.12 Tesco has

a

procedure for selecting appropriatedevelopmenttools for each newapplication

Reports requirecomplex calculation ,=Telon
or data manipulation

Sime I— Focus
reports fromReports QSAM, VSAMoroe IMSOBor Focus OBhandling

Telon

Reportin samelogical sequenceasfilehandling

Batchfilehandling andreporting

Batch Telon

Split into two
programs:
Telonfor extract &
Focusfor report

 Reportin differentsequenceto file handling

System runsin conjunction
with or majorinterface toanothersystem

 cics Telon CICS

 Telon IMSOnline

Part of thefinancialsystem

SDT

Expectedlifeof system: Systemisstandalone Telon IMS
Telon CICS

(Source: TescoStores Ltd)
104

© Butler Cox pic 1990

 ©Buller Cox ple 1990

Chapter 5 Using contemporary tools

and one for maintenance,indicating which developmenttools will
be appropriate for applications with certain characteristics.

DEFINING THE ELEMENTS OF THE DEVELOPMENT ENVIRONMENT
Before the procedure for selecting the application-development
environment can be implemented, the elements need to be defined
and the definitions documented so that everyone involvedin the
selection procedure has the same basic understanding of the
application-development environment. This document is used
whenevera development project, either maintenance or new,is
started. The elementsthat need to be defined can be grouped into
four categories:
— Development approaches: The complete cycle, phases, and

activities of the developmentof an application. All the major
development approachesused within the organisation should
be briefly described, with an explanation of the objectives and
the actions required at each phase. It should be clear to the
reader howthe phases flow from one to another.

— Systems development techniques andmethods: The techniques
are the procedures on which systems development methods
are based. All the systems development techniques and
methods available within the organisation should be briefly
defined, and associated with the development approachesthat
they support. Several development approaches may be
supported by a single technique or method, and several
techniques and methods may support one phase of a
development approach.

— Developmenttools: Thetools, typically computer-based,that
automate parts of or support the development methods and
techniques. All tools should be identified and described in a
similar mannerto the systems development techniques and
methods, and associated with the various methods and
techniques that they support. Again, there may be multiple
associations.

— Application characteristics: To ensure that the toolthat is
selected will facilitate the efficient and successful develop-
ment of the application, the nature of the applications
developed by an organisation needsto beclearly understood.
Thenature of an application canbe defined in termsof aset of
characteristics. Each application can be described in these
terms, and hence, be defined in a consistent manner. Most
applications can be defined for this purpose in terms of
between 10 and 20 characteristics, relating primarily to the
development approaches andthe tools currently used by a
particular organisation. Examples of the kinds of
characteristics of an application that will determine whether
or notit is a suitable candidate for a particular development
approacharelisted in Figure 5.13, overleaf. Examples of the
kinds of application characteristics that will determine
whether aparticular developmenttoolis appropriate arelisted
in Figure 5.14, also overleaf. Theselists can be amended and
supplementedto suit an individual organisation.
The characteristics must be clearly defined so that they will be
consistently interpreted by different readers. They should not

105

Chapter5 Using contemporary tools

Figure 5.13 Every application has characteristics that will determine the
suitability of using particular development approaches

Scopeof the impact

Ameasure of the impactofthe app
organisation. This could rang
applications topersonalsyste!

Clarity of the definition
of users’ requirements This could rangefrom well d

stand,to poorlydefined and di

Urgency A measureof the urgency
application, andof

Numberoflocations The number of geographi

Complexity A measure ofhow diffi
develop,in view of its com) plexi

Security Thelevel of securitythat the applicatio

access to the application itself and to
 Audit requirements Thelevel of auditthatthe applica t

could range from none, to vel
systems). : —

Figure 5.14 Every application has characteristicsthatwill determine thesuitability of using particular developmenttools

 Application type Definitions should reflect the type of application rather7than the business area — for instance, trans ctionprocessingratherthanfinancial systems. :
 Levelofintegration

Ameasureof the levelof integration expected betweethis application and other application types, databases,and machine environments.This could rangefromnone,to numerous and very complex. : /

Performance A measure of the required performance of the appli-requirements cation. Some may require instant responsetimes: forothers, responsetimeswill belesscritical. : 2
Type of development Anindication of whetherthe application isa modification,an addition, or an enhancement.
 Levelof portability A measure of the portability of the developedappli-cation. This could be across different machine con-figurations, or across the machines of differentmanufacturers. :

Likelihood of The expectedtimefromfirstinstallation to the first majorenhancements enhancement.
Volume of data Anestimate of the total volumeofdata.
Security Thelevel of security that the application must provide foraccess to the applicationitself and to the data.
Complexity A measure of how difficult the application will be todevelop,in view ofits complexity.
Size Anestimateof thetotal size of the application.
Expectedlife Anestimateofthelife of the application.
 Interface with end user The degreeoffamiliarity that the userswill have with thesystem.
 Flexibility Ameasureofthelikely extent and frequency of change.

106

utler Cox ple 1990

©Butler Cox pic 1990

Chapter 5 Using contemporarytools

be too detailed or too technical, because they needto be kept
to a manageable number. Thelists should be amendedas the
development environment evolves. They providethebasis for
the preparation of the selection tables described in the next
section.

The level of definition and the number of definitions in each
category will vary from one organisation to another. The definitions
should be reviewedon a regular basis to take into account the
evolutionary changes in the development environment, and the
introduction of new types of applications, development
approaches, and systems development techniques, methods, or
tools.

PREPARING SELECTION TABLES

Twotables need to be preparedto serve as the basis for matching
the development approachand thetools with the application. Their
structure and the kinds of information they should contain are
describedin this section. Once prepared,the tables can be used for
any development project. They are based on the lists of
characteristics described above, with input from experts in the
areas of development concerned. They will, of course, need to be
updated periodically to reflect changes in the development
environment.
Both tables are organised in a grid format and used in a similar
manner.Thefirstis used to select the development approach fora
specific application. The secondis used to ensure that the tools
selected will enable the required application to be developed.
An example of part of the table for selecting tools is shown in
Figure 5.15. The application characteristics are listed on theleft-
handsideofthe table;the typesoftools are listed across the top. The
application characteristics should be listed, as far as possible, in
orderof importance. A maximum score should be assigned to each
of the application characteristics to indicate their relative
importance — say, 20 forthe most important characteristic, and five

Figure 5.15 Useof the development-toolselection table ensures that
appropriate developmenttoolsare used for each application

107

Chapter5 Using contemporary tools

forthe least important. Each application characteristic is brokendowninto a range of options, each of which receives a score. InFigure 5.15, for example, the ‘expectedlife’ of the applicationisconsidered oneof the most significant characteristics andis givena maximumscoreof 20. This is broken downinto three options —‘less than one year’, ‘between one andthreeyears’, and ‘over threeyears’.
The numeric value entered onto the grid is an indication of theability of the tool to develop an application that supports thatoption. If a particular development tool can fully support thatoption,it receives the maximumscorefor that characteristic. If itprovides adequate support, it receives a lowerscore. Ifit providesno support,it scores zero. If, for example, the expectedlife of theapplication being consideredis over three years, the applicationneedsto be developed bearing in mind the continuing supportthatthetool will be able to provide, andthe ease of maintenance of theapplication over the longer term. The capability of each tool todevelop such a systemis considered in turn. Cobol scoresfive as itis not the strategic developmenttoolfor this organisation, anditproducesapplications that are not the easiest to maintain. Focusscores 15; althoughit is not the strategic developmenttool either,it does produce applicationsthat are easy to maintain. Telonis thestrategic developmenttool and producesapplications that are easyto maintain;it scores the maximum of20.
The procedure for compiling theselection tables is summarised onthe left-hand side of Figure 5.16. This part of the procedureiscarried out only once, before the processis initiated. Once theselection tables have beenfinalised, they should be tried out onseveral recently completed developments. This should reveal anyerrors in the selection tables, and also demonstrate how well thedevelopments were supported bythe development approach, andsystems development techniques, methods, and tools chosen.Modifications to the selection tables should be made as and whenappropriate.

PREPARING DOCUMENTATION
The elements of the selection procedure should be fullydocumented, and regularly updated. The documentation shouldconsist of:
— Thedefinitions of, and relationships between, the variousdevelopment approaches, and systems developmenttechniques, methods, andtools.
— The approach and development-tool selection tables, and theinstructionsfor their use.
Allthe commentsanddecisions madeduringthe process should alsobe documented. If a development should subsequently fail, theappropriate part of the definitions or selection tables can beamendedbyreferring to the documentation. In this way, mistakeswill not be repeated.

MAKING THE PROCEDURE PART OF THE DEVELOPMENTPROCESS
The remainderof the selection procedure, illustrated on the right-handside of Figure 5.16, should be carried out at the beginning of

108

Butler Cox pic 1990

Chapter 5 Using contemporarytools

Figure 5.16 Elements of the development environment should be selected according to a formal procedure

List the approach-
related application

characteristics—
Allocate scoresto each4
Break each down
into a rangeof

options4
Score each option
with respect to each

approach

 Approach
selection

table

 Definitions of

approaches,
techniques,
methods, and

tools, and of the
relationships
between them

 List the
development-
tool-related
application

characteristics

Allocate scores
to each Development-tool

selection
table

 Break each down
into a range of

options

 t
Score each option
with respect to each

developmenttool
Do all developmenttools score zero?

je NoeeeYes a

Definitions of : Revie A e
approaches, _Selecte
techniques, : elopment
methods, and

tools, and of the
relationships
between them

Part of the procedure
carried out once only, and
modified as necessary

|
|) | Part of the procedure
| ae carried out for everyi individual application
|

© Butler Cox plc 1990 109ik

Chapter 5 Using contemporarytools

each developmentproject andis best done at ameeting attended byone or twousers,the internal technical experts, and several of thesystems development department project managers,all of whomwill contribute from their experience, and one of whom will managethe development. Everyonepresent should be acquainted with thedefinitions and theselection tables. This part of the procedureisdescribed below: -

110

For each application characteristic listed on the approachselection table, identify the option that best relates to theapplication underconsideration for development. For eachapproach,circle the score that that option has been awarded.
Add upthecircled numbersto obtain a total score for eachapproach. Any columnthat contains

a

circled zero willscore atotal of zero — in other words, that approach should not beconsideredforthis particular application becauseitis incapableof meeting the requirements of one of the applicationcharacteristics.
The development approach with the highest scoreis the onethat will enable the application to be developed mosteffectively, providing that the developmenttools available alsosupport the application.If all the development approachesscore zero, the application should not be developed,as it isnotsupported by anyofthe existing development environments.In this case, either the requirements of the application shouldbe reviewed, or a new development approach should beadoptedthat will enable the application to be developed.
Identify the systems development techniques and methodsthat support the chosen approach, drawing on the documen-tation thatdefinesthe relationships between the developmentapproach and the systems development techniques andmethods.
Identify the development tools that support the varioussystems developmenttechniques and methods, drawing on thesame documentation.
For each of the application characteristics listed on thedevelopment-toolselection table, identify the option that bestrelates to the application under consideration. For eachdevelopment toolidentified in the previous step, circle thescore that that option has been awarded.
Add upthe circled numbersto obtain a total score for eachdevelopment tool. Any column that containsa circled zero willscore a total of zero — in other words,that development toolshould not be considered for this particular application,becauseit is incapable of meeting the requirements of one ofthe application characteristics.
If several developmenttools support the same technique ormethod,select the developmenttool with the highest score.Ifall the developmenttools supporting a technique or methodscore zero, noneofthe developmenttoolsis applicable. Eitheranew developmenttoolis required, ora different developmentapproach should be adopted, with different systemsdevelopment techniques, methods, andtools.

© Butler Cox pic 1990

© Butler Cox pic 1990

Chapter 5 Using contemporary tools

Review the selected development environment as a whole,
checking that the various development tools that need to
interface with each other are compatible.

INTRODUCING NEW TOOLS
The type and complexity of a tool will have a bearing on how long
it takes to integrate it into the development environment. The
introduction and subsequentintegration of a tool must be carefully
planned and managed.
Aneffective plan for introducing a newtool should consist of the
followingfourstages(it helps to stay in close contact with the tool’s
supplier throughoutall four stages):
— Stage 1:Marketing the implementationplan internally. This

stage is designed to ensurethatall the staff involved with the
newtool know exactly what the implementation plan is, what
their responsibilities are, and howit will affect them.

— Stage 2: Initiating changesto exploit and support the tool. In
this stage, changes are madeto the development environment
so that the tool can be optimally supported and exploited.
These changes maybeof a ‘one-off’ nature, such as reducing
teamsizes, or they may be continuing changes, such as defining
andcreating a ‘cook book’ (described later in this chapter).

— Stage 3: Implementing a pilot application. In Stage 3, the
ability of the toolis tested ona pilot application. If the correct
tool has been selected, and Stages 1 and 2 have been completed
correctly, the pilot application will succeed. Asa consequence
of the pilot, areas may well be identified where changes can be
made to makebetteruse of the tool— for example, areas where
the documentation may be reduced,or where changesin the
procedures may be introduced.

— Stage 4: Modifying the development environment in the light
of the pilot application. In Stage 4, any recommendations
resulting from experience with the pilot application are
implemented.

STAGE 1: MARKETINGTHE IMPLEMENTATION PLAN

The objective ofthis stage is to ensure thatall the staff involved with
the tool are awareof the implementationplan andofits effects on
their working environment, their roles and responsibilities, job
security, market value, and so on. Earlier in this report, we
identified the staffing factors that are important to productivity;
managers should pay particular attention to these factors when
considering the introductionof a newtool.

The commitmentof senior systems department managersto the tool
is importantto its successfulintroduction. To wintheir support, it
is necessary to demonstrate the tool’s cost justification.

A group should be created to ‘market’ the tool to the rest of the
systems development department.This group should comprise the
proposedtechnical expert (whowill probablybe one of the people
who carried outtheinitial pilot project), a technical expert from the
supplier, a sales representative from the supplier, and a senior

ial

Chapter 5 Using contemporary tools

project managerfrom within the systems department. This group
will be responsible for introducing the tool to developmentstaff. All
staff involved with the tool — developers, managers, and usermanagers — should attend a one-day presentation. Half the dayshould be spent introducing the tool, and half should be spentdiscussing the plan for introducingit into the organisation. This
should encourage a positive attitude to the tool andits use. .
The supplier should take the leadin the first half-day session,providing generalbackgroundinformationonthe tool, showinghowit will be usedin the proposed environment, describingthe types ofapplicationsit will be usedfor, and providing details of the benefitsthatit can provide. In-house membersofthe group will participatein asupportingrole.
In the secondhalf-daysession, the in-house membersofthe groupwill take the lead, clearly defining each stage of the plan andindicating the proposed timescales. All questions should beanswered either during,or shortly after, the meeting. If outstandingissuesare left unresolved, they may become stumbling blocks at alater stage. The pilot application should be described, the expectedtimescales should be made clear, and the members of thedevelopment team whowill work onit should be announced.
STAGE 2: INITIATING CHANGES TO EXPLOIT AND
SUPPORT THE TOOLS
To maximisethe benefits obtained from usingtools, various changesmay need to be made to the development department. Thesechanges could affect any aspect of the development department,from the computer hardwaretotherolesofthestaff., and toalargeextent, are dependentonthetypeof tool. For instance, with CASEtools, supporting the development methodis critical; with fourth-generation languages, limiting team size or prototyping may becritical. Certain changes are applicable, regardless of the type oftool, because they help to improve understanding about thecapabilities of a tool. Two that have proven very effective inpractice are introducingthe role of technical expert, and definingand implementing a ‘cook book’ and a ‘tool-limitationslist’.
Introducingtherole of technical expertWheneverany new toolis introduced,it is good practiceto designateatechnical expert as

a

focalpointforall enquiries. Thetrials carriedout during the selection process should provide several of thedevelopmentstaff with a reasonable knowledgeofthe tool. One ofthem wouldbethe obviouschoice to become the technical expertfor the chosentool. The technical expert will also be responsible forkeepingupto date on the latest enhancements to the tool andforresolving any problemsthatarise.
Theselection ofthe technical expert can bedifficult, as the expertneeds both good communicationsskills and the ability to learndetailed technical information. One companythat has followedthispractice described this person asa ‘human catalyst’ — someone whois convinced of something and can then encourage its usethroughout the department, with ease. A further factoris that ofpersonal credibility. The technical expert should have a wellestablished record within the department — bringing in a newperson sometimesservesto alienate existing staff.

112

utler Cox ple 1990

Chapter 5 Using contemporary tools

Implementing a ‘cook book’ and a ‘tool-limitationslist’
A ‘cook book’ can be usefulto help resolve problemsthatarise in
using a tool. Figure 5.17 is an extract from one company’s cook
book, specifying how a screen-based system should be developed
with Focus. Normally, compilation of the cook book is the
responsibility of the technical expert.
A similaraid is the ‘tool-limitations list’. This contains detailed
informationonthe limitations of the varioustools currently being
usedandis particularly helpful when deciding whichtoolto use for
a particular application. An example of part of a tool-limitationslist
usedby a retail companyis shownin Figure 5.18, overleaf. Again,
responsibility for compiling the tool-limitations list normally lies
withthe technical expert.

STAGE3: IMPLEMENTINGA PILOT APPLICATION

Before a tool is made available for general use, one or morepilot
applications should be developed. The experience gained will be
usedto refine the use of the tool and the development methods.If
the selection procedure has been followed correctly, and if
appropriate changes have been made in the development
department to supportthe tool, no majorproblems should arise with
the pilot application.It will simply confirm that the tool can develop

Figure 5.17 A cook bookadvises users and developersonthe use of a

fourth-generation tool

Specifying a screen-based system
Do: Keep things simple

Do you needflashy formatting? The more colours, special formatting, and
highlighting you use,the more complicated the code becomes.
Determine the functions of each screen as you would for a third-generation
language — the morethe functions are broken down,the simplerthe
coding.

Do: Beprecise ;
Documentthe validation required behind each screen, for eachfield
which requiresvalidation.
Be clear on screen processing — do not be afraid to use program
design languageto define the program flow for the screen sequence in
pseudo-English — this is as importantasit is with third-generation-
languagespecifications

Do: Be careful with PFKEYS
Whenusing PFKEYS to navigate through a system, usethe default keys
whenpossible. If other keys are required for special functions, use PF5,
6, 7, 8,9, 10, 11.

Do: Use painter :
Whendesigning the screens,use Focuspainter. This helps you design,
and saves the programmertime. You will know that the screen can
be used in Focus.

Do: Issue your own information messages 2
Whenthe user presses aninvalid PFKEY, orinvalid data is entered,
issue meaningful error messages.
When anaction has beentaken (for example, job submitted or record
deleted), issue a confirmation message.

Consider: Response times /
Afourth-generation language may be quicker to code, butwillbe slower
than a third-generation language to respond.Is this critical to your
system?

113© Butler Cox ple 1990

I

EEE

Chapter5 Using contemporarytools

Figure 5.18 The tool-limitations list specifies the limitations of aparticular tool

Limitations of Focus from an organisation's tool-limitationslist:*
 Focus cannot update anyfile except a Focus or a VSAM file. Thesefiles cannot beread by anyother language except Focus or Cobol programs making use of FocusHost LanguageInterface. However, Focusfiles can easily be created from QSAMor VSAMfiles, or DL/1 databases. Similarly, QSAMfiles can easily be created fromFocusfiles.

Without central database controlfor simultaneous users, only one user can updatea file at a time. Theoretically, a maximum of 128 simultaneous usersis possible, butInformation Builders indicates that about 20 is a morerealistic limit. The operationalrange is between 5 and 20 users; typically, 15 users are supported.
 Focus has nofacility for automatic forward recovery (which is available in IMS). Itis possible to code your own back-up logging and recovery routines in Focus.
 Alternatively, frequent back-up copiesoffiles can be taken. Inthe eventofanirretrievableCorruption of the database,the back-up copy would be restored andthe user wouldhave to re-enter his updates from the time the copy wastaken.
 No audittrail is provided for externalfiles, exceptfor IMS trace (which can be verylarge). Limited audit information is available for Focusfile modification.
 The ‘non-procedural’ nature of the Focus language makes complex processing difficultto achieve. Cobol subroutines should be used for complex logic and calculationswhenever necessary.
 The 3800(laser) printer format charactersets (that is, boxes and lines) are not availableusing Focus.

* These are thelimitations of the version of Focus that one organisation has experienced inits particular environment. Information Builders informs us that the current version of Focusovercomes most of theselimitations.
the required applications, and increase the confidence of thedevelopment departmentin its ability to do so.
Because the pilot application is an important step in gainingacceptance of the tool, it should be:
— Areal business application — that is, an application requiredby users — but not onethatis critical to the success of thebusiness. It is advisable to become reasonably experiencedwith a tool before using it to develop critical businessapplications.
— Typical of the type of application for which the tool wasselected.
— Small — thatis, an application that can be developed fullyin two to six months. If it takes much longer than this toproduce results, developers will lose sight of the overalldevelopmentlife cycle and the impact of the tool.
— Asfar as possible, in the normal development environment.
Extra effort will, of course, be required to monitor the project,to collect detailed informationaboutits progress, and to documentany difficulties that were experienced. This effort should not,however, be taken into account in measuring the performanceof the tool as it will not be incurredin a normal project. The toolsupplier should also be involvedinthefirst pilot application. Thismaybe expensive,but in the majority of cases,itis very productive.One companythat failed to do this eventually had to abandon the

114

utier Cox pic 1990

Chapter 5 Using contemporary tools

first project that a fourth-generation language was used for. At
the outset, the development department made an inaccurate
estimate of the machine resources that would be required by the
tool. It lost control of the application, as users demanded more
and more functionality at the prototyping stage, andit failed to
delegate responsibility to the user department, where it would
have been appropriate to do so. All these factors contributed to
the failure of the project, and all could have been avoided.
On completion of the pilot application, the whole project should
be assessed to identify any changes that might enhance the use
of the tool. The information gathered canalso be used to produce
guidelines for estimating the cost and effort likely to be involved
in future development projects.

STAGE 4: MODIFYING THE DEVELOPMENT ENVIRONMENT
The development environment may need to be changed in some
mannerto facilitate the introduction of improvements identified
as a consequenceof the pilot application. For example, it may be
necessary to modify standards, to reduce the level of documenta-
tion, orto increase the level of processing capacity. Such changes
should be assessed, andif required, implemented. However, the
temptation to make continual changes should be resisted. We
recommend that suggested changes be fully documented and
reviewedat regular intervals — say quarterly — to decide whether
they are applicable, and to assess the costs and implications of
implementing them.
With all the administrative and organisational changes imple-
mented, the organisation is now ina position touseits set of tools
to best advantage. Theonly outstanding problem that it might now
face is knowing whichof the tools available for use is the most
appropriate for a particular application. Ensuring that the most
appropriate toolis used for a particular application is a far more
complex task than choosing a third-generation programming
language to use on

a

project, as we explained earlier in this chapter.
If the procedurefor selecting tools from the tool set is updated
to include the new tool, this problem should be avoided.

USER TOOLS
So far in this chapter, our interest has beenin tools for specialists
in systems development departments. In most companiestoday,
however, some applications development is being carried out
outside the development department. Systems departments may
ormay notbe awareofthis work, and may or may not be supporting
it. As a consequence, there is no consensus on either the role of
users in applications development, or on the scope of end-user
computing. ;
Inthe last twoyearsofthe 1980s, there were marked improvements
in end-user computing tools. With the growth in the use of PCs,
a wide range of user-oriented tools became available, with
improved userinterfaces, automatic validation of information, and
powerful commands making them easier to understand and use.

Further advancesare certain to makeusertools easier to use and
more business-oriented. More and moreusers will therefore be

115© Butler Cox pic 1990

a

ee

Chapter 5 Using contemporary tools

able to play a constructiverole in ensuring that the organisation’scomputing resources are used for the maximum benefit of thebusiness. The resourcesof the systems department are, however,limited, and therefore need to be allocated carefully to ensurethat they are used to the greatest possible effect.
Systems departments should start by categorising the differenttypesof user so that each category can be provided with the levelof support, guidance, education, and tools that will enable businessusers to make the most effective use of the computing resourcesavailable to them. Without sucha categorisation,it will be difficultto allocate resources in the most effective way and to plan forthe growth of end-user computing.
The systems department should then set guidelines for differenttypesof application, and encourageusers to seek the developmentdepartment’s ‘seal of approval’ for each application. Encouragingusers to have their developments approved will prevent theproliferation of poorly documented applications.
CATEGORISING USERS
There are four main ways in which systems departmentscan classifydifferent types of businessuser: by their role, by the type of datathey access, by their department, or by their need for or use ofapplications and tools. The last of these waysis the best. It givesrise to five categories of user:
— Category 1: Potential users, who at present do not use anycomputer-based applications.
— Category 2: Those who have a need to use or who use onlyapplications and packages that have been written fora specifictask that requires them to input data — for example, anaccounts application.
— Category 3: Those who have a need to use, or who do use,enquiry and analysis tools to access databases and analysethe data.
— Category 4: Those who have a need to develop or who useend-user tools to develop small applications, primarily forpersonal use.
— Category 5: Those who have a need to develop, or who dodevelop, applications that may be used by manyotherusers.
Eachcategory ofuseris, in effect, an expansion of the onepriorto it. Users tend to move through Categories 1 to 5 when firstintroduced to end-user computing, and regress through thecategories as they moveinto the higher managerial roles. Eachcategory refers to the use (actual or potential) made of end-usertools rather thanto the typeoftool used. Therefore, someone usinga spreadsheet simply to add up

a

list of figures would be inCategory 2, a user loading data into a spreadsheet froma databaseand analysing it would be in Category 3, and a user writing macrosand developing a spreadsheet for a specified task would be inCategory 4 or 5.
Staff can be assigned to the appropriate category by meansof asimple questionnaire that assesses their use of tools as well as

116

Butler Cox pic 1990

Chapter 5 Using contemporary tools

their needs. There will, of course, need to be some mechanism
for re-assessing at regular intervals the category to which an
individual is assigned, because neither his needs nor the
technologies used will be static. Once staff have been categorised
in this way, the appropriate level of support and resources can
be allocated in the most effective manner. Figure 5.19 suggests
how the varioustypes of support and resources — tools, training,
help, guidance, and so on — mightbe allocated.In this figure, the
tools shownin the cells on the first row have beenclassified as
follows:
— Fixed-processing tools: These are the applications and

packages used to support the daily work of the users. Most
of the applications will have been developed in-house or
bought as packages. All of these tools carry out a fixed
processing task on specified information.

— Flexible processing tools: These are the packages, such as
spreadsheets and financial modelling packages, that allow
users to process data in a predefined manner.

— Data-access tools: These enable data to be accessed and
retrieved from centralised or corporate databases. They
generally permit ‘read only’ access and thedatais transferred
to a local machineif it is to be amended or modified. These
tools use a simple programming language or a pseudo-English
language syntax.

— Report-generation tools: These generally enable reports to be
generated from a local or centralised database. Again, they
tend to use a simple programming language or a natural-
language syntax.

— Fourth-generation tools: These are used to develop appli-
cations (sometimes with the cooperation of the development

Figure 5.19 Allocating appropriate resources to the different types of end user will encourage growth in, and

improve, end-user computing

Category of user (Relationship with development department)

41. Potential 2. Current user 3.Data-access 4. Personal 5. User developer
user (None) (Weak) user (Medium) developer (Very strong)

user (Strong)

BOYMomslllemuel)

Tools Fixed/flexible PLUS PLUS : PLUS :
processing tools Data-access tools Report-generation Fourth-generation

tools tools

Machine (access) a

Training IT awareness Useof tools PLUS PLUS PLUS
Basic data Basic Best practice for
processing development data processing

Permane! ilyHelp (you telephoneus) _ = "staffed help de:
-

Hardly at all Very little Hand-holding Hand-holding
and directingGuidance (we advise you)

(Source: Butler Cox Foundation)

DLT:

© Butler Cox ple 1990

meme

Chapter 5 Using contemporary tools

department and sometimes without) that tend to be run onPCsorintelligent workstations.
By wayofillustration, an individualclassified in Category 2 wouldnormally be provided, as a minimum,with access to either a dumbterminal or a PC. A dumb terminal would be adequate for someonewho required access only to fixed-processing tools — that is,applications that were already fully developed, and that onlyrequired data to be input. A PC, however, would be needed bysomeone who required access to the more advanced flexible-processing tools such as spreadsheets. Such staff would usuallyneed to attend a standard training course on the useof the tools.Support would be providedvia a permanently staffed help deskbecause this type of usertypically requires immediateassistance.There would belittle need for any further guidance other thanthat provided by the training course.
ISSUING GUIDELINES FOR DIFFERENT TYPES OF APPLICATION
Guidelines for end-user applications should be defined to avoidconstraining users. Applications should be classified by size, thenumberof users, the type of data they access, and so on. Theclassification can also serve to determinethe level of inspectionrequired to attain the systems department’s‘seal of approval’,discussed below.
An example of a matrix that can be used to classify end-userapplications and to define the guidelines for their developmentis shownin Figure 5.20. In this example (which is based on work
 Figure 5.20 A matrix can be used to classify applications and define the guidelines for their development

Application AssociatedData attributes attributes Project attributes guidelinesClass A @ Personal @ Personal @ One to five @ Obtain authorisation(simple spreadsheet or @ Non-strategic @ Standalone workdays @ Use passworddatabase query) @ Low-volume @ Low complexity @ No formalproject @ Back up data@ Independent management @ Use common sensewarranted @ Document as
appropriate@ [abel the
application and
output reports* Class B @ Departmental © Corporate ©@ Six to 20 workdays Class A guidelines +_(spreadsheet used on —@_High-volume © Used by more than © Someproject - @ Do recommended_regular basis or data- @ Used by other one person approval/project controlanalysis 7base reporting programs management @ Documentprogram used by more warranted _@ Get ‘seal ofthan one person) approval’ for system ;security and so on

Class C © Strategic or sensitive @ Complex @ 21 to 40 workdays Class B guidelines +(micro-based DBMS @ Used to update @ Uses non- © Formalproject @ Do compulsoryapplication, or complex corporate database recommended approval/project control analysisspreadsheet, or simple technology management © Dofeasibility andspreadsheet used for warranted cost/benefit analysiscritical decision-
support)

(Source: Based on an example from the Software ManagementInstitute) © More than 40 days— system develop-ment standardsapply

@ Get agreement from
development depart-
ment

118

© Butler Cox pic 1990

Chapter 5 Using contemporary tools

done at the Software Management Institute), all end-user
applications are classified into one of three classes, according to
their attributes. An application is alwaysallocated to the highest
possible class. If, for instance, it had data and application
attributes in Class A, and project attributes in Class C, it would
be considered as a Class C application. Examples of the types of
applications that mightfall into each category are included in the
matrix.
The guidelines associated with that class of application are then
applied, to ensure that the user is not unnecessarily restricted.
For the development of a simple spreadsheet, for example,
categorised as Class A, the following guidelines would apply:
— Obtain appropriate authorisation to develop the application.

Professionals often have implicit authorisation by virtue of
their job level; clerical staff may have to request it from a
supervisor.

— Use passwordsto restrict access to the application.
— Always back up both the data and the application.
— Document the application and proceduresfor using it.
— Labelthe application and any outputit producesas ‘Class A’.

ForClass B and Class C applications, the guidelines would become
progressively more stringent because the scope of such appli-
cations is wider and the risks are therefore greater. Classifying
end-user applications in this way will ensure that they are
evaluated prior to development, that appropriate development
guidelines are followed, and that future users are aware of the
standards to which each application was developed. In some
organisations, however, it will not be practical to classify all
applications, and the guidelines should be aimed at the riskier
Class B and Class C applications.

ENCOURAGING USERS TO SEEK THE SYSTEMS DEPARTMENT’S
‘SEAL OF APPROVAL’

Systems departments should encourage users to regard the
concept of the ‘seal of approval’ as the equivalent of the
acceptance testing they carry out on applications developed by
systemsstaff. In providing its approval, the systems department
should be looking for good documentation, comprehensivetesting,
consistent use of data, and so on. The systems department will
also have the opportunity to add security, backup, or systems
features that the user may not have considered. Once the
applications have been approved, any subsequent maintenance
and enhancements can be carried out in a controlled manner
either by users or by the development department.

Clearly, not all end-user applications will require the same level
of inspection. Indeed, some will need noneat all. If users are
required to submit major applications for inspection, however,
and if the process is conducted effectively, the end-user
development environment can be effectively managed.

© Butler Cox pic 1990 119

 is

Chapter 6

Measuring productivity and quality

The preceding four main chapters of this report have beenconcerned with the opportunities available to managers to makeboth productivity and quality improvements in four main areasof systems development: departmental organisation, staffing, theuse of techniques and methods, and the adoption of contemporarytools. Changes in those areas can have a powerful influence onproductivity and quality — yet the scale of the influence willremain indeterminate if productivity and quality cannotthemselves be measured.
Measuring project productivity entails comparing output withinput. The task is complicated by the need to account for therelationship between effort, the size of the project, and itsduration. Fortunately, the three parameters of effort, project size,and project duration can be linked, enabling project productivitiesto be compared across different working environments anddifferent companies.
Measuring quality similarities and differences between projectsand companies is more difficult, however. The qualitycharacteristics can be placed in four important categories;technical, ease of use, operational, and functionalfit. The fourentail as manyas 11 different measures, whose significance varieswidely between different companies. Although most companies’interest is focused on just two or three aspects of quality, suchas maintainability, flexibility, and reliability, very few actuallymeasure any form of quality. Thelast of these, reliability (in theform of software errorrates), is tracked on a project-by-projectbasis by PEP.
The measurementof productivity and quality form the two mainsectionsof this chapter. The chapter concludes with a section onimplementing a measurement programme, in which three mainrequirementsarestressed:collecting information early, avoidingmisinterpreting the measurements, and providing measuresat theright level.

MEASURING PRODUCTIVITY
Productivity, which measures the work rate of the systemsdevelopmentactivity, compares the output achieved for a giveninput. Assessing productivityis difficult becauseit is not obvioushow to measure outputs and inputs, and the effects of timecompression andsize are highly distorting.
Three project parameters can be related, however, through aformula knownas the software equation. They are manpowereffort, project size, and project duration (elapsed time). Thesoftware equation yields a productivity measure called the

120

© Butler.Cox pic 1990

© Butler: Cox pic 1990.

Chapter 6 Measuring productivity and quality

Productivity Index, PI. The same three parametersyield a further
index called the Manpower Buildup Index, MBI.

MEASURING OUTPUT AND INPUT

Take input first. The key is to keep the assessment simple. The
straightforward wayis to calculate it in terms of total man-months
of effort by using the staffing profile for each stage of the project.
The project manager can usually sketch this out in five to ten
minutes. There is no need to go into detail in distinguishing
between productive and non-productive contributions, because
broad-brush figures are adequate for most projects. The balance
of total productive versus non-productive man-days per person
in a yearis usually very stable, the average being around 200 to
210 productive man-days. The staffing profile is straightforward,
requireslittle effort to collect, and is readily available.
It is possible to assemble much more detailed data, usually at great
cost, by calculating individual resource contributions, and
distinguishing between productive and non-productive time
(holidays, training, and so on). This approach relies on a time-
recording system, and usually, cost accounting. Based on our
experience, we are now cautious about using cost-accounting
data. The informationis often inaccurate, too detailed, and lacking
suitable summaries. Cost accounting data is often recorded to
satisfy predefined criteria — for example, everyone records a
7.5-hour day, five days a week of productive work. Thereality
may differ considerably. To analysethis data usually takes much
longer than asking the project managers to sketch the staffing
profile.

As an instance of the broad-brush numbersthat can be collected,
Figure 6.1 sets out the staffing profile constructed over the key
developmentstages offeasibility, specification and design, and

Figure 6.1 System developmentstages: staffing profile

This figure showsthe relative magnitudes of staff sizes used in the
development stages defined for PEP analyses. —

Number
of staff

(months) Feasibility Specification ‘Main software developmentbuild: Date
and design _detailed design/code/unit test/ _live

integration/system test

(Source: QSM Inc.)

121

Chapter 6 Measuring productivity and quality

main build. Total staff used each month are shown withoutdetailing who was on holiday, absent, or engaged in non-productiveactivities. Notice that some of the developmentstagesoverlap. The extentof this overlap needsto be assessed (but onlyapproximately) because separate numbers are required for theeffort used in each phase.
Next, consider the measurement of output. Counting the numberof effective lines of code (ELOC)is one of the easiest ways ofmeasuring the output (end product). Automating the collectionof the ELOCstatistics through a program that scans theappropriate libraries to count lines of code is relativelystraightforward. The following rules apply:
— Linesare indicated by delimiters.
— Only executable lines are counted, not expansions.
— Comments are not counted.
— Deliveredlines only are counted (those eventually discardedare ignored).
— New oramendedlinesonly are counted, not unchangedlines.
— Data definitions are counted once only.
Another measure of the end product is the total number offunction points. This approach was developed by Albrecht andinvolves counting external user inputs, enquiries, outputs, andmaster files to be delivered by the development project.Guidelinesare available for counting these function points (whichAlbrecht considers to be the outward manifestation of anyapplication). However, countingis not readily automated althoughusing a spreadsheet to sum the values can be helpful.
Symons of Nolan Norton has proposed a modified form offunction-point counting, referred to as Mark II. Symons hasattempted to address some of the problemsassociated with theAlbrecht approach and to make the method more suitable formodern systems. To date, MarkII is little used outside the UKgovernment and the Albrecht method remains the de Sactostandard with the resultant greater availability of knowledge andsupporting material.
We return to the question of function points and theirmeasurementafter first considering the productivity index (PI)and manpowerbuildup index (MBI).

THE PRODUCTIVITY INDEX(PI)
Research (originally undertaken by Putnam in the United States)showsthat it is possible to derive a mathematical relationship(Putnam’s software equation) betweenthesize of a project andthe time and effort needed to complete it. The relationship is non-linear, not a constant ratio. The software equation, shown inFigure 6.2, yields a productivity measure which allows us tocompare the productivities of different development projects,even if they are of different size or duration.
The equation may bere-arranged to calculate the effort requiredto complete a project of a given size, given a certain level of

122

©Butler Cox pie 1990

©Butler Cox pie 1990

Chapter 6 Measuring productivity and quality

 Figure 6.2 Productivity Index (Pl)

The Pl is a measure of a project team’s efficiency.It is derived from an empirical
formula (‘software equation’), which defines a parametercalled PM, the Productivity
Measure:

PM = Size
(Effort/B)'* x (Time)**

Where:
— Sizeis the numberof source statements.
— Effort is in man-years.
— Timeis the duration of the main-build stage in years.
— Bisastaffskillsfactorthattakes accountofthe pointinthe systemslife cycle at which

peakmanning occurs. Itvarieswith projectsize, from0.16forsmallprojectsofaround
5,000 lines of code, to 0.39 for projects exceeding 70,000lines of code.

The Pl is derived from the PM, usingthefollowing conversiontable:
PM PI PM PI
754 1 AAS 14
987 2 21,892 15

1,220 3 28,657 16
1,597 4 35,422 17
1,974 5 46,368 18
2,584 6 57,314 19
3,194 Mi 75,025 20
4,181 8 92,736 al
5,168 9 121,393 22
6,765 10 150,050 23
8,362 4 196,418 24

10,946 2) 242,786 25
13,530 13 (Source: QSM Inc)

productivity. This equation showsthat effort requiredfor a project
depends on its duration (time) as well as its size, and on the
productivity measure that applies in the particular development
environment.

The productivity measure accounts for all the factors operating
in the development environment. Both the effect of changes in
productivity and compressing or extending the scheduled time for
a project have dramatic effects on the effort required. Changes
inthem havelarge financial consequences becauseoftheir critical
effect on effort.

In practice, the value ofthe productivity measure ranges widely
betweenprojects,typically from around 3,000 to 50,000 and more.
To simplify this somewhat unwieldy range, a numbercalled the
Productivity Index (PI) is used instead. The two are related ina
non-linear way,so that a range of productivity measures from 3,000
to 240,000 is converted to PI values ranging from about 7 to 25
(see Figure 6.2).

In summary,thePI of a project is a measureof the productivity
achieved at the main-build stage by the development team in
producing applications.It isa measure of internal efficiency, and
notof the valueor functionality delivered to the business by the
application.

123

Chapter 6 Measuring productivity and quality

The average PI of the 400-or-so projects on the PEP database in1989 wasabout 15. PI values below 15 imply lower-than-averageproductivity; above 15, they imply higher-than-averageproductivity.
It is important to note that, because ofits non-linear nature, smallchangesin PI value implybig shifts in team performance. Consider,for example, a typical project of 40,000 lines of code, with themain-build stage taking 10 months. At a PI of 15, the effort worksout to be 60 man-months. At a PI of 14, the project takes a monthlonger and the manpowereffort rises by 30 per cent. At a PI of16, the project takes a month less and manpowereffort drops byabout 30 per cent. Thus, a one point movementin PI from aroundthe average of 15 represents a productivity change of about30 per cent.

THE MANPOWER BUILDUP INDEX (MBI)
The software equation takes accountofthe effects of compressingor extending the project timescale. When the timescale iscompressed, the total manpowereffort is increased substantially.This happensbecausethe timescale is often compressedby carryingout, concurrently, tasks that would usually be done sequentially.In turn, this means that morestaff are working on the project atany one time, which means that there are more paths ofcommunication between team members, more opportunities forerrorsto arise and to remain undetected, and agreater managementoverhead.
The effect of time compression (and expansion)is represented bya measurecalled the Manpower Buildup Index (MBI). As with thePI, the MBIis expressed as a simple integer value,or level, rangingbetween one andsix (see Figure 6.3). Level 1 represents a slowstaff buildup. Projects with an MBI of one take the longest, butrequire the least effort. Usually, low MBI valuesare associatedwith projects that are subject to staffing constraints. Level 6represents the opposite end of the spectrum — the ‘throw peopleat it’ approach. On projects of this type, many tasks are carriedout concurrently, with virtually no constraints on money or thenumberof staff. For a given size and PI, projects with an MBIofsix usually take the shortest time to develop, but require the mostmanpowereffort.
In general, MBI values fromone to three indicate below-averagerates of manpowerbuildup;values ofbetween four and six indicateabove-average rates.
Consider, again, a typical project of 40,000 lines of code andaPI of 15. An MBIvalue of three leads to a main-build durationof 10 monthsandeffort of 60 man-months. Reducing the MBI toone means extending the duration to 12 months, but effort fallsto only 25 man-months. Raising the MBIto five saves time byreducing the duration to eight months, but the effort nearly doublesto 115 man-months.
Low MBI values reduce project manpowereffort and increaseproject duration. The disadvantage of projects with low MBIsisthat the extended timescales meanthatthereis a greater chance

124

© Butler Coxpic 1990

© Butler Cox ple 1990

Chapter 6 Measuring productivity and quality

 Figure 6.3 ManpowerBuildup Index (MBI)

The MBI is a measure of manpowerbuildup.It is derived from an empirical formula
defining a parameter called MM, the Manpower Buildup Measure:

MM = Effort
B x Time’

Where:
— Effort is in man-years.
— Timeis the duration of the main-build stage in years.
— Bis the samestaff skills factor as for the PI.

The MBIis derived from the MM, using the following conversiontable:
MM MBI
7.3

14.7
26.9
55.0
89.0

233.0 On
ko
On
N—
+ (Source: QSM Inc)

of the requirements changing before a project is completed, and
that it is often more difficult to keep the project team constant
and motivated.

The MBI measure can be used by systems development managers,
whentheyare planningprojects, to assess whethera project can
realistically be completed in

a

giventime. High MBIvalues identified
at the planningstage point to potential problems and highrisks.
A few systems development departments can consistently achieve
above-average PIs under considerable time pressures, but they
are a small minority.

FUNCTION POINTS AND LANGUAGE GEARING

The Pl measurestheefficiencyof a project team. Itis animportant
measure for systems development managers interested in assessing
the internal efficiency of their departments. A second, equally -
important, measure is departmental effectiveness, which is
concerned with the functionality delivered to the business, per
unit of effort.

Internal efficiency is analogousto thefitness ofa cyclist, which
determines the effort that is put into pushing the pedals. What
really matters, however,is the distance the cycle travels for the
effort that is put in, and this is determined by the gears on the
cycle. The cyclist may not be at peak fitness, but a high gear will
enable him totravel, say, 10 timesthe distancefor a given effort.
High-level languages are analogousto high gears; the higher the
language gearing,the fewer the numberoflines of code that will
be required to produce a given level of system functionality.

This does not mean, however, that programming languages with
the highest language gearing should alwaysbe used. Just as trying
to cycle uphill in an inappropriate high gear will result in
significantly slower speed or not being able to peddle at all, so

125

Chapter 6 Measuring productivity and quality

a failure to match the language to the application can result insignificantly more effort being used.
The best known unit of measure of system functionality for com-mercial data processing systemsis the function point, the measureof end-productvaluewereferredto on page 122. If function pointsare not counted directly, it is possible to estimate deliveredfunctionality by multiplying the numberof thousandsof lines ofcode by the appropriate languagegearing, using the values shownin Figure 6.4. This table must be used with caution as the multipli-cation canresult in very inaccurate estimates. The average numberof sourcelines of code needed to generate one function point worksout to be 70forall the projects in the PEP database, but the rangevaries widely from as few as 10 orless (high language gearing)up to 200 or more (low language gearing). We recommend thatbothlines of code and function points are counted and that thetable is used only to identify potential inaccuracies in these counts.
Knowingthe effort required to developa project and the languagegearings for the programming languages used, it is possible tocalculate thefunctional delivery rate, expressed as function pointsper man-month. The functional delivery rate can be calculated

Figure 6.4 Language gearing

Thelist shows the language gearing, expressedin termsof the numberof functionpoints per thousandlinesof code,for the high-level languagesused in PEP projects.
Language LanguageLanguage gearing Language gearingAcumen 35 Guest 35ADF 50 Ideal 35ADS/Online 50 Keyplus 25:Algol 10 Lotus 100APL 35 M204 35Application Factory 50 Magnas 35Application Master 35 Mantis 70APS 60 Mapper 18Artemis 33 Mark IV 25Ask 30 MFS 25Basic (Compiled) AS, Natural 18Cc 8 Nomad 25CA-Ear! 35 Pascal 11CBAS 13 PL 13CLI , 25 PLDS 30Clipper 25 PPL 25Cobol 10 QMF 70CSP 35 Quickbuild 35Culprit 65 Quiz 70Data 25 Rally 35Dataflex 25 Ramis 25Datatrieve 50 Rapidgen 35dBASE 30 RDB 25DCL 6 RPG 17DDL 35 SAS 30EAL 35 SIR 35Easytrieve 65 SQL 70Enform 50 Sybol 14ECS 25 Telon 70Filetab 17 TIG 10FMS 20 Transact 35Focus 25 UFO 30Fortran 10 Whip 10Gener/ol 70 Wizard 35

(Source: Software Productivity Research, Inc)
126

utler Cox pic 1990

© Butler Cox plc 1990

Chapter 6 Measuring productivity and quality

for the main-build and for other phasesof the life cycle. The PEP
database provides average functional delivery rates, but it should
be rememberedthatthis rate is influencedby thesize of the system,
its duration, andthe internalefficiency of the team. The functional
delivery rate alone can be misleading to systems managers.

MEASURING QUALITY
Many systems departments have initiated software quality-
assurance programmesto increase the effectivenessof applications
development. The majority of systems departmentsfind, however,
that it is very difficult to direct such programmesandto justify
their cost when thereis no quantitative evidenceof their benefits.
The missing component of many software quality-assurance
programmesis software quality measurement.
Software quality measurementenablesthe qualities of applications,
such asreliability, ease of use, maintainability, and so on, to be
quantifiedin useful and consistent terms. Properly implemented,
a measurement programmewill help the systems department to
specify and produceapplicationsofthe quality that users require,
to identify where improvements might be madeto the development
process, and to justify the costs of a software quality-assurance
programme. In effect, software quality measurement provides
essential management information to the systems department.

In practice, however, software quality measurement has met with
mixed success. In many systems departments,there is considerable
resistance to the concept, generally based on misunderstandings
about its purpose, its cost, and the level of effort required to
introduceit. In others, where quality measurement programmes
have been implemented,only limited benefits have been gained,
becausethe scope of the programmeshas been too narrow. While
there is a wealth of material available on the subject of software
quality measurement, muchofit is of a very academic nature,
not well suited to the commercial environment, and muchofit
is applicable only to particular aspectsof applications development.

Whatis required is a practical, consistent, and comprehensive
approach to measuring software quality, ensuring that both users
and developers are satisfied with the applications that are
delivered. To appreciate how to put such a programmeinplace,
it helpsfirst to understand thecharacteristics of quality, then the
quality measures that support those characteristics, and finally
how to assign priorities to the measures.

QUALITY CHARACTERISTICS

Today, most systems quality-assurance procedures are designed
to ensure that the functionality provided by applications software
meetsthe users’ requirements. However, even where the quality
of the systemis checkedatintermediate stages of the development
cycle to ensurethat the finished product does meet the functional
requirements,it maystill be regardedas being of poor quality by
the user community. This is because the quality-assurance
procedures do not take account of the users’ needs in other
areas — operational performance,ease of use, and the ease with
which the system can be modified are obvious examples.

127

Chapter 6 Measuring productivity and quality

Analysesofusers’ expectations for applications software have beencarried out by Barry W Boehm andhis colleagues. In their earlywork, Characteristics ofSoftware Quality (published by Oxford:North Hollandin 1978), they identified a large numberofsoftwarecharacteristics that contribute to users’ overall perceptions ofsoftware quality.
Four of these characteristics are particularly important, as wementioned in Chapter 4: functional requirements, operationalperformance, technical features, and ease of use (see Figure 6.5).By defining and meeting quality objectives specified in terms ofthese characteristics,it is possible to build application systemsthatthe user community regards as high-quality. Although thefunctional requirements of asystem are generally definedin greatdetail, the other three characteristics are often ignored in systemsspecifications. These characteristics are usually determined byad hoc decisions made at the analysis and programmingstages.
QUALITY MEASURES
Different software quality characteristics have varying degreesof measurability. Ease of use, for example, can be assessed by theuser only in subjective terms, and in any case, will be defineddifferently from application to application. Constraints such asthese should be considered whenselecting the measurestobe used.
Several research projects into quality assurance have producedlists of quality measures. One of the most widely accepted amongsoftware quality-assurance experts, and the one that werecommend to PEP members,is that developedoriginally in theUnited States for the Rome Air Development Center, and knownas the RADC approach. Although the RADC approach was originallydefined for military applications, it has been applied successfullyto the development of commercial computing applications.
The RADC approach defines a set of 11 user-oriented qualityfactors — reliability, flexibility, maintainability, re-usability,correctness, testability, efficiency, usability, integrity (whichactually refers to security), interoperability, and portability —which extend throughoutthe softwarelife cycle. It is importantto define each characteristic fully to avoid confusing differentfactors.

Figure 6.5 Four software characteristics are important in defining andmeeting quality objectives

Functional Define what the application system has to do, down to therequirements level of describing the data to be entered, the rules foraccepting/rejecting the data, and the processing of accepteddata.
Operational Defines performance in terms of response time and elapsedperformance time (for batch systems).
Technical Define meantime between failures, ease of maintenance, easefeatures of parametric change, and ease of re-use of softwareelements.
Ease of use Defines user interface in terms such as number of keystrokes,error recovery procedures, help facilities, and messageclarity.

128

©Butler Cox pic 1990

© Butler Cox ple 1990

Chapter 6 Measuring productivity and quality

Figure 6.6 showshow the 11 RADC quality factors match the four
quality characteristics referred to above. The 11 quality factors
were originally defined to help predict the quality of a final
application as it is being developed. Wehave devised an appropriate
user-oriented measure for each of the factors so that the quality
of existing applications can also be assessed.
These measures are summarised in Figure 6.7, overleaf. It lists
the basic data items that need to be captured from the application
in orderto produce the measures. The final ‘calculation’ column
gives the formula for calculating each quality measure from the
basic data items. The calculations ensure that the measures are
normalised so that they can be used to compare the quality of
different applications, where practical.

ASSIGNING PRIORITIES TO QUALITY MEASURES

Whendeveloping a new application, it is not always possible to
meetall of the quality requirementsdesiredbyall groupsof users.
There are two main reasonsforthis. First, a high level of quality
in one of the 11 RADC quality factors may imply a low level of
quality in one of the other factors. For example, a high level of
portability will usually imply a low levelof efficiency, and vice
versa. Second, the project managerwill often have to maketrade-
offs between the time, cost, and quality of the application.
The implicationis that quality should not be specified at a higher
level than the application warrants. For example, the
maintainability requirements of the application can be reduced
if the lifetime of the application is knownto beshort.

Theconflicts in quality priorities occur becauseof the conflicting
requirements of the main groups whoget involved in the use of
an application — the application’s users, their managers, the
development managers, the maintenance and support teams, and
computer operationsstaff. Figure 6.8, on page 131, shows which
of the 11 quality factors are of mostinterest to each of these groups.
Because of the complexity of these conflicting interests, most
systems departments will need to select just two or three of the
quality factors that they need to control during development. The
cost of controlling more qualities than this becomesprohibitive.

Usually, the most important quality factors to concentrate on are
the three that will increase usersatisfaction through reducedcosts
and better service — maintainability, flexibility, and reliability.

Figure 6.6 The 11 RADC quality factors can be categorised in terms of

the four quality characteristics defined in PEP Paper 9

129

Chapter 6 Measuring productivity and quality

 Figure 6.7 Most qualities of existing applications can be quantified directly or indirectly

 Quality factor Measure - Basicdata items

changein requirements
©

Reliability Meantimeto fail (MTTF) Hours of use (H) :
Numberoffailures(Nj)

Flexibility Effort to implement a Developer hours per change (He)
Function points orlines ofcode : .
changed(Sc)

 Maintainability Effort required to diagnose
and respondto a fault (M)_

Number offaults fixed (No)

Developerhours forfixing faults (

—User-access control
— Database-accesscontrol
— Memory protection - 3— Recording and reporting accessviolations oe— Immediate notification of accessviolations

None (usethe =
subjective ratings)

Re-usability Proportion of application Size of re-used code (Sr)consisting of re-used code

|

Application size (ine: code or(R) functionpoints) (S)
Correctness Conformance to Number of defecis (Drequirements (C) Application size (lines of cofunction points) (S) :
Testability Effort required to test the Number oftest cases (T)application fully (Ef) Application size (line:

functionpoints) (S) _ os
Efficiency Online efficiency (E) Numberof transactions (Ti.Computer resources used:

= CPU teh) SS:
— Disc transfers(R>
— Networktraffic (R3)
ze / :

Usability Ease of use (Ea) Number ofunfov ided faultreports (No)Hoursof use (H) -Number of users(U)Applicationsize (lines of code orfunction points) (S) :
Integrity Access-control quality Subjective ratings for:

 the application to another
environment (Ee) Application size (lines of code orfunction points) (S) Interoperability Effort required to link the Effort in hours to link applications (Al) El=HI=Sapplication to another (El) Application size (lines of code or

function points) (S)
Portability Effort required to transfer Effort in hours (He) Ee = He = S$

The choice will, however, depend on the nature of the systemin question. Typical quality requirements for specific types ofapplicationare:
— Systems with a longlife: maintainability, flexibility, andportability.
— Publicly accessed systems: usability, integrity, andreliability.
— Systemsthat can cause damage to property orlives if they gowrong:reliability, correctness, and testability.
— Systems that use advanced technology: portability.

130

ler Cox pic 1990

Chapter 6 Measuring productivity and quality

 Figure 6.8 Different groups of users havedifferent quality needs

Group of users
Quality factor ee .Application User Development Maintenance /

users management management and support Operations
Reliability Vv ae
Efficiency “Vv
Usability v v thes
Integrity v v =
Correctness v Vv oe
Interoperability Vv Vv
Maintainability v v
Flexibility v v Vv
Portability Vv
Testability v v
Re-usability Vv

A valuable technique for minimising the cost of providing high
(user perceived) quality is to develop an operational-useprofile.
Such a profile shows the expected level of use of each of the
functions of the application. Suppose, for example, that an
application has two main functions, one of which will be used for
90 per cent of the time and the other for 10 per cent ofthe time.
In thissituation,it is obviously better to concentrate on improving
the quality of the most frequently used part of the application
rather than to spread the quality-assurance effort evenly over both
of the application’s functions.

IMPLEMENTING A MEASUREMENT PROGRAMME

Implementing a measurement programme and taking action on
the basis of the results can boost internal systems productivity
by as muchas 20 per cent a year. Organisations can achieve one-
off benefits soon after the introduction of a measurement
programme,but sustained improvements will not be realised unless
the measurement and improvement programmeremainsin place
for several years — that is, where organisations take a strong
initiative to manage productivity and quality, and are able tojustify
expenditure on improving the development process.

Implementing a measurement programme, like implementing an
application, requires careful planning. It is important to start
collecting information early; there is no merit in waiting until the
development environmentis established and stable. It is also
important to ensure that measurements are not misinterpreted,
and that they are provided at a level appropriate for the person
who will be using them.

COLLECTING INFORMATION EARLY

By collecting measurement data as soon as possible, systems
managers have a basis on which to plan future developments.

 ©Butler. Cox ple 1990 1351.

Chapter 6 Measuring productivity and quality

Waiting until the development environmentis stableis notjustified;if software measurementis to be of value in the long term,it mustbe implemented in such a waythatit is still useful in a changingenvironment.
Collecting the data required to measure productivity and softwarequality properly need not be an onerous task — useful benefitscan be gained by spending the equivalent of 1 or 2 per cent ofdevelopment effort on gathering measurement data. In manysystems departments, much of the data will already be availablein a machine-readable form from systems used to managedevelopment resources, change requests, and correct softwarefaults.

AVOIDING MISINTERPRETING THE MEASUREMENTS

It is important that all staff with access to the measurementsunderstand howto interpret them correctly, and how objectivesfor improvementareset on thebasisof this interpretation. In onecompany, the development managerwas particularly interestedin the improvementsin productivity that had resulted from theintroduction of a fourth-generation language. He examined theinternal productivity measures, which showed a decline owingto the learr ing curve, andinitiated an internal enquiry.If he hadlooked at the external productivity measures, he would have seenthat the fourth-genevetion language had actually improved thefunction delivery rate by over 50 per cent. As a direct result ofmisinterpreting the measurements, he wasted a lot of money andtime examining a problemthat did not exist.
Ensuring that staff are aware of the measurements and theobjectives may require an awareness campaign or a trainingprogramme. Hewlett-Packard, which introduced a company-widesoftware metrics programme,set up a training course that giveshands-on experience to those whowill be involved in the collectionand use of metrics. They believe that this training greatlycontributesto the successof the programme. Cranfield IT Institute(part of the Butler Cox Group) also provides several educationalcoursesin this area of measuring the performanceof the systemsdevelopment department.
Staff should understand that measurements will not be used toJudge the performanceof individuals and to reward those whodo well, although someorganisations pay a bonusrelated to theperformance of the whole department.

PROVIDING MEASURES AT THE RIGHT LEVEL
Information about the development department will typically becollected at a very lowordetailed level, processed, analysed, andcombined to produce measuresat progressively higher levels. Ateach level, the measures provide different benefits to differentstaff. Development staff, for instance, will be interested in thenumber of errors and function points produced. The businessmanager, on the other hand, will be more interested in percentageincreasesor decreasesin productivity and quality, and time andcost savings.

132

© Butler Cox ple 1990

) Butler Cox ple 1990

Chapter 6 Measuring productivity and quality

Nosingle set of management measureswill satisfy all managers,nor should a single set of measures be imposedacross the board.Different companies should take into account the needs of eachmanagerand select an appropriate set of measures. At least threepoints of view should be considered — those of the developmentteam, those of the departmental managers, and those of thebusiness customer.

These measurescan be presented veryeffectively ina variety ofways. Several of the more popular presentations of measuresare:
Trend line charts show thevariation in a software measure
(such asreliability) overtime. They are useful for determining
if there is a trend or pattern in the occurrence of any measure.
Histogramsshow frequencyof data by various categories and
classifications. They are used, for example, to show the
distribution of productivity over a range of projects.
Pareto diagramsare a particular type of histogram that can
be used to show various measures by type and frequency.
Scatter diagrams show the existence(or lack) of a relationship
between twofactors.If a straight line is apparentin theplot,
there is likely to be a relationship between the factors.
Control charts show a software measurement plotted over
time within statistical controllimits.Ifthe plotted line exceeds
eitherof the limits, there is a strongpossibility that something
is going wrong with the developmentprocess. A control chart
of error rates helps to determineif a processis either‘in control’
(with only random errors occurring) or ‘out of control’ (with
errors occurring more generally).

133

Chapter 7

Conclusion

In this report, we havepresented the independent analysis of over400 projects, and the experience of over 100 of Europe’s largestorganisationsthat are involved in the developmentof computer-based applications.
We have shown that the search for improvements in the pro-ductivity and quality of the development department needs tobe a continuous one, andthatit is a complex task. An organisationis not ‘productive’ or ‘unproductive’; it lies somewhere on acontinuous and moving path between the best and the worst.
Every organisation can improve the productivity and quality ofits developmentactivities. What the research has shownis thatthere is no single answer, and that, indeed, obsessive pursuit ofa single solution can lead to an overall downturn in productivityor quality. For example, introducing new tools into a badlystructured environment will not give an uplift in performance.Moreover, the step usually leads to a subsequent rejection of thetools while the organisation moves on to seek the next instantsolution, overlooking the real and often multiple constraints ongreater productivity.
Amongst the many possible routes to better performance, thisreport has identified the following:

ORGANISATIONAL ACTIONS
— Ina divisionalised group, dividing responsibilities betweencentral and devolved parts of the overall systemsdevelopmentfunction, offsetting the division more towardsthe centre than is implied by the general management styleof the group as a whole.
— Clarifying the responsibilities of users by formalisingresponsibilities with reference to three levels of application:core systems, non-core systems, and personal systems.
— Flattening the managementstructure of systems develop-ment and organising groups to fulfil particular functionswithin the simplified structure.
— Identifying a member of each project team to takeresponsibility for ensuring that moduleandintegration testingis carried out to preset standards.
— Weighing the relative merits of different approaches tosystem testing — testing by the project team, by a separatedepartment, and by a joint team — and adopting that bestsuited to the circumstances.

134

© Butler Cox pic 1990

Chapter 7 Conclusion

Organising maintenance as a separate department under aqualified manager, thereby helping to improve staff moraleand motivation.

STAFF MOTIVATIONAL ACTIONS
— Boosting staff motivation in several ways: broadening thescope of jobs, introducing job rotation, providing a flexiblecareer structure, improving goal-setting and feedback,rewarding achievement with performance-related pay, and

paying attention to fitting jobs to people.
— Limiting project-team sizes whereverpossibleto six staff at

most, and breaking downlarge projects into self-contained
sub-projects of smaller size. (Despite evidence that
productivity decreases with project size, there are clear
benefits to be gained — such as reduced developmenttime,
reducedstaff turnover, fewer requirements changes, andless
risk of overrunning.)

— Taking account of individuals’ personalities as well as
technical skills when forming project teams. (Teams of people
with similar personalities are most appropriate for the later
development phases; with dissimilar personalities, for the
earlier phases.)

— Selecting project-team leaders on the basis not of their
technical skills, but moreof their strengthsin participation,
flexibility, and ability to manage conflict.

TECHNIQUES AND METHODS
— Replacing the long-established waterfall model of the systems

development process by a different model that emphasises
testing rather than production.

— Formalising software testing. Makingfull use of walkthroughs
and inspections. Using test-management aids and test-data
preparation aids.

— Formalising the decision on whetherto maintain or replace
existing systems. (To help with this, perhaps introducing a
maintenance-rating system.)

— Allocating a set proportion of resources to maintenance, to
avoid maintenance work continually displacing new
development work.

— Introducing a seven-step maintenance process: change
management, impact analysis, system-release planning,
change design, implementation, testing, and system
release/integration.

— Establishing a quality-management programme. Helping to
improve quality across the board by introducing a quality
culture throughout the development department.

TOOLS
— Introducing or extending the use of fourth-generation

languages. (Although theydolittle, if anything, by themselves

© Butler Cox ple 1990 135

Chapter 7 Conclusion

to increase internal productivity, they can do a lot to boostexternal effectiveness by increasing the rate of functionaldelivery. Adapting methods, techniques, and managementstyle to exploit the fourth-generation languageswill improve
internal productivity.)

— Avoidingreliance exclusively or excessively on CASE. (Thepromisedbenefits are not yet being achieved either in termsof reduced developmenttime and effort, or fewer errors, orincreasedreliability.)
— Using maintenance-support tools, which support the impact-analysis and change-design steps of maintenance. (They canbe justified when the maintained system is likely to continue

in operation for several more years.)
— Usingstatic- and dynamic-analysis tools to help assess the

quality of code within a system.
— Avoiding the selection of system developmenttools from thetool set in isolation. (Instead, they should be selected in thecontext of the wider development environmentin which theyare to be used, andin the light of a specific developmentapplication.)
— Recognising productivity and quality problems arising fromthe misuse of techniques and

_

tools. (Paying particularattention to technique and tool selection, and to stafftraining.)
— Adopting a four-stage plan to smooththe introduction of newdevelopment tools: internal marketing, environmentaladjustments, pilot application, and environmentalmodification.
— Encouragingthe use of non-specialist developmenttools bythe user community, but coordinating their uptake througha processof categorising users, allocating tools to categories,and promoting the idea of the system department’s‘seal ofapproval’.
Whatis alsoclearis that for the opportunities for improvementto be clearly identified and for improvement to be systematicallypursued, a better understanding of both the present and thechanged situation needs to be established. To this end, theresearch has shown that there is scope for measuring andmonitoring productivity and quality in every organisation.
A measure neednotbeprecise, or be on an absolute scale, to beof value: it simply needsto give a reliable basis for comparisonand to show therelative levels of improvement in a consistentmanner. The research has shownthat this can clearly be donetoday.

PRODUCTIVITY AND QUALITY MEASUREMENTACTIONS
— Putting in place a productivity-measurement programme.(The easiest way to do this is to measure effort, projectduration, and project size. Measuringproject size in lines ofcodecan yield an internalefficiency rating in the form of a

136 © Butler Cox ple 1990

Chapter 7 Conclusion

Productivity Index (PI). Measuringit in terms of deliveredfunctionality yields a broader rating. Both form the basis ofa common yardstick.)
— Avoiding rapid rates of manpower buildup (MBI) unlessbusinesspressuresorlegislation dictates otherwise — in whichcase the effect needs to be recognised. (High MBIs meanincreasing the manpower effort while shortening thetimescale of a project, but more than 50 per cent of

development effort can be squandered by addingstaff to a
project to reduce elapsed time.)

— Implementing a quality-measurement programme,taking care
to identify the most appropriate quality measures.

No organisation, and no manager, is alone in being concerned
about development productivity, and rightly so. In termsof the
potential effects on today’s business, such coricern is fully
justified. It is not just a matter of the high investment involved
in computer systems. Rather,it is the fact that the health of most
businesses now rests on the timely delivery of effective and
reliable systems. Fortunately, as this report has demonstrated,
there are many practical routes to improvement.

© Butler Cox pie 1990 137

Butler Cox
Butler Cox is an independent, international con-
sulting company specialising in areas relating to
information technology.
The company offers a unique blend of high-level
commercial perspective and in-depth technical
expertise, a capability which in recent years has
been put to the service of many of the world’s
largest and most successful organisations.
Butler Cox provides a range of consulting services
both to organisations that are major users of
information technology and to suppliers of infor-
mation technology products.
Consultingfor Users
Supportingclients in establishing the right oppor-
tunities for the use of information technology,
selecting appropriate equipment and software,
and managingits introduction and development.
Consultingfor Suppliers
Supporting major information technology and
telecommunications suppliers in assessing oppor-
tunities, formulating marketstrategies, and com-
pleting acquisitions and mergers.
Education
The Cranfield IT Institute, now a wholly owned
subsidiary of the Butler Cox Group, educates
systems specialists, IT managers, line managers,
and professionals to understand more fully how
to apply and use today’s technology.
Foundation
The Foundation is a service for senior managers
responsible for information management in major
enterprises. It provides insights and guidance to
help them to manage information systems and
technology more effectively for the benefit of
their organisations.
The Foundation carries out a programme of
syndicated research that focuses on the business
implications of information systems, and on the
managementof the information systems function,
rather than on the technologyitself. It distributes
a range of publications to its members that
includes research reports, management sum-
maries, directors’ briefings, and position papers.
It also arranges events at which members can
meet and exchange views, such as conferences,

© Butler Cox pic 1990

management briefings, research reviews, study
tours, and specialist forums.
Recent Foundation publications and events have
covered such topics as:
— Assessing the value of information technology

investments.
— Managing multivendor environments.
— Staffing the systems function.
— Pan-European communications: threats and

opportunities.
— Systemssecurity.
— Emerging technologies.
— Managinginformation systems in a decentral-

ised business.
PEP
The Productivity Enhancement Programme (PEP)
is a participative service whosegoalis to improve
productivity in application systems development.
It provides practical help to systems development
managersandidentifies the specific problems that
prevent them from using their development
resourceseffectively. At the same time, the pro-
gramme keeps the managersabreast of the latest
thinking and experience of experts and practi-
tioners in the field.
The programmeconsists of individual guidance for
each memberin the form of a productivity assess-
ment, and publications and forum meetings that
are available and open to all members.
Recent PEP publications and events have covered
such topics as:
— Theinfluence on productivity and quality of

staff personality and team working.
— Managing software maintenance.
— Quality assurance in systems development.
— Makingeffective use of modern development

tools.
— Organising the systems development depart-

ment.
— Trends in systems development among PEP

members.
— Softwaretesting.
— Software quality measurement.

Butler Cox ple
Butler Cox House, 12 Bloomsbury Square,

London WCI1A 2LL, England
@ (071) 831 0101, Telex 8813717 BUTCOX G

Fax (071) 831 6250
Cranfield IT Institute Limited

Fairways, Pitfield, Kiln Farm, Milton Keynes,
Buckinghamshire MK11 3LG, England
@ (0908) 569333, Fax (0908) 569807

Belgium and the Netherlands
Butler Cox Benelux by
Prins Hendriklaan 52,

1075 BE Amsterdam, The Netherlands
® (020) 75 51 11, Fax (020) 75 53 31

France
Butler Gox SARL

Tour Akzo, 164 Rue Ambroise Croizat,
93204 St Denis-Cédex 1, France

® (1) 48.20.61.64, Télécopieur (1) 48.20.72.58
Germany (FR)

Butler Cox GmbH
Richard-Wagner-Str. 13, 8000 Miinchen 2, Germany@ (089) 5 23 40 01, Fax (089) 5 23 35 15

Australia and New Zealand
Mr J Cooper

Butler Cox Foundation
Level 10, 70 Pitt Street, Sydney, NSW 2000, Australia@ (02) 223 6922, Fax (02) 223 6997

Treland
SD Consulting

72 Merrion Square, Dublin 2, Ireland
®@ (01) 766088/762501, Telex 31077 EI,

Fax (01) 767945

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145

