

 © Butler Cox pic 1990

Nigel Saker

 PE,P
Software Testing

PEP Paper 13, February 1990
by Nigel Saker

Nigel Sakeris a senior consultant with Butler Cox in London, where
he specialises in project managementandthespecification of user
requirements. Hehas20 years of experiencein software design and
management.
During his time with Butler Cox, he has carried out several PEP
assessments and conducted researchfor the Butler Cox Foundation
Position Paper, Legal Protectionfor ComputerSystems. He hasalso
been involvedin large consulting assignmentfor a major US bank,
developing specifications for the market-data delivery system for
its new dealing room.
Prior tojoining Butler Cox, Nigel Saker was a project manager with
Aregon International, responsible for the design andinstallation of
dealing-room systemsin five majorbanks in London, New York, and
Oslo. Earlier, he spent six years with Logica, advising on the
selection of equipment, designing user interfaces for highly
interactive systems, and managing turnkey systems development
and installation. His early career was with the Meteorological
Office.
Nigel Saker has an MA in mathematics from Cambridge University
and an MScin fluid dynamics from the University of Sussex.

Published by Butler Cox plc
Butler Cox House

12 Bloomsbury Square
London WC1A 2LL

England

Copyright © Butler Cox ple 1990
All rights reserved. No part of this publication may be reproduced by any methodwithout the prior consent of Butler Cox.

Printed in Great Britain by Flexiprint Ltd., Lancing, Sussex.

©Butler Cox ple 1990

Software Testing
PEP Paper 13, February 1990

by Nigel Saker

Contents
al Adopt a moreanalytical approach to softwaretesting i

The real purpose of software testing is not clearly understood 1
There is uncertainty about the scope of softwaretesting 2
There is a lack of awareness about the relevanceof testing

results to project control 3
It is in the interests of managers toinstitute formal software
testing 4

Purpose andstructure of the paper it
Research sources iE

2 Organise the systems department to support testing 9
Allocate responsibility for integration and moduletesting to
an individual or a small team 9

Consider the merits of a separate system testing department 11
3 Use tools, techniques, and methodsto increase

the cost-effectiveness of testing 16
Formal methodsfor testing over the whole development

life cycle 16
Tools for creating and using test data 1G
Tools and techniquesfor analysing the quality of the

specifications, design, and code 21
Tools to help programmers and analysts to carry out testing 25
Test-managementtools 26

4 Measure the progress of testing to improve project control 27
Measurethe progress of module testing 27
Measure the progress of integration testing 2
Measurethe progress of system testing 28

5 Review the software-testing policy 34
Bibliography 36

Chapter 1

Adopt a more analytical approach to software testing

Testing is a neglected part of the
software developmentlife cycle

Testing should be an integral
part of the development

© Butler Coxple 1990

cycle

Testing is an integral part of the software developmentlife cycle,
but according to our survey of PEP members, only about 20 per
cent of organisations know how much software testing costs.
Those who do measure costs report that testing accounts for
between 25 and 60 percent of their total development costs. In
general, however, testing is a neglected part of the software
development life cycle, poorly controlled, poorly managed,
and characterised by limited investment in the techniques and
tools that could help to provide a moreefficient test environ-
ment.

The absence of a common approach to testing and the lack of
control over testing, evident in many organisations, may be
explained by three main factors. First, the real purpose of
software testing is not clearly understood. Second, there is
widespread confusion about the scope of system testing. Third,
there is a lack of awareness about how useful the results of testing
can be for project control.
In spite of the problemsthat large numbersof organisations have
with managing software testing, we believe that it is possible for
systems development managers to makesignificant improvements
in the effectivenessof their testing procedures, which will provide
them with a valuable tool for project control. Unfortunately, the
traditional software developmentlife-cycle modelplacestoolittle
emphasis on testing, and too much emphasis on the production
process. This meanseither that testing is done less thoroughly than
it should be, at the end of a project, in order to meet deadlines,
or that the completion of the project is delayed becausethe system
tests have not been properly planned in advance. The former
meansthat the risk of introducing the system into live operation
is unknown.Thelatter means that the benefits to be derived from
introducing the system are not realised as soon as they might be.
A different view of the development process is required, where
testing can be carried out to a specified level, and whereit can
be planned as an integral part of the development cycle. This
report provides guidance to PEP members on how sucha process
might be put into effect.

THE REAL PURPOSE OF SOFTWARE TESTING
IS NOT CLEARLY UNDERSTOOD
No-one questions that software should be tested, but there is
surprisingly little agreement about the reasons for doing so. When
software engineering wasinits infancy, it was generally supposed
that the purposeof testing was to show that a system worked as
its designers intended. It has since been recognised that it is
impossible to prove the correctness of any but the most trivial
program.

Chapter 1 Adopt a more analytical approach to software testing

More recently, it has been argued that the purpose of testing
softwareis to find errors, and by correcting them, to make the
system more reliable. This reason is commonly given as
justification for the time and effort involvedin testing a system. There is little agreement about
Finding errors is certainly a useful by-product of the testing the reasons for testing
process, butif the detection of errors is viewed as the sole purpose software
of testing, staff will not usually be motivated to test effectively,
and managementwill lose an important opportunity to monitor
progress and control the project.
The view that is now held bythe leading practitioners of softwaretesting, and the one to which we adhereinthis report, is that thepurpose of testing is to provide management with informationabout the quality of the system being developed. It is theresponsibility of management to decide what information,if any,it wants from the testing process, and to set the level of testingaccordingly.

THERE IS UNCERTAINTY ABOUT THE SCOPEOF SOFTWARE TESTING
Testing should not be viewed as an activity that painstakinglyturns a poorly designed system into a passable one. Nor shouldit be confused with debugging, whichis the process carried outby programmers to diagnose and correct errors. Testing isconcerned with measuring how closely a system conformsto itsspecification; these measurements enable managersto assess therisk of introducing a system into live operation.
At one endof the spectrum,no software testing may take place. aForty per cent of PEP members carry out no formaltesting. This dtoe be legitimatenotto testmaybe a legitimate choice in at least three situations: soriaze
— The system must be operational on a certain date, regardlessof how well it has been tested.
— Thesystem is not critical, and failures during operation willhave a minimal impact on costs.
— The estimated cost of testing is greater than the benefit thatcan be derived from using the test results.
On the other hand, an absence of formal testing may simply bean oversight — because no-onein the organisation realises thatit requires managementaction to get formal testing introduced.Or it may be that other informalcriteria, such as ‘‘when the usersstop complaining’’, “‘when the deadline arrives’’, or ‘‘when thesystem is standing up well enough’, serve as the basis for decidingthat a system is ready to be introducedinto live operation. Unlessa conscious andjustifiable decision has been made not to carryout system testing, managementis deprivingitself of informationthat can be usedto assess therisk to the business of introducingthe system.
Atthe other endof the spectrum, where software directly affectssafety, such as the flight-control system of an aircraft,management needs to be confident that the software is at least esec shtware directly affectsas reliable as any other critical component. In such cases, the moron SeCleoORESsystem should be subjected to very extensive testing procedures.There is no consensus within the industry, however, about the

© Butler Cox pic 1990

Chapter 1 Adopt a more analytical approach to software testing

There mustbe a balance between
the cost of testing and the level

of confidence required in
the system

It is sometimesdifficult to
measure the progress

© Butler Cox pie 1990

of a project

level of testing required to achievea givenlevelofreliability, and
the extent of testing, in practice, is limited by commercial
considerations.
In between these two extremeslie the majority of applications
written by PEP members. Sometesting is required, but for most
applications, a lowerlevel than that required for safety-critical
systems will be sufficient. The problem is to decide how much
testing is necessary to achieve, for example, a mean time between
failures of at least one month. Thesolution requires a balance to
be struck betweenthecost of testing and the level of confidence
that is required in the performance of the system.
Statistical techniques for deriving objective measuresofreliability
from the numberof errors discovered during testing are currently
the subject of much academic debate. Several techniques have
been developed, but their application requires an advanced
knowledgeof statistical theory. It will probably be a few years
before any practical measures becomeavailable for generaluse.
In the meantime, we can recommend only that organisations
collect statistics of their own experiencesof testing, and analyse
these to produce their own guidelines. PEP Paper 14, Software
Quality Measurement, will provide some guidance onthis aspect
of developing software.

THERE IS A LACK OF AWARENESS ABOUT
THE RELEVANCE OF TESTING RESULTS
TO PROJECT CONTROL
The successful control of a project requires information about the
progress of the development. This information must be objective,
accurate, and updated on a regular basis (typically, weekly or
monthly). It is easy to measure progress objectively at some stages
of a project — for example, the design of a subsystem results in
a documentthat can be checked for completeness. At other stages
of the development, however, progress is much moredifficult to
measure objectively. The first time this problem occurs tends to
be at the coding stage. A programmer announcing that he has
coded a module is not an accurate or objective measure that a
standard unit of work has been completed. Some programmers
prefer to work by coding very quickly, and spend a long time
debugging; others work by coding very carefully and slowly, but
produce code that requires very little debugging.
The use of formal testing techniques can avoid these problems
in the following ways:
— If inspections or walkthroughs, discussed in Chapter 3, are used

to review code before the programmer attempts to run it, a
uniform standard for assessing the completeness of coding will
be used for all programs.

— If coverage analysers, also discussed in Chapter 3, are used
to assess the percentage of code that has been executed by
module tests, an objective measure is obtained of test progress,
and definite criteria can be set for deciding if testing is
complete.

— If system tests are carried out according to a definite plan, the
progress of the tests can be measured by analysing successful

Chapter 1 Adopt a more analytical approach to softwaretesting

and unsuccessful test completions, and rates of error detection,
as described in Chapter 4.

At all stages in systems development, therefore, the use of formal
testing techniques, which give measurable outputs, either in terms
of percentage completion, or success/fail status, will provide
managers with accurate data about the progress of a project. This
data will be much more reliable than that provided by the
traditional technique of asking programmers and designers for
their assessments of how far the work has progressed.

IT IS IN THE INTERESTS OF MANAGERSTO INSTITUTE
FORMAL SOFTWARE TESTING
Asa first step in improving their development procedures, systems
development managersshould consider what, if any, their policy
is towards testing. They will then be in a position to choose an
appropriate approach to software testing.
EXISTING LIFE-CYCLE MODELS FOR SOFTWARE PRODUCTION
ARE INADEQUATE
There are well established and widely used life-cycle models for
the software-developmentprocess, the best knownof which,first
presented in 1970, is the so-called ‘waterfall model’, illustrated
in Figure 1.1. The main feature of this model is that development
proceeds through a series of well defined phases. In an ideal
development, each phase is verified and proved error-free

Figure 1.1 In the traditional ‘waterfall’ model of the software-develop-mentlife cycle, testing is viewed as a secondary activity

stemesi Validation PY
Software plans anrequirements

Validationr
Product design

Verification nS
Detailed design

Verification Bs

Code

a Unit test es
Integration

Productverification Sy

Implementation

 System test

Formal testing techniques will
provide managers with accurate
data aboutthe progress of a
project

In the traditional life-cycle
model, testing is viewed
as a secondaryactivity

©Butler Cox pic 1990

Chapter 1 Adopt a more analytical approach to software testing

There are two ways of short-
ening the development

timescale

before the developers proceed to the next. In practice, some
iteration is required whenerrors introducedin one phaseare not
detected until a later phase; this iteration process is represented
in Figure 1.1 by the upward arrows.
The shortcomingsof the approach implied by the waterfall model
have become apparent in recent years. The mostsignificant are
that testing is viewed as a secondary activity, added on to the
end of each phase,and that system testing is not planned until
the final development phase.

TESTING THROUGHOUT THE DEVELOPMENTLIFE CYCLE
WILL RESULT IN BETTER PROJECT CONTROL
The development timescale can be shortened in two ways. The
first is by improving the efficiency of carrying out each phase of
the developmentcycle (that is, completing it with less effort, and
hence, in a shorter time); many membersare already doing this
by using tools such as fourth-generation languages and code
generators. The second is by a better scheduling of activities; to
achieve this, we recommend the use of an alternative life-cycle
model in which there is greater emphasis on testing.
This alternative model is illustrated in Figure 1.2, and shows
development occurring in three main parallel streamsofactivities.
In each development stream, the first objective is to produce
specifications. The secondis to specify what to test. The third is
to develop the test environment. Only then are the components
assembled ready for testing. Testing is thus carried out at the
end of each development stream, and measures different aspects
of the development in each stream, as described in Figure 1.3,
overleaf. The primary focusis on the testing activity rather than
on the production activity, and the outcome of each stream of
activity is both a product and a measurement of its quality.
The benefits of this modified approach are four-fold:

 Figure 1.2 In the modified software-developmentlife cycle, the emphasis is on testing rather than production

Specify
requirements

system tests “| system tests system tests

Specify Build Execute

 Specify
 modules y

Specify Build a :Execute
module tests module tests module tests —

Code and debugmodules

 © Butler Cox pic 1990

Chapter 1 Adopt a more analytical approach to software testing

Figure 1.3. In the modified software-developmentlife cycle, testing is
carried out at the end of each development stream

Module tests
A program moduleis the smallest testable componentof a system.Its specification
comprises a definition of its input data, its output data, and the processes for
transforming oneinto the other. The purposes of module testing are:
— Toverify that the module conformsto specified standards.
— To verify that measuresof the module's characteristics, such as complexity, are

within specified ranges.
— Toverify that the module performsits specified functions when executed witha representative sample of input data.
— Toverify that each line of code and each ofthe possible branches have beensuccessfully executed at least once.

Integration tests
Integration tests are designed to measure the behaviour of combinations of modules.They are of two types:
— Verifying the consistencyof data definitions that are passed between the modules.This applies both to data that is passed directly, and to data that is passed viaa database or shared memory.
— Verifying that all calling paths through the combinations of modules are exercised.

System tests
System tests are designed to measure the behaviourofthe total system.This includestests for someorall of the following features:
— Thefunctionality required by the users.
— Theability to start the system.
— Theability to change the hardware configuration of the system. This particularlyapplies where there are back-up processorsor peripherals that can be substitutedin various combinations in the eventoffailures.
— Theability to restart the system andto recoverlost transactions following

a

failure.— Performancecharacteristics, such as response times, delays, and throughput.— The behaviourof the system when loadedtothelimits of its resources.
— Theability to prevent unauthorised users from gaining access to the system.
— By developing test specifications and the test environmentconcurrently with lower-level specifications or program code,the overall development time is shortened.
— Developing a test specification can highlight deficiencies in therequirements, design, or module specifications; it thereforeprovides a valuable opportunity to review the specifications.
— Management’s attention is focusedat an early stage on definingthe important features of the system.
— Developingthe tests is a separate activity from producing thedesign or program. It is much easier for people to defineobjective tests of a product that they have not built, and thetest cases developed underthese circumstances are likely tobe a better sample.
The most critical question to be decided is what to test.Management should clearly define the measurements of qualitythat it requires, before tests are specified and the test environmentis created. If easeof use is a requirement, for example, tests couldbe designed to measure howlongit takes to input a transaction,how quickly the system can be learnt, and how many mistakes

Managementshould define themeasurements of qualitythat it requires

© Butler Cox pic 1990

Chapter 1 Adopt a more analytical approach to software testing

are made; knowing that these aspects will be tested, the system
designers will concentrate on the user interface. If accuracy of
data is stated as an important requirement, the activity of
specifying the tests will highlight whetherall the data must have
a high degree of accuracy, or whether someis less critical.
Figure 1.2 shows that the decision on what to test — the
requirements, design, or module-test specifications — can be taken
as soonasthe specifications at the beginning of each development
stream are complete.

PURPOSE AND STRUCTURE OF THE PAPER
Ourresearch reveals that there is very little agreement about how
current software testing procedures might be improved to best
effect. The purpose of this paperis therefore to offer guidance
on how software testing might be more cost-effectively applied.
It is not necessarily our objective to encourage membersto carry
out more testing; rather,it is to encourage members to undertake
an appropriate level of testing for each system, and to test more
efficiently. We make no attempt to cover the more technical
aspects of testing, which are coveredin several useful books on
the subject, listed in the bibliography.
Webelieve that the immediate need for most organisations is to
set up the right environmentfor software testing. The alternative
life-cycle model suggests that there may be more effective ways
of organising the staff involved in systems development,to reflect
the greater emphasis on testing rather than software production.
We examinethe alternatives in Chapter 2.
In Chapter 3, we discuss the methods, techniques, andtools that
are available to managers responsible for the testing aspects of
systems development. While in manycases, they are not as well
developed as those that help with other aspects of the develop-
ment process, some are already in wide commercial use and are
producing benefits for their users. Significant developments are
likely in the future.
It is essential for managers to measure the progressof the testing
process so that they can re-allocate resources promptly if the
project begins to deviate from plan. In Chapter 4, we provide an
analysis of the methods available to help them do this, in the
module-testing, integration-testing, and system-testing phasesof
a project.

RESEARCH SOURCES
Wecarried out a review of the published literature on the subject
of software testing. This revealed that little has been written on
the subject, compared with other aspects of software develop-
ment.
We held a series of discussions with practitionersin thefield of
software testing — academics, suppliers of testing tools, and
commercial organisations. We should like to offer our special
thanks to Professor Michael Hennell of Liverpool University, Peter
Mellor of the Centre for Software Reliability at the City University,
and Mike Bickers and Richard West of the Central Computer and
Telecommunications Agency.

©Butler Cox pic 1990 7

eee

Chapter 1 Adopt a more analytical approach to software testing

Wealso conducted telephoneinterviews with 17 PEP members.
These interviews proved very valuable in highlighting the diffi-
culties that they encountered in testing software.

© Butler Cox pic 1990

Chapter 2

Organise the systems department to support testing

Most systems departments
distinguish between system

testing, and module and
integration testing

Staff must understand the

 © Butler Cox ple 1990

purposeof testing
software

In Chapter 1, we discussed the merits of a modified approach to
the development of software, in which the conventionallife-cycle
model is broken downinto three streams of activities that take
place concurrently, and where the emphasis is on testing rather
than on production. Clearly, adopting such an approach will have
implications for the organisation of the systems department. In
this chapter, we consider how the development teams might best
be organised to improvethe effectivenessof testing. For the pur-
pose of organising testing, most systems departments distinguish
between system testing, which is concerned with the functionality
of a system as a whole, and module andintegration testing, which
is concerned with testing the behaviour of the componentsof a
system.

We examineddata collected from PEP assessmentsto see if there
were anyclearindications that particular organisation structures
were producing more reliable software. The sample of data is
probably too small to be significant, but any of the organisation
structures for software testing described in this chapter appear
to be capable of producing software of both above-average and
below-averagereliability. The indications are therefore that an
organisation will not be able to improve thereliability of its
software merely by changing the wayit organises softwaretesting.
The organisation for software testing needs to be considered
within the wider context of a systems department’s approach to
software testing as a whole.
Thefull benefits of structuring the department and project teams
to improvethe effectiveness of testing will, of course, be realised
only if the staff themselves fully understand the purposeof testing
their software. Very little formal training on testing is given on
computer training courses. Much of the training within the
industry is given ‘on the job’, or on coursesfor specific skills such
as programming languagesor design methodologies, none of which
addresses testing as a major topic. A programmeror analyst is
unlikely to learn how to test effectively unless he works in an
organisation that understandsthe nature of software testing. The
limited number of courses on software testing available in the
United Kingdom arelisted in Figure 2.1, overleaf.

ALLOCATE RESPONSIBILITY FOR INTEGRATION
AND MODULETESTING TO AN INDIVIDUAL
OR A SMALL TEAM
Knowledgeof the detailed system and program designs is required
to develop integration and module tests. It would therefore be
very expensiveto set up independentintegration and moduletest
teams, and noneof the PEP members whom weinterviewed had
done so. The alternative life cycle depicted in Figure 1.2 does,

Chapter 2 Organise the systems department to support testing

Figure 2.1 There is a limited numberof courses on software testing
available in the United Kingdom

Course provider Nature of course

Open University
Contract Training Unit
Milton Keynes
MK7 6AA

One-day courses on softwaretesting
at various locations

QCC One-day seminar on the
4 Tyrone Road managementoftesting
Thorpe Bay Three-day workshop on quality
Essex review andtesting
SS1 3HF Three-day workshop on acceptance

testing
Three-day course on auditor's
approachto testing

National Computing Centre Three-day course on software
Oxford Road verification, validation, and testing
Manchester Regular one-day events, including
M1 7ED briefings and demonstrations of tools

Frost & Sullivan
4 Grosvenor Gardens
LondonSW1W 0DH

Various two- or three-day seminars
on specific aspects oftesting

Four-day courses onsoftware quality
assurance andtesting

Learning Tree International
Trafalgar House
Hammersmith International Centre
London
W6 8DN

however, suggest that the system designers should design the
integration tests, and that the specifiers of program modules
should design the module tests. The interviews indicated that fewPEP members distinguished clearly between module and
integration tests, possibly because both activities are theresponsibility of the project team, and cannot involve the users.
Weidentified three main team structures for integration and
module testing among PEP members:
— Each personspecifies and executes tests on his own work.
— Anominated person within the team is responsible for ensuring

that all tests are carried out to specified standards.
— A distinct team, working under the control of the project

manager, is responsible for testing.
Thefirst of these is the most common among the PEP members
we interviewed; three-quarters of them did not attempt to
separate testing from production within the development team.
The results of the survey are illustrated in Figure 2.2. It is
interesting to note that the four members who separated the
testing and development functions within the project team
included the three who hadalso established a separate system
test department.
The main problem with allowing individual programmersto test
their own workis the inconsistency in quality that is likely to
result. Some programmersare undoubtedly good at testing their

10

Most PEP members do not
separate testing from
software production

© Butler Cox pic 1990

Chapter 2

Module testing should usually be
done by the programmer, with

the appropriate tools

 utler Cox pic 1990

Organise the systems department to support testing

Figure 2.2 Three-quarters of PEP members make no attempt to separate

module andintegration testing from software production

Percentage of PEP members
Organisation of module
and integration testing
No separation of testing
from software production

Nominated person
responsible for testing

Testing team within the
project 2)

(Source: Butler Cox survey of PEP members)
own modules; others, possibly because of inexperienceor lack of
training, perform virtually no systematic testing. Since a poorly
tested modulein a critical part of a system can cause considerable
delays and expenseduring system testing,it is not cost-effective
to allow uncontrolled individual module testing.

Module testing is difficult to do well. It can be very tedious for
a programmer to check that each line of code and all true and
false results of decision statements have been tested by a sample
of test cases.It is equally, if not more, difficult for a programmer
whodid not write the codeto carry out thesetests. It is no doubt
for this reason that module testing tends to be done by the
programmer whowrotethe code,and it is probably not effective
in terms of cost or staff morale to introduce an independent
module-testing team. However, the use of dynamic-analysis tools
(which are discussed on page 23) can remove mostof the tedium
from module testing, and also provide managementwith a printed
record of the extentof the tests. At the modulelevel, it therefore
seems practical to leave the responsibility for testing with the
programmer, but to provide the tools that make the job easier and
that give management greater project control.

We also recommend that a single team member, or on larger
projects, a small team, should be responsible for ensuring that
module and integration testing is carried out to specified
standards, even if the actual testing is carried out by the
programmers themselves. At least one of the designers of the
system should be part of this team. Independenttesting within
a project team does not impose additional costs on a project. In
fact, total development costs should fall, since more reliable
modulesare likely to be produced, leading to a reduction in the
cost of rework during system testing and live operation.

CONSIDER THE MERITS OF A SEPARATE
SYSTEM TESTING DEPARTMENT
PEP members take a variety of approaches to organising the
system testing function. From the 17 responses to our telephone
interviews, we identified three main organisation structures.

1

Chapter 2 Organise the systems department to support testing

THE PROJECT TEAM IS RESPONSIBLE FOR SYSTEM TESTING
The most commonorganisation structure is for the project team
to be responsible for system testing. This structure, illustrated in
Figure 2.3, is adopted by about half of the PEP members we
interviewed. System testing is entirely under the control of the The most common caseis for
project manager, and each project team defines its own approach system testing to be con-
to system testing. Some project teams may set up a small system trolled by the project
testing team; others may assign the responsibility for system manager
testing to an analyst or a designer. Some organisations have
a policy on how projects should structure their teams; others
allow each team to define its own structure. Many organi-
sations recognise that there are benefits to be gained from
separating testing from development, and set up testing teams
within the project team. One organisation ensured that the two
activities remained separate by allocating a different computer
for testing.

Figure 2.3 Organisation structure: the project team is responsible for
system testing

Systems
division

Systems
development

function

Project manager

System test Design
Code
Module test
Integration test

Another organisation used the quality assurance department asan independent authority to carry out random tests on thesoftware during the main-build phase. The quality assurancedepartmentcan play a majorrole in defining and monitoring howsoftware shouldbetested, butit is unlikely to have the resourcesto becomeclosely involvedin thedesign ofall the systems under Randomtests are unlikely to bedevelopment. As a testing technique, random tests are unlikely usefulto provide a useful measurementof each system’s quality, andas a means of finding errors, they should not be used as analternative to a properly defined series of tests.

The main benefits of placing full control of system testing withthe project team are reduced costs and ease of management. Inthe short term,it is cheaper to allow each project team to havefull control overits own testing than to incur the additional costsof a separate group of people, who have to understandtheusers’requirementsandliaise with the project team. From the manager’spoint of view, assigning total responsibility for testing to theproject team relieves him of the need to devote any effort to
consideration of system testing.

© Butler Cox ple 1990

Chapter 2 Organise the systems department to support testing

Making the project team res-
ponsible for system testing

is appropriate where the
applications are small
and the requirement

for reliability is
average

 utler Cox pie 1990

The main disadvantagesare also related to cost and management.
If an organisation has several similar projects under development
at any one time,it should be possible to reduce costs by developing
acommontesting environment, or by purchasing a set of software
testing tools that can be used on all projects. Making system testing
the responsibility of individual project teams meansthat systems
development management has no independent measures of the
characteristics of a system. Whetherthis is a problem will depend
on how reliable the system is required to be, and howskilled in
system testing the members of the project team are.

This structure for system testing can be cost-effective in an
organisation that develops relatively small applications, with a
requirement for average reliability. We recommend that organi-
sations choosing to adopt this structure should ensure that one
person within the project team is given specific responsibility for
system testing, and that this person has expertise in the design
of system tests.

THE PROJECT TEAM SHARES RESPONSIBILITY
FOR SYSTEM TESTING WITH OTHER GROUPS
In this organisation structure, illustrated in Figure 2.4, the project
team provides the technical expertise in testing, but user groups
and the operations department define and carry out their own
tests. The user groups examinethe functionality andusability of
the system. The operations group considers such factors as
whether the batch run can be completed within the scheduled
time. The decision on whether to accept the system is made on
the basis of these measurements. This structure has many of the
same advantages and disadvantages as the first one. It does,
however,allow at least one set of system tests to be carried out
by a group that is separate from the development team.

Figure 2.4 Organisation structure: the project team shares responsibility
for system testing with other groups

User Systems
division division

5 Systems
Sree Operations developmentunit x.function

User manager Operations Project manager
manager

System test | Design
Code
ModuletestIntegration test

A common problem with systems developmentis that users are
not sufficiently involved, particularly during the requirements

13

Chapter 2 Organise the systems department to support testing

definition phase. This can lead to an excessive numberof changesbeing requested throughout the development. By involving theusersin the specification and execution of system tests, they areforced to examinethespecifications critically, which should helpto ensure that any faults in the specifications are corrected at anearly stage, and to reduce the numberof subsequent requests forchanges.
There is no need for a system tester to know how to design orprogram software,but testing requiresparticularskills for whichtraining and experience are necessary. User groups shouldtherefore includeat least onespecialist adviser, not necessarilyfull-time, if they are to carry out effective tests.
TESTING IS THE RESPONSIBILITY OF ASEPARATE DEPARTMENT
In this organisation structure, illustrated in Figure 2.5, a separatedepartmentcarries out the system tests on most of the systemsdeveloped by project teams.

Figure 2.5 Organisation structure: testing is the responsibility of aseparate department

Systems
division

Systemssysien developmentec function

System test manager Project manager
System test Design

Code
Module test
Integration test

Three of the PEP members surveyed had a separate system testingdepartment. These same members also had the most fullydeveloped procedures for testing, and collected statistics on theeffectiveness andcost of their testing. One, however, had recentlydisbandedits system testing department because it found that theproject teams becamecareless in their own testing, relying on thesystem testing team to find errors. The system testing team thenblamed the developers for delivering poor-quality work. Thegeneral lack of respect between the two groupsled to an overallreduction in quality and productivity.
The very different experience of the International Stock Exchangeis described in Figure 2.6. It created a separate testing group inpreparation for testing the systems that were being developed forthe ‘Big Bang’ in 1986. It was an expensive investment, but inthis case, it did result in the developmentof very reliable systems.

14

If users are involved in systemtests, they will be forced toexamine the specificationscritically

A separate testing department isexpensive but can result invery reliable systems

lutler Cox pic 1990

Chapter 2 Organise the systems department to support testing

Figure 2.6 The International Stock Exchange set up a separate testing

group andachieved highly reliable systems

In the period leading up to the ‘Big Bang’, the International Stock Exchange was
involved in the development of somelarge systemsthat werehighly visible to the
public, and were essentialto the future operation of the Stock Exchange. The systems
departmentdecided to set up a separate system testing groupfor the specific purpose
of minimising the risk of implementing systems that mightfail. Apart from somewell
publicised problemsin thefirst hours of operational use, the systems have performed
with a very high degreeofreliability, and the investmentin setting up a systemtesting
group wasconsideredto bejustified.
Someof the factors considered in setting up a system testing group were:

Independence:Thetesting group mustbeable to retain an objective view of the
development, and should not be subject to pressureto cut shorttesting to bring
the projectin on time. The group should, however,act as advisersto the project
manager, and should not have the final say on whena project is complete.
Termsofreference: Termsof reference mustlimit the scopeof the testing, because
there can be a tendencyfor testing to expandtofill the time available.
Managerial support: Senior systems managementsupport is essential to resist
pressures that may arise from the developmentteam to limit system testing. To
gain this support, management must be supplied with information on the progress
of testing.
Marketing: Therole of the testing group should be marketed internally. The Stock
Exchange produced a brochure describing thefacilities offered by the group.
Cost: An independenttesting group is expensive. About 5 per cent of the Stock
Exchange’s systems developmentstaff were in the testing group. The groupalso
needed its own computer systems for building test environments.

THEREIS NO ‘BEST’ ORGANISATION FOR SYSTEM TESTING

The experiences of PEP membersclearly illustrate that thereis
no obvious best organisation for system testing. It is worth
considering setting up a separate system testing departmentif the
cost of failing to achieve high reliability in systemsis high, or if
the systems being developedare large. It should, however, be
clearly understood that the function of a system testing depart-
mentis not to find errors that the project teams could have found
by thorough module and integration testing. Its purpose is to
measure the performance of a system as a whole.

The benefits of a system testing departmentare that staff develop
expertise in testing techniques and that investments can be made
in test tools, simulators, and databases, which maybedifficult
to justify on a project-by-project basis. In the next chapter, we
explain how the tools, techniques, and methods that are now
commercially available can play an important part in reducing the
costs of testing, and describe the circumstances in which each of
them can makethe greatest contribution.

© Butler Cox ple 1990

Chapter 3

Use tools, techniques, and methods to increase thecost-effectiveness of testing

In this chapter, we consider the formal tools, techniques, andmethodsthat can be used to improvethe effectiveness of softwaretesting and to reduceits cost. There is a wide variety of aids to
better testing on the market.
The greatest choiceis available in testing tools, and the useof toolsis quite widespread Among PEP members. The main techniquesare the review processesof inspections and walkthroughs. Theseare applicable to testing (or verifying) the documents associatedwith software production(that is, program code, specifications,designs, user manuals, and so on). Inspections and walkthroughsare less widely used than testing tools, although the analysis ofthe PEP database, carried out for PEP Paper 12, Trends inSystems Development Among PEP Members, showed that thebenefits to be gained are quite substantial. Formal methods forsoftware developmentare widely used, but although testing is acomponentof them,it is poorly described, and is not based onthe concept that testing and production areactivities to be carriedout concurrently. Software testing methods are, however,beginning to be produced,andsignificant developments can beexpected in the future.
No testing aid will, of course, reduce the intellectual effortinvolvedin designing the test environment and selecting test data.The use of testing aids will, in itself, do nothing to improve thequality of testing. Norwill any single aid to testing coverall aspectsof the process. Most of those that are commercially available coverone of five main areas:
— Formal methodsfortesting over the whole developmentlifecycle.
— Tools for creating and using test data.
— Tools and techniques for analysing the quality of thespecifications, designs, and code.
— Tools to help the programmeroranalyst to carry out testing.
— Tools to managethe configuration of test software and testdata.
Figure 3.1 illustrates the types of testing for which each type oftool is most appropriate, and Figure 3.2, on page 18, gives aselection of the testing tools that are currently available in theUnited Kingdom. The categories of tools included in the figureare described in moredetail later in this chapter.

FORMAL METHODS FOR TESTING OVER THE WHOLEDEVELOPMENTLIFE CYCLE
The only testing method available in the United Kingdom is aproduct from Lifecycle Management Systems Limited (LCMS),

16

The use of testing aids will not,
in itself, do anything to improve
the quality of testing

© Butler Coxpic 1990

Chapter 3 Use tools, techniques, and methods to increase the cost-effectiveness
of testing

 Figure 3.1 Each type of testing tool covers different stages of the developmentlife cycle

 System test Integration test Module test Code debugging

Creating test data= |

 Configuring tests

 |

" Formal methodsfortesting

There is only one testing method
available in the United Kingdom

© Butler Cox pic 1990

called Structured Systems Test Methodology (SSTM). SSTM is
primarily designed to be used in conjunction with the SSADM
structured development method, but LCMSclaimsthat it can be
tailored to fit other structured development methods. SSTM was
first released in November 1989, and there is consequently no
experience yet of its use on real systems development projects.

The motivation for producing SSTM wasthat the quality of a
systems development was often not known because the amount
of testing had not beenevaluatedagainst any absolute scale. LCMS
claims that SSTM provides a consistent environment in which
project managers have a measure of the quality of the system;
this enables them to assess the risk of implementing a system in
the final stages of testing.

SSTMis drivenlargely from the outputs produced by SSADM.By
using selected parts of the systems requirements, systems design,
program specifications, and module specifications as a baseline,
the numberof tests neededto test the system thoroughly can be
determined. Users and technical management can then decide on
an acceptable level of testing.

SSTM incorporatesa five-strand testing strategy that produces five
self-containedtest specifications related to SSADM deliverables.
Each specification includes sections on test case identification,
test inputs, expected results, supporting documentation, and
levels of testing.

TOOLS FOR CREATING AND USING TEST DATA
Tools that can ease the process of creating and using test data
provide one or more of the following functions:

17

Chapter 3 Use tools, techniques, and methods to increase the cost-effectivenessof testing

Figure 3.2 There is a wide rangeof testing tools available in the UnitedKingdom

Thetools in this list have been selected from those that are obtainable and that aresupported in the United Kingdom. Inclusion in this list does not indicate anendorsementof the product. Thecriteria for inclusion are that the product shouldbe supported onDigital, IBM mainframe, or ICL computers and that Cobol or PL/1should be supported on language-dependent products. Somestatic-analysis products,for example, have been excluded because they are aimed at military systems, andlanguages such as Coral and Ada.
<2sS| 3Sada a =SEES oO oO£/ 2] 9 o| 2 £eo eles SSRsOia (ae 2 ol elrsOS) ele] s =| dla2/2/35] & eo| &| S\ =21a] a s/ &| 2] @§/2/2/8|a| a] 8) 2

ABL Europe Ltd— TIP eo ie
Advanced Programming TechniquesLid— Oliver ele— Simon rile
C A Computer Associates Ltd— CA-Datamacs/lI Ea— CA-EZTest/CICS : a— CA-Optimiser Zz
Compuware— CICS Playback - a— File-aid -
Digital Equipment Corporation— Dec Test Manager - ee
Gerrard Software Ltd
— Tesigen z
IPL Software Products Ltd
— Softest el oe. Ee
John Bell Technical Systems
— Pro-Quest calle— Testa -
On-Line SoftwareInternational— Datavantage ele— InterTest ea— ProEdit =— Verify - ez
Program Analysers Ltd
— Testbed ae
QATraining Ltd
— Evaluator - a -
Rand Information Systems Ltd— Testline = vv
Sterling Software
— Comparex =
Verilog UK Ltd
— Logiscope le
XA Systems UK
— Pathvu a |

18
© Butler Cox ple 1990

Chapter 3 Use tools, techniques, and methodsto increase the cost-effectiveness
of testing

— Capture and playback of test scripts.
— Test data generation.
— Test database generation.
— File and output comparison.
Tools providing these functions are mainly used during system
testing, and during the maintenance phaseof a project, where
‘regression’ tests are carried out to check that the system’s
behaviour has not changed unexpectedly as a result of
maintenance activity.
The main benefit provided by thesetoolsis the automation of tasks
that would be tedious and time-consumingto carry out manually.
In some cases, the amountof test data required to carry out a
satisfactory range of tests would be so large as to preclude a

Tools for creating and using test manual approach; the implication of this is that some systems
data automate tedious and time- cannot be adequately tested without the use of such tools. The

consuming tasks use of these tools does not in any way, however, reduce the need
for careful test design. The function of the tool is simply to
automate the process of generating test data within the
parameters defined by the test design.
An important consequence of automating a tedious manual task
is the increase in accuracy that is achieved. If each piece of test
data is designed to test a particular function, any inaccuracy in
the creation of test data is likely to mean that some functions are
not tested as the designer intended.

CAPTURE/PLAYBACK
Capture/playbacktools are particularly useful for testing online
systems with significant amounts of data entered by users via
screen-based systems. They greatly simplify the creation of test
scripts, and can save the cost of employing large numbers of
unskilled staff to type in the data. They have their main value
during system testing, but could also be used very effectively
during the module andintegration testing of those parts of the
system that handle the user interface. The tools run either on the
host computer, or on a PC that emulates a terminal on the host
computer.
The tools contain some or all of the following components:
— Capture and recording of all the user’s inputs, including

mouse movements, where these are used. This inputis stored
as a script, which can be edited if required.

— Recording of responses generated by the system.
— Editing capability on the captured input data.
— Replay of the captured (and edited) script at varying speeds.
— Theability to run multiple copies of the script or scripts on

‘virtual’ visual display units.
— Comparison of the system-generated responses between

different runsof the script, and documentation ofthe results.
In using a capture/playbacktool, each script must be designed to
test particular features of the system.If the tool is used merely

© Butler Cox ple 1990 19

Chapter 3 Use tools, techniques, and methods to increase the cost-effectivenessof testing

to capture a large amount of unplanned user input, very littlebenefit will be gained.
Capture/playback tools can facilitate tests that would otherwisebe very difficult to carry out. A good example is stress testing —subjecting the system to large volumesof test data, or to hightransaction rates. This particularly applies to systems, such asticket-reservation systems, which have large numbers of userterminals. In the test environment, a large number of terminalswill almost certainly not be available, and even if they were,organising large numbersofstaff to simulate the expected volumeof user inputs would be difficult and expensive.
Thesetools also have particular benefits during regression testingbecause they allow a script of input commands (includingdeliberate user errors) to be repeated precisely. To compare theresults of the original test and the test of the modified system,differences have to be sought on possibly hundreds of screens.Most capture/playbacktools can dothis rapidly and withouterror.In addition, muchless effort is required to carry out regressiontests since the rerunsof the script can be carried out in batch modewithout supervision.

TEST DATA GENERATION
Data-generation tools facilitate the automatic creation of largefiles of data. They are particularly useful for testing systemsthatprocesslarge volumesofdata in sequentialfiles. A comprehensivetest of such systemsgenerally requires each record in the test datafiles to be different from all other records. To generate suchfilesmanually would be very time-consuming and pronetoerror.Itwould, of course, be possible to write a separate file-generationprogram for each system thatis developed,butit is likely to bemore cost-effective to purchase a data-generation tool if systemsdeveloped by the organisation often use sequential input datafiles.
Data-generation tools use at least two methods to generate thefiles. Oneis to define thefile off-line using a special programminglanguage. Theotheris to generatefiles from within the programitself, by embedding control statements in the program. Thesestatements either generate new records, or select and modifyrecords from existingfiles.
The generatedfiles contain records in user-defined formats. Thetools allow the values of fields in successive records to begenerated in various ways — random numbers within a specifiedrange, values clustered abouta specified point, sequential values,dates in various formats, and so on. These features allow the testdesignerto include data to test for particular conditions such asdata on,oreitherside of, boundaryvalues, and also to generatelarge numbersof different records which maybe used for volumetesting.

TEST DATABASE GENERATION
Many systemsneedto access a database. It is not usually advisableto use thelive database for system testing, but even whereit is

Capture/playback tools facilitatetests that would otherwise bevery difficult to carry out

Data-generation tools are usefulfor testing systems that pro-cess large volumes of data
in sequential files

¢ Cox pic 1990

Chapter 3 Use tools, techniques, and methods to increase the cost-effectiveness
of testing

possible, it may be more convenient to use a smaller and more
easily monitored subset of the live database.
The test database generation tools currently available in the
United Kingdom are limited to the creation of IBM IMS and DL/1
test databases. They workby selecting and modifying records from

The test database generationAaahAen an existing similar database. Some tools provide an interactive
are limited'to cpecttre editing facility, while others have a command language that

products defines the file-conversion rules. There are many similarities
between these tools and data-generation tools. Some products,
such as CA-Datamacs/II, include both facilities within the same
tool.

COMPARISON
Comparison tools are the only ones that operate on the outputs
from the system under test. Systems that generate significant
amounts of output in the form offiles can benefit from the use
of these tools. They can save time and improve accuracy when

Comparison tools can be the tester is looking for small differences betweenrunsof a test
particularly useful in program, or whenhe is comparing expected results with actual

the maintenance results. They can be particularly valuable in the maintenance
phase phase of a system’s life cycle, whereit is essential to verify that

a correction or a change to a program doesnot have unexpected
side effects. The tools produce printed reports that management
can use as an objective measure that the system has not been
degraded by the change.
File-comparison tools identify records within a file that have been
inserted, deleted, or modified. The ability to make comparisons
in this wayis usually included as a feature of capture/playback
tools. In these instances, comparisons are made of outputs sent
to a display screen by the system. Somefile-comparisontools are
included in manufacturers’ operating systems — for example, the
‘Difference’ commandin Digital’s VMS operating system.

TOOLS AND TECHNIQUES FOR ANALYSING
THE QUALITY OF THE SPECIFICATIONS,
DESIGNS, AND CODE

; The quality of every deliverable produced during the development
doolgaud apnefor:eemg of a system,including requirementsspecifications, designs, code,

Ene anality. of the specica en” andtest specifications, should be analysed as part of the normaldesigns, and codeare essential Vari techni d tool: ilablwhere applications need to development process. Various techniques and tools are available
be highly reliable for this purpose. The two most commonly used techniques are

inspections and walkthroughs.
In addition, two types of tools — static analysers and dynamic
analysers — can be used to analyse the quality of the codeitself.
The appropriateness of these tools depends, however, on the
programming language used. They are suitable for use with
commercial programming languages such as Cobol. Code written
in manufacturer-specific languages, such as Tandem’s TAL,or in
fourth-generation languages, cannot be analysed bythese tools.

The use of these techniques and tools is almost essential for
applications with high reliability requirements, such as those
where human life depends on the successful operation of the

© Butler Cox plo 1990 2

Chapter 3 Use tools, techniques, and methodsto increase the cost-effectivenessof testing

software. These applications should therefore be written only in
a language that can be analysed by these tools.

INSPECTIONS
The inspection technique wasfirst developed by Michael Faganwhile he was working at IBM in the early 1970s. An inspectionis carried out by a team,typically of four people, whoseroles areprecisely specified. A key to successful inspections is that the teammust identify errors only; it must not be side-tracked intodiscussions of solutions, or alternative design strategies. It isimportantthat the results of the inspection are recorded, and thatall errors are corrected by the original designer or programmer.
Inspections are time-consuming(typically, between 4 and 8 percent of total developmenteffort), and need to be scheduled inthe project plans. The total time(including preparation time) foran inspection of a design that produces 1,000 lines of codeis 10to 20 man-hours, andfor an inspection of the 1,000lines of codeproduced from this design, 20 to 60 man-hours.
In carrying out inspections, each person needs to have a clearunderstanding of his individual role, and of the purposeof theinspection procedure. The techniques are not easy to learn, andan organisation that intends to introduceinspections shouldtrainits staff on formal courses.
Studies of the effectiveness of performinginspections on sourcecodeindicate that an inspection typically detects up to 60 per centof the errorsin the code. The reduction in development cost, after An inspection reduces develop-allowing for the additional cost of the inspections, is estimated ment costs by aboutat 10 per cent. This is consistent with the results reported in PEP 10 per centPaper 12, where PEP members using inspections or walkthroughshad a Productivity Index abouthalf a point higher than memberswho did not use them. If the subsequent maintenance phaseisalso included, the savings may be considerably larger.

WALKTHROUGHS
Walkthroughsare a less formal type of inspection and may havefew,if any, of the formal characteristics of inspections. There arevery few rules on how to carry out a walkthrough. At a minimum,it involves one person checking another’s work. Because of thelack of formality, walkthroughs are cheaper to carry out thaninspections. They are almost certainly less effective, althoughquantitative data are lacking.

STATIC ANALYSERS
Static-analysis tools examine the structure of code withoutrunning it, and can typically find between 10 and 20 per cent ofall errors in a program. They are cost-effective tools in the Static-analysis tools typicallydevelopmentof reliable systems, but do not seem to be widely find between 10 and 20 perused in the commercial environment. Much of their use in the cent of all errors inUnited Kingdom has beenin avionics and military systems. We a programbelieve that there are considerable benefits to be gained from theuse of these tools in commercial applications and that their useshould be carefully considered by all PEP members.

22

Chapter 3 Use tools, techniques, and methodsto increase the cost-effectiveness

Dynamic-analysis tools monitor
the code while it is being

©Butler Cox pic 1990

executed

of testing

The tools provide managers with objective measurements of
characteristics that are directly related to quality. These help to
identify areas of poorly structured or excessively complex code.
It is advisable to redesign such code before proceeding further
withtesting. If part of the code is unavoidably complex (a complex
logical algorithm, for example), extra attention should be paid to
its module testing since it is likely to contain an above-average
numberof errors.
Static analysers typically assess the following characteristics of
the code:

Conformance to user-specified standards (for example, no
more than a predefined numberof lines in a module, or no
use of ‘go to’ statements).
The paths(or different sequences of instructions) through a
program.

— Complexity analysis. Two of the most widely used measures
of complexity are McCabe’s measure, and the number of
knots, explained in detail in Figure 3.3, overleaf.

— Data-flow analysis, showing procedurecalls, usage of pro-
cedure parameters, and unreferenced or unuseddata items.

— Cross-reference of all data items.
Sometraining is required in the interpretation of these measures,
but carefully used, they can identify many coding errors before
any attempt is madeto run the code. This obviously saves effort
and machine time.

DYNAMIC ANALYSERS
Dynamic-analysis tools provide objective measuresof the testing
procedure, commonly known as ‘white-box’ testing. This
procedureis carried out as part of the module-testing phase, and
may also be done during integration testing. The tools monitor the
code while it is being executed, and produce a report at the end
of the execution, giving variousstatistics. These statistics can be
used to assess the effectiveness of the test cases.
It is essential that white-box testing is carried out, since in a typical
program, over 50 per cent of the code is not directly related to
end-user functionality, but to the manipulation of internal
pointers, flags, and intermediate results. ‘Black-box’ testing,
which viewsthe system externally in termsof inputs and outputs,
cannot be designed to guarantee complete coverage of this
‘hidden’ code.
Onetool, Testbed, provides three measurements,or test effective-
ness ratios (TERs), resulting from a dynamic analysis of the code.
Other dynamic-analysis tools, which are sometimes also known
as coverage analysers, provide at least the first measurement.
These measurements are:
— TERI statement coverage analysis: the percentage of the

lines of code that have been exercised at least once. No
operational system should be released where this measure
is less than 100 per cent.

23

Chapter 3 Use tools, techniques, and methods to increase the cost-effectivenessof testing

Figure 3.3 Two of the most widely used measures of the complexity of
a program are McCabe’s measure and the numberof knots

McCabe’s measure
McCabe's measureis defined as one more than the numberof decision statementsin a program. The metric is very simple, but experience showsa significant correlationbetween McCabe's measure and the numberof bugs, or debugging effort appliedto a program. Programs with a McCabe value in excess of 10 seem to havedisproportionately more bugs than thosewith values of less than 10.

Knots
The purposeof looking for ‘knots’ is to identify unstructured code, which tends tocontain more errors than properly structured code. A control-flow knotis defined asoccurring whentwocontrol jumpscross,asillustrated in the diagram. Three typesof knots are depicted. A down-downknotis relatively harmless, and represents an‘if... then ... else’ construct. Up-downknots are morelikely to represent unstructuredcode,but mayarise from ‘do’ or‘while’ loop constructs. Up-up knots always representunstructured code.

Down-down Up-upknot

— TER2 — branch coverage analysis: the percentage of alloutcomesof branchinstructions that have been exercised atleast once. The goal of testing should also be 100 per cent,although this is not as easy to achieve as 100 per cent onTERI.
— TER3 — path coverage analysis: there are several ways ofmeasuring paths through a system,all of them quite complex.It is difficult, in practice, to achieve 100 per cent pathcoverage during testing, and except in ultra-high-reliabilitysystems, it is probably not worth attemptingit.

24

© Butler Cox pic 1990

Chapter 3 Use tools, techniques, and methods to increase the cost-effectiveness

Dynamic-analysis tools produce
reports containing objective

©Butler Cox pic 1990

measures of testing
progress

of testing

An example of output from Testbed for TER2 is shown in
Figure 3.4.

Figure 3.4 The testing tool, Testbed, provides three measurements

resulting from a dynamic analysis of the code

The diagram is an example of output from Testbed for the second of the
measurements,ortest effectivenessratios (TERs), thatit provides. TER2is an analysis
of branch coverage.

. Current runBRANCH EXECUTION PROFILE Previous runs Combined

FROM TO ‘OLD NEWLINE LINE ~ COUNT COUNT TOTAL

17 19 List of all the

1 1 24 2: 618 56 branchesin the 1 i 224 (25 program 3 2 52453 1 Ossee 12 «29 2 Q tees 228 30 1 2 33334 1 133,35 2 1 33839 1 1 2as 2 1ae 3 Unexecuted12 4 i o i Branches
45 51 1 Oosee47 48 1 2 34750 1 Ovens 149 51 1 2 352 ise 3 2 5Ss Wiz 4 2 6sei 1 1 2

OLD NEWSUMMARY COUNT COUNT TOTAL
NUMBEROF BRANCHES IN PROGRAM 20 20 20NUMBER EXECUTED 20 15 20NUMBERNOT EXECUTED 0 5 0
TEST EFFECTIVENESS RATIO 2 1.00 0.75 1.00
(Source: Program Analysers Ltd)
An experimentcarried out on a large military system in the United
States showed that, when static analysis was combined with
dynamic analysis, 70 per cent of all errors in the system were
discovered. The remaining errors were caused largely by errors
in the specifications or misunderstandings of the written
requirements.

Project managerswill find the use of this type of tool particularly
helpful since they can provide reports containing objective
measures of progress such as, ‘“‘tests covering 78 per cent of
statements and 64 per cent of branches have been successfully
completed’’. This gives them much better control over a project
than having to rely on a programmer’s typical estimate that
“testing is 95 per cent complete”’.

TOOLS TO HELP PROGRAMMERS AND ANALYSTS
TO CARRY OUT TESTING
Two types of tool — debuggers and test harnesses — are used
during module testing to help in the process of debugging and
testing:
— Debuggingis a distinct activity from testing, as described in

Chapter1, and has been excluded from the scopeof this paper.
However,several debuggingtools include features that enable
them to be used for formal testing. The list in Figure 3.2

25

Chapter 3 Use tools, techniques, and methods to increase the cost-effectivenessof testing

(on page 18) is not exhaustive; we have included only thosefor which the manufacturer also supplies another type oftesting tool that can be used in conjunction with it. All PEPmembers use some debugging tools, since it would beexpensive to develop programs without them. If additionaldebugging tools are required, it would be worth considering
tools that are also useful for formal testing.

— Test harnesses provide an environment for running partiallycompleted software whenit is undergoing module tests, orbeing debugged. They providefacilities such as simulatingincomplete modules, intercepting calls to external pro-cedures, and defining external data areas. The use of sucha harness could provide a more uniform approach to moduletesting throughout a development team.

TEST-MANAGEMENT TOOLS
Test-managementtools help in the managementofthe tests ratherthan in the process of testing. They are particularly usefulif thereare manytest cases to manage, and as a long-term investmentinmaintaining the test environment for regression testing.
Organisations that are already controlling their software develop-ments using tools for code management and configurationmanagement should consider extending their scope to includetesting. Organisations that are not already using such tools wouldbe well advised to consider investing in them.
While investmentin software tools that can be used to carry outa plannedlevel of testing within an organisation will undoubtedlyhelp to ensure that the cost of software testing is reduced, theydo not in any way absolve managersof their responsibilities forproject control. Managers need to monitor the progress of softwaretesting and to draw on theresults that the process provides asa basis for making decisions to ensure that projects are deliveredon schedule. How the progress of software testing should bemeasured is the subject of Chapter 4.

26

Test-managementtools are usefulif there are manytest cases

Chapter 4

Measure the progress of testing to improve

It is not practical to define
module tests that will

©Butler Cox ple 1990

achieve preset
targets

project control

One of the main tasks of development project managers is to
decide how to allocate resources so that the project is completed
on schedule. This requires regular monitoring of progress, so that
resources can be re-allocated if the project deviates from plan.
In this chapter, we show how progress can be measured during
the module-testing, integration-testing, and system-testing phases
of a project.

MEASURE THE PROGRESS OF MODULE TESTING
Module tests should be designedto fulfil two requirements — each
function provided by the module should be tested with a range
of input data, andall of the code should be exercised by the input
data. The input data must be carefully selected to achieve both
of these goals; testing each function with a wide range of randomly
selected input data is unlikely to achieve the second goal.
There are several ways of measuring the extent to which code
is exercised by the tests, as described in the section on dynamic-
analysis tools in Chapter 3. For each of these measures, a
numerical value can be set, to define the point at which testing
of the module should stop. Such values could, for example, be
100 per cent of code coverage and 90 per cent of branch coverage.
This value should be specified according to the level of confidence
that is required in the reliability of the system.
It is difficult to select, in advance,a series of tests that will achieve
the target values, and it is not worth attempting to do so. The
most practical way of approaching module testing is to begin by
specifying a series of tests that test all the functions with a good
range of input values. A dynamic-analysis tool can then be used
to indicate which parts of the code have not been exercised.
Additional test cases can then be definedtofill in the gaps until
the code has been exercised to the required extent on the different
measures of coverage.
It should be noted that the completion of testing, defined in this
way, does not guarantee a modulefree of errors. It does, however,
provide a certain level of confidence in the reliability of the
module. The higher the percentage coverage on the three
measures, the greater the confidence in the module’s reliability.

MEASURE THE PROGRESS OF INTEGRATION TESTING
Integration tests should be designed to measure that the flow of
control between modules is correct, and that data definitions
between modules are consistent.
The control flow between modules can be measured using the
same dynamic-analysis tools that were used for moduletesting,

Chapter 4 Measure the progress of testing to improve project control

but operating on the module, rather than theline of code, as the
basic unit. Test data should be selected so that each module in
the system is called at least once, and a predefined percentage
of the control paths through the modulesis exercised. On a small
system,it is relatively easy to check manually that all control paths
have been exercised, possibly using the checkpointingfacility ofdebugging tools. On systems with more than about 20 modules,
a tool that can analyse control paths through programs andmeasure the extent of the program coverage is essential ifintegration testing is to be carried out thoroughly. The measure-ment of progress of the control-flow part of integration testingis then the measurementof the percentage of module coverage
and control-path coverage that has been achieved.
Ensuring that data is consistently defined between modulesrequiresa series of tests to be defined that explicitly check thateach data item is handled consistently by all modules that create,read, modify, or delete it.
Measuringthe progressofa series of predefined integration testsis very similar to measuring the progress of a series of predefinedsystem tests. The techniques for doing this are described in thenext section.

MEASURE THE PROGRESS OF SYSTEM TESTING
System tests are carried out on the complete system at the endof the development cycle, and should be started only whenmodule and integration testing have been completed. Thetestsmeasure the performance of the system against the originalrequirementsspecification, and are normally used as the basis onwhich a decision is made to introduce the system into liveoperation.
DEVISE A SYSTEM-TEST PLAN
The essential prerequisite for monitoring the progress of systemtesting is a test plan. This should be produced soon after therequirementsspecification is completed, as indicated in Figure 1.2,and should include a specification and reference numberfor eachtest, the expected result of each test, and a timetable for theexecution of thetests.
USE FORMS TO COLLECT MEASUREMENTS
The progressof testing can be documented using two forms — thetest log, and the incident report. Examples of these forms areshownin Figures 4.1 and 4.2. A test log is filled out when eachtest is run, whetherit is successful or not. Incident reports arefilled out for each fault discovered during the running of

a

test.The incident reports are given to the development team, whoshould diagnose the problem andcarry out any necessary rework.Project managers should record the effort spent on testing andon rework,using either the organisation’s standard timesheet, orthe incident report itself.
INTERPRET THE RESULTS
There are two main stylesof system testing. In one style, the teststake place overseveral weeks, and the development team corrects

28

Integration tests should ensurethat each moduleis called atleast once andthat a pre-determined percentage
of control paths is
exercised

System tests measure the perfor-
mance of the system against
the original requirements
specification

A test plan is a prerequisite for
monitoring the progress of
system testing

Test logs and incident reports
should be used to document
the progress of system
testing

© Butler Cox pic 1990

Chapter 4 Measure the progress of testing to improve project control

The progress of system testing
can be plotted on graphs

© Butler Cox pie 1990

 Figure 4.1 A test logisfilled out when eachtest is run, whetherit is
successful or not

The text below shows an exampleof test log entries.
 System:Services marketing.
 Test log identifier: TL-21.
 Description: Tests Version 2 of the Customer Index subsystem against Version 4

of the System Test Plan for test procedures TP21-1 to TP21-10. Thetests are run
using the file TP21.TST (dated 1 November 1989), running underthe installation
standard capture/playbacktool.
 Activities and event entries Incidents

10 December 1989
09.45 TP21-1 run. No discrepancies from expected results.
09.55 TP21-2 run. No discrepancies from expected results.
10.15 TP21-3 run. System crashed. IR21-1
11.15 TP21-4 run. Missing update to screen. IR21-2
11.20 TP21-5 run. No discrepancies from expected results.
11.30 TP21.6 to TP21-10 not run since they depended on the

successful execution of TP21-3.

 Figure 4.2 An incident report is filled out for each fault discovered

during the running of a test

The text below is an example of an incident report.
 Incident identifier: |R21-2, 10 December 1989.
 Summary: Test procedure TP21-4 did not update the average balancefield on the
screen.
 References:Test log TL-21.
 Incident description: The averagebalancefield for customer John Abeldid not appear
on the screen. All other fields updated correctly. All other customers showed correct
average balance values. Possibly relevantis the fact that John Abelis first in the
alphabeticallist of customers.
 Impact: No impact on the execution of other tests within TP21.
errors concurrently with continuing system testing. In the other
style, the tests are completed in a few days, and there are then
several distinct test cycles, each one testing a corrected version
of the system. The following paragraphs apply specifically to the
first style of testing. With slight modifications, however, the
techniques could equally well be applied to the secondstyle.
The techniquefor interpreting the resultsis to display the progress
of the system testing on graphs, which are regularly updated. This
enables potential problemsto be identified quickly. It is possible
to extrapolate trends to estimate completion dates, but these
extrapolations should be treated with caution. If they appear to
indicate that the completion of the tests will take longer than
expected, the test logs and incident reports should be examined
in moredetail to identify the cause of the slippage.
Rate of generation of incident reports
The sample graph in Figure 4.3, overleaf, shows the numberof
incident reports produced each week. The number of errors

29

Chapter 4 Measure the progress of testing to improve project control

Figure 4.3 The numberof incident reports produced each week shouldbe registered and monitored

Numberofincident reports

30

25F

(Sz

Weeks.
should diminish aserrors are corrected after the first run-throughof the complete system tests. If, in any week, there are markedpeaksor troughs, the reasons for them should be examined. Apeak could be caused by a particularly error-prone part of thesystem, or a trough by a problem holding up the progress of thetesting.
Cumulative error rates
Representations of the cumulative error-detection and error-correction rates are illustrated in Figure 4.4,
The yellow horizontalline is the predicted numberof errors inthe system, based on the numberoflines of code. PEP Paper12showedthat the numberoferrors at the start of integration testingwasin the range of0.5 to 2 per thousandlines of code, with smallprogramscontaining proportionately more errors than large ones.If records are kept for each project, each organisation could deriveits own relationships between program size and total numberoferrors.
The two graphs shownin Figure 4.4 are the cumulative totals ofthe number of errors discovered, and the number of errorscorrected and successfully retested. These are derived byanalysing the incident reports.
The rate of discovery of faults should diminish as the testingproceeds and faults are corrected. The rate of correcting faults Therate of correcting faultsgives a useful indication of how long the reworkis taking. Once gives a useful indication ofthe trend line for the numberoferrors discovered has flattened how long the reworkisout, simple extrapolation of both trends will provide an estimated takingcompletion date.

 30 Butler Cox pic 1990

Chapter 4 Measure the progress of testing to improve project control

The rate of completion of the
plannedtests gives a useful

sutler Cox pic 1990

forecast of project
completion

 Figure 4.4 Records should be kept of cumulative error-detection and
error-correction rates

* Cumulative numberof errors Forecastcompletion
4140 F date

eee:
120 F

100 F

80

60

40F

20/7

\ > 1234567 8 91011 1213 14 15 16 17 18 19 20
Weeks

 Predicted numberof errors
—- Numberof errors discovered (and extrapolated)
——- Numberof errors corrected (and extrapolated)

A steep gradient for the cumulative errors-discovered graph,
particularly if the cumulative numberof errors exceedsthe pre-
dicted numberoferrors,indicates that modulescontain errors that
should have been detected at the module-testing phase. It will
almost certainly be more productive in these circumstances to
suspend system testing, and return to moduletesting. This is a
difficult decision for a project manager to make, but the evidence
provided bythese graphs should makethedecision easier to justify.

Test completion rate
The graphs shownin Figure 4.4 suffer from the disadvantage that
the total numberoferrors is not known, and the end point of the
testing is not clearly defined. A more suitable measure for
predicting project completion is the rate of completion of the
plannedtests. An example of graphs based on this parameteris
shownin Figure 4.5, overleaf.
Theyellow line showsthe planned numberoftests, which should
not change during the testing phase. An increase such as the one
shownin the figure should be a cause for concern, becauseit
probably indicatesthat theoriginal test plan was unrealistic, or
that changes are being made to the requirements.

The dotted blackline is a plot of the cumulative numberof tests
that are ready to run. On somesystems,all the test data and test

31

Chapter 4 Measure the progress of testing to improve project control

Figure 4.5 Project completion can be predicted from the rate ofcompletion of the planned tests

4 Numberof tests

Change of plan
160 - a Forecast| a completiondate140

120

100

80

60

40

20

 janSS SS eS eee ee ae >
12345 67 8 91011 1213 14 15 16 17 18 19 20

Weeks

~~ Planned numberoftests
Sees Tests ready to run

Tests run
Tests run successfully

programs may be developed by the start of system testing, inwhichcase the graph can be omitted. More probably, particularlyon larger systems, sometests will be developed concurrently withothers being executed. The trendofthis line should be monitoredto ensure that the preparation of test data does not become abottleneck.
The numberoftests that have been runis plotted on the greyline,and the solid black line is the number that have been runsuccessfully. A low rate of success indicates that the earliermodule testing and integration testing were inadequate. Thesolidblack line also measures the progress of the rework. The slopeof this curve gives an indication of progress, and a simpleextrapolation can be used to forecast the completion date.
Frequencies of error typesA useful analysis for helping to improve the future productivityof the systems development departmentis a histogram showingthe types of system-testing errors and their frequencies. Anexample is shown in Figure 4.6. This histogram could beconstructed bothfor individual projects, and as a cumulativetotaloverall projects. It could also be extended to include errorsdiscovered during integration and module testing. It indicateswhat areas of software design or programming techniques cause

32

Analysis of the types of system-
testing errors and their fre-
quencies can help to
improve future
productivity

© Butler Cox pic 1990

Chapter 4 Measure the progress of testing to improve project control

 Figure 4.6 Analysis of the types of errors and of their frequencies
should help to improve productivity

Numberof errors
Error type* T 1 110 20 30 40 50 60

Type 1

Type 2

Type 3

Type 4

ve
Type 6

Type 8

Type 9

* Each numberrefers to a particular type of error, such as ‘incorrect branch
condition’, or ‘requirements error.’

the most problems, and should help management to decide where
training needs are greatest.

© Butler Cox ple 1990 33

Chapter 5

Review the software-testing policy

Software testing should be an integral part of systemsdevelopment, and in this report, we have recommended changesin traditional practices that will help to ensure that testing is nottreated as a secondary activity. The recommendations are Testing is likely to account forsummarised as an action checklist in Figure 5.1. Whethertesting = eat 25 ner oe of theis done informally, or formally, as described in this paper,it is evelopment, budgetlikely to account for at least 25 per cent of the developmentbudget. It is therefore an activity to which management shoulddevote both attention and resources.
We have shown in this paper that the nature of testing issomewhatelusive. Testing is about measuring various propertiesof a system, the most important of whichis reliability, yet thereare no clear guidelines about how muchtesting is needed to

Figure 5.1 Action checklist

Analyse the current approachto software testing:
— Whatis its objective?
— How muchdoesit cost?
— What benefit is gained from it?

Assess whetherthe current approach to software testing is satisfactory:
— Dosystems have unexpected operational problems?
— Are there problemswith cost overrunsorlate delivery, which could beattributedto difficulties in testing?
— Are there any guidelines about whento stop testing?

Define an overall approachto software testing:
— What measurements are needed from the testing process?
— Howwill the measurements be used to improve the quality of the systems andthe efficiency of the developments?
— What measuresare taken to ensurethatstaff understand the objective oftesting?— Howwill the cost of testing be measured?

Ensurethatthe structure of the systems department and of the project teamsis themosteffective one for softwaretesting:
— Should there be a separate group responsible for system testing?
— Doproject teams haveclearly identified responsibilities for testing?

Provide adequatestaff training for software testing:
— Arethere any reference books on software testing in the organisation's library?
— Hasconsideration been given to the value of training courses?

Consider the use of walkthroughs and inspections.
Considerinvesting in a standard set of software testing tools for use byall projectsin the systems department:
— Whichare the most effective tools for the organisation to acquire?
— Istesting efficiently supportedin all phasesofthe systems developmentlife cycle?

34 © Butler Cox pic 1990

© Butler Cox pic 1990

Chapter 5 Review the software-testing policy

produce a givenlevelof reliability; it is not necessarily the case
that moreis better. In many systems developmentprojects, there
are, nevertheless, substantial benefits to be derived from carrying
out formal softwaretesting.
Formaltesting is not an easy task. While thereare tools available
that can provide precise measurements of some aspectsof testing,
none will take the place of experienced systems designers or
testing specialists in an area of systems developmentthat is more
of an art than a science. They do, however, needto practise their
skills within the frameworkof a clearly defined policy for software
testing. The first step for many organisations in improving the
effectiveness of their software testing will be to review the
checklist in Figure 5.1 to see that such a policy is in place.

35

Bibliography

Beizer, B. Software system testing and quality assurance. New
York: Van Nostrand Rheinhold, 1984.
Hetzel, W C. The complete guide to software testing. 2nd edition.
Wesley, MA: QED Information Sciences, 1988.
Myers, G J. The artofsoftwaretesting. Chichester: Wiley, 1979.
Parrington, N & Roper, M. Understanding software testing.
Chichester: Ellis Horwood, 1989.

36 ©Butler Cox pic 1990

Butler Cox
Butler Cox is an independent international con-
sulting group specialising in the application of
information technology within commerce, in-
dustry and government.
The company offers a unique blend of high-level
commercial perspective and in-depth technical
expertise: a capability which in recent years has
been put to the service of many of the world’s
largest and most successful organisations.
The services provided include:
Consulting for Users
Guiding and giving practical support to organisa-
tions trying to exploit technology effectively and
sensibly.
Consulting for Suppliers
Guiding suppliers towards market opportunities
and their exploitation.
The Butler Cox Foundation
Keeping major organisations abreast of develop-
ments andtheir implications.
Multiclient Studies
Surveying markets, their driving forces and poten-
tial development.
Public Reports
Analysing trends and experience in specific areas
of widespread concern.

PEP
The Butler Cox Productivity Enhancement Pro-
gramme (PEP)is a participative service whose goal
is to improve productivity in application systems
development.
It provides practical help to systems development
managersandidentifies the specific problemsthat
prevent them from using their development
resources effectively. At the same time, the pro-
gramme keeps these managers abreast of the
latest thinking and experience of experts and
practitioners in the field.
The programmeconsists of individual guidance for
each subscriber in the form of a productivity
assessment, and also publications and forum
meetings commonto all subscribers.

© Butler Cox pic 1990

Productivity Assessment
Each subscribing organisation receives a confiden-
tial management assessmentof its systems develop-
ment productivity. The assessment is based on a
comparison of key development data from
selected subscriber projects against a large com-
prehensive database. It is presentedin a detailed
report and subscribers are briefed at a meeting
with Butler Cox specialists.
Meetings
Each quarterly PEP forum meeting focuses on the
issues highlighted in the previous PEP Paper. The
meetings give participants the opportunity to
discuss the topic in detail and to exchange views
with managers from other memberorganisations.
PEP Papers :
Four PEP Papers are produced each year. They
concentrate on specific aspects of system develop-
ment productivity and offer practical advice based
on recent research and experience. The topics are
selected to reflect the concerns of the members
while maintaining a balance between management
and technical issues.
Previous PEP Papers
1 Managing User Involvement in Systems

Development
2 Computer-Aided Software Engineering (CASE)
3 Planning and Managing Systems Development
4 Requirements Definition: The Key to System

Development Productivity
5 Managing Productivity in Systems Develop-

ment
6 Managing Contemporary System Development

Methods
7 Influence on Productivity of Staff Personality

and Team Working
Managing Software Maintenance
Quality Assurance in Systems Development

0 Making Effective Use of Modern Development
Tools

11 Organising the Systems Development Depart-
ment

12 Trends in Systems Development Among PEP
Members

13 Software Testing

©
0O

Forthcoming PEP Papers
Software Quality Measurement
Selecting Application Packages
Project Estimating and Control

Butler Cox ple

Butler Cox House, 12 Bloomsbury Square,
London WC1A 2LL, England

@ (01) 831 0101, Telex 8813717 BUTCOXG
Fax (01) 831 6250

Belgium and theNetherlands
Butler Cox BV

Burg Hogguerstraat 791,
1064 EB Amsterdam,The Netherlands
® (020) 139955, Fax (020) 131157

France
Butler Cox SARL

Tour Akzo, 164 Rue Ambroise Croizat,
93204 St Denis-Cédex 1, France

®@ (1) 48.20.61.64, Télécopieur(1) 48.20.72.58
Germany(FR), Austria, and Switzerland

Butler Cox GmbH
Richard-Wagner-Str. 13, 8000 Miinchen 2, West Germany

@ (089) 5 23 40 01, Fax (089) 5 23 35 15

 Australia andNewZealand
Mr J Cooper

Butler Cox Foundation
Level10, 70 Pitt Street, Sydney, NSW 2000, Australia

®B (02) 223 6922, Fax (02) 223 6997
Finland

TT-Innovation Oy
Meritullinkatu 33, SF-00170 Helsinki, Finland

@ (90) 135 1533, Fax (90) 135 2985
Ireland

SD Consulting
72 Merrion Square, Dublin 2, Ireland

®@ (01) 766088/762501, Telex 31077 EI,
Fax (01) 767945

Italy
RSO FuturaSrl

Via Leopardi 1, 20123 Milano, Italy
® (02) 720 00 583, Fax (02) 806 800

Scandinavia
Butler Cox Foundation Scandinavia AB

Jungfrudansen 21, Box 4040, 171 04 Solna, Sweden
®@ (08) 730 03 00, Fax (08) 730 15 67

Spain andPortugal
T Network SA

Nunez Morgado 3-6°b, 28036 Madrid, Spain
@ (91) 733 9866, Fax (91) 733 9910

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42

