

@© Butler Cox pic 1930

Nigel Saker

Software Testing

PEP Paper 13, February 1990
by Nigel Saker

Nigel Saker is a senior consultant with Butler Cox in London, where
he specialisesin project management and the specification of user

requirements. He has 20 years of experience in software design and
management.

During his time with Butler Cox, he has carried out several PEP
assessments and conducted research for the Butler Cox Foundation
Position Paper, Legal Protection for Computer Systems. He has also
beeninvolved in a large consulting assignment for a major US bank,

developing specifications for the market-data delivery system for
its new dealing room.

Prior to joining Butler Cox, Nigel Saker was a project manager with
Aregon International, responsible for the design and installation of
dealing-room systems in five major banks in London, New York, and
Oslo. Earlier, he spent six years with Logica, advising on the
selection of equipment, designing user interfaces for highly
interactive systems, and managing turnkey systems development

and installation. His early career was with the Meteorological
Office.

Nigel Saker has an MA in mathematics from Cambridge University
and an MSe in fluid dynamics from the University of Sussex.

Published by Butler Cox plc
Butler Cox House
12 Bloomsbury Square
London WC1A 2LL
England

Copyright © Butler Cox ple 1990

All rights reserved. No part of this publication may be reproduced by any method
without the prior consent of Butler Cox.

Printed in Great Britain by Flexiprint Ltd., Lancing, Sussex.

© Butler Cox plc 1920

Software Testing

PEP Paper 13, February 1990

by Nigel Saker
Contents
1 Adopt a more analytical approach to software testing 1
The real purpose of software testing is not clearly understood 1
There is uncertainty about the scope of software testing 2
There is a lack of awareness about the relevance of testing
results to project control 3
It isin the interests of managers to institute formal software
testing 4
Purpose and structure of the paper T
Research sources 7
2 Organise the systems department to support testing 9
Allocate responsibility for integration and module testing to
an individual or a small team 9
Consider the merits of a separate system testing department 11
3 Use tools, techniques, and methods to increase
the cost-effectiveness of testing 16
Formal methods for testing over the whole development
life cycle 16
Tools for creating and using test data 17
Tools and technigues for analysing the quality of the
specifications, design, and code 251
Tools to help programmers and analysts to carry out testing 25
Test-management tools 26
4 Measure the progress of testing to improve project control 27
Measure the progress of module testing 27
Measure the progress of integration testing 27
Measure the progress of system testing 28
5 Review the software-testing policy 34
Bibliography 36

Chapter 1

Adopt a more analytical approach to software testing

Testing is a neglected part of the
software development life cycle

Testing should be an integral
part of the development

© Butler Cox ple 1920

cycle

Testing is an integral part of the software development life cycle,
but according to our survey of PEP members, only about 20 per
cent of organisations know how much software testing costs.
Those who do measure costs report that testing accounts for
between 25 and 60 per cent of their total development costs. In
general, however, testing is a neglected part of the software
development life cycle, poorly controlled, poorly managed,
and characterised by limited investment in the techniques and

tools that could help to provide a more efficient test environ-
ment.

The absence of a common approach to testing and the lack of
control over testing, evident in many organisations, may be
explained by three main factors. First, the real purpose of
software testing is not clearly understood. Second, there is
widespread confusion about the scope of system testing. Third,
there is a lack of awareness about how useful the results of testing
can be for project control.

In spite of the problems that large numbers of organisations have
with managing software testing, we believe that it is possible for
systems development managers to make significant improvements
in the effectiveness of their testing procedures, which will provide
them with a valuable tool for project control. Unfortunately, the
traditional software development life-cycle model places too little
emphasis on testing, and too much emphasis on the production
process. This means either that testing is done less thoroughly than
it should be, at the end of a project, in order to meet deadlines,
or that the completion of the project is delayed because the system
tests have not been properly planned in advance. The former
means that the risk of introducing the system into live operation
is unknown. The latter means that the benefits to be derived from
introducing the system are not realised as soon as they might be.
A different view of the development process is required, where
testing can be carried out to a specified level, and where it can
be planned as an integral part of the development cycle. This
report provides guidance to PEP members on how such a process
might be put into effect.

THE REAL PURPOSE OF SOFTWARE TESTING
IS NOT CLEARLY UNDERSTOOD

No-one questions that software should be tested, but there is
surprisingly little agreement about the reasons for doing so. When
software engineering was in its infancy, it was generally supposed
that the purpose of testing was to show that a system worked as
its designers intended. It has since been recognised that it is

impossible to prove the correctness of any but the most trivial
program.

Chapter 1 Adopt a more analytical approach to software testing

More recently, it has been argued that the purpose of testing
software is to find errors, and by correcting them, to make the
system more reliable. This reason is commonly given as

justification for the time and effort involved in testing a system. There is little agreement about
Finding errors is certainly a useful by-product of the testing the reasons for testing
process, but if the detection of errors is viewed as the sole purpose software

of testing, staff will not usually be motivated to test effectively,
and management will lose an important opportunity to monitor
progress and control the project.

The view that is now held by the leading practitioners of software
testing, and the one to which we adhere in this report, is that the
purpose of testing is to provide management with information
about the quality of the system being developed. It is the
responsibility of management to decide what information, if any,
it wants from the testing process, and to set the level of testing
accordingly.

THERE IS UNCERTAINTY ABOUT THE SCOPE
OF SOFTWARE TESTING

Testing should not be viewed as an activity that painstakingly
turns a poorly designed system into a passable one. Nor should
it be confused with debugging, which is the process carried out
by programmers to diagnose and correct errors. Testing is
concerned with measuring how closely a system conforms to its
specification; these measurements enable managers to assess the
risk of introducing a system into live operation.

At one end of the spectrum, no software testing may take place. o
Forty per cent of PEP members carry out no formal testing. This It ;_‘t“"y be legitimate not to test
may be a legitimate choice in at least three situations: SELIELE

— The system must be operational on a certain date, regardless
of how well it has been tested.

— The system is not critical, and failures during operation will
have a minimal impact on costs.

— The estimated cost of testing is greater than the benefit that
can be derived from using the test results.

On the other hand, an absence of formal testing may simply be
an oversight — because no-one in the organisation realises that
it requires management action to get formal testing introduced.
Or it may be that other informal criteria, such as “‘when the users
stop complaining”’, ““when the deadline arrives’’, or ‘‘when the
system is standing up well enough”’, serve as the basis for deciding
that a system is ready to be introduced into live operation. Unless
a conscious and justifiable decision has been made not to carry
out system testing, management is depriving itself of information
that can be used to assess the risk to the business of introducing
the system.

At the other end of the spectrum, where software directly affects
safety, such as the flight-control system of an aircraft,

management needs to be confident that the software is at least zhf:: e so’:fwa’_' e d;:" e‘;FI-Y affects
as reliable as any other critical component. In such cases, the e en'};}a";x SRRENC RestaELL)

system should be subjected to very extensive testing procedures.
There is no consensus within the industry, however, about the

© Butler Cox pic 1980

Chapter 1 Adopt a more analytical approach to software testing

There must be a balance between
the cost of testing and the level
of confidence required in

the system

It is sometimes difficult to
measure the progress

© Butler Cox pic 1990

of a project

level of testing required to achieve a given level of reliability, and

the extent of testing, in practice, is limited by commercial
considerations.

In between these two extremes lie the majority of applications
written by PEP members. Some testing is required, but for most
applications, a lower level than that required for safety-critical
systems will be sufficient. The problem is to decide how much
testing is necessary to achieve, for example, a mean time between
failures of at least one month. The solution requires a balance to
be struck between the cost of testing and the level of confidence
that is required in the performance of the system.

Statistical techniques for deriving objective measures of reliability
from the number of errors discovered during testing are currently
the subject of much academic debate. Several techniques have
been developed, but their application requires an advanced
knowledge of statistical theory. It will probably be a few years
before any practical measures become available for general use.
In the meantime, we can recommend only that organisations
collect statistics of their own experiences of testing, and analyse
these to produce their own guidelines. PEP Paper 14, Software
Quality Measurement, will provide some guidance on this aspect
of developing software.

THERE IS A LACK OF AWARENESS ABOUT
THE RELEVANCE OF TESTING RESULTS
TO PROJECT CONTROL

The successful control of a project requires information about the
progress of the development. This information must be objective,
accurate, and updated on a regular basis (typically, weekly or
monthly). It is easy to measure progress objectively at some stages
of a project — for example, the design of a subsystem results in
a document that can be checked for completeness. At other stages
of the development, however, progress is much more difficult to
measure objectively. The first time this problem occurs tends to
be at the coding stage. A programmer announcing that he has
coded a module is not an accurate or objective measure that a
standard unit of work has been completed. Some programmers
prefer to work by coding very quickly, and spend a long time
debugging; others work by coding very carefully and slowly, but
produce code that requires very little debugging.

The use of formal testing techniques can avoid these problems
in the following ways:

— If inspections or walkthroughs, discussed in Chapter 3, are used
to review code before the programmer attempts to run it, a
uniform standard for assessing the completeness of coding will
be used for all programs.

— If coverage analysers, also discussed in Chapter 3, are used
to assess the percentage of code that has been executed by
module tests, an objective measure is obtained of test progress,
and definite criteria can be set for deciding if testing is
complete.

— If system tests are carried out according to a definite plan, the
progress of the tests can be measured by analysing successful

Chapter 1 Adopt a more analytical approach to software testing

and unsuccessful test completions, and rates of error detection,
as described in Chapter 4.

At all stages in systems development, therefore, the use of formal

testing techniques, which give measurable outputs, either in terms

of percentage completion, or success/fail status, will provide Formal testing techniques will
managers with accurate data about the progress of a project. This provide managers with accurate
data will be much more reliable than that provided by the data about the progress of a
traditional technique of asking programmers and designers for PRGIECK

their assessments of how far the work has progressed.

IT IS IN THE INTERESTS OF MANAGERS TO INSTITUTE
FORMAL SOFTWARE TESTING

As a first step in improving their development procedures, systems
development managers should consider what, if any, their policy
is towards testing. They will then be in a position to choose an
appropriate approach to software testing.

EXISTING LIFE-CYCLE MODELS FOR SOFTWARE PRODUCTION
ARE INADEQUATE

There are well established and widely used life-cycle models for
the software-development process, the best known of which, first
presented in 1970, is the so-called ‘waterfall model’, illustrated
in Figure 1.1. The main feature of this model is that development
proceeds through a series of well defined phases. In an ideal
development, each phase is verified and proved error-free

In the traditional life-cycle
model, testing is viewed
as a secondary activity

Figure 1.1 In the traditional ‘waterfall’ model of the software-develop-
ment life cycle, testing is viewed as a secondary activity

Systemn
feasibility

Validation w

Software plans and
requirements

Validation _\

Product design

Verification \

Detailed design

Verification \

Code

Unit test \,

Integration

Product
verification \

Implementation

System test

4 © Butler Cox plc 1390

Chapter 1 Adopt a more analytical approach to software testing

before the developers proceed to the next. In practice, some
iteration is required when errors introduced in one phase are not
detected until a later phase; this iteration process is represented
in Figure 1.1 by the upward arrows.

The shortcomings of the approach implied by the waterfall model
have become apparent in recent years. The most significant are
that testing is viewed as a secondary activity, added on to the

end of each phase, and that system testing is not planned until
the final development phase.

TESTING THROUGHOUT THE DEVELOPMENT LIFE CYCLE
WILL RESULT IN BETTER PROJECT CONTROL

The development timescale can be shortened in two ways. The

Bllere aie i e ok alinit fﬁ’stdls b}i improving ‘luhe ﬁfﬁ(_:lency of carrying _out each phase of
ening the development the eve opment cycle (that is, completing it with less eff(?rt, an‘d
fitheseale hence, in a shorter time); many members are already doing this

by using tools such as fourth-generation languages and code
generators. The second is by a better scheduling of activities; to
achieve this, we recommend the use of an alternative life-cycle
model in which there is greater emphasis on testing.

This alternative model is illustrated in Figure 1.2, and shows
development occurring in three main parallel streams of activities.
In each development stream, the first objective is to produce
specifications. The second is to specify what to test. The third is
to develop the test environment. Only then are the components
assembled ready for testing. Testing is thus carried out at the
end of each development stream, and measures different aspects
of the development in each stream, as described in Figure 1.3,
overleaf. The primary focus is on the testing activity rather than
on the production activity, and the outcome of each stream of
activity is both a product and a measurement of its quality.

The benefits of this modified approach are four-fold:

Figure 1.2 In the modified software-development life cycle, the emphasis is on testing rather than production

Specify Specify - Build Execute
reguirements system tests 7| system tests system tesis

Specify Specify Build Execute
overall design integration tests integration tests integration tests

h" /

Specify Specify Build Execute
modules module tests module tests module tests

Y

h 4

Y
Y

A 4

h 4
v

h 4

Code and debug
modules

® Builer Cox pic 1890

Chapter 1 Adopt a more analytical approach to software testing

Figure 1.3 In the modified software-development life cycle, testing is
carried out at the end of each development stream

Module tests

A program module is the smallest testable component of a system. Its specification
comprises a definition of its input data, its output data, and the processes for
transforming one into the other. The purposes of module testing are:

— To verify that the module conforms to specified standards.

— To verify that measures of the module’s characteristics, such as complexity, are
within specified ranges.

— To verify that the module performs its specified functions when executed with
a representative sample of input data.

— To verify that each line of code and each of the possible branches have been
successfully executed at least once.

Integration tests

Integration tests are designed to measure the behaviour of combinations of modules,
They are of two types:

— Verifying the consistency of data definitions that are passed between the modules.
This applies both to data that is passed directly, and to data that is passed via
a database or shared memory.

— Verifying that all calling paths through the combinations of modules are exercised.

System tests

System tests are designed to measure the behaviour of the total system. This includes
tests for some or all of the following features:

— The functionality required by the users.
— The ability to start the system.

— The ability to change the hardware configuration of the system. This particularly
applies where there are back-up processors or peripherals that can be substituted
in various combinations in the event of failures.

— The ability to restart the system and to recover lost transactions following a failure.
— Performance characteristics, such as response times, delays, and throughput.
— The behaviour of the system when loaded to the limits of its resources.

— The ability to prevent unauthorised users from gaining access to the system.

— By developing test specifications and the test environment
concurrently with lower-level specifications or program code,
the overall development time is shortened.

— Developing a test specification can highlight deficiencies in the
requirements, design, or module specifications; it therefore
provides a valuable opportunity to review the specifications.

— Management’s attention is focused at an early stage on defining
the important features of the system.

— Developing the tests is a separate activity from producing the
design or program. It is much easier for people to define
objective tests of a product that they have not built, and the
test cases developed under these circumstances are likely to
be a better sample.

The most critical question to be decided is what to test.
Management should clearly define the measurements of quality
that it requires, before tests are specified and the test environment
is created. If ease of use is a requirement, for example, tests could
be designed to measure how long it takes to input a transaction,
how quickly the system can be learnt, and how many mistakes

Management should define the
measurements of quality
that it requires

© Butler Cox pic 1990

Chapter 1 Adopt a more analytical approach to software testing

are made; knowing that these aspects will be tested, the system
designers will concentrate on the user interface. If accuracy of
data is stated as an important requirement, the activity of
specifying the tests will highlight whether all the data must have
a high degree of accuracy, or whether some is less critical.
Figure 1.2 shows that the decision on what to test — the
requirements, design, or module-test specifications — can be taken

as soon as the specifications at the beginning of each development
stream are complete.

PURPOSE AND STRUCTURE OF THE PAPER

Our research reveals that there is very little agreement about how
current software testing procedures might be improved to best
effect. The purpose of this paper is therefore to offer guidance
on how software testing might be more cost-effectively applied.
It is not necessarily our objective to encourage members to carry
out more testing; rather, it is to encourage members to undertake
an appropriate level of testing for each system, and to test more
efficiently. We make no attempt to cover the more technical
aspects of testing, which are covered in several useful books on
the subject, listed in the bibliography.

We believe that the immediate need for most organisations is to
set up the right environment for software testing. The alternative
life-cycle model suggests that there may be more effective ways
of organising the staff involved in systems development, to reflect
the greater emphasis on testing rather than software production.
We examine the alternatives in Chapter 2.

In Chapter 3, we discuss the methods, techniques, and tools that
are available to managers responsible for the testing aspects of
systems development. While in many cases, they are not as well
developed as those that help with other aspects of the develop-
ment process, some are already in wide commercial use and are
producing benefits for their users. Significant developments are
likely in the future.

It is essential for managers to measure the progress of the testing
process so that they can re-allocate resources promptly if the
project begins to deviate from plan. In Chapter 4, we provide an
analysis of the methods available to help them do this, in the
module-testing, integration-testing, and system-testing phases of
a project.

RESEARCH SOURCES

We carried out a review of the published literature on the subject
of software testing. This revealed that little has been written on

the subject, compared with other aspects of software develop-
ment.

We held a series of discussions with practitioners in the field of
software testing — academics, suppliers of testing tools, and
commercial organisations. We should like to offer our special
thanks to Professor Michael Hennell of Liverpool University, Peter
Mellor of the Centre for Software Reliability at the City University,
and Mike Bickers and Richard West of the Central Computer and
Telecommunications Agency.

© Butler Cox plc 1990 %

e

Chapter 1 Adopt 2 more analytical approach to software testing

We also conducted telephone interviews with 17 PEP members.
These interviews proved very valuable in highlighting the diffi-
culties that they encountered in testing software.

© Butler Cox pic 1990

Chapter 2

Organise the systems department to support testing

Most systems departments
distinguish between system
testing, and module and

integration testing

Staff must understand the

© Butler Cox pic 1990

purpose of testing
software

In Chapter 1, we discussed the merits of a modified approach to
the development of software, in which the conventional life-cycle
model is broken down into three streams of activities that take
place concurrently, and where the emphasis is on testing rather
than on production. Clearly, adopting such an approach will have
implications for the organisation of the systems department. In
this chapter, we consider how the development teams might best
be organised to improve the effectiveness of testing. For the pur-
pose of organising testing, most systems departments distinguish
between system testing, which is concerned with the functionality
of a system as a whole, and module and integration testing, which

is concerned with testing the behaviour of the components of a
system.

We examined data collected from PEP assessments to see if there
were any clear indications that particular organisation structures
were producing more reliable software. The sample of data is
probably too small to be significant, but any of the organisation
structures for software testing described in this chapter appear
to be capable of producing software of both above-average and
below-average reliability. The indications are therefore that an
organisation will not be able to improve the reliability of its
software merely by changing the way it organises software testing.
The organisation for software testing needs to be considered
within the wider context of a systems department’s approach to
software testing as a whole.

The full benefits of structuring the department and project teams
to improve the effectiveness of testing will, of course, be realised
only if the staff themselves fully understand the purpose of testing
their software. Very little formal training on testing is given on
computer training courses. Much of the training within the
industry is given ‘on the job’, or on courses for specific skills such
as programming languages or design methodologies, none of which
addresses testing as a major topic. A programmer or analyst is
unlikely to learn how to test effectively unless he works in an
organisation that understands the nature of software testing. The
limited number of courses on software testing available in the
United Kingdom are listed in Figure 2.1, overleaf.

ALLOCATE RESPONSIBILITY FOR INTEGRATION
AND MODULE TESTING TO AN INDIVIDUAL
OR A SMALL TEAM

Knowledge of the detailed system and program designs is required
to develop integration and module tests. It would therefore be
very expensive to set up independent integration and module test
teams, and none of the PEP members whom we interviewed had
done so. The alternative life cycle depicted in Figure 1.2 does,

Chapter 2 Organise the systems department to support testing

Figure 2.1 There is a limited number of courses on software testing
available in the United Kingdom

Course provider Nature of course

Open University
Contract Training Unit
Milton Keynes

MK7 6AA

One-day courses on software testing
at various locations

Qcc One-day seminar on the
4 Tyrone Road management of testing

Thorpe Bay Three-day workshop on guality

Essex review and testing

S81 3HF Three-day workshop on acceptance
testing

Three-day course on auditor's
approach to testing

National Computing Centre
Oxford Road

Manchester

M1 7ED

Three-day course on software
verification, validation, and testing
Regular one-day events, including
briefings and demonstrations of tools

Frost & Sullivan

4 Grosvenor Gardens
London

SW1W 0DH

Various two- or three-day seminars
on specific aspects of testing

Learning Tree International
Trafalgar House

Hammersmith International Centre
London

W6 8DN

Four-day courses on software quality
assurance and testing

however, suggest that the system designers should design the
integration tests, and that the specifiers of program modules
should design the module tests. The interviews indicated that few
PEP members distinguished clearly between module and
integration tests, possibly because both activities are the
responsibility of the project team, and cannot involve the users.

We identified three main team structures for integration and
module testing among PEP members:

— Each person specifies and executes tests on his own work.

— A nominated person within the team is responsible for ensuring
that all tests are carried out to specified standards.

— A distinet team, working under the control of the project
manager, is responsible for testing.

The first of these is the most common among the PEP members
we interviewed; three-quarters of them did not attempt to
separate testing from production within the development team.
The results of the survey are illustrated in Figure 2.2. It is
interesting to note that the four members who separated the
testing and development functions within the project team
included the three who had also established a separate system
test department.

The main problem with allowing individual programmers to test
their own work is the inconsistency in quality that is likely to
result. Some programmers are undoubtedly good at testing their

10

Most PEP members do not

separate testing from
software production

© Butler Cox plc 1980

Chapter 2

Module testing should usually be
done by the programmer, with
the appropriate tools

© Butler Cox plc 1990

Organise the systems department to suppoi"t testing

Figure 2.2 Three-quarters of PEP members make no attempt to separate
module and integration testing from software production

Percentage of PEP members
Organisation of module T T T T
and integration testing 10 20 30

T
40 50

T T 1
60 ¥0: 80
No separation of testing
from software production

Nominated person
responsible for testing

Testing team within the
project

(Source: Butler Cox survey of PEP members)

own modules; others, possibly because of inexperience or lack of
training, perform virtually no systematic testing. Since a poorly
tested module in a critical part of a system can cause considerable
delays and expense during system testing, it is not cost-effective
to allow uncontrolled individual module testing.

Module testing is difficult to do well. It can be very tedious for
a programmer to check that each line of code and all true and
false results of decision statements have been tested by a sample
of test cases. It is equally, if not more, difficult for a programmer
who did not write the code to carry out these tests. It is no doubt
for this reason that module testing tends to be done by the
programmer who wrote the code, and it is probably not effective
in terms of cost or staff morale to introduce an independent
module-testing team. However, the use of dynamic-analysis tools
(which are discussed on page 23) can remove most of the tedium
from module testing, and also provide management with a printed
record of the extent of the tests. At the module level, it therefore
seems practical to leave the responsibility for testing with the
programmer, but to provide the tools that make the job easier and
that give management greater project control.

We also recommend that a single team member, or on larger
projects, a small team, should be responsible for ensuring that
module and integration testing is carried out to specified
standards, even if the actual testing is carried out by the
programmers themselves. At least one of the designers of the
system should be part of this team. Independent testing within
a project team does not impose additional costs on a project. In
fact, total development costs should fall, since more reliable
modules are likely to be produced, leading to a reduction in the
cost of rework during system testing and live operation.

CONSIDER THE MERITS OF A SEPARATE
SYSTEM TESTING DEPARTMENT

PEP members take a variety of approaches to organising the
system testing function. From the 17 responses to our telephone
interviews, we identified three main organisation structures.

11

Chapter 2 Organise the systems department to support testing

THE PROJECT TEAM IS RESPONSIBLE FOR SYSTEM TESTING

The most common organisation structure is for the project team
to be responsible for system testing. This structure, illustrated in
Figure 2.3, is adopted by about half of the PEP members we

interviewed. System testing is entirely under the control of the The most common case is for

project manager, and each project team defines its own approach system testing to be con-
to system testing. Some project teams may set up a small system trolled by the project
testing team; others may assign the responsibility for system manager

testing to an analyst or a designer. Some organisations have
a policy on how projects should structure their teams; others
allow each team to define its own structure. Many organi-
sations recognise that there are benefits to be gained from
separating testing from development, and set up testing teams
within the project team. One organisation ensured that the two
activities remained separate by allocating a different computer
for testing.

Figure 2.3 Organisation structure: the project team is responsible for
system testing

Systermns
division

-~

Systems
development
function

Project manager

System test Design

Code

Module test
Integration test

Another organisation used the quality assurance department as

an independent authority to carry out random tests on the

software during the main-build phase. The quality assurance

department can play a major role in defining and monitoring how

software should be tested, but it is unlikely to have the resources

to become closely involved in the design of all the systems under Random tests are unlikely to be
development. As a testing technique, random tests are unlikely useful

to provide a useful measurement of each system’s quality, and

as a means of finding errors, they should not be used as an

alternative to a properly defined series of tests.

The main benefits of placing full control of system testing with
the project team are reduced costs and ease of management. In
the short term, it is cheaper to allow each project team to have
full control over its own testing than to incur the additional costs
of a separate group of people, who have to understand the users’
requirements and liaise with the project team. From the manager’s
point of view, assigning total responsibility for testing to the
project team relieves him of the need to devote any effort to
consideration of system testing.

© Butler Cox plk 1990

Chapter 2 Organise the systems department to support testing

Making the project team res-
ponsible for system testing
is appropriate where the
applications are small

and the requirement

for reliability is

average

utler Cox plc 1990

The main disadvantages are also related to cost and management.
If an organisation has several similar projects under development
at any one time, it should be possible to reduce costs by developing
a common testing environment, or by purchasing a set of software
testing tools that can be used on all projects. Making system testing
the responsibility of individual project teams means that systems
development management has no independent measures of the
characteristics of a system. Whether this is a problem will depend
on how reliable the system is required to be, and how skilled in
system testing the members of the project team are.

This structure for system testing can be cost-effective in an
organisation that develops relatively small applications, with a
requirement for average reliability. We recommend that organi-
sations choosing to adopt this structure should ensure that one
person within the project team is given specific responsibility for

system testing, and that this person has expertise in the design
of system tests.

THE PROJECT TEAM SHARES RESPONSIBILITY
FOR SYSTEM TESTING WITH OTHER GROUPS

In this organisation structure, illustrated in Figure 2.4, the project
team provides the technical expertise in testing, but user groups
and the operations department define and carry out their own
tests. The user groups examine the functionality and usability of
the system. The operations group considers such factors as
whether the batch run can be completed within the scheduled
time. The decision on whether to accept the system is made on
the basis of these measurements. This structure has many of the
same advantages and disadvantages as the first one. It does,
however, allow at least one set of system tests to be carried out
by a group that is separate from the development team.

Figure 2.4 Organisation structure: the project team shares responsibility
for system testing with other groups
User Systems
division division
. Systems
Bl Operations development
unit i
function
User manager Operations Project manager
manager
System test Design
Code
Module test
Integration test

A common problem with systems development is that users are
not sufficiently involved, particularly during the requirements

13

Chapter 2 Organise the systems department to support testing

definition phase. This can lead to an excessive number of changes
being requested throughout the development. By involving the
users in the specification and execution of system tests, they are
forced to examine the specifications critically, which should help
to ensure that any faults in the specifications are corrected at an
early stage, and to reduce the number of subsequent requests for
changes.

There is no need for a system tester to know how to design or
program software, but testing requires particular skills for which
training and experience are necessary. User groups should
therefore include at least one specialist adviser, not necessarily
full-time, if they are to carry out effective tests.

TESTING IS THE RESPONSIBILITY OF A
SEPARATE DEPARTMENT

In this organisation structure, illustrated in Figure 2.5, a separate
department carries out the system tests on most of the systems
developed by project teams.

Figure 2.5 Organisation structure: testing is the responsibility of a
separate department

Systems
division

Systems
S’{Zt;m development
function

System test manager | Project manager

System test Design

Code

Module test
Integration test

Three of the PEP members surveyed had a separate system testing
department. These same members also had the most fully
developed procedures for testing, and collected statistics on the
effectiveness and cost of their testing. One, however, had recently
disbanded its system testing department because it found that the
project teams became careless in their own testing, relying on the
system testing team to find errors. The system testing team then
blamed the developers for delivering poor-quality work. The
general lack of respect between the two groups led to an overall
reduction in quality and productivity.

The very different experience of the International Stock Exchange
is described in Figure 2.6. It created a separate testing group in
preparation for testing the systems that were being developed for
the ‘Big Bang’ in 1986. It was an expensive investment, but in
this case, it did result in the development of very reliable systems.

14

If users are involved in system
tests, they will be forced to
examine the specifications
critically

A separate testing department is
expensive but can result in
very reliable systems

© Butler Cox pic 1990

© Butler Cox plc 1990

Chapter 2

Organise the systems department to support testing

Figure 2.6 The International Stock Exchange set up a separate testing
group and achieved highly reliable systems

In the period leading up to the ‘Big Bang’, the International Stock Exchange was
involved in the development of some large systems that were highly visible to the
public, and were essential to the future operation of the Stock Exchange. The systems
department decided to set up a separate system testing group for the spegcific purpose
of minimising the risk of implementing systems that might fail. Apart from some well
publicised problems in the first hours of operational use, the systems have performed
with a very high degree of reliability, and the investment in setting up a system testing
group was considered to be justified.

Some of the factors considered in setting up a system testing group were:

Independence: The testing group must be able to retain an objective view of the
development, and should not be subject to pressure to cut short testing to bring
the project in on time. The group should, however, act as advisers to the project
manager, and should not have the final say on when a project is complete.

Terms of reference: Terms of reference must limit the scope of the testing, because
there can be a tendency for testing to expand to fill the time available.

Managerial support: Senior systems management support is essential to resist
pressures that may arise from the development team to limit system testing. To

gain this support, management must be supplied with information on the progress
of testing.

Marketing: The role of the testing group should be marketed internally. The Stock
Exchange produced a brochure describing the facilities offered by the group.

Cost: An independent testing group is expensive. About 5 per cent of the Stock
Exchange's systems development staff were in the testing group. The group also
needed its own computer systems for building test environments.

THERE IS NO ‘BEST’ ORGANISATION FOR SYSTEM TESTING

The experiences of PEP members clearly illustrate that there is
no obvious best organisation for system testing. It is worth
considering setting up a separate system testing department if the
cost of failing to achieve high reliability in systems is high, or if
the systems being developed are large. It should, however, be
clearly understood that the function of a system testing depart-
ment is not to find errors that the project teams could have found
by thorough module and integration testing. Its purpose is to
measure the performance of a system as a whole.

The benefits of a system testing department are that staff develop
expertise in testing techniques and that investments can be made
in test tools, simulators, and databases, which may be difficult
to justify on a project-by-project basis. In the next chapter, we
explain how the tools, techniques, and methods that are now
commercially available can play an important part in reducing the
costs of testing, and describe the circumstances in which each of
them can make the greatest contribution.

Chapter 3

Use tools, techniques, and methods to increase the

cost-effectiveness of testing

In this chapter, we consider the formal tools, techniques, and
methods that can be used to improve the effectiveness of software
testing and to reduce its cost. There is a wide variety of aids to
better testing on the market.

The greatest choice is available in testing tools, and the use of tools
is quite widespread Among PEP members. The main techniques
are the review processes of inspections and walkthroughs. These
are applicable to testing (or verifying) the documents associated
with software production (that is, program code, specifications,
designs, user manuals, and so on). Inspections and walkthroughs
are less widely used than testing tools, although the analysis of
the PEP database, carried out for PEP Paper 12, Trends in
Systems Development Among PEP Members, showed that the
benefits to be gained are quite substantial. Formal methods for
software development are widely used, but although testing is a
component of them, it is poorly described, and is not based on
the concept that testing and production are activities to be carried
out concurrently. Software testing methods are, however,
beginning to be produced, and significant developments can be
expected in the future.

No testing aid will, of course, reduce the intellectual effort
involved in designing the test environment and selecting test data.
The use of testing aids will, in itself, do nothing to improve the
quality of testing. Nor will any single aid to testing cover all aspects
of the process. Most of those that are commercially available cover
one of five main areas:

— Formal methods for testing over the whole development life
cycle.

— Tools for creating and using test data.

— Tools and techniques for analysing the quality of the
specifications, designs, and code.

— Tools to help the programmer or analyst to carry out testing.

— Tools to manage the configuration of test software and test
data.

Figure 3.1 illustrates the types of testing for which each type of
tool is most appropriate, and Figure 3.2, on page 18, gives a
selection of the testing tools that are currently available in the
United Kingdom. The categories of tools included in the figure
are described in more detail later in this chapter.

FORMAL METHODS FOR TESTING OVER THE WHOLE
DEVELOPMENT LIFE CYCLE

The only testing method available in the United Kingdom is a
product from Lifecycle Management Systems Limited (LCMS),

16

The use of testing aids will not,
in itself, do anything to improve
the quality of testing

© Butler Cox pic 1990

Chapter 3 Use tools, techniques, and methods to increase the cost-effectiveness

of testing

Figure 3.1 Each type of testing tool covers different stages of the development life cycle

System test Integration test Module test Code debugging

Creating test data

L———_—_—__j

Analysing qualt

Configuring tests

|

~ Formal methods for testing

There is only one testing method
available in the United Kingdom

© Butler Cox pic 1990

called Structured Systems Test Methodology (SSTM). SSTM is
primarily designed to be used in conjunction with the SSADM
structured development method, but LCMS claims that it can be
tailored to fit other structured development methods. SSTM was
first released in November 1989, and there is consequently no
experience yet of its use on real systems development projects.

The motivation for producing SSTM was that the quality of a
systems development was often not known because the amount
of testing had not been evaluated against any absolute scale. LCMS
claims that SSTM provides a consistent environment in which
project managers have a measure of the quality of the system;
this enables them to assess the risk of implementing a system in
the final stages of testing.

SSTM is driven largely from the outputs produced by SSADM. By
using selected parts of the systems requirements, systems design,
program specifications, and module specifications as a baseline,
the number of tests needed to test the system thoroughly can be
determined. Users and technical management can then decide on
an acceptable level of testing.

SSTM incorporates a five-strand testing strategy that produces five
self-contained test specifications related to SSADM deliverables.
Each specification includes sections on test case identification,
test inputs, expected results, supporting documentation, and
levels of testing.

TOOLS FOR CREATING AND USING TEST DATA

Tools that can ease the process of creating and using test data
provide one or more of the following functions:

17

Chapter 3 Use tools, techniques, and methods to increase the cost-effectiveness

of testing

Figure 3.2 There is a wide range of testing tools available in the United
Kingdom
The tools in this list have been selected from those that are obtainable and that are
supported in the United Kingdom. Inclusion in this list does not indicate an
endorsement of the product. The criteria for inclusion are that the product should
be supported on Digital, IBM mainframe, or ICL computers and that Cobal or PL/A
should be supported on language-dependent products. Some static-analysis products,
for example, have been excluded because they are aimed at military systems, and
languages such as Coral and Ada.
£
9
5| &
=] 5 o =
o]
g8/ 85|25 B
&l g|8|lL2| 8| 6| E| &
2 5| =| = ® = = s
2|8 = gl 2| |3 B
e 2| @ s S| 2 @
S|&| 83| & 8|8
ABL Europe Ltd
— TIP v~ ~
Advanced Programming Techniques Lid
— Oliver |
— Simon el
C A Computer Associates Ltd
— CA-Datamacs/ll o~
— CA-EZTest/CICS 3 -
— CA-Optimiser =
Compuware
— CICS Playback - -
— File-aid -
Digital Equipment Corporation
— Dec Test Manager - v
Gerrard Software Ltd
— Testgen e
IPL Software Products Ltd
— Softest - v -
John Bell Technical Systems
— Pro-Quest e e
— Testa Pz
On-Line Software International
— Datavantage P
— InterTest — =
— ProEdit —
— Verify P P
Program Analysers Ltd
— Testbhed el I
QA Training Ltd
— Evaluator e - -
Rand Information Systems Ltd
— Testline = —
Sterling Software
— Comparex -
Verilog UK Ltd
— Logiscope g | e
XA Systems UK
— Pathvu - o

18

@ Butler Cox plc 1990

Chapter 3 Use tools, techniques, and methods to increase the cost-effectiveness

Tools for creating and using test
data automate tedious and time-

@ Butler Cox ple 1920

consuming tasks

of testing

— Capture and playback of test scripts.
— Test data generation.

— Test database generation.

— File and output comparison.

Tools providing these functions are mainly used during system
testing, and during the maintenance phase of a project, where
‘regression’ tests are carried out to check that the system’s

behaviour has not changed unexpectedly as a result of
maintenance activity.

The main benefit provided by these tools is the automation of tasks
that would be tedious and time-consuming to carry out manually.
In some cases, the amount of test data required to carry out a
satisfactory range of tests would be so large as to preclude a
manual approach; the implication of this is that some systems
cannot be adequately tested without the use of such tools. The
use of these tools does not in any way, however, reduce the need
for careful test design. The function of the tool is simply to

automate the process of generating test data within the
parameters defined by the test design.

An important consequence of automating a tedious manual task
is the increase in accuracy that is achieved. If each piece of test
data is designed to test a particular function, any inaccuracy in
the creation of test data is likely to mean that some functions are
not tested as the designer intended.

CAPTURE/PLAYBACK

Capture/playback tools are particularly useful for testing online
systems with significant amounts of data entered by users via
screen-based systems. They greatly simplify the creation of test
scripts, and can save the cost of employing large numbers of
unskilled staff to type in the data. They have their main value
during system testing, but could also be used very effectively
during the module and integration testing of those parts of the
system that handle the user interface. The tools run either on the

host computer, or on a PC that emulates a terminal on the host
computer.

The tools contain some or all of the following components:

— Capture and recording of all the user’s inputs, including
mouse movements, where these are used. This input is stored
as a script, which can be edited if required.

— Recording of responses generated by the system.
— Editing capability on the captured input data.
— Replay of the captured (and edited) script at varying speeds.

— The ability to run multiple copies of the script or scripts on
‘virtual’ visual display units.

— Comparison of the system-generated responses between
different runs of the seript, and documentation of the results.

In using a capture/playback tool, each script must be designed to
test particular features of the system. If the tool is used merely

19

Chapter 3 Use tools, techniques, and methods to increase the cost-effectiveness

of testing

to capture a large amount of unplanned user input, very little
benefit will be gained.

Capture/playback tools can facilitate tests that would otherwise
be very difficult to carry out. A good example is stress testing —
subjecting the system to large volumes of test data, or to high
transaction rates. This particularly applies to systems, such as
ticket-reservation systems, which have large numbers of user
terminals. In the test environment, a large number of terminals
will almost certainly not be available, and even if they were,
organising large numbers of staff to simulate the expected volume
of user inputs would be difficult and expensive.

These tools also have particular benefits during regression testing
because they allow a script of input commands (including
deliberate user errors) to be repeated precisely. To compare the
results of the original test and the test of the modified system,
differences have to be sought on possibly hundreds of screens.
Most capture/playback tools can do this rapidly and without error.
In addition, much less effort is required to carry out regression
tests since the reruns of the seript can be carried out in batch mode
without supervision.

TEST DATA GENERATION

Data-generation tools facilitate the automatic creation of large
files of data. They are particularly useful for testing systems that
process large volumes of data in sequential files. A comprehensive
test of such systems generally requires each record in the test data
files to be different from all other records. To generate such files
manually would be very time-consuming and prone to error. It
would, of course, be possible to write a separate file-generation
program for each system that is developed, but it is likely to be
more cost-effective to purchase a data-generation tool if systems

developed by the organisation often use sequential input data
files.

Data-generation tools use at least two methods to generate the
files. One is to define the file off-line using a special programming
language. The other is to generate files from within the program
itself, by embedding control statements in the program. These
statements either generate new records, or select and modify
records from existing files.

The generated files contain records in user-defined formats. The
tools allow the values of fields in successive records to be
generated in various ways — random numbers within a specified
range, values clustered about a specified point, sequential values,
dates in various formats, and so on. These features allow the test
designer to include data to test for particular conditions such as
data on, or either side of, boundary values, and also to generate

large numbers of different records which may be used for volume
testing.

TEST DATABASE GENERATION

Many systems need to access a database. It is not usually advisable
to use the live database for system testing, but even where it is

20

Capture/playback tools facilitate
tests that would otherwise be
very difficult to carry out

Data-generation tools are useful
for testing systems that pro-
cess large volumes of data

in sequential files

© Butler Cox pic 1990

Chapter 3 Use tools, techniques, and methods to increase the cost-effectiveness

of testing

possible, it may be more convenient to use a smaller and more
easily monitored subset of the live database.

The test database generation tools currently available in the
United Kingdom are limited to the creation of IBM IMS and DL/1

test databases. They work by selecting and modifying records from
The test database generation

. an existing similar database. Some tools provide an interactive

tools available at present e s :
are limited to specific editing facility, while others have a command language that
products defines the file-conversion rules. There are many similarities

between these tools and data-generation tools. Some products,

such as CA-Datamacs/II, include both facilities within the same
tool.

COMPARISON

Comparison tools are the only ones that operate on the outputs
from the system under test. Systems that generate significant
amounts of output in the form of files can benefit from the use
of these tools. They can save time and improve accuracy when

Comparisen tools can be the tester is looking for small differences between runs of a test
particularly useful in program, or when he is comparing expected results with actual
the maintenance results. They can be particularly valuable in the maintenance
phase phase of a system’s life cycle, where it is essential to verify that
a correction or a change to a program does not have unexpected
side effects. The tools produce printed reports that management
can use as an objective measure that the system has not been
degraded by the change.

File-comparison tools identify records within a file that have been
inserted, deleted, or modified. The ability to make comparisons
in this way is usually included as a feature of capture/playback
tools. In these instances, comparisons are made of outputs sent
to a display screen by the system. Some file-comparison tools are
included in manufacturers’ operating systems — for example, the
‘Difference’ command in Digital’s VMS operating system.

TOOLS AND TECHNIQUES FOR ANALYSING
THE QUALITY OF THE SPECIFICATIONS,
DESIGNS, AND CODE

’ . The quality of every deliverable produced during the development
Tools and techniques for analysing of a system, including requirements specifications, designs, code,

the quality of the specifications, P : :
; : and test specifications, should be analysed as part of the normal

designs, and code are essential) Vari f ek Atael abl
where applications need to deve qpment process. Various techniques and tools are available
be highly reliable for this purpose. The two most commonly used techniques are
inspections and walkthroughs.

In addition, two types of tools — static analysers and dynamic
analysers — can be used to analyse the quality of the code itself.
The appropriateness of these tools depends, however, on the
programming language used. They are suitable for use with
commercial programming languages such as Cobol. Code written
in manufacturer-specific languages, such as Tandem's TAL, or in
fourth-generation languages, cannot be analysed by these tools.

The use of these techniques and tools is almost essential for
applications with high reliability requirements, such as those
where human life depends on the successful operation of the

© Butler Cox plc 1990 2]“

Chapter 3 Use tools, techniques, and methods to increase the cost-effectiveness

of testing

software. These applications should therefore be written only in
a language that can be analysed by these tools.

INSPECTIONS

The inspection technique was first developed by Michael Fagan
while he was working at IBM in the early 1970s. An inspection
is carried out by a team, typically of four people, whose roles are
precisely specified. A key to successful inspections is that the team
must identify errors only; it must not be side-tracked into
discussions of solutions, or alternative design strategies. It is
important that the results of the inspection are recorded, and that
all errors are corrected by the original designer or programmer.

Inspections are time-consuming (typically, between 4 and 8 per
cent of total development effort), and need to be scheduled in
the project plans. The total time (including preparation time) for
an inspection of a design that produces 1,000 lines of code is 10
to 20 man-hours, and for an inspection of the 1,000 lines of code
produced from this design, 20 to 60 man-hours.

In carrying out inspections, each person needs to have a clear
understanding of his individual role, and of the purpose of the
inspection procedure. The techniques are not easy to learn, and
an organisation that intends to introduce inspections should train
its staff on formal courses.

Studies of the effectiveness of performing inspections on source
code indicate that an inspection typically detects up to 60 per cent
of the errors in the code. The reduction in development cost, after
allowing for the additional cost of the inspections, is estimated
at 10 per cent. This is consistent with the results reported in PEP
Paper 12, where PEP members using inspections or walkthroughs
had a Productivity Index about half a point higher than members
who did not use them. If the subsequent maintenance phase is
also included, the savings may be considerably larger.

WALKTHROUGHS

Walkthroughs are a less formal type of inspection and may have
few, if any, of the formal characteristics of inspections. There are
very few rules on how to carry out a walkthrough. At a minimum,
it involves one person checking another’s work. Because of the
lack of formality, walkthroughs are cheaper to carry out than
inspections. They are almost certainly less effective, although
quantitative data are lacking.

STATIC ANALYSERS

Static-analysis tools examine the structure of code without
running it, and can typically find between 10 and 20 per cent of
all errors in a program. They are cost-effective tools in the
development of reliable systems, but do not seem to be widely
used in the commercial environment. Much of their use in the
United Kingdom has been in avionics and military systems. We
believe that there are considerable benefits to be gained from the
use of these tools in commercial applications and that their use
should be carefully considered by all PEP members.

22

An inspection reduces develop-

ment costs by about
10 per cent

Static-analysis tools
find between 10 and
cent of all errors in
a program

typically
20 per

© Butler Cox pic 1990

Chapter 3 Use tools, techniques, and methods to increase the cost-effectiveness
of testing

The tools provide managers with objective measurements of
characteristics that are directly related to quality. These help to
identify areas of poorly structured or excessively complex code.
It is advisable to redesign such code before proceeding further
with testing. If part of the code is unavoidably complex (a complex
logical algorithm, for example), extra attention should be paid to

its module testing since it is likely to contain an above-average
number of errors.

Static analysers typically assess the following characteristics of
the code:

— Conformance to user-specified standards (for example, no
more than a predefined number of lines in a module, or no
use of ‘go to’ statements).

— The paths (or different sequences of instructions) through a
program.

— Complexity analysis. Two of the most widely used measures
of complexity are McCabe’s measure, and the number of
knots, explained in detail in Figure 3.3, overleaf.

— Data-flow analysis, showing procedure calls, usage of pro-
cedure parameters, and unreferenced or unused data items.

— Cross-reference of all data items.

Some training is required in the interpretation of these measures,
but carefully used, they can identify many coding errors before

any attempt is made to run the code. This obviously saves effort
and machine time.

DYNAMIC ANALYSERS

Dynamic-analysis tools provide objective measures of the testing
procedure, commonly known as ‘white-box’ testing. This
Dynamic-analysis tools monitor procedure is carried out as part of the module-testing phase, and
the code while it is being may also be done during integration testing. The tools monitor the
executed code while it is being executed, and produce a report at the end
of the execution, giving various statistics. These statistics can be

used to assess the effectiveness of the test cases.

It is essential that white-box testing is carried out, since in a typical
program, over 50 per cent of the code is not directly related to
end-user functionality, but to the manipulation of internal
pointers, flags, and intermediate results. ‘Black-box’ testing,
which views the system externally in terms of inputs and outputs,

cannot be designed to guarantee complete coverage of this
‘hidden’ code.

One tool, Testbed, provides three measurements, or test effective-
ness ratios (TERs), resulting from a dynamic analysis of the code.
Other dynamic-analysis tools, which are sometimes also known

as coverage analysers, provide at least the first measurement.
These measurements are:

— TERI — statement coverage analysis: the percentage of the
lines of code that have been exercised at least once. No
operational system should be released where this measure
is less than 100 per cent.

© Butler Cox pic 1990 23

Chapter 3 Use tools, techniques, and methods to increase the cost-effectiveness

of testing

Figure 3.3 Two of the most widely used measures of the complexity of
a program are McCabe's measure and the number of knots

McCabe’s measure

McCabe's measure is defined as one mare than the number of decision statements
in a program. The metric is very simple, but experience shows a significant correlation
between McCabe’s measure and the number of bugs, or debugging effort applied
to a program. Programs with a McCabe value in excess of 10 seem to have
disproportionately more bugs than those with values of less than 10.

Knots

The purpose of looking for ‘knots’ is to identify unstructured code, which tends to
contain more errors than properly structured code. A control-flow knot is defined as
occurring when two control jumps cross, as illustrated in the diagram. Three types
of knots are depicted. A down-down knot is relatively harmless, and represents an
if ... then ... else’ construct. Up-down knots are more likely to represent unstructured
code, but may arise from ‘do’ or ‘while’ loop constructs. Up-up knots always represent
unstructured code.

Down-down Up-down Up-up
knot knot knot

e ." Kk .“. Knot

’:‘ Knot

— TER2 — branch coverage analysis: the percentage of all
outcomes of branch instructions that have been exercised at
least once. The goal of testing should also be 100 per cent,

although this is not as easy to achieve as 100 per cent on
TERI.

— TER3 — path coverage analysis: there are several ways of
measuring paths through a system, all of them quite complex.
It is difficult, in practice, to achieve 100 per cent path
coverage during testing, and except in ultra-high-reliability
systems, it is probably not worth attempting it.

24

© Butler Cox plc 1990

Chapter 3 Use tools, techniques, and methods to increase the cost-effectiveness

Dynamic-analysis tools produce
reports containing objective

© Butler Cox plc 1990

measures of testing
progress

of testing

An example of output from Testbed for TERZ2 is shown in
Figure 3.4.

Figure 3.4 The testing tool, Testbed, provides three measurements
resulting from a dynamic analysis of the code

The diagram is an example of output from Testbed for the second of the

measurements, or test effectiveness ratios (TERs), that it provides. TER2 is an analysis
of branch coverage.

Current run

BRANCHEXECUTION PROFILE | "CVL0MS TnS / Combined
FROM TO OLD NEW
LINE LINE ~ COUNT COUNT TOTAL

17 18 1 1 2

17 19 List of all the 4 2 6

18 56 branches in the 1 1 2

24 25 program 3 2 5

24 53 1 (g 1

28 29 2 Qe 2

28 30 1 2 3

33 34 1 1

33 35 2 L 3

38 39 1 1 2

38 40 2 1 3 Unexecuted

43 44 1 e wes 1 Branches

43 46 2) 4

45 51 1 Pt

47 48 1 2 3

47 50 1 Quens 1

49 51 1 2 3

52 54 3 2 5

55 12 4 2 6

58 1 1 1 2

OLD NEW
SUMMARY COUNT COUNT TOTAL

NUMBER OF BRANCHES IN PROGRAM 20 20 20
NUMBER EXECUTED 20 15 20
NUMBER NOT EXECUTED 0 5 0
TEST EFFECTIVENESS RATIO 2 1.00 0.75 1.00

(Source: Program Analysers Lid)

An experiment carried out on a large military system in the United
States showed that, when static analysis was combined with
dynamic analysis, 70 per cent of all errors in the system were
discovered. The remaining errors were caused largely by errors

in the specifications or misunderstandings of the written
requirements.

Project managers will find the use of this type of tool particularly
helpful since they can provide reports containing objective
measures of progress such as, ‘‘lests covering 78 per ceni of
statements and 64 per cent of branches have been successfully
completed”’. This gives them much better control over a project
than having to rely on a programmer’s typical estimate that
“testing is 95 per cent complete’.

TOOLS TO HELP PROGRAMMERS AND ANALYSTS
TO CARRY OUT TESTING

Two types of tool — debuggers and test harnesses — are used

during module testing to help in the process of debugging and
testing:

— Debugging is a distinct activity from testing, as described in
Chapter 1, and has been excluded from the scope of this paper.
However, several debugging tools include features that enable
them to be used for formal testing. The list in Figure 3.2

2b

Chapter 3 Use tools, techniques, and methods to increase the cost-effectiveness

of testing

(on page 18) is not exhaustive; we have included only those
for which the manufacturer also supplies another type of
testing tool that can be used in conjunction with it. All PEP
members use some debugging tools, since it would be
expensive to develop programs without them. If additional
debugging tools are required, it would be worth considering
tools that are also useful for formal testing.

— Test harnesses provide an environment for running partially
completed software when it is undergoing module tests, or
being debugged. They provide facilities such as simulating
incomplete modules, intercepting calls to external pro-
cedures, and defining external data areas. The use of such
a harness could provide a more uniform approach to module
testing throughout a development team.

TEST-MANAGEMENT TOOLS

Test-management tools help in the management of the tests rather
than in the process of testing. They are particularly useful if there
are many test cases to manage, and as a long-term investment in
maintaining the test environment for regression testing.

Organisations that are already controlling their software develop-
ments using tools for code management and configuration
management should consider extending their scope to include
testing. Organisations that are not already using such tools would
be well advised to consider investing in them.

While investment in software tools that can be used to carry out
a planned level of testing within an organisation will undoubtedly
help to ensure that the cost of software testing is reduced, they
do not in any way absolve managers of their responsibilities for
project control. Managers need to monitor the progress of software
testing and to draw on the results that the process provides as
a basis for making decisions to ensure that projects are delivered
on schedule. How the progress of software testing should be
measured is the subject of Chapter 4.

26

Test-management tools are useful
if there are many test cases

@ Butler Cox

Chapter 4

Measure the progress of testing to improve

It is not practical to define
module tests that will

@ Butler Cox plc 1990

achieve preset
targets

project control

One of the main tasks of development project managers is to
decide how to allocate resources so that the project is completed
on schedule. This requires regular monitoring of progress, so that
resources can be re-allocated if the project deviates from plan.
In this chapter, we show how progress can be measured during

the module-testing, integration-testing, and system-testing phases
of a project.

MEASURE THE PROGRESS OF MODULE TESTING

Module tests should be designed to fulfil two requirements — each
function provided by the module should be tested with a range
of input data, and all of the code should be exercised by the input
data. The input data must be carefully selected to achieve both
of these goals; testing each function with a wide range of randomly
selected input data is unlikely to achieve the second goal.

There are several ways of measuring the extent to which code
is exercised by the tests, as described in the section on dynamic-
analysis tools in Chapter 3. For each of these measures, a
numerical value can be set, to define the point at which testing
of the module should stop. Such values could, for example, be
100 per cent of code coverage and 90 per cent of branch coverage.
This value should be specified according to the level of confidence
that is required in the reliability of the system.

It is difficult to select, in advance, a series of tests that will achieve
the target values, and it is not worth attempting to do so. The
most practical way of approaching module testing is to begin by
specifying a series of tests that test all the functions with a good
range of input values. A dynamic-analysis tool can then be used
to indicate which parts of the code have not been exercised.
Additional test cases can then be defined to fill in the gaps until
the code has been exercised to the required extent on the different
measures of coverage.

It should be noted that the completion of testing, defined in this
way, does not guarantee a module free of errors. It does, however,
provide a certain level of confidence in the reliability of the
module. The higher the percentage coverage on the three
measures, the greater the confidence in the module’s reliability.

MEASURE THE PROGRESS OF INTEGRATION TESTING

Integration tests should be designed to measure that the flow of
control between modules is correct, and that data definitions
between modules are consistent.

The control flow between modules can be measured using the
same dynamic-analysis tools that were used for module testing,

27

Chapter 4 Measure the progress of testing to improve project control

but operating on the module, rather than the line of code, as the
basic unit. Test data should be selected so that each module in
the system is called at least once, and a predefined percentage
of the control paths through the modules is exercised. On a small
system, it is relatively easy to check manually that all control paths
have been exercised, possibly using the checkpointing facility of
debugging tools. On systems with more than about 20 modules,
a tool that can analyse control paths through programs and
measure the extent of the program coverage is essential if
integration testing is to be carried out thoroughly. The measure-
ment of progress of the control-flow part of integration testing
is then the measurement of the percentage of module coverage
and control-path coverage that has been achieved.

Ensuring that data is consistently defined between modules
requires a series of tests to be defined that explicitly check that
each data item is handled consistently by all modules that create,
read, modify, or delete it.

Measuring the progress of a series of predefined integration tests
is very similar to measuring the progress of a series of predefined
system tests. The techniques for doing this are described in the
next section.

MEASURE THE PROGRESS OF SYSTEM TESTING

System tests are carried out on the complete system at the end
of the development cycle, and should be started only when
module and integration testing have been completed. The tests
measure the performance of the system against the original
requirements specification, and are normally used as the basis on

which a decision is made to introduce the system into live
operation.

DEVISE A SYSTEM-TEST PLAN

The essential prerequisite for monitoring the progress of system
testing is a test plan. This should be produced soon after the
requirements specification is completed, as indicated in Figure 1.2,
and should include a specification and reference number for each

test, the expected result of each test, and a timetable for the
execution of the tests.

USE FORMS TO COLLECT MEASUREMENTS

The progress of testing can be documented using two forms — the
test log, and the incident report. Examples of these forms are
shown in Figures 4.1 and 4.2. A test log is filled out when each
test is run, whether it is successful or not. Incident reports are
filled out for each fault discovered during the running of a test.
The incident reports are given to the development team, who
should diagnose the problem and carry out any necessary rework.
Project managers should record the effort spent on testing and
on rework, using either the organisation’s standard timesheet, or
the incident report itself.

INTERPRET THE RESULTS

There are two main styles of system testing. In one style, the tests
take place over several weeks, and the development team corrects

Integration tests should ensure
that each module is called at
least once and that a pre-
determined percentage

of control! paths is

exercised

System tests measure the perfor-
marnce of the system against

the original requirements
specification

A test plan is a prerequisite for
monitoring the progress of
system testing

Test logs and incident reports
should be used to document
the progress of system
testing

© Butier Cox plc 1990

Chapter 4 Measure the progress of testing to improve project control

Figure 4.1 A test log is filled out when each test is run, whether it is
successful or not

The text below shows an example of test log entries.

System: Services marketing.

Test log identifier: TL-21.

Description: Tests Version 2 of the Customer Index subsystem against Version 4
of the System Test Plan for test procedures TP21-1 to TP21-10. The tests are run

using the file TP21.TST (dated 1 November 1989), running under the installation
standard capture/playback tool.

Activities and event entries

Incidents
10 December 1989
09.45 TP21-1 run. No discrepancies from expected results.
09.55 TP21-2 run. No discrepancies from expected results.
10.15 TP21-3 run. System crashed. IR21-1
11.15 TP21-4 run. Missing update to screen. IR21-2

11.20 TP21-5 run. No discrepancies from expected results.

11.30 TP21.6 to TP21-10 not run since they depended on the
successful execution of TP21-3.

Figure 4.2 An incident report is filled out for each fault discovered
during the running of a test

The text below is an example of an incident report.

Incident identifier: IR21-2, 10 December 1989.

Summary: Test procedure TP21-4 did not update the average balance field on the
screen.

References: Test log TL-21.

Incident description: The average balance field for customer John Abel did not appear
on the screen. All other fields updated correctly. All other customers showed correct

average balance values. Possibly relevant is the fact that John Abel is first in the
alphabetical list of customers.

Impact: No impact on the execution of other tests within TP21.

errors concurrently with continuing system testing. In the other
style, the tests are completed in a few days, and there are then
several distinct test cycles, each one testing a corrected version
of the system. The following paragraphs apply specifically to the
first style of testing. With slight modifications, however, the
techniques could equally well be applied to the second style.

The technique for interpreting the results is to display the progress
of the system testing on graphs, which are regularly updated. This
enables potential problems to be identified quickly. It is possible

The progress of system testing to extrapolate trends to estimate completion dates, but these
can be plotted on graphs extrapolations should be treated with caution. If they appear to
indicate that the completion of the tests will take longer than
expected, the test logs and incident reports should be examined

in more detail to identify the cause of the slippage.

Rate of generation of incident reports
The sample graph in Figure 4.3, overleaf, shows the number of
incident reports produced each week. The number of errors

®© Butler Cox plc 1290

29

Chapter 4 Measure the progress of testing to improve project control

Figure 4.3 The number of incident reports produced each week should
be registered and monitored

y Number of
incident reports
35

30

20

15

Weeks

should diminish as errors are corrected after the first run-through
of the complete system tests. If, in any week, there are marked
peaks or troughs, the reasons for them should be examined. A
peak could be caused by a particularly error-prone part of the

system, or a trough by a problem holding up the progress of the
testing.

Cumulative error rates
Representations of the cumulative error-detection and error-
correction rates are illustrated in Figure 4.4.

The yellow horizontal line is the predicted number of errors in
the system, based on the number of lines of code. PEP Paper 12
showed that the number of errors at the start of integration testing
was in the range of 0.5 to 2 per thousand lines of code, with small
programs containing proportionately more errors than large ones.
If records are kept for each project, each organisation could derive

its own relationships between program size and total number of
errors. -

The two graphs shown in Figure 4.4 are the cumulative totals of
the number of errors discovered, and the number of errors
corrected and successfully retested. These are derived by
analysing the incident reports.

The rate of discovery of faults should diminish as the testing

proceeds and faults are corrected. The rate of correcting faults The rate of correcting faults
gives a useful indication of how long the rework is taking. Once gives a useful indication of
the trend line for the number of errors discovered has flattened how long the rework is

out, simple extrapolation of both trends will provide an estimated taking

completion date.

30

© Butler Cox plc 1990

Chapter 4 Measure the progress of testing to improve project control

The rate of completion of the
planned tests gives a useful

@ Butler Cox ple 1990

forecast of project
completion

Figure 4.4 Records should be kept of cumulative error-detection and
error-correction rates

ﬂl Cumulative number

of errors Forecast

completion
140 | date
--»

120
100

80

60 |

40 |

20

12345867 8 91011121314151617 1819
Weeks
Predicted number of errors

——~ Number of errors discovered (and extrapolated)
—— - Number of errors correcied (and extrapolated)

A steep gradient for the cumulative errors-discovered graph,
particularly if the cumulative number of errors exceeds the pre-
dicted number of errors, indicates that modules contain errors that
should have been detected at the module-testing phase. It will
almost certainly be more productive in these circumstances to
suspend system testing, and return to module testing. This is a
difficult decision for a project manager to make, but the evidence
provided by these graphs should make the decision easier to justify.

Test completion rate

The graphs shown in Figure 4.4 suffer from the disadvantage that
the total number of errors is not known, and the end point of the
testing is not clearly defined. A more suitable measure for
predicting project completion is the rate of completion of the
planned tests. An example of graphs based on this parameter is
shown in Figure 4.5, overleaf.

The yellow line shows the planned number of tests, which should
not change during the testing phase. An increase such as the one
shown in the figure should be a cause for concern, because it
probably indicates that the original test plan was unrealistic, or
that changes are being made to the requirements.

The dotted black line is a plot of the cumulative number of tests
that are ready to run. On some systems, all the test data and test

31

Chapter 4 Measure the progress of testing to improve project control

Figure 4.5 Project completion can be predicted from the rate of
completion of the planned tests

A Number of tests

Change of plan

160 | - Lo Forecast
B _»~ completion

date
140

120
100
80
60
40

20

I

1 1 l l i L 1 1 1 L L L ! 1 L 1 1 . i L
1234567 8 91011121314151617 181920

Weeks

Planned number of tests
------- Tests ready to run
Tests run
Tests run successfully

programs may be developed by the start of system testing, in
which case the graph can be omitted. More probably, particularly
on larger systems, some tests will be developed concurrently with
others being executed. The trend of this line should be monitored

to ensure that the preparation of test data does not become a
bottleneck.

The number of tests that have been run is plotted on the grey line,
and the solid black line is the number that have been run
successfully. A low rate of success indicates that the earlier
module testing and integration testing were inadequate. The solid
black line also measures the progress of the rework. The slope
of this curve gives an indication of progress, and a simple
extrapolation can be used to forecast the completion date.

Frequencies of error types

A useful analysis for helping to improve the future productivity
of the systems development department is a histogram showing
the types of system-testing errors and their frequencies. An
example is shown in Figure 4.6. This histogram could be
constructed both for individual projects, and as a cumulative total
over all projects. It could also be extended to include errors
discovered during integration and module testing. It indicates
what areas of software design or programming techniques cause

32

Analysis of the types of system-
testing errors and their fre-

quencies can help to
improve future
productivity

© Butler Cox pic 1990

Chapter 4 Measure the progress of testing to improve project control

Figure 4.6 Analysis of the types of errors and of their frequencies
should help to improve productivity

Number of errors
%] I I T
Eronips 10 20 30 40 50 60

Type 1

Type 2

Type 3

Type 4

Type 5

Type 6

Type 7

Type 8

Type 9

* Each number refers to a particular type of error, such as ‘incorrect branch
condition’, or ‘requirements error.’

the most problems, and should help management to decide where
training needs are greatest.

@ Builer Cox plc 19980

33

Chapter 5

Review the software-testing policy

Software testing should be an integral part of systems
development, and in this report, we have recommended changes
in traditional practices that will help to ensure that testing is not
treated as a secondary activity. The recommendations are
summarised as an action checklist in Figure 5.1. Whether testing
is done informally, or formally, as described in this paper, it is
likely to account for at least 25 per cent of the development
budget. It is therefore an activity to which management should
devote both attention and resources.

We have shown in this paper that the nature of testing is
somewhat elusive. Testing is about measuring various properties
of a system, the most important of which is reliability, yet there
are no clear guidelines about how much testing is needed to

Figure 5.1 Action checklist

Analyse the current approach to software testing:
— What is its objective?

— How much does it cost?

— What benefit is gained from it?

Assess whether the current approach to software testing is satisfactory:
— Do systems have unexpected operational problems?

— Are there problems with cost overruns or late delivery, which could be attributed
to difficulties in testing?

— Are there any guidelines about when to stop testing?

Define an overall approach to software testing:
— What measurements are needed from the testing process?

— How will the measurements be used to improve the guality of the systems and
the efficiency of the developments?

— What measures are taken to ensure that staff understand the objective of testing?
— How will the cost of testing be measured?

Ensure that the structure of the systems department and of the project teams is the
most effective one for software testing:

— Should there be a separate group responsible for system testing?
— Do project teams have clearly identified responsibilities for testing?

Provide adequate staff training for software testing:

— Are there any reference books on software testing in the organisation’s library?
— Has consideration been given to the value of training courses?

Consider the use of walkthroughs and inspections.

Consider investing in a standard set of software testing tools for use by all projects
in the systems department:

— Which are the most effective tools for the organisation to acquire?
— lIstesting efficiently supported in all phases of the systems development life cycle?

34

Testing is likely to account for
at least 25 per cent of the
development budget

© Butler Cox pic 1990

© Butler Cox plc 1990

Chapter 5 Review the software-testing policy

produce a given level of reliability; it is not necessarily the case
that more is better. In many systems development projects, there

are, nevertheless, substantial benefits to be derived from carrying
out formal software testing.

Formal testing is not an easy task. While there are tools available
that can provide precise measurements of some aspects of testing,
none will take the place of experienced systems designers or
testing specialists in an area of systems development that is more
of an art than a science. They do, however, need to practise their
skills within the framework of a clearly defined policy for software
testing. The first step for many organisations in improving the
effectiveness of their software testing will be to review the
checklist in Figure 5.1 to see that such a policy is in place.

35

Bibliography

Beizer, B. Software system testing and quality assurance. New
York: Van Nostrand Rheinhold, 1984.

Hetzel, W C. The complete guide to software testing. 2nd edition.
Wesley, MA: QED Information Sciences, 1988.

Myers, G J. The art of software testing. Chichester: Wiley, 1979.

Parrington, N & Roper, M. Understanding software testing.
Chichester: Ellis Horwood, 1989.

36

© Butier Cox plc 1990

Butler Cox

Butler Cox is an independent international con-
sulting group specialising in the application of
information technology within commerce, in-
dustry and government.

The company offers a unique blend of high-level
commercial perspective and in-depth technical
expertise: a capability which in recent years has
been put to the service of many of the world’s
largest and most successful organisations.

The services provided include:

Consulting for Users
Guiding and giving practical support to organisa-

tions trying to exploit technology effectively and
sensibly.

Consulting for Suppliers
Guiding suppliers towards market opportunities
and their exploitation.

The Butler Cox Foundation
Keeping major organisations abreast of develop-
ments and their implications.

Multiclient Studies
Surveying markets, their driving forces and poten-
tial development.

Public Reports
Analysing trends and experience in specific areas
of widespread concern.

PEP

The Butler Cox Productivity Enhancement Pro-
gramme (PEP) is a participative service whose goal
is to improve productivity in application systems
development.

It provides practical help to systems development
managers and identifies the specific problems that
prevent them from using their development
resources effectively. At the same time, the pro-
gramme keeps these managers abreast of the
latest thinking and experience of experts and
practitioners in the field.

The programme consists of individual guidance for
each subscriber in the form of a productivity
assessment, and also publications and forum
meetings common to all subscribers.

& Butler Cox plc 1990

Productivity Assessment

Each subscribing organisation receives a confiden-
tial management assessment of its systems develop-
ment productivity. The assessment is based on a
comparison of key development data from
selected subscriber projects against a large com-
prehensive database. It is presented in a detailed
report and subscribers are briefed at a meeting
with Butler Cox specialists.

Meetings

Each quarterly PEP forum meeting focuses on the
issues highlighted in the previous PEP Paper. The
meetings give participants the opportunity to
discuss the topic in detail and to exchange views
with managers from other member organisations.

PEP Papers ;

Four PEP Papers are produced each year. They
concentrate on specific aspects of system develop-
ment productivity and offer practical advice based
on recent research and experience. The topics are
selected to reflect the concerns of the members
while maintaining a balance between management
and technical issues.

Previous PEP Papers

1 Managing User Involvement in Systems
Development

2 Computer-Aided Software Engineering (CASE)

3 Planning and Managing Systems Development

4 Requirements Definition: The Key to System
Development Productivity

5 Managing Productivity in Systems Develop-
ment

6 Managing Contemporary System Development
Methods

7' Influence on Productivity of Staff Personality
and Team Working

8 Managing Software Maintenance

9 Quality Assurance in Systems Development

10 Making Effective Use of Modern Development
Tools

11 Organising the Systems Development Depart-
ment

12 Trends in Systems Development Among PEP
Members

13 Software Testing

Forthcoming PEP Papers

Software Quality Measurement
Selecting Application Packages
Project Estimating and Control

Butler Cox plc
Butler Cox House, 12 Bloomsbury Square,
London WC1A 2LL, England
=(01)8310101, Telex 8813717 BUTCOX G
Fax (01) 831 6250

Belgium and the Netherlands
Butler Cox BV
Burg Hogguerstraat 791,
1064 EB Amsterdam, The Netherlands
= (020) 139955, Fax(020) 131157

France
Butler Cox SARL
Tour Akzo, 164 Rue Ambroise Croizat,
93204 St Denis-Cédex 1, France
‘= (1)48.20.61.64, Télécopieur (1)48.20.72.58

Germany (FR), Austria, and Switzerland
Butler Cox GmbH
Richard-Wagner-Str. 13, 8000 Miinchen 2, West Germany
=(089)5234001,Fax(089)52335 15

Australia and New Zealand
Mr.J Cooper
Butler Cox Foundation
Level 10, 70 Pitt Street, Sydney, NSW 2000, Australia
=(02)223 6922, Fax (02) 223 6997

Finland
TT-Innovation Oy
Meritullinkatu 33, SF-00170 Helsinki, Finland
= (90) 135 1533, Fax (90) 135 2985

Ireland
SD Consulting
72 Merrion Square, Dublin 2, Ireland
=(01)766088/762501, Telex 31077 EI,
Fax (01) 767945

Italy
RSO Futura Srl
Via Leopardi 1, 20123 Milano, Italy
= (02) 72000 583, Fax (02) 806 800

Scandinavia
Butler Cox Foundation Scandinavia AB
Jungfrudansen 21, Box 4040, 171 04 Solna, Sweden
=(08)7300300, Fax (08) 730 15 67

Spain and Portugal
T Network SA
Nunez Morgado 3-6°b, 28036 Madrid, Spain
=(91)7339866, Fax(91) 7339910

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42

