Managing Productivity
in Systems Development

PEP Paper 5, April 1988

Managing Productivity in
Systems Development

PEP Paper 5, April 1988
by Larry Putnam, Jim Greene,
and Grenville Bingham

Larry Putnam is President of Quantitative Software Management
Inc, a firm specialising in software investment and quality
management. Mr Putnam has had extensive experience in industry
and government in planning the quantitative aspects of software
management including cost, schedule, and reliability determina-
tion. Mr Putnam is the developer of SLIM, an automated software
estimating tool used by the Defense Department and a significant
number of companies in the computer industry.

Mr Putnam has lectured extensively in the United States, Europe,
Japan, and Australia about the quantitative side of software
management and planning. He is the author of a tutorial book for
the IEEE Computer Society, ‘Software Cost Estimating and Life
Cycle Control: Getting the Management Numbers’ as well as numerous
papers and articles on software investment management.

Jim Greene is Managing Director of QSM-Europe. His career in
software engineering began in 1963. He has worked for major
companies and government organisations in Europe and the USA,
at all management levels, over a wide spectrum of business areas.

Between 1968 and 1975 as a project manager with IBM, he
managed a wide range of developments on behalf of European
companies as well as software for an IBM communications product.

Working as a management consultant since 1975, he has
specialised in software engineering investment strategies and
introduced the Software Life Cycle Management method into
Europe under a business agreement with the US developer, Larry
Putnam.

Grenville Bingham is a Principal Consultant with Butler Cox. He
has extensive experience in software engineering from technical,
management, and business perspectives.

He was responsible for managing the successful introduction and
operation of Butler Cox’s Productivity Enhancement Programme,
a service to improve systems development productivity.

He started his career in software engineering in 1967 in IBM
working on the design of OS and TSO. He has since worked in
technical, marketing, and management roles for various soft-
ware and systems houses in the United States and Europe. His
experience covers applications, communications, and systems
software in both the commercial and military spheres.

© Butler Cox & Partners Limited 1988

Larry Putnam

Jim Greene

Grenville Bingham

Published by Butler Cox & Partners Limited
Butler Cox House
12 Bloomsbury Square
London WCI1A 2LL
England

Copyright © Butler Cox & Partners Limited 1988

All rights reserved. No part of this publication may be reproduced by any method
without the prior consent of Butler Cox.

Printed in Great Britain by Flexiprint Ltd., Lancing, Sussex.

Managing Productivity in
Systems Development

PEP Paper 5, April 1988
by Larry Putnam, Jim Greene,
and Grenville Bingham

Contents

1 Measurement is key to managing productivity in
systems development 1
Effective software investment management is essential 1

Improving productivity is the main goal of software
investment management 2
Keeping numbers is essential to improving productivity 2
Purpose and structure of this paper 3

2 System development metrics <+
Quantify the input and output and identify the
environmental influences 4
The staffing profile is a simple method of calculating
the input 5
Effective lines of code or function points can be used to
measure output 6
Errors can be used to measure output quality 6
Gathering additional information on the development
environment 7
How the essential numbers can be used 7
3 Modelling the software development process 9
Data sources for modelling 9
Systems development models 11
4 The Putnam approach 14
How the Putnam approach is derived 14
Putnam’s software equation 18
Increases in the productivity index mean large
improvements in project costs 19
The manpower buildup index (MBI) reflects time
pressures 21
Using the Putnam approach to analyse the PEP
project data 22

(Continued)

© Butler Cox & Pariners Limited 1988

Contents

5 You can use the Putnam model to plan and control

projects 24
‘What if?’ analysis 25
Set realistic target dates 25
Monitor and control progress 26

6 How to manage a productivity improvement

programme 27
Setting realistic targets 27
Tracking productivity improvement 29
Demonstrating the improvement 29

7 Calculating and presenting the benefits 30
Cash savings 30
Return on investment 31
Calculating the ROI 32
Presenting the benefits 33

References 34

© Butler Cox & Partners Limited 1988

R R R ...

Chapter 1

Measurement is key to managing
productivity in systems
development

“It is the mark of an instructed mind to rest satisfied with the
degree of precision which the nature of the subject admits and
not seek exactness when only an approximation of the truth is
possible.”

Aristotle

This paper describes the value of measurement in managing and
improving the efficiency of software development. It describes
various measures and approaches to applying them, and, in
particular, explains the measures and approach developed by
L H Putnam of Quantitative Software Management (QSM). This
approach is the basis for the system development productivity
assessments used in Butler Cox’s Productivity Enhancement
Programme (PEP) for its sponsors.

EFFECTIVE SOFTWARE INVESTMENT MANAGEMENT
IS ESSENTIAL

Investment in software by commercial organisations is huge and
growing. A recent study in the United States reported that high-
technology companies typically spend five per cent of their gross
revenue on software development (Putnam, 1987). A United
Kingdom survey predicted that the proportion of total system'’s
value that is accounted for by software would grow from 50 per
cent in 1985 to 75 per cent in 1987 (EIU Informatics 1985).

Staff costs represent a large proportion of total software develop-
ment costs. So you can calculate a rough measure of your own
organisation’s investment in software by multiplying the numbers
of staff involved in software development by the average staff
costs. For example, a department with 100 software development
staff would cost around $6 million per year, assuming an average
fully loaded staff cost of $60,000 per person per year.

Businesses are becoming increasingly dependent on IT. Systems
are migrating from their non-critical back-office role to the front
line of day-to-day business operations. The trend towards online
systems means that reliability is assuming growing importance.
The cost of failure of an electronic funds transfer system, a stock
market trading system, or a factory management system can be
measured in thousands of dollars per minute. Strategically
important systems often need to be developed in a hurry in order
to respond to a brief window of competitive opportunity. Unfor-
tunately, pressures to reduce timescales tend to reduce reliability
as well, turning advantage into disadvantage.

Software investment management is the term we use to describe
methods of reducing the costs of software development and

® Butler Cox & Pariners Limited 1988

Software comprises 75 per cent
of systems value

Software investment management
is important to the business

Chapter 1 Measurement is key to managing
productivity in systems development

controlling the reliability of the finished product. Software
investment management should not only be the concern of systems
development managers. The scale of the expenditure on software
and the risks of failure imply that general business management
should also take a keen interest in making sure this investment
is managed effectively.

IMPROVING PRODUCTIVITY IS THE MAIN GOAL OF
SOFTWARE INVESTMENT MANAGEMENT

When viewing the systems development function, general
management is usually concerned with the efficiency of the
systems development activity and the effectiveness of systems as
demonstrated by the impact that they have on the operations of
the organisation. In this paper we are concerned only with the
first of these objectives, efficiency.

Productivity is the key measurement of efficiency. In systems
development it is a measure of how well the systems development
process is carried out, that is, the output achieved for a given tnput
(or cost).

Many different ways of measuring systems development
productivity have been proposed. One commonly used measure
is system size/effort. This seems intuitively right because system
size s closely related to functionality and effort is a good indication
of cost. It is a simple relationship and it is also attractive because
both system size and effort are easy to measure. However, research
shows that if you measure productivity in this way it will vary
significantly according to the size and timescale of the project.
We need to eliminate these major sources of variation so that we
can compare productivity on projects of different sizes and with
different timescales. In Chapter 4 we discuss how the productivity
index, the measure developed by Putnam and used in Butler Cox’s
PEP, has been constructed to meet this need. '

Productivity improvement is much easier to explain to general
business managers. A productivity improvement has been made
when you produce an equal or better quality system for less effort
by either using fewer people, or less time, or less money (or some
combination of these). This is the main goal of software investment
management. One of the main aims of this paper is to help you
present the results of improving system development to senior
general management in these terms.

KEEPING NUMBERS IS ESSENTIAL TO IMPROVING
PRODUCTIVITY

If you want to improve productivity, you need a way for dis-
tinguishing those projects in which the development team was
relatively productive from those in which it was relatively un-
productive, and for identifying those factors that have contributed
to greater productivity. If you make this comparison between
different projects within your own organisation you can transfer
the technical and management techniques used by the most pro-
ductive project teams to all the other teams to help raise the overall
productivity of the systems development department. If you
compare the productivity of your own projects with those of other
organisations, you will be able to learn from their successes and

Productivity improvement is the
main goal of software investment
management

Productivity improvement
requires measurement

© Butler Cox & Pariners Limited 1988

Chapter 1 Measurement is key to managing
productivity in systems development

failures. However, you can only make these comparisons if you
collect and analyse the numbers needed to measure productivity.

Keeping numbers has other benefits. You can use them to:
— Estimate the costs of new projects.

— Plan projects on an informed and realistic basis, and so reduce
cost overruns and schedule slippages.

— Assess the implications of reducing project timescales, or
conversely, assess the consequences of extending the time-
scale and reducing the size of the team.

— Measure quality and track improvements in the quality of the
systems you produce.

In our experience with PEP sponsors, the benefits of keeping the
appropriate numbers far outweigh the minimal cost and effort
involved.

PURPOSE AND STRUCTURE OF THIS PAPER

The aim of this paper is to explain why measurement is key to
managing productivity, and in particular, the purpose and scope
of the measurements used in PEP by:

— Describing the latest thinking on productivity measurement.

— Providing the PEP sponsors with a deeper understanding of
the Putnam approach to productivity, which is used as the
basis of the PEP measures.

— Showing how the PEP measures can be applied to managing
projects and to managing the systems development function.

— Showing how to calculate the benefits to be derived from the
implementation of a productivity improvement programme
and how to present these benefits to senior management.

Chapter 2 deals with system development metrics — what numbers
to keep, where to get them, and how to use them.

Chapter 3 describes the various approaches and models that can
be used for measuring productivity.

Chapter 4 presents the Putnam approach, its history, how it was
derived, what it says about managing productivity, how PEP uses
it, and how you can use the PEP measures.

Chapter 5 explains how to use the Putnam approach to plan and
control projects, to identify the minimum development time, to
set realistic target dates, and to monitor and control progress.

Chapter 6 shows how to set productivity targets, how to improve
productivity and quality, how to track productivity improvement,
and how to measure the improvement.

Chapter 7 discusses the use of return on investment (ROI) as a
powerful means of justifying the cost of your productivity improve-
ment programme to general management.

© Butler Cox & Partners Limited 1988

Chapter 2

System development metrics

“But we don’t keep data’’ is a common response when we first
discuss productivity measures, or metrics, with a systems develop-
ment group. Indeed the PEP programme has highlighted just how
few organisations have even the basic data to hand. At the other
extreme some companies have kept a lot of data at great expense,
only to find it difficult and time-consuming to analyse and
understand.

Neither extreme makes commercial sense. If you want to improve
productivity you must collect data. But the data should be readily
available as a natural part of development and should be economic
to collect.

Also, if such data has been proven to give value, there is an added
incentive to collect it. Commercial organisations are more likely
to collect the data when benefits will result.

In this chapter we set out the key numbers which you need to
keep, and describe simple methods of collecting them. The
numbers quantify the inputs and outputs of the development
process and the environmental factors affecting the development
process.

QUANTIFY THE INPUT AND OUTPUT AND IDENTIFY
THE ENVIRONMENTAL INFLUENCES

The essential numbers are measures of the input (investment)
made to generate a given output (the system). The input is the
cost of employing a development team to create the new or
enhanced system within a given timescale. These costs can be
calculated by using fully loaded staff costs which include other
costs such as development hardware, software tools, and so on.

Outputs from each project stage include specification and design
documents, detailed software design and development, and
finally, operation of the new or amended system. The output is
tangible. Most simply, it can be seen as the source statements that
constitute the delivered system. These statements are the end
product of the input to the project, the development team. You
can measure the functionality of the system encapsulated in the

source statements in a number of ways. These are discussed later
in this chapter.

Quality is also a vital output measure. The errors found in the
systems are a simple and measurable indication of quality.

There are many complex environmental factors at work that can
influence the development team’s performance and the quality
of the finished product. Management style, the use of formal

The development environment is
complex. Isolating the key
factors is essential

© Butler Cox & Partners Limited 1988

Chapter 2 System development metrics

methods, and machine availability are just a few examples. Some
of these factors will be outside your control; others, you can
influence or change.

We believe that only by calculating and analysing the productivity
measures, can you identify and isolate the factors that influence
productivity in your unique environment. However you must first
record information on the key environmental factors so that you
can use the productivity measures as the magnifying glass to show
you which factors have a significant influence.

THE STAFFING PROFILE IS A SIMPLE METHOD OF
CALCULATING THE INPUT

The straightforward way to calculate the total man-months of
effort is to use the staffing profile for each stage of the project.
The project manager can usually sketch this out in five to ten
minutes. There is no need to go into detail in distinguishing
between productive and non-productive contributions as these
broad-brush figures are adequate for projects with 18 man-months
effort or more. We find the balance of total productive versus non-
productive man-days per person in a year is usually very stable,
the average being around 200 to 210 productive man-days. The
staffing profile is straightforward, requires little effort to collect,
and it is readily available.

You could assemble much more detailed data, usually at great cost,
by calculating individual resource contributions, and distinguishing
between productive and non-productive time (holidays, training,
and so on). This approach relies on a time-recording system and,
usually, cost accounting. Based on our experience, we are now
cautious about using cost-accounting data. The information is
often inaccurate, too detailed, and lacking suitable summaries. To
analyse this data usually takes much longer than asking the project
managers to sketch the staffing profile.

As an instance of the broad-brush numbers that can be collected,
Figure 2.1 sets out the staffing profile constructed over the key
development stages feasibility, specification and design, and
main build. Total staff used each month are shown without
detailing who was on holiday, absent, or engaged in non-productive

Figure 2.1 System development stages: staffing profile

This figure shows the relative magnitudes of staff sizes used in the
development stages defined for PEP analyses.

Number
of staff

Time
(months)

222

Feasibility Specification Main software development build: Date
and design detailed design/code/unit test/ live
integration/system test

2QsM

© Butler Cox & Partners Limited 1988

Simple, broad-brush metrics are
sufficient for measuring input

Chapter 2 System development metrics

activities. You will notice that some of the development stages
overlap. The extent of this overlap needs to be assessed (but only
approximately) because separate figures are required for the effort
used in each phase.

EFFECTIVE LINES OF CODE OR FUNCTION POINTS
CAN BE USED TO MEASURE OUTPUT

Counting the number of effective lines of code (ELOC) is one of
the easiest ways of measuring the output end product. Many PEP
sponsors automate the collection of the ELOC statistics by writing
a program that scans the appropriate libraries to count lines of
code based on the following rules:

— Lines are indicated by delimiters.
— Only executable lines are counted, not expansions.
— Comments are not counted.

— Delivered lines only are counted (those eventually thrown
away are ignored).

— New or amended lines only are counted, not unchanged lines.
— Data definitions are counted once only.

Alternatively, you can take a sample of programs or transactions.
Numbers accurate to the nearest 1,000 ELOC are adequate for
meaningful analysis. This consistent collection of sizing data
quantifies the output produced by the development team.

The 200-plus projects analysed to date in PEP account for a total
output of some 22 million ELOC. Cobol and PL/l make up 18
million of them and fourth-generation languages another 2.5
million ELOC.

PEP sponsors are able to gather this information on ELOC quickly
and, at the macroscopic level, accurately. Few sponsors have any
other measure of the developed functionality available,

Another measure of the end product that is used by some PEP
sponsors is the total number of function points. This approach was
developed by Albrecht and involves counting external user inputs,
enquiries, outputs, and master files to be delivered by the
development project. Guidelines are available for counting these
Junction points (which Albrecht considers to be the outward
manifestation of any application). However, counting is not readily
automated although you can use a spreadsheet to sum the values.
We return to the use of function points in the next chapter.

ERRORS CAN BE USED TO MEASURE
OUTPUT QUALITY

The technical quality of the end product can be measured by
counting the number of errors. In practice it is useful to distinguish
between three categories of error:

— Statement of Requirement Errors (SORs), essentially high-
lighting errors found in the requirements specifications.

— Software Errors, (SERs), usually those bugs found during the
integration and system test.

— No Faults, (NOFs), a null category which is invaluable to
identify misunderstanding by testers or end users of what the
system is required to do.

Effective lines of code (ELOC) is
the easiest measurement of size

© Butler Cox & Partners Limited 1988

Chapter 2 System development metrics

Within these categories you need to distinguish levels of serious-
ness. Usually, three levels are sufficient:

— Critical.
— Serious.

— Moderate.

Integration and test staff usually log the software errors they find
and pass them to the programmers to correct. The log is updated
as errors are corrected. By analysing the log, a count of total
software errors can be made. (If no log is kept this highlights an
immediate action you can take to improve quality.)

You can keep more detailed information on errors, for example,
relating errors to test data and to test plans. However, the three
categories SOR, SER, and NOF, and the three levels of seriousness,
are adequate to give useful measures of the quality of the
development output.

GATHERING ADDITIONAL INFORMATION ON THE
DEVELOPMENT ENVIRONMENT

Besides measuring the inputs and outputs of the development
process we need to collect further data on the environmental
factors that could influence the efficiency of the development
process. There could be tens, or even hundreds of such factors.
To contain the costs and efforts of collecting such data, they should
be limited to only the most important factors.

In PEP we extend the information we collect on projects to an
additional 40 or so items on the project-development environment.
These are listed on the PEP questionnaire. In consulting assign-
ments for individual organisations, QSM use an extended question-
naire that seeks information on some 80 characteristics. The data
collected from the extended questionnaire includes:

— Development policy.

— Formal methods and supporting techniques.
— Computer-based aids.

— Application complexity.

— Skills.

— Machine availability, response times, and turnaround times.

This data is analysed and interpreted across all projects to deter-
mine the essential characteristics of the development environ-
ment. Powerful insights result when these qualitative analyses are
combined with quantitative measures. We can determine those
factors unique to the organisation that are influencing productivity
and quality, and make the business case for tackling those factors
reducing productivity.

HOW THE ESSENTIAL NUMBERS CAN BE USED

If you collect data on all significant development projects, you can
consolidate the effort to give the total effort consumed in actual
development. If you subtract this from the total development staff
employed, the balance shows you how much work is taking place
in maintenance and general support. As a percentage the

© Butler Cox & Partners Limited 1988

Errors found is the easiest
measurement of technical quality

Collect data on only the most
important environmental factors

Chapter 2 System development metrics

figures can be used as a baseline to monitor use of resources on
a regular six-monthly or annual basis. Over time the figures give
an understanding of whether effective development effort is
increasing or not. Figure 2.2 illustrates this analysis.

Figure 2.2 Development effort
This figure shows how the percentage of available effort that is spent on
development changes over time.
60
55 - :
50 - =
45 | :
40
35
Percentage 4
of effort A
spent on 4
development £
1986/2 1987 1987/2 1988
©QsM

The basic input data can also be used to determine the proportions
of effort and time used over the feasibility, functional design, and
main build phases. PEP includes this as a key analysis. You can use
this analysis to compare your own projects with the data from other
organisations where such data is held in a reference database.

Using both the input and the output data you can explore the
complex relationships between size, time, effort, and quality in
the main build stage. The way this is done in PEP is described
in Chapter 4. This can provide insights into the behaviour of the
development team in response to time pressure or staffing con-
straints. Again, comparisons can be made with similar reference
data from other organisations.

The analysis may highlight an exceptional project with signifi-
cantly different development characteristics from your other
projects. These exceptional projects frequently provide very con-
vincing evidence of the interactions between size, time, effort,

and quality: for example, the cost (in effort and quality) of time
compression.

Another benefit from positioning the projects against measures
from a reference database is that you have a baseline for com-
paring plans for new developments. This comparison can help to
ensure that your planning assumptions are realistic and consistent
with previous projects. Taking this a step further, as new develop-
ments are completed, they can be compared against the original
baseline. In this way you can produce evidence to measure and
quantify real productivity and quality gains as well as update your
own baseline for future comparisons.

Hence, armed with the essential numbers, and with access to
similar reference data, you can gain an informed understanding
of development team behaviour within your own organisation.
You can model your development process and use the model to
help you manage the new software investments more effectively.

In the next chapter we describe some of the established reference
databases and the models which exist of the development process.

Metrics can be used as an aid for
planning, managing, and

improving

© Butler Cox & Partners Limited 1988

Chapter 3

Modelling the software
development process

In the context of this paper, the purpose of modelling the software
development process is to understand what determines develop-
ment effort and time. You can then use this knowledge in two
ways. First, you can improve productivity by changing those
factors which are having a negative effect. Second, you can use
the model to estimate the costs of new projects and to determine
realistic timescales. The payoffs can be huge as we illustrate in
Chapter 7.

There are two conceptual approaches to modelling. The empirical
approach first gathers the data from a large number of projects,
and then looks for patterns in it. The patterns are isolated and
progressively refined until a model can be constructed which
closely fits the collected data. The acid test of a model produced
empirically is to see whether new data conforms to the same
patterns. In contrast, the theoretical approach involves proposing
a theory about the way the software development process works
and about the factors influencing the productivity of development
teams. The next step is to collect data from a number of projects
that can be analysed to prove (or disprove) the theory.

Some empirical studies have identified as many as 176 variables
that correlate with measures of software development output.
However, a model which included that many variables would not
be practical or economic to use. Pareto’s 80/20 principle applies;
it is much better to construct a simple model which accounts for
most of the variance than to include all the variables which are
seen to have some effect, however small.

Furthermore, the observed correlations are not always simple
proportional or linear ones. Relationships between the variables
usually involve power functions.

DATA SOURCES FOR MODELLING

We now discuss some of the databases which can be used either
for empirical modelling or for testing theories. Of those databases
known to us, that assembled by QSM (including some of the data
from PEP assessments) is the largest, and most representative
source of reference data. The data in the PEP database is rapidly
growing and details development experience mainly in business
systems.

QSM DATABASE

QSM has accumulated data on over 4,000 systems, and from these
has compiled a carefully validated database of about 1,500
systems. This database of systems encompasses a very wide range
of application types, in particular, business, scientific, operating

© Butler Cox & Partners Limited 1988

There are two approaches to
modelling: theoretical and
empirical

Chapter 3 Modelling the software development
process

systems, telecommunications, process control, command and
control, radar, avionics, and realtime embedded firmware (ROM)
Microcode. Of the 1,500 systems, 60 per cent, or about 900 are
classed as management information or business systems.

Several hundred systems per year are being added to the database
as a result of consulting activities, research, and PEP assessments.
The database now contains statistics on the development of a total
of 117,000,000 lines of code in 76 different languages resulting
from 39,272 man-years of effort. In 1987 alone, 293 systems were
added of which 127 were business systems. The average size of
the systems that were added in 1987 was about 65,000 lines of
Cobol.

Rolling deletion is being started to maintain the relevance of the
data to current systems development environments and prac-
tices. The first cut will remove the systems that pre-date 1983,
approximately 15 per cent of the total.

Data that is now being added include a number of qualitative items
as well as quantitative measures. Details of the Productivity
Analysis Database System (PADS) data questionnaire can be seen
in the PEP data-capture instruction manual.

Although QSM do not currently provide an analysis of the data
by industry, an enhancement to allow such analyses is on the
development agenda. We would expect to see baselines for some
industries available in 1989. '

The QSM database contains statistics on development projects
from Europe, the USA, Japan, and Australia. To our knowledge,
the QSM database is the largest and most comprehensive collection
of software data that has been analysed and the results published.

PEP DATABASE

The Butler Cox PEP database follows the same format as the QSM
database. It now has over 200 systems that have been submitted
for analysis by PEP sponsors. Of these almost all are business
systems. We expect more than 400 systems to be added in 1988.

The Butler Cox PEP database currently contains statistics on the
development of 22,000,000 lines of code in 58 languages. Cobol
is reported as the primary language in over 50 per cent of the
projects. This data reports on over 1,100 man-years of effort. It
has been drawn from organisations in Belgium, France, Ireland,
the Netherlands, and the United Kingdom.

Many of these systems are being anonymously included in the QSM
database (only Butler Cox retains a key to the identification and
this only in order to allow correction of the data).

RADC DATABASE

Richard Nelson collected a large software database at the Rome
Air Development Center (RADC) covering more than 400 systems
(Putnam 1980). The systems presented an enormous range of sizes
from less than 100 source statements to more than a million.
Project duration ranged from less than a month to more than six
years. The projects varied in size from one man-month to 20,000
man-months of effort. The simple measure of source statements
per man-month ranged from 10 to several thousand. The data
spanned a wide range of applications.

10

The PEP database is relevant,
extensive, and evolving

© Butler Cox & Partners Limited 1988

Chapter 3 Modelling the software development
process

This data was analysed in various ways and project durations, total
man-months, and average number of staff correlated significantly
with the number of source statements. It is interesting to note that
no correlation was found between the source statements per man-
month and the size of the system.

IFPUG DATABASE

The International Function Point Users’ Group has gathered data
on 292 projects (Emrick 1987). This includes data from 12 com-
panies and encompasses 1,022 man-years of effort. The average
length of project was 10.5 months. The data is very detailed and
even includes the square-feet of working space used by the
development team.

The systems submitted covered a total of 26 languages. Cobol was
used as the primary language in 66 per cent of projects and no
other language exceeded five per cent of the total as the primary
language. Cobol was used as a secondary language in 27 per cent
of projects, followed by MARK IV (12 per cent), assembler (9 per
cent), and RAMIS (7 per cent).

Database management systems were used by 55 per cent of the
projects. IMS was the most widely used (77 per cent of systems),

followed by System 2000 (13 per cent), and IDMS-IDMS/R (6 per
cent).

SOFTWARE DATA LIBRARY

The Alvey Programme in the United Kingdom is running an
ambitious project in conjunction with the National Computer
Centre and a consortium of other organisations. This project, called
the Software Data Library, is collecting extensive data on software
development projects. Unfortunately, publicly available informa-
tion about the database is limited, but when the data is available
for research, we believe it will provide a valuable basis for examin-
ing the characteristics of software development in the United
Kingdom.

SYSTEMS DEVELOPMENT MODELS

Boehm (who developed the COCOMO model discussed later) lists
10 evaluation criteria with which to judge models. These are shown
in Figure 3.1 (overleaf).

When you are choosing a model for practical use you also need
to consider the extent to which the model has been validated with
data from real projects. If it is an empirical model, has it been
verified with a substantial set of alternate real data? If it is a more
theoretical model, has it been thoroughly tested with a large
enough database of real data?

In addition to the model developed by Putnam, used for PEP, there
are two other widely known approaches. These are the COCOMO
model which was derived empirically from data on a limited set
of projects, and the function-point model which has a more
theoretical basis.

THE COCOMO MODEL

The COnstructive COst MOdel (COCOMO) was developed by Barry
W Boehm of TRW, Inc, (Boehm, 1981). It is a model for software

© Butler Cox & Partners Limited 1988

11

Chapter 3 Modelling the software development
process

Figure 3.1 Boehm’s evaluation criteria for software development
models

1. Definition. Has the model clearly defined which cost it is estimating, and which
costs it is excluding?

2.Fidelity. Are the estimates close to the actual costs expended on the projects?

3. Objectivity. Does the model avoid allocating most of the software‘co‘st Ivan’ance
to poorly calibrated subjective factors (such as complexity)? That is, is it hard to
jigger the model to obtain any result you want?

4.Constructiveness. Can a user tell why the model gives the estimates it does? Does
it help the user understand the software job to be done?

5. Detail. Does the model easily accommodate the estimation of a sofiware system
consisting of a number of subsystems and units? Does it give (accurate) phase
and activity breakdowns?

6.Stability. Do small differences in inputs produce small differences in output cost
estimates?

7.Scope. Doss the model cover the class of software projects whose costs you need
to estimate?

8.Ease of Use. Are the model inputs and options easy to understand and specify?

9. Prospectiveness. Does the model avoid the use of information which will not be
well known until the project is complete?

10. Parsimony. Does the model avoid the use of highly redundant factors, or factors
which make no appreciable contribution to the result?”

cost estimation that was based on a carefully screened sample of
63 projects representing business, industry, government, and
commercial software-house organisations. It estimates the cost of
developing a proposed software product by:

— Estimating nominal development effort as a function of the
product’s size in thousands of delivered source instructions.

— Determining a set of effort multipliers from the product’s
ratings on a set of 15 attributes which Boehm refers to as ‘cost
drivers’.

— Multiplying the estimate of nominal effort by all of the
product’s effort multipliers to yield the estimated develop-
ment effort.

— Applying additional factors to the development effort
estimate to determine dollar costs, computer costs, annual
maintenance costs, and other cost elements.

There are three levels of complexity of the COCOMO model but
the fundamental approach is the same in each.

There are other popular models that have been derived empirically
in a similar way to Boehm’s. They include Price-S, developed by
RCA; SPQR, developed by Capers Jones; and Estimacs developed
by Howard Rubin. In all cases the approach is similar to Boehm’s
with differences in the number and nature of cost drivers and the
complexity of the calculations. However Price-S claims to model
all application types whereas SPQR and Estimacs are restricted
to business systems.

THE FUNCTION-POINT APPROACH

In modelling the development of business software, another
approach is well known. Using the theoretical approach to
modelling, Albrecht has developed a method for validating
estimates of the amount of effort needed to design and develop

12

© Butler Cox & Partners Limited 1988

Chapter 3 Modelling the software development
process

custom application software (Albrecht and Gaffney, 1983). The
approach involves listing and counting the number of external user

inputs, inquiries, outputs, and master files to be delivered by the
development project.

Each of the categories of input and output are counted indi-
vidually and then are weighted by numbers reflecting the relative
value of the function to the user/customer. The weighted sum of
the inputs and outputs Albrecht calls ‘function points’. Albrecht’s
weights were determined by ‘trial and debate’.

The premise of Albrecht’s approach is that the amount of function
to be provided by the application can be estimated from an
itemisation of the major components of data to be used or provided
by it. Albrecht hypothesises that this estimate of function is cor-
related with the amount of delivered lines of source code to be
developed and the effort needed. Indeed, independent data made
available to us supports Albrecht’s hypothesis that there well may
be a stable linear relation, a ratio, between function points and
lines of code. Furthermore, this data suggests the ratio is depen-
dent on the language employed and the nature of the application.

These findings imply that function points are a good measure of
system size. Thus effort and duration should bear similar nonlinear
relationships to the number of function points as they have been
demonstrated to do with lines of source code. An interim report
on the analysis of The International Function Point Users’ Group
(IFPUG) database, presented at the Atlanta meeting of [FPUG in
August 1987 by Ronald Emrick of GTE, appears to support this.
A summary comment he made at the meeting (as reported by Tony
Reid of QSM) was that the correlation of function points per man-
month with other productivity-related measures was ‘“‘just
miserable.”” The final version of this paper will be read by Emrick
at the IFPUG meeting in Dallas, Texas, on the 16 to 19 May 1988.

We recommend strongly that those organisations using or
contemplating the use of the function-point model obtain copies
of the final Emrick paper. We intend to cover the full results and
the appropriate use of the function-point approach in a subsequent
PEP publication.

We believe that the Putnam model, based on the QSM database,
provides the most practical tool for assessing system development
productivity in the current state of development of such models.
We describe it in more detail in the next chapter.

(o]

© Butler Cox & Partners Limited 1988

Function points are a good

measure of system size. Function

points per man-month is not a
good measure of productivity

13

Chapter 4

The Putnam approach

The Putnam approach is at the heart of PEP productivity assess-
ments. To get full value from PEP you need to understand how
the model underlying it was developed, how the outputs are
derived, and how PEP uses them. This chapter covers the basic
principles of Putnam’s approach. Full technical details can be
obtained from his published papers which are listed in the
bibliography.

Initially software development managers regarded manpower and
time as interchangeable. If they wanted to complete a project in
half the time they put twice as many people on it. During the 1970s
it became clear from the work of several researchers that this
approach does not work and that the relationships between the
factors that influence productivity are not simple linear functions:

— Fred Brooks showed, in his book The Mythical Marn Month
published in 1975, that manpower and time are indeed not
interchangeable.

— Peter Norden of IBM showed that hardware development
projects are composed of overlapping phases, and that these
phases have a well-defined manning profile that matches a
mathematical function — the Rayleigh curve.

— In 1976 Joel Aron of IBM recognised that the manpower in
large developments builds up in a characteristic pattern and
identified complexity and duration as key elements affecting
development productivity.

— In 1977 Walston and Felix of IBM collected consistent data
on 60 completed software developments. They show that the
variables of interest appear as complex power functions of
the size of the system.

— Larry Putnam extended the earlier work by Peter Norden of
IBM on hardware development to software projects. He found
that the Rayleigh curve also fitted not only the individual
components of a software development project but the entire
project. He also refined the power functions described by
Felix and Walston.

All this research was empirically based.

HOW THE PUTNAM APPROACH IS DERIVED

The Putnam approach divides development projects into three
basic phases. These phases can accommodate the development
processes in most organisations. The three basic phases are:

— Feastbility study, which stops at the point where the outline
requirements specification and the project plans are
approved. The data recorded in this phase are time and effort.

14

Manpower and time are not
directly interchangeable

© Butler Cox & Partners Limited 1988

Chapter 4 The Putnam approach

— Functional design, which continues to the point when all
functional design specifications, test plans, and management
plans are approved. It can overlap the main build phase. In
this phase, time, effort, peak staffing, and overlap with the
main build phase are recorded.

— Main build, which begins at the start of detailed logic design
and ends when the system reaches full operational capability.
Full operational capability is defined to be the point at which
all system and integration tests are successfully completed.
In the main build phase a substantial amount of data can be
recorded. Key items are time, effort, peak staffing, size of the

system, and errors from the start of integration test to first
operational capability.

Once the system is operational, additional data may be collected.
(This is sometimes referred to as the maintenance and operational
phase.) The data includes mean-time-to-failure, errors in the first
month after first operational use, and cumulative time and effort
spent by development staff in operations and maintenance.

In Putnam’s approach, his engineering analysis is applied to the
main build phase, where on average over 75 per cent of the
development effort reported by PEP sponsors is expended.

Putnam chose to use an empirical approach to identify the re-
lationships between the key management numbers. He found that
the most useful way of analysing the data is to relate six project
measures to the size of the project, expressed as effective source
lines of code (ELOC). These measures are:

— Duration, the time taken in months.

— Effort, in man-months (cost).

— Average manpower, defined as effort/duration.

— Average code production rate, in ELOC per month.
— Error rate.

— Productivity, in ELOC per man-month.

Figures 4.1 to 4.3 (overleaf), show the development project
duration, effort, and error rate plotted as a function of system
size for a wide variety of projects.

These graphs are plotted against logarithmic scales to
accommodate the wide range of values, and to cater for the
nonlinear relationships involved.

The slopes of the correlation lines demonstrate there are nonlinear
relationships between the dependent variables and the inde-
pendent variable, system size.

The graphs also show the wide variability on the data for any given
size of system. It indicates the absence of any simple pattern based
on a small number of variables. This is because of the great
variation in application types and in the time period of the
developments. However, a large database can be partitioned to
eliminate some of the major sources of variation including
application type, time, and developer efficiency. (Figure 4.4
overleaf, shows the application types used to partition the QSM
database.) Putnam’s results show that when this is done very
useful behaviour patterns do emerge.

© Butler Cox & Partners Limited 1988

Main build — 75 per cent of
development effort

15

Chapter 4 The Putnam approach

Figure 4.1 Software development schedule for main software
construction phase

This figure shows that the time taken increaseg with .the size of the system,
but there is a large variability in time for any given size.

Main build — duration
Mixed application database

1000 3

100 5

Duration .

(months) 10
1 T T T T T v rrren T 1 T TmimT T TTTTTIT

—k

10 100 1000 10000
Size (1,000's of ELOC)

Figure 4.2 Development effort for main software construction phase

This figure shows that the effort increases with the size of the system, but
there is wide variability in effort for any given size.

Main build — effort
Mixed application database

100000
10000
1000
100

Effort
(man-months) 10

O1 7T T L B B T T irrrT

100 1000 10000
Size (1,000's of ELOC)

Figure 4.5 shows the correlation between effort and system size
for an application type in the form of a trend line together with
two other lines. The middle line represents the least squares best
fit. The upper line is plus one standard deviation and the lower
minus one standard deviation. If the variability follows a normal
distribution 67 per cent of the data will be expected to lie between
plus and minus one standard deviation.

Standard slopes for the trend lines have been determined using
a combination of statistical curve fitting, and bootstrap statistical
simulation. The intercepts are determined directly from the
appropriate data set. Slopes and intercepts are then verified for
reasonable closeness of fit from all the available data in the
specified data set.

This procedure is necessary because pure curve fitting may
produce poor results when the data set is sparse, noisy, poorly

16

© Butler Cox & Partners Limited 1988

Chapter 4 The Putnam approach

Figure 4.3 Errors discovered from start of systems integration testing
through to full operational capability

This figure shows that the number of errors increases with the size of the
system, but there is wide variability.

Main build — errors
Mixed application database

100000
10000 +
1000
Number
of errors 100
10

4 T T

1 10 100 1000 10000
Size (1,000's of source statements)

Figure 4.4 Application types

Listed below are the 11 information
system application types covered by the
QSM database.

Microcode

Firmware (ROM)

Realtime embedded systems
Avionics systems

Radar systems

Command and control systems
Process control systems
Telecom systems

Systems code systems
Scientific systems

Business systems

Figure 4.5 Correlation between effort and system size for a single
application type

This figure shows the better correlation obtained once the data is partitioned
into different kinds of system.

100000 L
10000

1000

Effort

(man-months) More effort

100

Less effort

1 32— T

1 10 100 1000 10000
Size (1,000's of new and modified LOC)

distributed, and so on — all quite common. The trend lines have
been verified by independent data sets, worldwide, over a period
of seven years. They are continuing to be refined. They are reliable
and well represent software behaviour within our current
recording and measurement accuracy.

Putnam asserts that all six measures have a distinct characteristic
behaviour as system size increases. Duration, cost, manpower, code
production, and errors all increase with size. Productivity,
expressed as ELOC/man-month decreases with system size. All
these relationships are nonlinear.

Since Putnam’s six project measures increase with system size it
follows that all comparisons should take size into account. Figure
4.6 shows four projects of different sizes positioned with respect
to the trend lines. '

We conclude that these four projects required about one standard
deviation less effort than the average for other systems of the same

© Butler Cox & Partners Limited 1988

157

Chapter 4 The Putnam approach

Figure 4.6 Example of four systems positioned with respect to the
effort trend lines

This figure shows four projects of different size positioned relative to the
trend lines. They all require about one standard deviation less effort than the
average.

10000
Line of > 4
best fit
1000 e More effort
Effort
(man-months) 100
Less effort
10" Projects positioned
one st dev less effort
1 ! T 1 T TR T 1 T FTT10T T I T TTTI0IT T T T T rrrer
1 10 100 1000 10000

Size (1,000’s of new and modified LOC)
KEY:

These lines represent =1 standard deviations from the line of best fit.
Two-thirds of projects should lie between these boundaries.

size in the database. You can make similar comparisons for
duration, manpower, code production rate, productivity, and
error rate.

The trend lines also dispel myths about common rules-of-thumb
that abound in the industry and that are simplistically used to
make multimillion-dollar decisions. The rules-of-thumb invariably
assume some constant ratio between lines of code and effort based
on a very small data sample. For example, someone might use a
rate of 180 ELOC per man-month. Yet because of the strong
variation of ELOC per man-month with size, this would only be
reasonably valid for a very small range of sizes. We believe that
most of the rules-of-thumb we are aware of are dangerously
wrong, especially ELOC per man-month. Do not trust them!

PUTNAM’S SOFTWARE EQUATION

Putnam’s research shows that it is possible to derive a mathe-
matical relationship between the size of a project and the time
and effort needed to complete it. But the relationship is nonlinear,
not a constant ratio, and involves a parameter which is a measure
of productivity. From the relationship (the ‘software equation’)
we can obtain a computational formula for a productivity measure
which allows us to compare the productivities of different

development projects even if they are of different size or duration.
It is of the form:

Productivity measure = size
(effort/B)"*x (time)**

where time is in years, effort is in man-years, and B is a special
skills factor directly related to size (see Figure 4.7).

Given a certain level of productivity, the equation may be

rearranged to calculate the effort required to complete a project
of a given size.

18

Common rules of thumb are
dangerously wrong

The relationships between
system size and effort and time
are nonlinear

Figure 4.7 Relationship between
the skills factor, B, and
size of project

This figure shows how B, the special
skills factor, varies with system size.

~ Size (ELOC) B
515k 0.16
20k 018
30k 028

- 40k 034

50k 0.37

<70k 0.39

<
i

© Butler Cox & Partners Limited 1988

Chapter 4 The Putnam approach

Effort = B x size’

time* x (productivity measure)’

This equation shows that effort required for a project depends on
the duration as well as the size, and on the productivity measure
which applies in the particular development environment. The
measure accounts for all the factors operating in the development
environment. Both the effect of changes in productivity and
compressing or extending the scheduled time for a project have
dramatic effects on the effort required. Changes in them have large
financial consequences because of their critical effect on effort.

Because the productivity measure can take a very wide range of
absolute values, Putnam represents these values as a Productivity
Index (PI) using simple integers in the range 1 to 25. The
translation table for PIs up to 18 is shown in Figure 4.8. This is
more convenient to use than the measure in the equation as
smaller numbers can be visualised and remembered more easily.

Observe that only readily available information is required to
calculate the PI for completed projects and those in progress:

— The number of new and modified source lines of code (which
also allows us to determine B).

— Total man-months of effort.
— Total elapsed calendar months.

Low values of the PI are generally associated with low productivity
environments or highly complex projects. High values are
associated with high productivity environments, good manage-
ment, and well-understood straightforward projects.

Figure 4.9 shows the results of analysing QSM’s database of 1,500
systems by application type and calculating the average and
variability of PI. The applications are arranged in order of
decreasing complexity, most complex first.

Figure 4.9 Industry Pl base lines for 1987

This figure shows the average Pl and standard deviation by application type.
Application type ~ Average | Std. deviation
Microcode : 2 +/—1
Firmware (ROM) o 4 +/=2
Realtime embedded systems B =2
- Avionics systems : e : +/=2
Radar systems : : T =8
~Command & control systems 8 +-3
Process control sysiems i 9 < +/=3
Telecom systems SoHE e e 8
Systems code systems® S SR +/-3
Scientific systems]2 +/=3
Business systems G 15 /-4

INCREASES IN THE PRODUCTIVITY INDEX MEAN LARGE
IMPROVEMENTS IN PROJECT COSTS

Any movement in the PI has a dramatic impact on the time, total
effort, and hence total cost of development. The PI embraces all
the environmental factors impacting development. If you have a
low PI, you may find there are bottlenecks that are acting as brakes
to efficient production. Figure 4.10 shows a simple example of the

© Butler Cox & Partners Limited 1988

Information required to calculate
PI is readily available

Figure 4.8 Productivity index (Pl)
and the associated
productivity measure

This figure shows the translation from

productivity measures to productivity

index.
Productivity = |
measure Pl
754 il
987 2
5 ielalent 3
2 lsle ey A
1974 S
2584 6
BP0 i
4181 B
5186 5
6765 10
8362 11
10946 12
13530 18
17711 : 14
21882 e
-PBBET e
- 35422 - Gosnsohii
/46368 ; 18

Small increases in productivity
can generate enormous savings

19

Chapter 4 The Putnam approach

economic value of a PI increase. Note that this economic value
is high. An increase of one PI for a 30,000 line Cobol system saves
close to two hundred thousand dollars. When you invest in tools,
techniques, and management practices that relieve bottlenecks,
the PI goes up. The effects of high and low values for the PI are
summarised in Figure 4.11. An increase in the PI reflects decreases
in time, effort, manpower, cost, and errors.

Figure 4.10 Impact of changing PI
This figure shows the financial and time impact of increasing the PI.

Modest system of 30,000 Cobol SLOC
Labour rate — $60,000 man-year

Time
Pl Man-months (months) -~ Cost ()
9 146 17 ~ $729000
10 108 16 $537,000
11 80 14 $400,000

Impact: higher Pl = higher productivity

—
Figure 4.11 Pl Impact

This figure summarises the impact of changes in the Pl upon the project.

High PI Low PI

Less time More time

Less effort More effort

Fewer defects . More defects

Higher MTTD Lower MTTD

Fewer people More people

More SLOC/month Less SLOC/month
More SLOC/man-month Less SLOC/man-month

Figure 4.12 shows the effect on the resource and error profile of
a capital investment that boosts the PI from 8 to 10. Clearly the
PIis a measurement which management needs to understand and
exploit for its impact on a company’s profitability.

Figure 4.12 Impact of capital investment on resources and defect
profiles

This figure shows the reduction in resources and defects as a result of invest-
ments which raise the Pl from 8 to 10 for a product of a given size.

Manpower Pl=8 Manpower Pl=10
MBI=2 MBI =2

234 m-mths
426 m-mths 19 mths
23 mths
Defects/month Time Time
Defects/month
2003
defects
\“_ 1095 defects
Time Time
©Q0SM 1986

© Butler Cox & Partners Limited 1988

Chapter 4 The Putnam approach

THE MANPOWER BUILDUP INDEX (MBI)
REFLECTS TIME PRESSURES

The software equation also accounts for compression or extension
of the project schedule. The software equation shows that when
you compress the timescale for a project the effort increases
substantially. One of the reasons for this is that as you overlap tasks
you need more staff to work on the project, which means more
communications paths and more overheads. Putnam represents
the effect of time compression by using a measure which he calls
the Manpower Buildup Index (MBI). (In mathematical terms, this
is the manpower acceleration of the Rayleigh curve.)

He defines the MBI parameter as Effort/(B x Time®) where effort
is in man-years, time is in years, and B is the same special skills
factor as in the software equation. As with the PI, Putnam
expresses the MBI as a simple integer value (level) which is more
readily appreciated by business managers. The relationship
between the MBI parameter and the integer MBI levels is shown
in Figure 4.13.

Level 1 represents a slow staff buildup. The project will take the
longest and cost the least. Usually, it reflects a limited number
of staff available for development. Level 6 can be described as the
‘throw people at it’ approach. It is characterised by attempting
totally parallel task execution, with no staff or money limitations,
and assumes all design issues are well understood from the outset.
Level 6 is the fastest and most expensive staffing profile.

Figure 4.14 shows the economic impact of an increase in the MBI
If we were to increase the MBI from one to three in an effort to
compress the schedule it would more than double the effort, and
hence cost.

Figure 4.15 shows why the cost increases so dramatically. The
number of human communication paths for the Level 3 MBI is

Figure 4.15 Human communication paths

This figure illustrates why the cost increases so dramatically with changes in
the MBI.

Manpower

15

MBI = 3 peak staff = 12

Possible number of human
communication paths is — 66

5 (More overhead, ambiguities which
cause more errors)

Time

10

Manpower
15 :‘
= MBI = 1 peak staff = 5
Possible number of human
communication paths is — 18
(Less overhead, ambiguities which

s cause fewer errors)
6

s
o

—

Time

o
s (LA]

©QSM 1985

-

© Butler Cox & Partners Limited 1988

Compressed timescales cause
substantial increases in effort

The lower the rate of staff
buildup, the lower the cost of the
project

Figure 4.13 Manpower buildup index

This figure shows the relationship
between the simple MBI scale and the
computed values of the MBI parameters
from the data.

MBI parameter MBI level

73
14.7
269
550
890

2330

CAC R

Figure 4.14 Economic impact of MBI

This table shows the dramatic effect that
changing the MBI has on the effort
required.

(30,000 Cobol; PI = 11)

Effort
Time (man-
MBI (months) months)

1 16 : &5
2 14 80
3 18 120
4 4255 180
o A1 235

21

Chapter 4 The Putnam approach

about six times that for a Level 1 MBI. This also manifests itself
directly in quality terms by causing exponentially more defects.

Clearly, schedule compression is very expensive. This is important
to recognise because it is very commonly done, with little
appreciation of the consequences. Figure 4.16 summarises the
effects of high and low values of the MBI. The MBI is a parameter
that managers can influence enormously since it is within their
immediate control. The figure shows how modest changes in
schedule have a great impact on cost and quality.

Figure 4.16 MBI Impact

This figure summarises the impact of changing the MBI upon the project.

Low MBI HighmBi
Longer time Shorter time *

Fewer people More people

Less effort More effort

Fewer defects More defects

Longer MTTD Less MTTD :
Fewer LOC/month More LOC/month -
Higher LOC/man-month Lower L OC/man-month

USING THE PUTNAM APPROACH TO ANALYSE
THE PEP PROJECT DATA

PEP uses the Putnam approach to prepare the annual individual
productivity assessment reports for each PEP sponsor. This also
enables Butler Cox to create a PEP reference database which
increasingly reflects the particular characteristics of the PEP
group. Compared with the QSM database, the projects submitted
to PEP are much more homogenous. The applications are all
broadly similar and all were developed recently. As a result, we
are seeing great consistency between projects. This implies that
the predictions we can make for PEP sponsors on potential cost
savings will become even more accurate. Our analysis of this
database will also help us to identify the characteristics of the
sponsor group, and to be more responsive to their problems and
needs.

PEP uses two commercially available tools that implement the
Putnam approach: QSM’s PADS, the Productivity Analysis Data-
base System, and QSM’s SLIM, the Software Lifecycle Manage-
ment Methodology.

PADS is a tool that provides capabilities for recording and
analysing software project data, computing the PI and the MBI,
displaying the data against reference measures on trend lines, and
consolidating the recorded data. PEP sponsors are provided with
the PADS data-collection modules.

We use PADS to position the project data submitted by the sponsor
on the appropriate trend lines for the application type. We create
consolidation graphs, and compute productivity indices and
manpower buildup indices. Butler Cox consultants use these
graphs, tables, and indices as the basis for writing annual
individual productivity assessment reports for each PEP sponsor.

SLIM was designed to help senior managers estimate, control, and
measure software developments. It is a strategic planning and

22

© Butler Cox & Partners Limited 1988

Chapter 4 The Putnam approach

capital budgeting tool for development management. It allows
‘what if’ analysis of different development plan parameters.

We use SLIM to compute tables for each individual PEP assessment
that show the effects of changing the PI and the MBI in the context
of the sponsor’s development environment. These tables have two
purposes: first, to help PEP sponsors understand the costs and
benefits of their current approach to systems development;
second, to show the concrete benefits that can be achieved by
taking management actions to increase the productivity index and
reduce the manpower buildup index. We discuss in Chapter 7 how
these numbers will permit the sponsors to compute the return on
investment in software development.

© Butler Cox & Partners Limited 1988

23

Chapter 5

You can use the Putnam model to
plan and control projects

In Chapter 4, we described the Putnam approach and how this
uses the Productivity Analysis Database Systems (PADS) to com-
pute two fundamental measures, the Productivity Index (PI) and
the Manpower Buildup Index (MBI). These measures are cal-
culated using the basic data of development time, effort, and size
from completed projects.

Using the PI and MBI as inputs to Putnam’s software equation
together with the estimated size, you can plan the development
time and effort for new projects. You can also use ‘what if’
analyses to investigate management actions such as the effects
of shortening or lengthening the timescales. The SLIM software
product incorporates the software equation and makes the
calculation of practical alternatives easy.

To determine the development time and effort requires three
parameters:

— The PI, determined from the PI calculated for similar projects
completed within the organisation’s development environ-
ment.

— The MBI, which reflects the typical rate of manpower buildup
on previous projects, or that proposed for the new project.

— The size of the system to be developed in ELOC, including
estimates of the upper and lower limits of the expected size.

Figure 5.1 shows how these parameters can be used to plot
equations which relate effort to time both for the software
equation and for the MBI. Where they intersect represents the
minimum development time consistent with the given PI, MBI,
and mean size. The project can be planned to take longer with
consequent reduction in effort and cost.

Figure 5.1 SLIM minimum time calculation
This figure illustrates the minimum development time concept for a particular
size development at a given Pl and MBI.
Log effort .
man-months | Software equation Manpower buildup
s for given size/P Index equation
effort Intersect gives minimum time
maximum effort
Possible
solutions
Minimum Log months
24

Project planning requires only
three parameters

BUTLER COX

© Butler Cox & Partners Limited 1988

Chapter 5 You can use the Putnam model to plan
and control projects

Our software equation line is determined by the estimated mean
size of the software. In addition, Monte Carlo simulation (random
sampling based on different sizes within the uncertainty range)
determines a series of time and effort results. These techniques
enable the uncertainty in size to be reflected in uncertainties in
estimating development time and effort. Development always
involves uncertainty and risk. This approach quantifies risk
throughout all development stages since the estimates of size can
be updated as the project progresses.

‘WHAT IF?’ ANALYSIS

Once we have determined the minimum time for a given project
we can examine a number of practical alternatives to the develop-

ment plan and their effects on costs, quality, and timescale. For
example:

— Setting new schedules beyond the minimum time to exploit
the time/effort trade-off.

— Imposing management constraints on time, cost, and re-

sources to determine if development is feasible within these
constraints.

— Determining the size of system that can be developed in a
shorter timeframe.

— Quantifying the uncertainty in the plans to ensure the soft-
ware can be developed within a given timescale at a specific
level of risk.

— Specifying reliability goals, since SLIM also models software
errors.

— Evaluating the probability of the software development being
completed within the planned budgeted time and price.

The comparison we make of the model estimates with the appro-
priate reference database trendlines (an integral part of the SLIM
product) alerts the manager when plans are moving outside normal
development limits.

The model does not find an optimum development solution. Rather
it allows the user to explore practical alternatives rapidly and
arrive at planning estimates that are consistent with the specific
objectives and constraints faced by the project.

SET REALISTIC TARGET DATES

Our experience has shown that plans can be wildly unrealistic.
Over-optimistic plans are the most common but we frequently find
examples of over-conservative plans.

Using the software equation you can identify realistic target dates
and effort for the main build phase that are consistent with
achievable productivity, and project size. You can also take into
account management constraints, reliability, and risk.

SLIM outputs key milestone dates in the main build phase for:

— Reviewing all design elements, including detailed program
logic.

— Completing the initial coding (when all code can be expected
to be written but not yet unit tested, integrated, and system
tested).

© Butler Cox & Partners Limited 1988

Use the software equation to set

realistic target dates

25

T o e e e e .

Chapter 5 You can use the Putnam model to plan
and control projects

— Beginning the integration of the software units.
— Beginning the user-orientated system test.
— Installing the software on the operational hardware.

— Achieving full operational capability. (Based on empirical
analysis, this is the point at which 95 per cent of software
errors have been found and fixed.)

— The points at which 99 per cent and 99.9 of the total software
errors have been found and fixed.

The estimates for the two earlier project phases, feasibility and
specification/design, are formed based on the standard ratios
expected for the development size, time, and effort.

Once the development is planned at the macro level, the project
manager must break down the work and allocate this to individual
team members. The milestones provide a framework for drawing
up the detailed plan using such tools at the Project Manager
Workbench (PMW) or ARTEMIS.

MONITOR AND CONTROL PROGRESS

You can use the plans to track progress and exercise high-level
control. If you quantify the uncertainty in the plans you can track
performance within these uncertainty bounds. Where the reported
actuals exceed the uncertainty bounds then actions can be taken
either to replan the development or get the project back on track.

Milestones are essential for project tracking. If you miss a
milestone, it is often very difficult to catch up without reducing
the functionality of the system. You can use the model to replan
the project based upon the actual milestone achieved so that you
can evaluate the consequences in terms of the impending time
and cost overruns. You can then decide whether to reduce
functionality.

Milestones slippage is often caused by a substantial growth in the

requirements specification that has not been taken into account

in estimating the size range.

The high-level plans enable you to track:

— Total staff and cost.

— Cumulative staff and cost.

— End-product code.

— Cumulative end-product code.

— Software errors.

— Cumulative software errors.

— Mean-time to defect.

The data you need to track these measures is usually readily The data needed to track
available from the project managers on a monthly basis, without progress is readily available,
incurring any additional cost or effort. Provided the monthly and without additional cost
cumulative values are within the uncertainty bounds, and the

milestones are met, the project can be expected to complete within
the upper limits set on the schedule and budget.

26 © Butler Cox & Partners Limited 1988

Chapter 6

How to manage a productivity
improvement programme

If you want tec manage productivity improvement, the first step
is to use an objective method to measure your current productivity.
You can then compare your own performance against external
measures to determine how great an improvement is likely to be
achievable. Armed with this quantified information on your
current productivity, you can begin to find out which factors
significantly affect productivity in your own development
environment.

Use productivity measures to
decide:

— where you are

— what is achievable

— what are the important factors
affecting productivity

As we discussed in Chapter 2, there are many environmental
factors that influence productivity. However, QSM has found that

there are two factors that seem to have the most significant effect
in practice:

— The management of user involvement in the development
process.

— Policy and commitment to use formal methods.

In evaluating development groups, QSM have found only a few

cases where purely technical factors have been the key to

productivity improvement. It also seems that the experience and

skills of the development team are not usually major factors. QSM’s

research indicates that extremely good productivity results can .)
be achieved by relatively inexperienced people provided invest- ~ Preductivity is not a technical
ment is made in good methods underpinned by a sound and "¢

consistent policy regarding their use, and in adequate staff

training. Conversely, QSM have seen results that are well below

average from organisations that have very experienced technical

staff but no formal methods. These findings are encouraging

because they show that in many cases there are clear management

actions you can take to improve productivity.

It is seldom necessary to introduce new methods. In any develop-
ment organisation of a reasonable size, we normally find evidence
of individual projects which have been successful in using good,
practical methods. The key is to build on your successes and adopt
these proven methods throughout. If you are too willing to try all
possible methods without ever stabilising your development
environment, productivity will suffer.

Once you have identified the factors that influence your own
productivity, you can select and implement specific improvements.
You can then measure the effect of these improvements to see
whether productivity has improved, and by how much. Moreover,
you are able to set realistic targets, to track improvements, and
to demonstrate the improvement.

SETTING REALISTIC TARGETS

Our experience shows that if you take informed steps to imprpve, the
Productivity Index can be expected to increase by approximately

© Butler Cox & Partners Limited 1988 27

B e . T TS

Chapter 6 How to manage a productivity
improvement programme

one point every one and a half years. However, we only find this
rate of improvement occurring in organisations where a measure-
ment programme has been in place for several years: that is, in
organisations that have already taken a strong initiative to manage
productivity.

In our analysis of projects we also find characteristic values for
the Manpower Buildup Index, MBI, within an organisation. When
projects are developed with low MBI values this is often because
there are specific constraints on staffing. Occasionally, we find
development groups that have a uniform style of time compression
measured with high values of the MBI. In these cases we can
illustrate the cost of this management style in terms of increased
effort and increased errors. Organisations with this time-
compression style usually have no clear understanding of the
negative impact on cost and reliability.

The main costs of making significant improvements in productivity
and quality are predominantly incurred in education and training.
These costs are not simply of a financial nature, but include the
effort of changing management policy and attitudes when it comes
to dealing with the development processes including relationship
with users. The mutual understanding of the processes and
relationships can be put on an objective footing if the users and
developers can both appreciate how their contributions impact
productivity and quality.

The main costs are in education
and training

As an incentive to bring about change in your development
organisation, you can use the current average Productivity Index
to determine the minimum time and cost for an average-sized
development, consistent with your typical MBI. PEP uses SLIM
to calculate the benefits you would achieve in this typical project
by increasing the Productivity Index by one. We normally expect
savings from this increase to be at least $90,000 per project on
a typical PEP sponsor project costing $485,000. It is a straight-
forward calculation to determine the total potential benefits to
be gained by considering all the projects which you develop
annually as we show in Chapter 7.

These large financial incentives can motivate everyone involved
in the development process, users and system development staff
alike, to work together in order to bring about major savings. By
continuing to use the measures the savings can be demonstrated.
This is important since users naturally like to be shown that
improvement initiatives really do produce tangible benefits.

It should also be recognised that some initiatives to improve
productivity may involve little or no investment. For example one
large development group introduced a policy of not exceeding
more than 15 people on any software development team. Over the
last two years this policy has been shown to be effective by the
measures made using our techniques.

If we can identify the most significant negative factors in the
development environment and cost out the implications of
changing them, we can then build a business case that considers
the costs of the improvements offset against the benefits. In the
next chapter we show how the return on investment can be
calculated and used to justify the initiatives you would like to make
to bring about improved productivity and quality.

28 © Butler Cox & Pariners Limited 1988

Chapter 6 How to manage a productivity
Improvement programme

TRACKING PRODUCTIVITY IMPROVEMENT

The initial measures for each PEP sponsor provide a set of
baselines against which changes in project development pro-
ductivity can be tracked. As each new project is planned the

Productivity Index assumed in the plan may be verified against
the reference database.

Completion of each project gives the essential input and output
numbers. You can find out the final development time, total man-
months of effort, and the size of the software from the project
records which PEP uses to compute your Productivity Index and
Manpower Buildup Index. The project post-implementation review
can identify which factors were being addressed during the
development to improve productivity, and use the measures to
judge the effectiveness of these initiatives.

Each completed project can be entered into the database. As new
projects accumulate, they can be analysed to find out the overall
performance improvement within the organisation. For example,
you can select projects by their date of completion to demonstrate
changes in productivity and quality over time.

With the tracking process it is practical to tell whether pro-
ductivity initiatives and investments are indeed producing
benefits. We believe that if you are able to measure and demon-
strate the outcome of your productivity investments, management
will become more supportive and will help you to achieve further
improvements.

DEMONSTRATING THE IMPROVEMENT

Using the PEP measures, sponsors are able to demonstrate
improvement gains against:

— The QSM industry baselines.
— The PEP sponsors baselines.
— Previous years’ measures for their own projects.

PEP is now building a very substantial data processing reference
database for projects. This provides baselines for independent
comparison of productivity measures.

These reference measures, in particular with your own position,
provide clear evidence of the gains you are making. As we show
in Chapter 7 the benefits from these improvements can be
quantified in business terms. In our experience senior business
managers, with responsibility for investments in the systems
development area, readily respond to arguments based upon an
informed business case. While they may have no background or
understanding of systems development it is not difficult to interest
them in the management information that PEP provides. It is
worthwhile getting these measures understood and accepted by
senior management, as a means of monitoring and controlling the
company’s investment in software.

© Butler Cox & Partners Limited 1988

Communicate with senior
management using business terms

29

Chapter 7

Calculating and presenting the
benefits

If you want to sell the idea of software investment management
to general business management, you must speak in terms they
recognise and understand. In our experience, terms like function
points, lines of code, and similar IT-related jargon cause most
business managers to lose interest.

The primary aim is to demonstrate that money spent on improving
the development department has produced benefits by increasing
productivity. A secondary aim is to demonstrate any benefits
achieved through management actions that have not involved
investment such as taking action to reduce high MBIs.

We suggest that you use two simple methods of presenting the
benefits: cash savings and return on investment.

In this chapter we work through an example calculation based
on project averages from data submitted by PEP sponsors.

CASH SAVINGS

In the PEP assessment report we supply two tables that you can
use to present cash savings. They relate your average productivity
index and the manpower buildup index alternatives to the cost
of developing average size projects. The tables are based on the
data that your organisation submitted and reflect your unique
development environment. These tables can be used to show:

— How well the current systems are being developed. (Most PEP
sponsors have a PI which is above the average in the QSM
database.)

— What payback could be achieved from a change in policy to
reduce the time pressure (lower the MBI). This is particularly
relevant in cases where high MBIs have become the ‘style’
of development without business justifications.

— What payback would be achieved by investment to improve
the productivity index.

Figures 7.1 and 7.2 illustrate these tables for an ‘average’ PEP
sponsor. We have used the average project size, PI and MBI
calculated from the PEP database to give the baseline costs against
which the savings are calculated.

From Figure 7.1 we can see that the typical PEP sponsor could
save an average of $140,000 per system, a reduction of 29 per
cent, by taking action to reduce the MBI from 3 to 2. Since this
action relates only to the staffing profile, it can take effect
immediately on all subsequent systems you develop.

Cash savings and return on
investment are the keys to
communicating

vg
i

© Butler Cox & Partners Limited 1988

Chapter 7 Calculating and presenting the benefits

Assuming this initiative is taken, then from Figure 7.2 we see that
the typical PEP sponsor could save a further $90,000, a reduction

of a further 19 per cent, by taking actions to increase the
productivity index from 16 to 17.

Figure 7.1 The impact of changing the MBI at a Pl of 16

This figure shows the result of changing the MBI for a system size of 70487
ELOC and P! of 16. Figures are based upon the averages in 193 business

systems in the PEP database with a cost per man-month of $5,000.

Time Effort Cost per
MBI {months) (man-months) system ($)
5] -8 333 1855000
5 83 192 - 960,00_0 ;
4 10 146 - 730,000
3 11 97 485000
2 12 69 345000
1 133 46 230,000

Figure 7.2 The impact of changing the Pl at an MBI of two

This figure shows the result of changing the Pl for a system size of 70487 ELOC.
The data is based on the average of 193 business systems in the PEP database.
The MBI is one below the PEP average and cost per man-month is $5,000.

Time Effort 1 Cost per
Pl (months) (man-months) | system ($)
18 10 a7 185000
A7 | 52 260000
16 12 70 350,000
15 135 85 - 475000
14 15.. 120 : - 600,000

RETURN ON INVESTMENT

Just as business managers expect to know how their systems
development department compares with other, similar depart-
ments, they also want to know how the returns on investment in
different business units compare. To illustrate this we can calculate
the return on investment (ROI).

ROI is a yardstick applied in financial management. The ROI is
used in conjunction with other business factors to help managers

make sound judgements on investing in improvements to the
business.

You can use the ROI in two ways:

— First, you can demonstrate the potential ROI of any ex-
penditure you decide to make in the systems development
environment.

— Second, using the results of the second and subsequent years,
you can demonstrate the actual ROI you achieved from this
expenditure.

This use of the ROI is intended to demonstrate the benefits of
software investment management, that is, the return on invest-
ment in the software development environment. It is not intended
to show the benefit to the company of the systems being delivered,
or the related benefit of how much ‘business function’ is being
delivered.

@© Butler Cox & Partners Limited 1988

31

+ﬂ

Chapter 7 Calculating and presenting the benefits

CALCULATING THE ROI

ROl is calculated by taking the investment in the systems develop-
ment environment and dividing it into the benefits achieved (or
the expected benefits). In its simplest form it is the annual net
savings expressed as a percentage of the investment made.

Using the PEP tables the benefits can be calculated from the
reduction in systems development costs that can be achieved for
an average-sized system when you increase your typical PI by one.
This reduction would then be multiplied by the average number
of systems that have been (or are expected to be) completed in
the year to give the total benefits. Greater precision is possible
by making these calculations on a project-by-project basis.

In Figure 7.3 we show an example of computing the ROI, using
the data in Figures 7.1 and 7.2, and making assumptions about
cost of development per man-month.

Figure 7.3 Computing the ROI

This is a simple illustration of how to calculate the ROl on new investment in the systems
development department. Sponsors should note that the precise way in which such
calculations are made, and their results presented, vary with the accounting conventions
of each organisation.

In the illustration, we assume that the PEP sponsor has 100 staff in the systems
development department, and the fully loaded cost of each is $5000 per month. This
means that the total fully loaded staff cost is about $6,000,000 per annum,

After reviewing the PEP assessment results and identifying the factors most likely to
result in productivity improvements, systems development management decides to
improve the development environment. The once-off cost of the improvements is
$600,000, an amount equal to 10 per cent of the staff budget.

The department produces, on average, five systems per year, and being the absolutely
typical PEP sponsor, has an average system size of about 70,000 lines of code, an
average Pl of 16, and has already reduced its MBI to 2 from the average of 3.

Based on current QSM experience, an effectively managed productivity improvement
programme can improve the Pl by 1 in about one and a half vears.

The PEP sponsor can calculate the expected RO as follows:

The average cost of developing a typical sized system is found in the table in Figure
7.2. We are currently at a Pl of 16 and have 17 as our goal.

Pl Cost per system Benefit per system from an increase in PI
(%) (%)

16 350,000

17 260,000 90,000

Since it will take a year and a half to achieve the full PI point improvement we shall
achieve only about half the benefit in the first year. We shall also assume a ‘write off’
period of four years for the investment, so we shall only look at the benefits in the
next four years. Thus the benefits over the current costs for the five systems each
year for four years are:

Year Total benefit
(%)
1 225,000
2 450,000
3 450,000
4 450000
Total cost saving $1,575,000

The cost of making this improvement was $600,000. Hence, the average annual return
on that investment is:

1,575,000 — 600,000 x 10_0% per annum
600,000 4
= 40 per cent per annum

The benefit will be manifest in faster development of the systems with fewer staff needed.
This means that capacity has been made available for other uses.

32 © Butler Cox & Partners Limited 1988

Chapter 7 Calculating and presenting the benefits

PRESENTING THE BENEFITS

We suggest you present the benefits in the following way:

— First present the PEP tables in the assessment report,
reflecting your present productivity position. Present the PI
as the capital investment measure, and the MBI as a measure
of staffing buildup (or time pressure).

— Explain that the Plincreases in response to investment in the
departmental environment, and measures the overall
productivity of the development team.

— Present the benefits as actual (or expected) cost reductions.

— Present the achieved (or potential) increase in throughput due
to new investment and other changes you have made,
explaining that this means with improved productivity you
can deliver more system functionality in less time.

— Finally show the ROI you have computed. Restate that this
has been calculated based on empirical analysis of your data.

We find that this form of presentation is remarkably effective in
impressing general management. You must, of course, be prepared

to justify the linkages between the investments and the results
achieved.

By using quantitative measures of development productivity in
this way, and for planning and controlling both individual projects
and the system development process as a whole, you should be
able not only to achieve substantial business benefits but also to
demonstrate their impact to general managers.

© Butler Cox & Partners Limited 1988

33

References

Albrecht, Allan and Gaffney, John. Software Function, Source
Lines of Code, and Development Effort Prediction: A Software
Science Validation. Transactions of Software Engineering. IEEE
Vol SE-9, No. 6, November 1983.

Boehm, Barry. Improving Software Productivity. IEEE. 1981.

Boehm, Barry. Software Engineering Economics. Prentice Hall
Inc, Englewood Cliffs, New Jersey. 1981.

EIU Informatics report, quoted in the Financial Times. 4 October
1985.

Emrick, Ronald. Presentation by Ronald Emrick at the August
1987 International Function Point Users’ Group, Atlanta. 1987.
(Final version of the paper to be presented and published at the
May 1988 International Function Point Users’ Group Meeting at
Dallas.)

Putnam, Lawrence H. Progress in Modelling the Software Life
Cycle in a Phenomenological Way to Obtain Engineering Quality
Estimates and Dynamic Control of the Process: Tutorial; IEEE
Computer Society Publication EHO 165-1, pp 183-206, Computer
Society Press. October 1980.

Putnam, Lawrence H. Key Issues in Managing Software Cost and
Quality. QSM, McLean Virginia. 1987.

34

@© Butler Cox & Pariners Limited 1988

Butler Cox

Butler Cox is an independent international con-
sulting group specialising in the application of in-
formation technology within commerce, industry
and government.

The company offers a unique blend of high-level
commercial perspective and in-depth technical
expertise: a capability which in recent years has
been put to the service of many of the world’s
largest and most successful organisations.

The services provided include:

Consulting for Users

Guiding and giving practical support to organisa-
tions trying to exploit technology effectively and
sensibly.

Consulting for Suppliers
Guiding suppliers towards market opportunities
and their exploitation.

The Butler Cox Foundation
Keeping major organisations abreast of develop-
ments and their implications.

Multiclient Studies

Surveying markets, their driving forces and poten-
tial future.

Public Reports
Analysing trends and experience in specific areas
of widespread concern.

PEP

The Butler Cox Productivity Enhancement Pro-
gramme (PEP) is a participative service whose goal
is to improve productivity in application system
development.

It provides practical help to system development
managers and identifies the specific problems that
prevent them from using their development
resources effectively. At the same time, the pro-
gramme keeps these managers abreast of the latest
thinking and experience of experts and practi-
tioners in the field.

© Butler Cox & Pariners Limited 1988

The programme consists of individual guidance for
each subscriber in the form of a productivity
assessment, and also publications and forum
meetings common to all subscribers.

Productivity Assessment

Each subseribing organisation receives a confiden-
tial management assessment of its system develop-
ment productivity. The assessment is based on a
comparison of key development data from selected
subscriber projects against a large comprehensive
database. It is presented in a detailed report and
subscribers are briefed at a meeting with Butler
Cox specialists.

PEP Papers

Four PEP papers are produced each year. They
focus on specific aspects of system development
productivity and offer practical advice based on
recent research and experience.

Meetings

Each quarterly PEP forum meeting and annual
symposium focuses on the issues highlighted in the
PEP papers, and permits deep consideration of the
topics. They enable participants to exchange ex-
perience and views with managers from other
subscriber organisations.

Topics in 1988

Each year PEP will focus on four topics directly
relating to improving systems development and
productivity. The topics will be selected to reflect
the concerns of the subscribers while maintaining
a balance between management and technical
issues.

The topics to be covered in 1988 are:

— Managing productivity in systems develop-
ment.

— Tools for planning and managing systems
development.

— Staffing issues in systems development.

— Managing the maintenance mountain.

Butler Cox & Partners Limited
Butler Cox House, 12 Bloomsbury Square,
London WC1A 2LL, England
2 (01)8310101, Telex 8813717 BUTCOX G
Fax(01) 831 6250

Belgium and the Netherlands
Butler Cox BV
Burg Hogguerstraat 791
1064 EB Amsterdam
= (020) 139955, Fax (020) 131157

France
Butler Cox SARL
Tour Akzo, 164 Rue Ambroise Croizat,
93204 St Denis-Cedex 1, France
=(1)48.20.61.64, Télécopieur(1)48.20.72.58

Germany (FR)
Butler Cox GmbH
Richard-Wagner-Str. 13
8000 Minchen 2
= (089)5234001, Fax (089)523 35 15

United States of America .
Butler Cox Inc.
150 East 58th Street, New York, NY 10155, USA
= (212)891 8188

Australia/New Zealand
Mr J Cooper
Butler Cox Foundation
3rd Floor, 275 George Street, Sydney 2000, Australia
= (02)236 6161, Fax (02) 236 6199

Ireland
SD.Consulting
72 Merrion Square, Dublin 2, Ireland
= (01) 766088/762501, Telex 31077 EI,
' Fax(01) 767945

Ttaly
SISDO
20123 Milano, Via Caradosso 7, Italy
= (02)4984651, Telex 350309, Fax (02) 481 8842

The Nordic Region
Statskonsult AB
Stora Varvsgatan 1, 21120 Malmo, Sweden
= (040) 1030 40, Telex 12754 SINTABS

Spain
Associated Management Consultants Spain SA
Rosalia de Castro, 84-2°D, 28035 Madrid, Spain
= (91)723 0995

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41

