

BE,P
Managing Productivity in
Systems Development
PEP Paper 5, April 1988
by Larry Putnam, Jim Greene,
and Grenville Bingham

Larry Putnamis President of Quantitative Software Management
Inc, a firm specialising in software investment and quality
management. Mr Putnam has had extensive experience in industry
and governmentin planning the quantitative aspects of software
managementincluding cost, schedule, and reliability determina-
tion. Mr Putnam is the developer of SLIM, an automated software
estimating tool used by the Defense Department anda significant
number of companies in the computer industry.
MrPutnam has lectured extensively in the United States, Europe,
Japan, and Australia about the quantitative side of software
managementand planning. Heis the authorof a tutorial book for
the IEEE ComputerSociety, ‘Software Cost Estimating and Life
Cycle Control: Getting the Management Numbers’ as well as numerous
papers andarticles on software investment management.

Jim Greene is Managing Director of QSM-Europe. His career in
software engineering began in 1963. He has worked for major
companies and governmentorganisations in Europe and the USA,
at all managementlevels, over a wide spectrum of business areas.
Between 1968 and 1975 as a project manager with IBM, he
managed a wide range of developments on behalf of European
companiesas well as software for an IBM communications product.
Working as a management consultant since 1975, he has
specialised in software engineering investment strategies and
introduced the Software Life Cycle Management method into
Europe undera business agreementwith the US developer, Larry
Putnam.

Grenville Binghamis a Principal Consultant with Butler Cox. He
has extensive experience in software engineering from technical,
management, and business perspectives.
Hewasresponsible for managing the successful introduction and
operation of Butler Cox’s Productivity Enhancement Programme,
a service to improve systems development productivity.
He started his career in software engineering in 1967 in IBM
working on the design of OS and TSO. He has since worked in
technical, marketing, and management roles for various soft-
ware and systems housesin the United States and Europe. His
experience covers applications, communications, and systems
software in both the commercial and military spheres.

© Butler Cox & Partners Limited 1988

Larry Putnam

Jim Greene

Grenville Bingham

 Published by Butler Cox & Partners Limited
Butler Cox House

12 Bloomsbury Square
London WC1A 2LL

England

Copyright © Butler Cox & Partners Limited 1988
All rights reserved. No part of this publication may be reproduced by any method

without the prior consent of Butler Cox.

Printedin Great Britain by Flexiprint Ltd., Lancing, Sussex.

BE,P
Managing Productivity in
Systems Development
PEP Paper 5, April 1988
by Larry Putnam, Jim Greene,
and Grenville Bingham

Contents

1 Measurementis key to managing productivity in
systems development

Effective software investment managementis essential
Improving productivity is the main goal of software

investment management
Keeping numbersis essential to improving productivity
Purpose andstructure of this paper

2 System development metrics
Quantify the input and output and identify the

environmental influences
The staffing profile is a simple method of calculating
the input
Effective lines of code or function points can be used to

measure output
Errors can be used to measure output quality
Gathering additional information on the development

environment
How the essential numbers can be used

3 Modelling the software development process
Data sources for modelling
Systems development models

4 The Putnam approach
How the Putnam approachis derived
Putnam’s software equation
Increases in the productivity index mean large

improvements in project costs
The manpowerbuildup index (MBI)reflects time

pressures
Using the Putnam approach to analyse the PEP

project data

(Continued)

© Butler Cox & Partners Limited 1988

14
14
18
19
21
22

Contents

5 You can use the Putnam model to plan and control
projects 24

‘What if?’ analysis 25
Set realistic target dates 25
Monitor and control progress 26

6 How to manage a productivity improvement
programme at

Setting realistic targets 27
Tracking productivity improvement 29
Demonstrating the improvement 29

7 Calculating and presenting the benefits 30
Cash savings 30
Return on investment 31
Calculating the ROI 32
Presenting the benefits 33

References 34

© Butler Cox & Partners Limited 1988

0

Chapter 1
Measurement is key to managing
productivity in systems
development

“Tt is the mark of an instructed mindto rest satisfied with the
degree of precision which the nature of the subject admits and
not seek exactness when only an approximation of the truth is
possible. ”’
Aristotle
This paper describes the value of measurement in managing and
improving the efficiency of software development. It describes
various measures and approaches to applying them, and, in
particular, explains the measures and approach developed by
LH Putnam of Quantitative Software Management (QSM). This
approachis the basis for the system development productivity
assessments used in Butler Cox’s Productivity Enhancement
Programme (PEP) for its sponsors.

EFFECTIVE SOFTWARE INVESTMENT MANAGEMENT
IS ESSENTIAL
Investment in software by commercial organisations is huge and
growing. A recent study in the United States reported that high-
technology companiestypically spendfive per cent of their gross
revenue on software development (Putnam, 1987). A United
Kingdom survey predicted that the proportion of total system’s
value that is accounted for by software would grow from 50 per
cent in 1985 to 75 per cent in 1987 (EIU Informatics 1985).
Staff costs represent a large proportion of total software develop-
ment costs. So you can calculate a rough measure of your own
organisation’s investmentin software by multiplying the numbers
of staff involved in software development by the average staff
costs. For example, a department with 100 software development
staff would cost around $6 million per year, assuming an average
fully loaded staff cost of $60,000 per person per year.
Businesses are becoming increasingly dependent on IT. Systems
are migrating from their non-critical back-office role to the front
line of day-to-day business operations. The trend towardsonline
systems meansthat reliability is assuming growing importance.
Thecost offailure of an electronic funds transfer system, a stock
market trading system, or a factory management system can be
measured in thousands of dollars per minute. Strategically
important systems often need to be developed in a hurry in order
to respondto a brief window of competitive opportunity. Unfor-
tunately, pressures to reduce timescales tendto reducereliability
as well, turning advantage into disadvantage.
Software investment managementis the term weuseto describe
methods of reducing the costs of software development and

© Butler Cox & Partners Limited 1988

Software comprises 75 per cent
of systems value

Software investment management
is important to the business

Chapter 1 Measurementis key to managing
productivity in systems development

controlling the reliability of the finished product. Software
investment managementshould notonly be the concern of systems
development managers. Thescale of the expenditure on software
and therisks of failure imply that general business management
should also take a keen interest in making sure this investment
is managed effectively.

IMPROVING PRODUCTIVITY IS THE MAIN GOAL OF
SOFTWARE INVESTMENT MANAGEMENT
When viewing the systems development function, generalmanagement is usually concerned with the efficiency of thesystems developmentactivity and the effectiveness of systemsasdemonstrated by the impact that they have on the operations ofthe organisation. In this paper we are concerned only with the
first of these objectives, efficiency.
Productivity is the key measurementof efficiency. In systemsdevelopmentit is a measure of how well the systems developmentprocessis carried out, that is, the output achievedfor a given input(or cost).
Many different ways of measuring systems developmentproductivity have been proposed. One commonly used measureis system size/effort. This seems intuitively right because systemsize is closely related to functionality and effort is a good indicationof cost. It is a simple relationship andit is also attractive becauseboth system size and effort are easy to measure. However, researchshowsthat if you measure productivity in this way it will varysignificantly according to the size and timescale of the project.Weneedto eliminate these major sourcesof variation so that wecan compare productivity on projects of different sizes and withdifferent timescales. In Chapter 4 we discuss how the productivityindex, the measure developed by Putnam and usedin Butler Cox’sPEP, has been constructed to meet this need.
Productivity improvement is much easier to explain to generalbusiness managers. A productivity improvement has been madewhen you produce an equal or better quality system forless effortby either using fewer people,orless time, or less money (or somecombination of these). This is the main goal of software investmentmanagement. One of the main aimsofthis paperis to help youpresent the results of improving system development to seniorgeneral management in these terms.
KEEPING NUMBERSIS ESSENTIAL TO IMPROVINGPRODUCTIVITY
If you want to improve productivity, you need a way for dis-tinguishing those projects in which the development team wasrelatively productive from those in which it was relatively un-productive, and for identifying thosefactors that have contributedto greater productivity. If you make this comparison betweendifferent projects within your own organisation you can transferthe technical and management techniques used by the most pro-ductive project teamsto all the other teamsto help raise the overallproductivity of the systems development department. If youcomparethe productivity of your own projects with those of otherorganisations, you will be able to learn from their successes and

Productivity improvementis themain goal of software investment
management

Productivity improvement
requires measurement

© Butler Cox & Partners Limited 1988

Chapter 1 Measurement is key to managingproductivity in systems development

failures. However, you can only make these comparisons if you
collect and analyse the numbers needed to measure productivity.
Keeping numbers has other benefits. You can use them to:
— Estimate the costs of new projects.
— Plan projects on an informed andrealistic basis, and so reduce

cost overruns and schedule slippages.
— Assess the implications of reducing project timescales, or

conversely, assess the consequences of extending the time-
scale and reducing the size of the team.

— Measure quality and track improvementsin the quality of the
systems you produce.

In our experience with PEP sponsors, the benefits of keeping the
appropriate numbers far outweigh the minimal cost and effort
involved.

PURPOSE AND STRUCTURE OF THIS PAPER
The aim of this paper is to explain why measurementis key to
managing productivity, and in particular, the purpose and scope
of the measurements used in PEP by:
— Describing the latest thinking on productivity measurement.
— Providing the PEP sponsors with a deeper understanding of

the Putnam approach to productivity, which is used as the
basis of the PEP measures.

— Showing how the PEP measurescan be applied to managing
projects and to managing the systems developmentfunction.

— Showing howto calculate the benefits to be derived from the
implementation of a productivity improvement programme
and how to present these benefits to senior management.

Chapter 2 deals with system development metrics — what numbers
to keep, where to get them, and how to use them.
Chapter 3 describes the various approaches and modelsthat can
be used for measuring productivity.
Chapter4 presents the Putnam approach,its history, how it was
derived, what it says about managing productivity, how PEP uses
it, and how you can use the PEP measures.

Chapter 5 explains how to use the Putnam approachto plan and
control projects, to identify the minimum developmenttime, to
set realistic target dates, and to monitor and control progress.

Chapter 6 showshowto set productivity targets, how to improve
productivity and quality, how to track productivity improvement,
and how to measure the improvement.

Chapter 7 discusses the use of return on investment (RODas a
powerful meansofjustifying the cost of your productivity improve-
ment programme to general management.

© Butler Cox & Partners Limited 1988

Chapter 2
System development metrics

“But we don’t keep data’’ is a common response when wefirst
discuss productivity measures, or metrics, with a systems develop-
ment group. Indeed the PEP programmehashighlighted just how
few organisations have eventhe basic data to hand. At the other
extreme some companies havekept a lot of data at great expense,
only to find it difficult and time-consuming to analyse and
understand.
Neither extreme makes commercialsense. If you want to improveproductivity you must collect data. But the data should be readilyavailable as a natural part of development and should be economicto collect.
Also, if such data has been provento give value,there is an addedincentive to collect it. Commercial organisations are more likely
to collect the data when benefits will result.
In this chapter we set out the key numbers which you need tokeep, and describe simple methods of collecting them. Thenumbers quantify the inputs and outputs of the developmentprocess and the environmentalfactors affecting the developmentprocess.

QUANTIFY THE INPUT AND OUTPUT AND IDENTIFYTHE ENVIRONMENTAL INFLUENCES
The essential numbers are measures of the input (investment)madeto generate a given output(the system). The inputis thecost of employing a development team to create the new orenhanced system within a given timescale. These costs can becalculated by using fully loadedstaff costs which include othercosts such as development hardware, software tools, and so on.
Outputs from each project stage include specification and designdocuments, detailed software design and development, andfinally, operation of the new or amended system. The outputistangible. Most simply, it can be seen as the source statements thatconstitute the delivered system. These statements are the endproductof the input to the project, the development team. Youcan measure the functionality of the system encapsulated in thesource statements in a numberof ways. Theseare discussed laterin this chapter.
Quality is also a vital output measure. The errors found in thesystems are a simple and measurable indication of quality.
There are many complex environmental factors at work that caninfluence the development team’s performance and the qualityof the finished product. Management style, the use of formal

The development environmentis
complex. Isolating the key
factors is essential

© Butler Cox & Partners Limited 1988

Chapter 2 System development metrics

methods, and machine availability are just a few examples. Some
of these factors will be outside your control; others, you can
influence or change.
We believe that only by calculating and analysing the productivity
measures, can you identify and isolate the factors that influence
productivity in your unique environment. Howeveryou mustfirst
record information on the key environmentalfactors so that you
can use the productivity measuresas the magnifying glass to show
you which factors have a significant influence.

THE STAFFING PROFILE IS A SIMPLE METHOD OF
CALCULATING THE INPUT
The straightforward way to calculate the total man-months of
effort is to use the staffing profile for each stage of the project.
The project manager can usually sketch this out in five to ten
minutes. There is no need to go into detail in distinguishing
between productive and non-productive contributions as these
broad-brushfigures are adequate for projects with 18 man-months
effort or more. We find the balance of total productive versus non-
productive man-days per person in a year is usually very stable,
the average being around 200 to 210 productive man-days. The
staffing profile is straightforward, requireslittle effort to collect,
and it is readily available.
You could assemble much more detailed data, usually at great cost,
by calculating individual resource contributions, and distinguishing
between productive and non-productive time (holidays, training,
and so on). This approachrelies on a time-recording system and,
usually, cost accounting. Based on our experience, we are now
cautious about using cost-accounting data. The information is
often inaccurate, too detailed, and lacking suitable summaries. To
analyse this data usually takes muchlonger than asking the project
managers to sketch the staffing profile.
Asan instance of the broad-brush numbersthat can be collected,
Figure 2.1 sets out the staffing profile constructed over the key
development stages feasibility, specification and design, and
main build. Total staff used each month are shown without
detailing who wasonholiday, absent, or engaged in non-productive

Figure 2.1 System developmentstages:staffing profile

This figure showstherelative magnitudesof staff sizes used in the
development stages defined for PEP analyses.
Number
of staff

 yy
WY i Y Time

EeA\S y (months)
Feasibility Specification Main software developmentbuild: Date

and design detailed design/code/unit test/ live
integration/system test

©QSM

© Butler Cox & Partners Limited 1988.

Simple, broad-brush metrics are
sufficient for measuring input

Chapter 2 System development metrics

activities. You will notice that some of the developmentstages
overlap. The extent of this overlap needsto be assessed (but only
approximately) because separate figures are required for the effort
used in each phase.

EFFECTIVE LINES OF CODE OR FUNCTION POINTS
CAN BE USED TO MEASURE OUTPUT
Counting the numberofeffective lines of code (ELOC) is one of
the easiest ways of measuring the output end product. Many PEP
sponsors automatethe collection of the ELOCstatistics by writing
a program that scans the appropriate libraries to count lines of
code based on the followingrules:
— Linesare indicated by delimiters.
— Only executable lines are counted, not expansions.
— Comments are not counted.
— Delivered lines only are counted (those eventually thrownaway are ignored).
— New or amendedlinesonly are counted, not unchangedlines.
— Data definitions are counted once only.
Alternatively, you can take a sample of programsortransactions.Numbers accurate to the nearest 1,000 ELOC are adequate formeaningful analysis. This consistent collection of sizing dataquantifies the output produced by the development team.
The 200-plus projects analysed to date in PEP accountfora totaloutput of some 22 million ELOC. Cobol and PL/1 make up 18million of them and fourth-generation languages another 2.5million ELOC.
PEPsponsors are able to gather this information on ELOC quicklyand, at the macroscopiclevel, accurately. Few sponsors have anyother measure of the developed functionality available.
Another measure of the end product that is used by some PEPsponsorsis the total numberoffunctionpoints. This approach wasdeveloped by Albrecht and involves counting external user inputs,enquiries, outputs, and master files to be delivered by thedevelopmentproject. Guidelines are available for counting theseJunction points (which Albrecht considers to be the outwardmanifestation of any application). However, countingis not readilyautomated although you can use a spreadsheet to sum the values.We return to the use of function points in the next chapter.
ERRORS CAN BE USED TO MEASUREOUTPUT QUALITY
The technical quality of the end product can be measured bycounting the numberoferrors. In practiceit is useful to distinguishbetween three categories of error:
— Statement of Requirement Errors (SORs), essentially high-lighting errors found in the requirements specifications.
— Software Errors, (SERs), usually those bugs found during theintegration and system test.
— No Faults, (NOFs), a null category which is invaluable toidentify misunderstandingby testers or end users of what thesystem is required to do.

Effective lines of code (ELOC) is
the easiest measurementof size

© Butler Cox & Partners Limited 1988

Chapter 2 System development metrics

Within these categories you need to distinguish levels of serious-
ness. Usually, three levels are sufficient:
— Critical.
— Serious.
— Moderate.
Integration and test staff usually log the softwareerrors they find
and pass them to the programmersto correct. The log is updated
as errors are corrected. By analysing the log, a count of total
software errors can be made.(If no log is kept this highlights an
immediate action you can take to improve quality.)
You can keep more detailed information on errors, for example,
relating errors to test data and to test plans. However, the three
categories SOR, SER, and NOF, and thethreelevels of seriousness,
are adequate to give useful measures of the quality of the
development output.

GATHERING ADDITIONAL INFORMATION ON THE
DEVELOPMENT ENVIRONMENT
Besides measuring the inputs and outputs of the development
process we need to collect further data on the environmental
factors that could influence the efficiency of the development
process. There could be tens, or even hundreds of such factors.
To contain the costs and efforts of collecting such data, they should
be limited to only the most important factors.
In PEP weextend the information wecollect on projects to an
additional 40 or so itemson the project-development environment.
Theseare listed on the PEP questionnaire. In consulting assign-
mentsfor individual organisations, QSM use an extended question-
naire that seeks information on some80characteristics. The data
collected from the extended questionnaire includes:
— Developmentpolicy.
— Formal methods and supporting techniques.
— Computer-based aids.
— Application complexity.
— Skills.
— Machineavailability, response times, and turnaroundtimes.
This data is analysed andinterpretedacrossall projects to deter-
mine the essential characteristics of the development environ-
ment. Powerful insights result when these qualitative analyses are
combined with quantitative measures. We can determine those
factors unique to the organisation thatare influencing productivity
and quality, and make the business case for tackling those factors
reducing productivity.

HOW THE ESSENTIAL NUMBERSCAN BE USED
If you collect data onall significant developmentprojects, you can
consolidate the effort to give the total effort consumedin actual
development.If you subtract this from the total developmentstaff
employed, the balance shows you how muchworkis taking place
in maintenance and general support. As a percentage the

© Butler Cox & Partners Limited 1988

Errors found is the easiest
measurementof technical quality

Collect data on only the most
important environmental factors

Chapter 2 System development metrics

figures can be used as a baseline to monitor use of resources on
a regular six-monthly or annualbasis. Over time the figures give
an understanding of whether effective development effort is
increasing or not. Figure 2.2 illustrates this analysis.

Figure 2.2 Developmenteffort
This figure shows how the percentage ofavailable effort that is spent on
development changesover time.

60555045
4035

Percentage
ofeffortspent on

development
 + T 1

1986/2 1987 1987/2 1988
©QSM

Thebasic input data can also be used to determine the proportionsof effort and timeusedoverthefeasibility, functional design, andmain build phases. PEPincludesthis as a key analysis. You can usethis analysis to compare your ownprojects with the data from otherorganisations where such datais held in a reference database.
Using both the input and the output data you can explore thecomplex relationships betweensize, time, effort, and quality inthe main build stage. The waythis is done in PEP is describedin Chapter4. This can provide insights into the behaviour of thedevelopment team in response to time pressure or staffing con-straints. Again, comparisons can be made with similar referencedata from other organisations.
The analysis may highlight an exceptional project with signifi-cantly different development characteristics from your otherprojects. These exceptional projects frequently provide very con-vincing evidence of the interactions between size, time, effort,and quality: for example, the cost(in effort and quality) of timecompression.
Anotherbenefit from positioning the projects against measuresfrom a reference databaseis that you havea baseline for com-paring plans for new developments. This comparison can help toensure that your planning assumptionsarerealistic and consistentwith previousprojects. Takingthis a step further, as new develop-ments are completed, they can be compared against the originalbaseline. In this way you can produce evidence to measure andquantify real productivity and quality gains as well as update yourownbaseline for future comparisons.
Hence, armed with the essential numbers, and with access tosimilar reference data, you can gain an informed understandingof development team behaviour within your ownorganisation.You can model your development process and use the modeltohelp you manage the new software investments more effectively.
In the next chapter we describe someofthe established referencedatabases and the models whichexist of the developmentprocess.

Metrics can be used as an aid for
planning, managing, and
improving

© Butler Cox & Partners Limited 1988

Chapter 3
Modelling the software
development process

In the context of this paper, the purpose of modelling the software
development processis to understand what determines develop-
ment effort and time. You can then use this knowledge in two
ways. First, you can improve productivity by changing those
factors which are having a negative effect. Second, you can use
the modelto estimate the costs of new projects and to determine
realistic timescales. The payoffs can be hugeas weillustrate in
Chapter 7.
There are two conceptual approachesto modelling. The empirical
approachfirst gathers the data from a large numberof projects,
and then looks for patterns in it. The patterns are isolated and
progressively refined until a model can be constructed which
closelyfits the collected data. The acid test of a model produced
empirically is to see whether new data conforms to the same
patterns. In contrast, the theoretical approach involves proposing
a theory about the way the software development process works
and about the factors influencing the productivity of development
teams. The next step is to collect data from a numberof projects
that can be analysed to prove (or disprove) the theory.
Some empirical studies have identified as many as 176 variables
that correlate with measures of software development output.
However, a model which included that many variables would not
be practical or economic to use. Pareto’s 80/20 principle applies;
it is much better to construct a simple model which accounts for
most of the variance than to include all the variables which are
seen to have some effect, however small.
Furthermore, the observed correlations are not always simple
proportionalor linear ones. Relationships between the variables
usually involve power functions.

DATA SOURCES FOR MODELLING
We now discuss some of the databases which can be used either
for empirical modelling or for testing theories. Of those databases
knownto us, that assembled by QSM (including someof the data
from PEP assessments) is the largest, and most representative
source of reference data. The data in the PEP databaseis rapidly
growing and details development experience mainly in business
systems.
QSM DATABASE
QSM has accumulated data on over 4,000 systems, and from these
has compiled a carefully validated database of about 1,500
systems.This database of systems encompasses a very wide range
of application types, in particular, business, scientific, operating

© Butler Cox & Partners Limited 1988

There are two approaches to
modelling: theoretical and
empirical

Chapter 3 Modelling the software development
process

systems, telecommunications, process control, command and
control, radar, avionics, and realtime embedded firmware (ROM)
Microcode. Of the 1,500 systems, 60 per cent, or about 900 are
classed as management information or business systems.
Several hundred systemsper year are being added to the database
as a result of consulting activities, research, and PEP assessments.
The database now containsstatistics on the developmentofa total
of 117,000,000 lines of code in 76 different languages resulting
from 39,272 man-yearsof effort. In 1987 alone, 293 systems were
added of which 127 were business systems. The average size of
the systems that were added in 1987 was about 65,000 lines of
Cobol.
Rolling deletion is being started to maintain the relevance of the
data to current systems development environments and prac-
tices. The first cut will remove the systems that pre-date 1983,
approximately 15 per cent of the total.
Data that is now being addedinclude a numberofqualitative items
as well as quantitative measures. Details of the Productivity
Analysis Database System (PADS) data questionnaire can be seen
in the PEP data-capture instruction manual.
Although QSM do not currently provide an analysis of the databy industry, an enhancement to allow such analyses is on thedevelopment agenda. We would expect to see baselines for someindustries available in 1989.
The QSM database containsstatistics on development projectsfrom Europe, the USA, Japan, and Australia. To our knowledge,the QSM databaseis the largest and most comprehensive collectionof software data that has been analysed and the results published.
PEP DATABASE
The Butler Cox PEP databasefollows the same format as the QSMdatabase. It now has over 200 systems that have been submittedfor analysis by PEP sponsors. Of these almost all are businesssystems. We expect more than 400 systems to be added in 1988.
The Butler Cox PEP database currently containsstatistics on thedevelopment of 22,000,000 lines of code in 58 languages. Cobolis reported as the primary language in over 50 per cent of theprojects. This data reports on over 1,100 man-years of effort. Ithas been drawn from organisations in Belgium, France, Ireland,the Netherlands, and the United Kingdom.
Manyof these systems are being anonymously included in the QSMdatabase (only Butler Cox retains a key to the identification andthis only in order to allow correction of the data).
RADC DATABASE
Richard Nelson collected a large software database at the RomeAir Development Center (RADC)covering more than 400 systems(Putnam 1980). The systems presented an enormous range of sizesfrom less than 100 source statements to more than a million.Project duration ranged from less than a month to more than sixyears. The projects varied in size from one man-month to 20,000man-monthsof effort. The simple measure of source statementsper man-month ranged from 10 to several thousand. The dataspanned a wide range of applications.

10

The PEPdatabaseis relevant,
extensive, and evolving

© Butler Cox & Partners Limited 1988

Chapter 3 Modelling the software development
process

This data was analysed in various ways and project durations, total
man-months, and average numberofstaff correlated significantly
with the numberof source statements.It is interesting to note that
no correlation was found betweenthe source statements per man-
month and the size of the system.
IFPUG DATABASE
The International Function Point Users’ Group has gathered data
on 292 projects (Emrick 1987). This includes data from 12 com-
panies and encompasses1,022 man-years of effort. The average
length of project was 10.5 months. The data is very detailed and
even includes the square-feet of working space used by the
development team.
The systems submitted covered a total of 26 languages. Cobol was
used as the primary language in 66 per cent of projects and no
other language exceededfive per cent of the total as the primary
language. Cobol was used as a secondary languagein 27 per cent
of projects, followed by MARKIV (12 per cent), assembler (9 per
cent), and RAMIS(7 per cent).
Database management systems were used by 55 per cent of the
projects. IMS was the most widely used (77 per cent of systems),
followed by System 2000 (13 per cent), and IDMS-IDMS/R (6 per
cent).
SOFTWAREDATA LIBRARY
The Alvey Programme in the United Kingdom is running an
ambitious project in conjunction with the National Computer
Centre and a consortium of other organisations. This project, called
the Software Data Library, is collecting extensive data on software
development projects. Unfortunately, publicly available informa-
tion about the databaseis limited, but whenthe datais available
for research, we believe it will provide a valuable basis for examin-
ing the characteristics of software development in the United
Kingdom.

SYSTEMS DEVELOPMENT MODELS
Boehm (who developed the COCOMO modeldiscussedlater)lists
10 evaluationcriteria with which to judge models. These are shown
in Figure 3.1 (overleaf).
Whenyou are choosing a model for practical use you also need
to consider the extent to which the modelhas been validated with
data from real projects. If it is an empirical model, has it been
verified with a substantial set of alternate real data?If it isa more
theoretical model, has it been thoroughly tested with a large
enough database of real data?
In addition to the model developed by Putnam,used for PEP, there
are two other widely known approaches. These are the COCOMO
model which was derived empirically from data on a limited set
of projects, and the function-point model which has a more
theoretical basis.
THE COCOMO MODEL
The COnstructive COst MOdel (COCOMO)was developed by Barry
W Boehm of TRW,Inc, (Boehm, 1981). It is a model for software

© Butler Cox & Partners Limited 1988 Ta

Chapter 3 Modelling the software development
process

Figure 3.1 Boehm’s evaluation criteria for software development
models

“4. Definition. Has the modelclearly defined whichcostit is estimating, and which
costs it is excluding?

2.Fidelity. Are the estimates close to the actual costs expended on the projects?
3. Objectivity. Does the model avoid allocating mostof the software cost variance

to poorly calibrated subjective factors (such as complexity)? Thatis, is it hard to
jigger the modelto obtain any result you want?

4.Constructiveness. Can a usertell why the modelgivesthe estimates it does? Does
it help the user understand the software job to be done?

5. Detail. Does the modeleasily accommodatethe estimation of a software system
consisting of a number of subsystems and units? Doesit give (accurate) phase
and activity breakdowns?

6. Stability. Do small differences in inputs produce small differences in output cost
estimates?

7.Scope. Does the modelcovertheclass of software projects whose costs you needto estimate?
8. Ease of Use. Are the modelinputs and options easy to understand and specify?
9. Prospectiveness. Does the model avoid the useof information whichwill not bewell known until the project is complete?

10. Parsimony. Does the model avoid the use of highly redundantfactors, or factorswhich make no appreciable contribution to the result?”

cost estimation that was based on a carefully screened sample of63 projects representing business, industry, government, andcommercial software-house organisations. It estimates the cost ofdeveloping a proposed software product by:
— Estimating nominal developmenteffort as a function of theproduct’s size in thousandsof delivered source instructions.
— Determining

a

set of effort multipliers from the product’sratings on a set of 15 attributes which Boehm refers to as ‘costdrivers’.
— Multiplying the estimate of nominal effort by all of theproduct's effort multipliers to yield the estimated develop-menteffort.
— Applying additional factors to the development effortestimate to determine dollar costs, computercosts, annualmaintenance costs, and other cost elements.
There are three levels of complexity of the COCOMO model butthe fundamental approach is the same in each.
Thereare other popular models that have been derived empiricallyin a similar way to Boehm’s. They include Price-S, developed byRCA; SPQR, developed by Capers Jones; and Estimacs developedby Howard Rubin. In all cases the approachis similar to Boehm’swith differences in the numberand natureof cost drivers and thecomplexity of the calculations. However Price-S claims to modelall application types whereas SPQR and Estimacs are restrictedto business systems.
THE FUNCTION-POINT APPROACH
In modelling the development of business software, anotherapproach is well known. Using the theoretical approach tomodelling, Albrecht has developed a method for validatingestimates of the amountof effort needed to design and develop

12

© Butler Cox & Partners Limited 1988

Chapter 3 Modelling the software developmentprocess

custom application software (Albrecht and Gaffney, 1983). The
approachinvolveslisting and counting the numberof external user
inputs, inquiries, outputs, and masterfiles to be delivered by the
development project.
Each of the categories of input and output are counted indi-
vidually and then are weighted by numbersreflecting the relative
value of the function to the user/customer. The weighted sum of
the inputs and outputs Albrecht calls ‘function points’. Albrecht’s
weights were determinedby‘trial and debate’.
The premise of Albrecht’s approachis that the amountof function
to be provided by the application can be estimated from an
itemisation of the major componentsof data to be used or provided
by it. Albrecht hypothesises that this estimate of function is cor-
related with the amount of delivered lines of source code to be
developed andthe effort needed. Indeed, independent data made
available to us supports Albrecht’s hypothesis that there well may
be a stable linear relation, a ratio, between function points and
lines of code. Furthermore, this data suggests the ratio is depen-
dent on the language employed and the nature of the application.
These findings imply that function points are a good measure of
system size. Thus effort and duration should bear similar nonlinear
relationships to the numberof function points as they have been
demonstrated to do with lines of source code. An interim report
on the analysis of The International Function Point Users’ Group
(IFPUG) database, presented at the Atlanta meeting of IFPUG in
August 1987 by Ronald Emrick of GTE, appears to support this.
A summary commenthe madeat the meeting(as reported by Tony
Reid of QSM) wasthat the correlation of function points per man-
month with other productivity-related measures was ‘‘just
miserable.’ The final version of this paper will be read by Emrick
at the IFPUG meeting in Dallas, Texas, on the 16 to 19 May 1988.
We recommend strongly that those organisations using or
contemplating the use of the function-point model obtain copies
of the final Emrick paper. We intendto coverthe full results and
the appropriate use of the function-point approachin a subsequent
PEP publication.
Webelieve that the Putnam model, based on the QSM database,
provides the most practical tool for assessing system development
productivity in the current state of developmentof such models.
Wedescribe it in more detail in the next chapter.

© Butler Cox & Partners Limited 1988

Function points are a good
measure of system size. Function
points per man-month is not a
good measure of productivity

13

Chapter 4

The Putnam approach

The Putnam approachis at the heart of PEP productivity assess-
ments. To get full value from PEP you need to understand how
the model underlying it was developed, how the outputs are
derived, and how PEP uses them.This chapter covers the basic
principles of Putnam’s approach. Full technical details can be
obtained from his published papers which arelisted in the
bibliography.
Initially software development managers regarded manpower and
time as interchangeable.If they wanted to complete a project in
half the time they put twice as many peopleon it. During the 1970s
it became clear from the work of several researchers that this
approach does not work and that the relationships between the
factors that influence productivity are not simple linear functions:
— Fred Brooks showed,in his book The Mythical Man Month

published in 1975, that manpower and time are indeed not
interchangeable.

— Peter Norden of IBM showed that hardware development
projects are composedof overlapping phases, and that thesephases have a well-defined manningprofile that matches a
mathematical function — the Rayleigh curve.

— In 1976 Joel Aron of IBM recognised that the manpowerinlarge developmentsbuilds up in a characteristic pattern andidentified complexity and duration as key elements affectingdevelopment productivity.
— In 1977 Walston and Felix of IBM collected consistent dataon 60 completed software developments. They show that thevariables of interest appear as complex powerfunctions ofthe size of the system.
— Larry Putnam extended the earlier work by Peter Norden ofIBM on hardware developmentto software projects. He foundthat the Rayleigh curve also fitted not only the individualcomponents of a software developmentproject but the entireproject. He also refined the power functions described byFelix and Walston.
All this research was empirically based.

HOW THE PUTNAM APPROACHIS DERIVED
The Putnam approach divides development projects into threebasic phases. These phases can accommodatethe developmentprocesses in most organisations. The three basic phasesare:
— Feasibility study, whichstopsat the point where the outlinerequirements specification and the project plans areapproved. The data recordedin this phaseare time and effort.

14

Manpowerand time are not
directly interchangeable

© Butler Cox & Partners Limited 1988

Chapter 4 The Putnam approach

— Functional design, which continues to the point when all
functional design specifications, test plans, and management
plans are approved. It can overlap the main build phase. In
this phase, time, effort, peak staffing, and overlap with the
main build phase are recorded.

— Main build, which beginsat the start of detailed logic design
and ends whenthe system reachesfull operational capability.
Full operational capability is defined to be the point at which
all system andintegration tests are successfully completed.
In the main build phase a substantial amountof data can be
recorded. Key itemsare time, effort, peak staffing, size of the
system, and errors from the start of integration test to first
operational capability.

Oncethe system is operational, additional data maybecollected.
(This is sometimesreferred to as the maintenance and operational
phase.) The data includes mean-time-to-failure, errorsin the first
monthafterfirst operational use, and cumulative time and effort
spent by development staff in operations and maintenance.
In Putnam’s approach,his engineering analysis is applied to the
main build phase, where on average over 75 per cent of the
development effort reported by PEP sponsors is expended.
Putnam chose to use an empirical approach to identify the re-
lationships between the key management numbers. He found that
the most useful way of analysing the datais to relate six project
measuresto the size of the project, expressed as effective source
lines of code (ELOC). These measuresare:
— Duration, the time taken in months.
— Effort, in man-months(cost).
— Average manpower, defined as effort/duration.
— Average code production rate, in ELOC per month.
— Errorrate.
— Productivity, in ELOC per man-month.
Figures 4.1 to 4.3 (overleaf), show the development project
duration, effort, and error rate plotted as a function of system
size for a wide variety of projects.
These graphs are plotted against logarithmic scales to
accommodate the wide range of values, and to cater for the
nonlinear relationships involved.
Theslopes of the correlation lines demonstrate there are nonlinear
relationships between the dependent variables and the inde-
pendentvariable, system size.
The graphsalso show the wide variability on the data for any given
size of system.It indicates the absence of any simple pattern based
on a small numberof variables. This is because of the great
variation in application types and in the time period of the
developments. However, a large database can be partitioned to
eliminate some of the major sources of variation including
application type, time, and developer efficiency. (Figure 4.4
overleaf, shows the application types used to partition the QSM
database.) Putnam’s results show that when this is done very
useful behaviour patterns do emerge.

© Butler Cox & Partners Limited 1988

Main build — 75 per cent of
development effort

15

Chapter 4 The Putnam approach

Figure 4.1 Software development schedule for main software
construction phase

This figure shows that the time taken increases with the size of the system,
but thereis a large variability in time for any given size.

Main build — duration
Mixed application database

1000

Duration
(months)

 TT tt ot
1 10 100 1000 10000

Size (1,000's of ELOC)

Figure 4.2 Developmenteffort for main software construction phase
This figure shows that the effort increases with the size of the system, butthere is wide variability in effort for any given size.

Main build — effort
Mixed application database

100000
10000
1000
100Effort

(man-months) 10

 01 SRaa100 1000 10000

Size (1,000's of ELOC)

Figure 4.5 showsthecorrelation between effort and system sizefor an application type in the form of a trend line together withtwootherlines. The middle line represents the least squares bestfit. The upperlineis plus one standard deviation and the lowerminus one standard deviation. If the variability follows a normaldistribution 67 per cent of the data will be expected to lie betweenplus and minus one standard deviation.
Standard slopes for the trend lines have been determined usinga combination ofstatistical curve fitting, and bootstrapstatisticalsimulation. The intercepts are determined directly from theappropriate data set. Slopes and intercepts are then verified forreasonable closeness of fit from all the available data in thespecified data set.
This procedure is necessary because pure curve fitting mayproduce poor results when the datasetis sparse, noisy, poorly

16

© Butler Cox & Partners Limited 1988

Chapter 4 The Putnam approach

 Figure 4.3 Errors discovered from start of systemsintegration testing
throughto full operational capability

This figure shows that the numberof errors increases with the size of the
system,but there is wide variability.

Main build — errors
Mixed application database

100000
10000
1000

Number
of errors 100

10

1 10 100 dl 000 10000
Size (1,000’s of source statements)

Figure 4.5 Correlation between effort and system size for a single

application type

This figure shows the better correlation obtained once the datais partitioned
into different kinds of system.

100000
10000
1000

Effort
(man-months) More effort

100
10 Less effort

1
1 10 100 1000 10000

Size (1,000’s of new and modified LOC)
Figure 4.4 Application types
Listed below are the 11 information
system application types covered by the
QSM database.

distributed, and so on — all quite common.Thetrendlines have
beenverified by independent data sets, worldwide, over a period
of seven years. They are continuingto be refined. Theyare reliable
and well represent software behaviour within our current
recording and measurement accuracy.

Putnamassertsthatall six measures havea distinct characteristic
behaviour as system size increases. Duration, cost, manpower, code
production, and errors all increase with size. Productivity,
expressed as ELOC/man-month decreases with system size. All
these relationships are nonlinear.

Since Putnam’s six project measures increase with system sizeit
follows that all comparisons should take size into account. Figure
4.6 showsfourprojects of different sizes positioned with respect
to the trendlines.
Weconclude that these four projects required about one standard
deviationless effort than the average for other systemsof the same

© Butler Cox & Partners Limited 1988 17

Chapter 4 The Putnam approach

 Figure 4.6 Example of four systems positioned with respect to the
effort trend lines

This figure shows four projects of different size positionedrelative to the
trend lines. They all require about one standard deviation less effort than theaverage.

10000 Line of
bestfit

1000 Moreeffort
Effort(man-months) 100

Less effort
10 Projects positioned

onest dev lesseffort
1 Srer

1 10 100 1000 10000
Size (1,000’s of new and modified LOC)

KEY: Theselines represent +1 standard deviations from the line of bestfit.Two-thirds of projects should lie between these boundaries.

size in the database. You can make similar comparisons forduration, manpower, code production rate, productivity, and
errorrate.

Thetrendlines also dispel myths about commonrules-of-thumbthat abound in the industry and that are simplistically used tomake multimillion-dollar decisions. The rules-of-thumb invariablyassume someconstant ratio betweenlines of code and effort basedon a very small data sample. For example, someone might use arate of 180 ELOC per man-month. Yet because of the strongvariation of ELOC per man-monthwith size, this would only bereasonably valid for a very small range of sizes. We believe thatmost of the rules-of-thumb we are aware of are dangerouslywrong, especially ELOC per man-month. Do not trust them!

PUTNAM’S SOFTWARE EQUATION
Putnam’s research showsthat it is possible to derive a mathe-matical relationship between thesize of a project and the timeand effort needed to completeit. But the relationship is nonlinear,not a constant ratio, and involves a parameter which is a measureof productivity. From the relationship (the ‘software equation’)wecan obtain a computational formula for a productivity measurewhich allows us to compare the productivities of differentdevelopmentprojects even if theyareofdifferent size or duration.It is of the form:

Productivity measure = size
(effort/B)"” x (time)**

wheretimeis in years, effort is in man-years, and

B

is a specialskills factor directly related to size (see Figure 4.7).
Given a certain level of productivity, the equation may berearrangedto calculate the effort required to complete a projectof a given size.

18

Common rules of thumb are
dangerously wrong

The relationships between
system size and effort and timeare nonlinear

Figure 4.7 Relationship between
the skills factor, B, andsize of project

This figure shows how B,the special |skills factor, varies with system size.

 © Butler Cox & Partners Limited 1988 |
|

Chapter 4 The Putnam approach

Effort = B x size®
time’ x (productivity measure)’

This equation showsthat effort required for a project depends on
the duration as well as the size, and on the productivity measure
which applies in the particular development environment. The
measure accountsforall the factors operating in the development
environment. Both the effect of changes in productivity and
compressing or extending the scheduled time for a project have
dramatic effects on the effort required. Changes in them have large
financial consequences becauseof their critical effect on effort.
Because the productivity measure can take a very wide range of
absolute values, Putnam represents these values as a Productivity
Index (PI) using simple integers in the range 1 to 25. The
translation table for PIs up to 18 is shown in Figure 4.8. This is
more convenient to use than the measure in the equation as
smaller numbers can be visualised and remembered moreeasily.
Observe that only readily available information is required to
calculate the PI for completed projects and those in progress:
— The numberof new and modified source lines of code (which

also allows us to determine B).
— Total man-monthsof effort.
— ‘Total elapsed calendar months.
Low valuesof the PI are generally associated with low productivity
environments or highly complex projects. High values are
associated with high productivity environments, good manage-
ment, and well-understood straightforward projects.
Figure 4.9 showstheresults of analysing QSM’s database of 1,500
systems by application type and calculating the average and
variability of PI. The applications are arranged in order of
decreasing complexity, most complex first.

Figure 4.9 Industry Pl base lines for 1987
This figure shows the average PI and standard deviation by application type.

INCREASES IN THE PRODUCTIVITY INDEX MEAN LARGE
IMPROVEMENTS IN PROJECT COSTS
Any movementin the PI has a dramatic impacton thetime, total
effort, and hencetotal cost of development. The PI embracesall
the environmentalfactors impacting development.If you have a
low PI, you mayfindthere are bottlenecks that are acting as brakes
to efficient production. Figure 4.10 shows a simple example of the

© Butler Cox & Partners Limited 1988

Information required to calculate
PI is readily available

Figure 4.8 Productivity index (PI)
and the associated
productivity measure

This figure showsthetranslation from
productivity measures to productivity
index.

Small increases in productivity
can generate enormous savings

19

Chapter 4 The Putnam approach

economic value of a PI increase. Note that this economic valueis high. Anincrease ofonePI for a 30,000 line Cobol system savesclose to two hundred thousanddollars. When youinvestin tools,techniques, and managementpractices that relieve bottlenecks,the PI goesup. The effects of high and low values for the PI aresummarised in Figure 4.11. An increasein the PIreflects decreasesin time, effort, manpower, cost, and errors.
 Figure 4.10 Impact of changing PI
This figure shows thefinancial and time impact of increasing the PI.Modestsystem of 30,000 Cobo! SLOCLabour rate — $60,000 man-year

 Impact: higher Pl = higher productivity

Figure 4.11 Pl Impact
This figure summarises the impact of changesin the PI uponthe project.

Figure 4.12 shows the effect on the resource and error profile ofa capital investment that boosts the PI from 8 to 10. Clearly thePI is a measurement which management needs to understand andexploit for its impact on a company’s profitability.

 Figure 4.12 Impactof capital investment on resources and defectProfiles
This figure shows the reduction in resources and defects as a result of invest-ments whichraise the Pl from 8 to 10 fora Productof a givensize.

Manpower PI=8 Manpower PI=10
MBI=2

234 m-mths
19 mths

Defects/month Time Time

Defects/month

2003N ie defects apAw 1095 defects

Time Time ©QSM 1986

20

Butler Cox & Partners Limited 1988

Chapter 4 The Putnam approach

THE MANPOWERBUILDUP INDEX (MBI)
REFLECTS TIME PRESSURES
The software equation also accounts for compression or extension
of the project schedule. The software equation shows that when
you compress the timescale for a project the effort increases
substantially. One of the reasonsforthisis that as you overlap tasks
you need more staff to work on the project, which means more
communications paths and more overheads. Putnam represents
the effect of time compression by using a measure which hecalls
the ManpowerBuildup Index (MBI).(In mathematical terms,this
is the manpoweracceleration of the Rayleigh curve.)

He defines the MBI parameter as Effort/(B x Time’) where effort
is in man-years, time is in years, and B is the samespecialskills
factor as in the software equation. As with the PI, Putnam
expresses the MBI as a simple integer value(level) which is more
readily appreciated by business managers. The relationship
between the MBI parameter and the integer MBIlevels is shown
in Figure 4.13.
Level 1 represents a slow staff buildup. The project will take the
longest and cost the least. Usually, it reflects a limited number
of staff available for development. Level 6 can be described as the
‘throw people at it’ approach. It is characterised by attempting
totally parallel task execution, with no staff or moneylimitations,
and assumesall design issues are well understood from the outset.
Level 6 is the fastest and most expensive staffing profile.
Figure 4.14 shows the economic impactof an increase in the MBI.
If we were to increase the MBI from onetothree in an effort to
compress the schedule it would more than double the effort, and
hence cost.
Figure 4.15 shows why the cost increases so dramatically. The
number of human communication paths for the Level 3 MBIis

Figure 4.15 Human communication paths

This figureillustrates why the cost increases so dramatically with changesin
the MBI.
Manpower
15

MBI = 3 peak staff = 12
Possible number of human
communication paths is — 66
(More overhead, ambiguities whichcause more errors)

Time

10

L
i
t

Manpower
15 =

=| MBI = 1 peakstaff = 5
Possible number of human
communication paths is — 18
(Less overhead, ambiguities which
cause fewererrors)

= oO
a

SE
L
S
a
t
e

 Time ©QSM 1985

© Butler Cox & Partners Limited 1988

Compressed timescales cause
substantial increases in effort

The lowerthe rate of staff
buildup, the lower the cost of the
project

Figure 4.13 Manpowerbuildup index
This figure showsthe relationship.between the simple MBI scale and thecomputed values of the MBI parametersfrom the data.

Figure 4.14 Economic impact of MBI
This table shows the dramatic effect thatchanging the MBI has ontheeffortrequired.
(30,000 Cobol; P| = 11)

21

Chapter 4 The Putnam approach

aboutsix times that for a Level 1 MBI. This also manifestsitself
directly in quality terms by causing exponentially more defects.
Clearly, schedule compression is very expensive.This is importantto recognise because it is very commonly done, with littleappreciation of the consequences. Figure 4.16 summarises theeffects of high and low values of the MBI. The MBIis a parameterthat managers can influence enormously since it is within theirimmediate control. The figure shows how modest changes inschedule have a great impact on cost and quality.
 Figure 4.16 MBI Impact
This figure summarises the impact of changing the MBI upon the project.

USING THE PUTNAM APPROACH TO ANALYSETHE PEP PROJECT DATA
PEPuses the Putnam approach to prepare the annualindividualproductivity assessment reports for each PEP sponsor. This alsoenables Butler Cox to create a PEP reference database whichincreasingly reflects the particular characteristics of the PEPgroup. Compared with the QSM database, the projects submittedto PEP are much more homogenous. The applications areallbroadly similar and all were developed recently. As a result, weare seeing great consistency between projects. This implies thatthe predictions we can make for PEP sponsors on potential costsavings will become even more accurate. Our analysis of thisdatabase will also help us to identify the characteristics of thesponsorgroup, and to be more responsiveto their problems andneeds.
PEP uses two commercially available tools that implement thePutnam approach: QSM’s PADS, the Productivity Analysis Data-base System, and QSM’s SLIM, the Software Lifecycle Manage-ment Methodology.
PADSis a tool that provides capabilities for recording andanalysing software project data, computing the PI and the MBI,displaying the data against reference measuresontrendlines, andconsolidating the recorded data. PEP sponsorsare provided withthe PADS data-collection modules.
Weuse PADSto position the project data submitted by the sponsoron the appropriate trendlines for the application type. We createconsolidation graphs, and compute productivity indices andmanpowerbuildup indices. Butler Cox consultants use thesegraphs, tables, and indices as the basis for writing annualindividual productivity assessment reports for each PEP sponsor.
SLIM was designedto help senior managers estimate, control, andmeasure software developments.It is a strategic planning and

22

© Butler Cox & Partners Limited 1988

Chapter 4 The Putnam approach

capital budgeting tool for development management. It allows
‘what if’ analysis of different development plan parameters.

We use SLIM to computetables for each individual PEP assessment
that show the effects of changing the PI and the MBIin the context
of the sponsor’s development environment. These tables have two
purposes: first, to help PEP sponsors understand the costs and
benefits of their current approach to systems development;
second, to show the concrete benefits that can be achieved by
taking managementactionsto increase the productivity index and
reduce the manpowerbuildup index. We discuss in Chapter 7 how
these numbers will permit the sponsors to compute the return on
investmentin software development.

© Butler Cox & Partners Limited 1988 23

Chapter 5

You can use the Putnam model to
plan and control projects

In Chapter 4, we described the Putnam approach and how this
uses the Productivity Analysis Database Systems (PADS) to com-
pute two fundamental measures, the Productivity Index (PI) and
the Manpower Buildup Index (MBI). These measures are cal-
culated using the basic data of developmenttime, effort, and size
from completed projects.
Using the PI and MBIas inputs to Putnam’s software equation
together with the estimated size, you can plan the development
time and effort for new projects. You can also use ‘whatif’
analyses to investigate managementactions such as the effects
of shortening or lengthening the timescales. The SLIM software
product incorporates the software equation and makes the
calculation of practical alternatives easy.
To determine the development time and effort requires three
parameters:
— The PI, determined from the PI calculated for similar projects

completed within the organisation’s development environ-
ment.

— The MBI, whichreflects the typical rate of manpowerbuildup
on previous projects, or that proposed for the new project.

— Thesize of the system to be developed in ELOC,including
estimates of the upper and lowerlimits of the expectedsize.

Figure 5.1 shows how these parameters can be used to plot
equations which relate effort to time both for the software
equation and for the MBI. Where they intersect represents the
minimum development time consistent with the given PI, MBI,
and meansize. The project can be planned to take longer with
consequent reduction in effort and cost.

Figure 5.1 SLIM minimum time calculation

This figureillustrates the minimum developmenttime concept for a particular
size developmentat a given Pl and MBI.
Log effort 5man-months Software equation Manpower buildup
Nesiaam for given size/P| Index equation
effort Intersect gives minimum time

maximum effort

Possible
solutions

Minimum Log months
time © QSM

24

Project planning requires only
three parameters

BUTLER COX
© Butler Cox & Partners Limited 1988

Chapter 5 You can use the Putnam modelto planand control projects

Our software equation line is determined by the estimated mean
size of the software. In addition, Monte Carlo simulation (random
sampling based on different sizes within the uncertainty range)
determinesa series of time and effort results. These techniques
enable the uncertainty in size to be reflected in uncertainties in
estimating development time and effort. Development always
involves uncertainty and risk. This approach quantifies risk
throughoutall developmentstages since the estimates of size can
be updated as the project progresses.

‘WHAT IF?’ ANALYSIS
Once we have determined the minimum timefor a given project
we can examine a numberof practical alternatives to the develop-
ment plan and their effects on costs, quality, and timescale. For
example:
— Setting new schedules beyond the minimum time to exploit

the time/effort trade-off.
— Imposing management constraints on time, cost, and re-

sources to determine if developmentis feasible within these
constraints.

— Determining the size of system that can be developed in a
shorter timeframe.

— Quantifying the uncertainty in the plans to ensure the soft-
ware can be developed within a given timescale at a specific
level of risk.

— Specifying reliability goals, since SLIM also models software
errors.

— Evaluating the probability of the software developmentbeing
completed within the planned budgeted time andprice.

The comparison we make of the model estimates with the appro-
priate reference database trendlines(an integral part of the SLIM
product)alerts the manager whenplans are moving outside normal
development limits.
The modeldoes notfind an optimum developmentsolution. Rather
it allows the user to explore practical alternatives rapidly and
arrive at planning estimates that are consistent with the specific
objectives and constraints faced by the project.

SET REALISTIC TARGET DATES
Our experience has shown that plans can be wildly unrealistic.
Over-optimistic plans are the most common but we frequently find
examples of over-conservative plans.
Usingthe software equation you can identify realistic target dates
and effort for the main build phase that are consistent with
achievable productivity, and project size. You canalso take into
account management constraints, reliability, and risk.
SLIM outputs key milestone dates in the main build phase for:
— Reviewing all design elements, including detailed program

logic.
— Completing theinitial coding (when all code can be expected

to be written but not yet unit tested, integrated, and system
tested).

© Butler Cox & Partners Limited 1988

Use the software equation to set
realistic target dates

25

———

Fe

Chapter 5 You can use the Putnam model to planand control projects

— Beginning the integration of the software units.
— Beginning the user-orientated system test.
— Installing the software on the operational hardware.
— Achieving full operational capability. (Based on empiricalanalysis, this is the point at which 95 per cent of software

errors have been found andfixed.)
— The points at which 99 per cent and 99.9 of the total software

errors have been found and fixed.
The estimates for the two earlier project phases, feasibility andspecification/design, are formed based on the standard ratiosexpected for the developmentsize, time, and effort.
Once the developmentis planned at the macro level, the projectmanager must break down the workandallocatethis to individualteam members. The milestones provide a framework for drawingup the detailed plan using such tools at the Project ManagerWorkbench (PMW) or ARTEMIS.

MONITOR AND CONTROL PROGRESS
You can use the plans to track progress and exercise high-levelcontrol. If you quantify the uncertainty in the plans you can trackperformance within these uncertainty bounds. Where the reportedactuals exceed the uncertainty boundsthen actions can be takeneither to replan the developmentor get the project back on track.
Milestones are essential for project tracking. If you miss amilestone, it is often very difficult to catch up without reducingthe functionality of the system. You can use the modelto replanthe project based uponthe actual milestone achievedso that youcan evaluate the consequencesin terms of the impending timeand cost overruns. You can then decide whether to reducefunctionality.
Milestonesslippageis often caused by a substantial growth in therequirementsspecification that has not been taken into accountin estimating the size range.
The high-level plans enable you to track:
— Total staff and cost.
— Cumulative staff and cost.
— End-product code.
— Cumulative end-product code.
— Software errors.
— Cumulative software errors.
— Mean-timeto defect.
The data you need to track these measures is usually readily The data neededto trackavailable from the project managers on a monthly basis, without progressis readily available,incurring any additionalcost or effort. Provided the monthly and without additional costcumulative values are within the uncertainty bounds, and themilestones are met, the project can be expected to complete withinthe upperlimits set on the schedule and budget.

26 © Butler Cox & Partners Limited 1988

Chapter 6

How to manage a productivity
improvement programme

If you want to manage productivity improvement,thefirst step
is to use an objective method to measure your current productivity.
You can then compare your own performance against external
measures to determine how great an improvementis likely to be
achievable. Armed with this quantified information on your
current productivity, you can begin to find out which factors
significantly affect productivity in your own development
environment.

Use productivity measures to
decide:
— where you are
— whatis achievable
— whatare the important factors

affecting productivity

As we discussed in Chapter 2, there are many environmental
factors that influence productivity. However, QSM hasfoundthat
there are two factors that seem to have the mostsignificant effect
in practice:
— The management of user involvement in the development

process.
— Policy and commitment to use formal methods.
In evaluating development groups, QSM have found only a few
cases where purely technical factors have been the key to
productivity improvement.It also seems that the experience and
skills of the development team are not usually major factors. QSM’s
research indicates that extremely good productivity results can ;
be achieved byrelatively inexperienced people provided invest- Productivity is not a technical
ment is made in good methods underpinned by a sound and a8eue
consistent policy regarding their use, and in adequate staff
training. Conversely, QSM have seenresults that are well below
average from organisations that have very experienced technical
staff but no formal methods. These findings are encouraging
because they show that in manycasesthere are clear management
actions you can take to improve productivity.
It is seldom necessary to introduce new methods. In any develop-
mentorganisation of a reasonablesize, we normally find evidence
of individual projects which have been successful in using good,
practical methods. The key is to build on your successes and adopt
these proven methods throughout. If you are too willing to try all
possible methods without ever stabilising your development
environment, productivity will suffer.
Once you have identified the factors that influence your own
productivity, you can select and implement specific improvements.
You can then measure the effect of these improvements to see
whetherproductivity has improved, and by how much. Moreover,
you areable to set realistic targets, to track improvements, and
to demonstrate the improvement.

SETTING REALISTIC TARGETS
Our experience showsthat if you take informedstepsto improve, the
Productivity Index can be expected to increase by approximately

© Butler Cox & Partners Limited 1988 27

oa

lll

ee

Chapter 6 How to manage a productivity
improvement programme

one point every one and a half years. However, we only find this
rate of improvementoccurring in organisations where a measure-
ment programmehas been in place for several years: thatis, in
organisations that have already takena stronginitiative to manage
productivity.
In our analysis of projects we also find characteristic values for
the ManpowerBuildup Index, MBI, within an organisation. When
projects are developed with low MBIvaluesthis is often becausethere are specific constraints on staffing. Occasionally, we finddevelopmentgroupsthat have a uniform style of time compressionmeasured with high values of the MBI. In these cases we canillustrate the cost of this managementstyle in termsof increasedeffort and increased errors. Organisations with this time-compression style usually have no clear understanding of thenegative impact on cost andreliability.
The main costs of makingsignificant improvementsin productivityand quality are predominantly incurred in education and training.These costs are not simply of a financial nature, but include theeffort of changing managementpolicy and attitudes when it comesto dealing with the developmentprocesses includingrelationshipwith users. The mutual understanding of the processes andrelationships can be put on an objective footing if the users anddevelopers can both appreciate how their contributions impactproductivity and quality.

The main costs are in educationandtraining

As an incentive to bring about change in your developmentorganisation, you can use the current average Productivity Indexto determine the minimum time and cost for an average-sizeddevelopment, consistent with your typical MBI. PEP uses SLIMto calculate the benefits you would achieve in this typical projectby increasing the Productivity Index by one. We normally expectsavings from this increase to be at least $90,000 per project ona typical PEP sponsor project costing $485,000. It is a straight-forward calculation to determine thetotal potential benefits tobe gained by considering all the projects which you developannually as we show in Chapter 7.
Theselarge financial incentives can motivate everyone involvedin the development process, users and system developmentstaffalike, to work togetherin order to bring about major savings. Bycontinuing to use the measures the savings can be demonstrated.This is important since users naturally like to be shown thatimprovementinitiatives really do produce tangible benefits.
It should also be recognised that someinitiatives to improveproductivity mayinvolvelittle or no investment. For example onelarge development group introduced a policy of not exceedingmorethan 15 people on any software development team. Over thelast two years this policy has been shownto be effective by themeasures made using our techniques.
If we can identify the most significant negative factors in thedevelopment environment and cost out the implications ofchanging them, we can then build a business case that considersthe costs of the improvementsoffset against the benefits. In thenext chapter we show how the return on investment can becalculated andusedtojustify theinitiatives you would like to maketo bring about improved productivity and quality.

 28 © Butler Cox & Pariners Limited 1988

Chapter 6 How to manage a productivity
improvement programme

TRACKING PRODUCTIVITY IMPROVEMENT
The initial measures for each PEP sponsor provide a set of
baselines against which changes in project development pro-
ductivity can be tracked. As each new project is planned the
Productivity Index assumedin the plan maybe verified against
the reference database.
Completion of each project gives the essential input and output
numbers. You can find out the final developmenttime, total man-
months of effort, and the size of the software from the project
records which PEP uses to compute your Productivity Index and
ManpowerBuildup Index. The project post-implementation review
can identify which factors were being addressed during the
development to improve productivity, and use the measures to
judge the effectiveness of these initiatives.
Each completed project can be entered into the database. As new
projects accumulate, they can be analysed to find out the overall
performance improvement within the organisation. For example,
you can select projects by their date of completion to demonstrate
changes in productivity and quality over time.
With the tracking process it is practical to tell whether pro-
ductivity initiatives and investments are indeed producing
benefits. We believe that if you are able to measure and demon-
strate the outcomeof your productivity investments, management
will become more supportive and will help you to achieve further
improvements.

DEMONSTRATING THE IMPROVEMENT
Using the PEP measures, sponsors are able to demonstrate
improvement gains against:
— The QSM industry baselines.
— The PEP sponsorsbaselines.
— Previous years’ measures for their own projects.
PEPis now building a very substantial data processing reference
database for projects. This provides baselines for independent
comparison of productivity measures.
These reference measures, in particular with your ownposition,
provideclear evidence of the gains you are making. As we show
in Chapter 7 the benefits from these improvements can be
quantified in business terms. In our experience senior business
managers, with responsibility for investments in the systems
developmentarea, readily respond to arguments based upon an
informed business case. While they may have no background or
understanding of systems developmentit is not difficult to interest
them in the management information that PEP provides.It is
worthwhile getting these measures understood and accepted by
senior management, as a meansof monitoring and controlling the
company’s investment in software.

© Butler Cox & Partners Limited 1988.

Communicate with senior
management using business terms

29

Chapter 7
Calculating and presenting the
benefits

If you wantto sell the idea of software investment management
to general business management, you must speak in terms theyrecognise and understand.In our experience, termslike function
points, lines of code, and similar IT-related jargon cause most
business managersto lose interest.
The primary aim is to demonstrate that money spent on improvingthe development department has produced benefits by increasingproductivity. A secondary aim is to demonstrate any benefitsachieved through managementactions that have not involvedinvestment such as taking action to reduce high MBIs.
Wesuggest that you use two simple methods of presenting thebenefits: cash savings and return on investment.
In this chapter we work through an example calculation basedon project averages from data submitted by PEP sponsors.

CASH SAVINGS
In the PEP assessmentreport we supply twotables that you canuse to present cash savings. They relate your average productivityindex and the manpower buildup index alternatives to the costof developing averagesize projects. The tables are based on thedata that your organisation submitted and reflect your uniquedevelopment environment. These tables can be used to show:
— Howwell the current systemsare being developed. (Most PEPsponsors have a PI which is above the average in the QSMdatabase.)
— Whatpayback could be achieved from a changein policy toreducethe time pressure (lower the MBI). Thisis particularlyrelevant in cases where high MBIs have become the ‘style’of development without business justifications.
— What payback would be achieved by investment to improvethe productivity index.
Figures 7.1 and 7.2 illustrate these tables for an ‘average’ PEPsponsor. We have used the average project size, PI and MBIcalculated from the PEP database to give the baselinecosts againstwhich the savings are calculated.
From Figure 7.1 we can see that the typical PEP sponsor couldsave an average of $140,000 per system, a reduction of 29 percent, by taking action to reduce the MBI from 3 to 2. Since thisaction relates only to the staffing profile, it can take effectimmediately on all subsequent systems you develop.

30

Cash savings and return on
investment are the keys to
communicating

© Butler Cox & Partners Limited 1988

Chapter 7 Calculating and presenting the benefits

Assumingthis initiative is taken, then from Figure 7.2 we see that
the typical PEP sponsorcould save a further $90,000, a reduction
of a further 19 per cent, by taking actions to increase the
productivity index from 16 to 17.
 Figure 7.1 The impact of changing the MBIat a PI of 16
This figure shows the result of changing the MBI for a system size of 70487
ELOC and PI of 16. Figures are based upon the averages in 193 business
systems in the PEP database with a cost per man-month of $5,000.

Figure 7.2 The impact of changing the PI at an MBI of two
This figure shows the result of changing the PI for a system size of 70487 ELOC.
The data is based on the average of 193 business systems in the PEP database.
The MBIis one below the PEP average and cost per man-month is $5,000.

RETURN ON INVESTMENT
Just as business managers expect to know how their systems
development department compares with other, similar depart-
ments, they also want to know how the returns on investment in
different business units compare. To illustrate this we can calculate
the return on investment (ROI).
ROIis a yardstick applied in financial management. The ROIis
used in conjunction with other business factors to help managers
make sound judgements on investing in improvements to the
business.
You can use the ROI in two ways:
— First, you can demonstrate the potential ROI of any ex-

penditure you decide to make in the systems development
environment.

— Second, usingtheresults of the second and subsequentyears,
you can demonstrate the actual ROI you achieved from this
expenditure.

This use of the ROI is intended to demonstrate the benefits of
software investment management,thatis, the return on invest-
mentin the software development environment.It is not intended
to show the benefit to the companyof the systemsbeing delivered,
or the related benefit of how much ‘business function’ is being
delivered.

© Butler Cox & Partners Limited 1988 31

—————————————hhh

tC:

tC<‘;3}CCeee

Chapter 7 Calculating and presenting the benefits

CALCULATING THE ROI
ROlis calculated by taking the investmentin the systems develop-
ment environmentand dividing it into the benefits achieved (or
the expected benefits). In its simplest form it is the annual net
savings expressed as a percentage of the investment made.
Using the PEP tables the benefits can be calculated from thereduction in systems developmentcosts that can be achieved foran average-sized system whenyouincrease yourtypical PI by one.This reduction would then be multiplied by the average numberof systems that have been (or are expected to be) completed inthe year to give the total benefits. Greater precision is possibleby making these calculations on a project-by-project basis.
In Figure 7.3 we show an example of computing the ROI, usingthe data in Figures 7.1 and 7.2, and making assumptions aboutcost of development per man-month.

Figure 7.3 Computing the ROI
Thisis a simpleillustration of how to calculate the RO! on new investmentin the systemsdevelopment department. Sponsors should note that the precise way in which suchcalculations are made, andtheir results presented, vary with the accounting conventionsof each organisation.
In theillustration, we assume that the PEP sponsor has 100staff in the systemsdevelopment department, andthefully loaded cost of eachis $5,000 per month.Thismeansthatthetotal fully loaded staff cost is about $6,000,000 per annum.
After reviewing the PEP assessmentresults and identifying the factors mostlikely toresult in productivity improvements, systems development managementdecides toimprove the development environment. The once-off cost of the improvementsis$600,000, an amount equal to 10 per cent of the staff budget.
The department produces, on average,five systems per year, and being the absolutelytypical PEP sponsor, has an average system size of about 70,000lines of code, anaverage PIof 16, and hasalready reducedits MBI to 2 from the average of 3.Based on current QSMexperience, an effectively managed productivity improvementProgrammecan improve the PI by 1 in about one and

a

half years.
The PEP sponsorcancalculate the expected ROIas follows:
The averagecostof developinga typicalsized system is foundin thetable in Figure7.2. Weare currently at a Pl of 16 and have 17 as our goal.
PI Cost per system Benefit per system from anincreasein PI($) (8)16 350,000
17 260,000 90,000
Sinceit will take a year and a half to achieve the full P! point improvement we shallachieve only abouthalf the benefitin the first year. We shall also assumea ‘write off’Period of four years for the investment, so weshall only lookat the benefits in thenext four years. Thus the benefits over the current costs for the five systems eachyear for four years are:

Year Total benefit
(S)1 225,0002 450,0003 450,0004 450,000Total cost saving $1,575,000

The cost of making this improvement was $600,000. Hence,the average annualreturnon that investmentis:
1,575,000 — 600,000 x 100%per annum

600,000 4
= 40 per cent per annum

Thebenefit will be manifestin faster developmentof the systemswith fewer staff needed.This means that capacity has been made available for other uses.
 32 © Butler Cox & Partners Limited 1988

Chapter 7 Calculating and presenting the benefits

PRESENTING THE BENEFITS
We suggest you present the benefits in the following way:

First present the PEP tables in the assessment report,
reflecting your present productivity position. Present the PI
as the capital investment measure, and the MBI as a measure
of staffing buildup (or time pressure).
Explain that the PI increasesin response to investmentin the
departmental environment, and measures the overall
productivity of the development team.
Present the benefits as actual (or expected) cost reductions.
Present the achieved(or potential) increase in throughput due
to new investment and other changes you have made,
explaining that this means with improved productivity you
can deliver more system functionality in less time.
Finally show the ROI you have computed. Restate that this
has been calculated based on empirical analysis of your data.

Wefind that this form of presentation is remarkably effective in
impressing general management. You must, of course, be prepared
to justify the linkages between the investments and the results
achieved.
By using quantitative measures of development productivity in
this way, and for planning and controlling both individualprojects
and the system development process as a whole, you should be
able not only to achieve substantial business benefits but also to
demonstrate their impact to general managers.

© Butler Cox & Partners Limited 1988 33

References

Albrecht, Allan and Gaffney, John. Software Function, Source
Lines of Code, and Development Effort Prediction: A Software
Science Validation. Transactions of Software Engineering. IEEE
Vol SE-9, No. 6, November 1983.
Boehm,Barry. Improving Software Productivity. IEEE. 1981.
Boehm, Barry. Software Engineering Economics. Prentice Hall
Inc, Englewood Cliffs, New Jersey. 1981.
EIU Informatics report, quoted in the Financial Times. 4 October1985.
Emrick, Ronald. Presentation by Ronald Emrick at the August1987 International Function Point Users’ Group, Atlanta. 1987.(Final version of the paper to be presented and published at theMay 1988 International Function Point Users’ Group Meeting atDallas.)
Putnam, Lawrence H. Progress in Modelling the Software LifeCycle in a Phenomenological Way to Obtain Engineering QualityEstimates and Dynamic Control of the Process: Tutorial; IEEEComputer Society Publication EHO 165-1, pp 183-206, ComputerSociety Press. October 1980.
Putnam, LawrenceH.KeyIssues in Managing Software Cost andQuality. QSM, McLean Virginia. 1987.

34

© Butler Cox & Partners Limited 1988

Butler Cox
Butler Cox is an independent international con-
sulting group specialising in the application of in-
formation technology within commerce, industry
and government.
The company offers a unique blend of high-level
commercial perspective and in-depth technical
expertise: a capability which in recent years has
been put to the service of many of the world’s
largest and most successful organisations.
The services provided include:
Consulting for Users
Guiding and giving practical support to organisa-
tions trying to exploit technology effectively and
sensibly.
Consulting for Suppliers
Guiding suppliers towards market opportunities
and their exploitation.
The Butler Cox Foundation
Keeping major organisations abreast of develop-
ments and their implications.
Multiclient Studies
Surveying markets, their driving forces and poten-
tial future.
Public Reports
Analysing trends and experiencein specific areas
of widespread concern.

PEP
The Butler Cox Productivity Enhancement Pro-
gramme(PEP)is a participative service whose goal
is to improve productivity in application system
development.
It provides practical help to system development
managers andidentifies the specific problems that
prevent them from using their development
resources effectively. At the same time, the pro-
gramme keeps these managers abreast of the latest
thinking and experience of experts and practi-
tioners in the field.

© Butler Cox & Partners Limited 1988

The programmeconsists of individual guidance for
each subscriber in the form of a productivity
assessment, and also publications and forum
meetings commonto all subscribers.

Productivity Assessment
Each subscribing organisation receives a confiden-
tial managementassessmentof its system develop-
ment productivity. The assessment is based on a
comparison of key development data from selected
subscriber projects against a large comprehensive
database. It is presented in a detailed report and
subscribers are briefed at a meeting with Butler
Cox specialists.
PEP Papers
Four PEP papers are produced each year. They
focus on specific aspects of system development
productivity and offer practical advice based on
recent research and experience.

Meetings
Each quarterly PEP forum meeting and annual
symposium focuses on theissues highlighted in the
PEP papers, and permits deep consideration of the
topics. They enable participants to exchange ex-
perience and views with managers from other
subscriber organisations.
Topics in 1988
Each year PEP will focus on four topics directly
relating to improving systems development and
productivity. The topics will be selected to reflect
the concernsof the subscribers while maintaining
a balance between management and technical
issues.
The topics to be covered in 1988 are:
— Managing productivity in systems develop-

ment.
— Tools for planning and managing systems

development.
— Staffing issues in systems development.
— Managing the maintenance mountain.

Butler Cox & Partners Limited
Butler Cox House,12 Bloomsbury Square,

London WC1A 2LL,England
®& (01) 831 0101, Telex 8813717 BUTCOXG

Fax (01) 831 6250
Belgium and theNetherlands

Butler CoxBV
Burg Hogguerstraat 791
1064 EB Amsterdam

(020) 139955, Fax (020) 131157
France

Butler Cox SARL
Tour Akzo, 164 Rue Ambroise Croizat,

93204 St Denis-Cedex 1, France
®& (1) 48.20.61.64, Télécopieur(1) 48.20.72.58

Germany (FR)
Butler CoxGmbH

Richard-Wagner-Str. 13
8000 Miinchen 2

@ (089) 5 23 40 01, Fax (089) 5 23 35 15
UnitedStates ofAmerica

Butler Cox Inc.
150 East 58th Street, New York, NY 10155, USA

(212) 891 8188
Australia/NewZealand

Mr J Cooper
Butler Cox Foundation

8rd Floor, 275 George Street, Sydney 2000, Australia
@ (02) 236 6161, Fax (02) 236 6199

Ireland
SDConsulting

72 Merrion Square,Dublin 2, Ireland
® (01) 766088/762501, Telex 31077 EI,

Fax (01) 767945
Italy
SISDO

20123 Milano, Via Caradosso7,Italy
@ (02) 498 4651, Telex 350309, Fax (02) 481 8842

TheNordicRegion
Statskonsult AB

Stora Varvsgatan 1, 21120 Malmo, Sweden
@ (040) 1030 40, Telex 12754 SINTABS

Spain
Associated Management Consultants Spain SA
Rosalia de Castro, 84-2°D, 28035 Madrid, Spain

& (91) 723 0995

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41

