
a S N i =

Kevan Jones

@ Butler Cox & Partners Limited 1989

Making Effective Use of
Modern Development Tools

PEP Paper 10, May 1989
by Kevan Jones

Kevan Jones is a consultant with Butler Cox in London, with
experience in various areas of information technology, but with
particular expertise in systems development. He hasbeen involved
in the PEP programme since its inception, carrying out research into
the systems issues that are of concern to members, and analysing
members’ systems development productivity for the PEP pro-
gramme. He also helped with the research for the Butler Cox
Foundation Report, Network Management, and is currently

doing research for a forthcoming Foundation Report on future
technologies.

During his time with Butler Cox, he has also participated ina wide
range of consulting assignments. Recent projects in which he has
been involved include assessments of the effectiveness and
efficiency of the systems development departments of several large
clients, a definition of the systems requirements of a network-
management system for a country-wide motoring services organi-
sation, and an assessment of the process-control systems of a

computer-integrated manufacturing installation for a major oil
company.

Prior to joining Butler Cox, Kevan Jones was a member of the
systems research team at Thorn EMI Electronics, where he worked
on systems analysis, design, and implementation of large projects
for the Ministry of Defence.

He has a first class honours degree in mathematics and computing
and is an Associate Fellow of the Institute of Mathematics and its
Applications.

Published by Butler Cox & Partners Limited
Butler Cox House
12 Bloomsbury Square
London WC1A 2LL
England

Copyright © Butler Cox & Partners Limited 1989

All rights reserved. No part of this publication may be reproduced by any method
without the prior consent of Butler Cox.

Printed in Great Britain by Flexiprint Ltd., Lancing, Sussex.

© Butler Cox & Partners Limited 1989

Making Effective Use of
Modern Development Tools

PEP Paper 10, May 1989
by Kevan Jones

Contents

Exploiting the potential of modern development tools

How do we define modern development tools?

Modern development tools are being widely used

Development time and effort has generally decreased
with the use of modern development tools

For best results, modern development tools must be
integrated with the development environment

Purpose and structure of the paper

Research sources

Identifying and selecting modern development tools
Recognise that a set of tools will be required

Be systematic about selecting the set of tools

Control the size of the set of tools

Planning for the introduction of modern development
tools

Internally market the implementation plan

Initiate changes to exploit and support the modern
development tool

Implement a pilot application

Modify the development environment

Ensuring that the most appropriate modern
development tool is used

Define the procedure for matching the development
environment and the application

Ensure that the procedure is used for every application

Appendix: Preparing for the future

—t

10
10

12
12
15
20

22
23
24
30
32
33

33
40

43

Vendors claim that modern
development tools will
provide large increases

in productivity

Few PEP members are
achieving the level of
improvements that
should be possible

Modern development tools is
the generic term for fourth-
generation languages

and application

) Butler Cox & Partners Limited 1989

generators

Chapter 1

Exploiting the potential of modern
development tools

Most vendors claim that development teams will achieve very
large increases in productivity by using modern development tools
in place of traditional development tools, such as third-generation
languages, because modern development tools are easier to learn,
reduce the amount of code and testing that is required, are self-
documenting, and produce code that requires less maintenance.
In many cases, they are also quite modular in nature, with the
various modules independent of one another. This, again, makes
the maintenance task easier. Analysis of data submitted by PEP
members indicates, however, that while most members are
achieving some reductions in time and effort, few are consistently
achieving the level of improvements that should be possible if the
true potential of modern development tools were being realised.

The benefits of modern development tools are not being fully
exploited because systems development departments have failed
to understand that the selection and introduction of such tools
into the development environment is a very different, and much
more complex, process than it was with third-generation tools,
which could be used to develop most types of application. There
are scores of modern development tools on the market, but each
has different design objectives, and each is appropriate for
different types of application. Modern development tools cannot
therefore be selected in isolation; they must be considered in the
context of the wider development environment in which they will
be used. What is needed is a clearly defined procedure, which
those responsible for selecting, implementing, supporting, and
using modern development tools can follow, to ensure that the
potential benefits are consistently achieved.

HOW DO WE DEFINE MODERN
DEVELOPMENT TOOLS?

Since our definitions of terms may not correspond precisely with
those of other specialists, or of vendors, it is important to clarify
them here. In this paper, the term ‘development tools’ is used to
cover both modern development tools and programming
languages. Thus, Cobol, Assembler, Natural, and Telon are all
development tools. The term ‘modern development tools’ includes
both fourth-generation languages and application generators, both
of which include a wide range of products.

A fourth-generation language is a syntax-based programming
language in which an application can be written. Fourth-genera-
tion languages differ from older languages, such as Cobol, in being
more concise (that is, the commands are more powerful), and
in not requiring the developer to have detailed knowledge of
the underlying computer systems. In fact, each successive genera-
tion of programming languages has become more business- or

Chapter 1 Exploiting the potential of modern development tools

application-oriented. This evolution is illustrated in Figure 1.1. Mf)st
fourth-generation languages require the developer to specify
explicitly the order in which operations are to be performed — that
is, they are ‘procedural’ languages.

Figure 1.1 Each generation of programming languages has become
more business-oriented

First-generation
languages

Second-generation

languages
Third-generation
languages
<%
Modern development
tools
_’
R
b o
c <
Computer- <> Business-
oriented oriented
<< >
Q L
Ie) @
7 &
@ 73
< (2]
& L
¥,
=

a=Professional fourth-generation languages
b= User fourth-generation languages
c=Application generators

Fourth-generation languages can be split into two categories
depending on the experience of the intended developer and the
complexity of the development interface. The first category
contains the most powerful tools, which are used to develop
complete applications. These will normally be used by professional
developers and will have a complex development interface.
Examples of professional fourth-generation languages are
Powerhouse from Cognos, and Application Master from ICL. The
second category contains development tools that usually permit
only access to data and the generation of simple reports, although
some do provide additional and more powerful facilities. These will
typically be used by end users and have aless complex development
interface. An example is Query Master from ICL.

An application generator is a screen-based development tool with
which applications are developed by interacting with the screen
rather than by writing statements of code. The interaction with
the screen may be via icons, pull-down menus, screen painters,
and so on. Figure 1.2 shows three stages in the development
(painting) of an input screen with the application generator, Fourth
Dimension, from Analyses Conseils Informations (ACI) UK.

There are two categories of
fourth-generation

language

© Butler Cox & Partners Limited 1989

Chapter 1 Exploiting the potential of modern development tools

Figure 1.2 Application generators provide developers with numerous
facilities, including screen painters

These layouts were created using the screen-painting facility provided by the
application generator, Fourth Dimension, from ACI UK.

=

4

% File Edit Environment Design Font Style Layout Colors
==———— | ayout: Client Input =

:Client Informat]

JEEIRAI:

|1
==

[Accept)

[Cancel)

50 160 150 200 250 300

i m

40

The control buttons are initially positioned on the screen and the text title is added.

’7 " & File Edit Environment Design Font Style Layout Colors

Layout: Client Input

Client Information

Client Internal Contact

© Butler Cox & Partners Limited 1989

Number

Company

Division

Foe——] sum
[Chent Company.
= 100

Client Division

site

Cancel

200 250 300,

350

the appropriate text is then added.

Each data field can then be defined on the screen, using pop-up windows, and

o

Layout

Colors

& File Edit Environment Design Font Style

Layout: Client Input ==——

Client Information
Client

Number

R —————

Internal Contact -!ml
Starns

Company EE_EN COMpENY

Division [ClentDivision 1
Site T]
£ comuy
R Name [CEem Name 1
Phone [Chient Fhone |
Position [CEn Dositon 1
§ Accept 1 (Cancel)
: 50 169 150 200 250 300 350 401
]

are important.

The finishing touches can be added by highlighting the fields and options that

Chapter 1 Exploiting the potential of modern development tools

Application generators are not always purely screen-based; some
do have an embedded coding language, such as a fourth-
generation language. Application generators are largely non-
procedural — that is, the generator rather than the developer
decides in what order the defined operations are to be performed.
Examples of application generators are APS from Software
Generation, and Telon from Pansophic.

As modern development tools mature, they become more and
more difficult to classify. Numerous modern development tools
cross the boundaries of the various classifications used to identify
the different types. For instance, Focus from Information Builders
is a fourth-generation language that is powerful enough to enable
professional developers to develop complete applications, yet it
provides a simple enough interface for non-technical end users
to perform their own database queries and to generate reports.

The majority of modern development tools available today are
neither pure fourth-generation languages nor application
generators. They provide additional facilities to support the
development of applications, such as database management
systems, report generators, and screen painters. An example of
this is QuickBuild from ICL. This started life as Application Master,
a fourth-generation language. Now, it is a set of integrated tools
that also includes an end-user query language, a data dictionary,
a screen painter, and several other development tools and
facilities. These sophisticated tool sets, which can be used as the
basis for a computer-aided software engineering environment, are
commonly called fourth-generation environments. They are
beyond the scope of this study, but are discussed briefly in the
appendix.

MODERN DEVELOPMENT TOOLS
ARE BEING WIDELY USED

Our research reveals that the majority of PEP members are using
modern development tools and that their use of these tools is likely
to increase substantially during 1989. This is illustrated in Figure
1.3. Predicted growth in the number of applications developed
and maintained with modern development tools this year is over
30 per cent. By the end of 1989, 45 per cent of all application
developments and maintenance will be carried out with modern
development tools.

This growth in the number of applications developed and
maintained with modern development tools is not, however,
equally distributed across the different areas of application
development. Of all the development areas currently of interest
to PEP members (transaction processing, end-user computing,
decision-support systems, systems software, and special systems,
such as process control and financial modelling), only two are
likely to see significant growth in the use of modern development
tools over the next year. The first of these areas is transaction
processing, where 75 per cent of all systems development effort
is currently expended. PEP members expect a 40 per cent growth
in the use of modern development tools in this area during 1989,
although their perceived level of success in using modern
development tools for transaction-processing applications has

Modern development tools
are difficult to classify

The use of modern development
tools is increasing
significantly

The use of modern development
tools is most common in
transaction-processing

and decision-support
applications

© Butler Cox & Partners Limited 1989

Chapter 1 Exploiting the potential of modern development tools

@ Butler Cox & Partners Limited 1982

Figure 1.3 PEP members predict significant growth in the use of modern
development tools during 1989

Number of respondents

Percentage of ! T T T T T T T T 1
applications 1 2 3 4 5 6 7 8 9 10
developed

with modern
development Cred
tools

26-50

51-75

76-100

1988
1989

(Source: Butler Cox survey of PEP members)

varied widely. The second area is decision-support systems, where
modern development tools are already used extensively, and with
a perceived high level of success. Eleven per cent of all systems
development effort is currently expended in this area, and this
level of effort is expected to increase to 20 per cent by the end
of 1989.

DEVELOPMENT TIME AND EFFORT HAS
GENERALLY DECREASED WITH THE USE
OF MODERN DEVELOPMENT TOOLS

Most PEP members have reduced the time and effort involved
in development by adopting and applying modern development
tools in place of third-generation tools. A bank, for example,
estimated that the effort required in the ‘main build’ phase of a
new development would be 210 man-days using its existing third-
generation tool. It developed the system using a newly acquired
application generator, Telon, and built the system in 150 man-days
— 30 per cent less time than the estimate.

We have analysed the project data held in the PEP database to
assess the impact that the use of modern development tools has
had on the Productivity Measure as expressed by the Productivity
Index (PI). The terms Productivity Measure and PI are basic
measures employed in PEP. A detailed explanation of these terms
is given in PEP Paper 5, Managing Productivity in Systems
Developmend. For the purpose of this paper, it is sufficient to say
that the Productivity Measure is calculated from the time, effort,
and size of a development project, using the following equation:

Chapter 1 Exploiting the potential of modern development tools

Productivity Measure = Size
(Effort/B)® x (Time)*?

where size is measured in source statements produced by the
development team, and B is a factor relating to the effective
size of the development.

The PI is a simplified, management-level representation of the
Productivity Measure. Both the Productivity Measure and the PI
are measures of the internal productivity achieved by the
development team in producing applications (that is, they are
measures of process productivity); they are not measures of the
value or function delivered to the business by the development.

The equation can be rearranged to give a clear understanding of
the impact that process productivity (Productivity Measure),
development time, and size of development have on effort:

Effort = Size®
Productivity Measure? x Time*

The significance of the relationship between the variables
Productivity Measure, size, effort, and time can be demonstrated
by increasing the Productivity Measure, holding two of the other
variables constant, and observing the effect on the remaining
variable. If, for instance, the Productivity Measure is doubled on
a development, and time and effort remain constant, the
application developed would be two-and-a-half times bigger. If,
however, time and size remain constant, one-eighth the amount
of effort would be required to develop the application. If effort
and size remain constant, the application would be developed in
about half the amount of time. Typically, a combination of the
above would apply.

The average PIs achieved by PEP members when using third-
generation tools, modern development tools, and a combination
of these development tools are shown in Figure 1.4. The figure
shows that projects developed with modern development tools
achieved a somewhat lower PI than those developed with third-

Figure 1.4 The hypothetical measure, normalised to Cobol, reveals the
potential of modern development tools

Hypothetical
Language type Average PI measure*

More than 60 per cent
third-generation 15.4 15.4
languages

Mixture of third-
generation languages 149
and modern i
development tools

More than 60 per cent
modem development 1486 19.4
tools

S T A

* The hypothetical measure takes account of the fact that applications developed
with modern development tools require fewer statements, and hence less effort,
to produce the same functionality as applications written in a third-generation
language

(=]

The Productivity Measure and the
Productivity Index measure the
internal productivity achieved

by the development team

© Butler Cox & Partners Limited 1989

i

Chapter 1 Exploiting the potential of modern development tools

The hypothetical productivity

measure takes

account of

the fact that modern
development tools
require fewer

statements

The hypothetical measure
generally increases as
the experience of the
development team

© Butler Cox & Partners Limited 1989

increases

generation tools. This means that for those PEP members included
in this analysis, modern development tools performed less well,
in terms of process productivity, than third-generation tools.
In other words, slightly more time and/or effort was expended
by managers and developers to produce a given size of system,

measured in source statements, with modern development
tools.

However, it is also necessary to take account of the fact that, with
modern development tools, fewer source statements are required
to produce a given level of functionality. Software Productivity
Research Inc. has completed research into the average number
of source statements required by various types of development
tool for a given amount of function. The correlation between
source statements and delivered function has been independently
confirmed by Larry Putnam of Quantitative Software Manage-
ment Inc. (QSM) at a presentation he made to the International
Function Point User Group (IFPUG) in April 1989. Using a
multiplier derived from this research to take account of the
greater amount of function per source statement produced by
modern development tools, it is possible to calculate a hypothetical
measure of productivity, normalised to Cobol (that is, assuming
that the application would involve the same amount of time and
effort if it were developed in Cobol). This hypothetical measure
is also shown in Figure 1.4.

The hypothetical measure for projects developed with modern
development tools is significantly higher than it is for projects
developed with third-generation tools. The implication is that, by
using a modern development tool rather than a third-generation
tool, and by making appropriate modifications to working
practices, it is possible to reduce the effort required to develop
an application. Research is currently being undertaken by QSM
and Butler Cox to provide a proven and more effective measure
of the increase in the functional value, as seen by the end user,
that can be made by using modern development tools. This

measure will eventually be included in PEP assessments, together
with the PI.

Our analysis indicates that the hypothetical measure generally
increases as the development team’s experience with the tool
increases. Figure 1.5 overleaf shows how the hypothetical
measure for applications that were developed with modern
development tools is not only higher than that for applications
developed with third-generation tools; it also increases at a faster
rate. A development team with an average of one year’s
experience of using a modern development tool has twice the
hypothetical measure of a team with three years’ experience
of using a third-generation tool. However, the analysis of data
in the PEP database, shown in Figure 1.5, indicates that the
hypothetical measure for applications developed partly by modern
development tools and partly by third-generation tools actually
decreases as the team becomes more experienced. We believe
that this trend is due to the fact that the most experienced
members of the team were those using third-generation tools.
At the time of publication, information to confirm this was not,
however, available.

Chapter 1 Exploiting the potential of modern development tools

Figure 1.5 The hypothetical measure, normalised to Cobol, increases
dramatically as experience with modern development tools
increases

A Hypothetical
measure
100,000 |
80,000 |
60,000 r
40,000 |
X
—_—________x/
20,000 F x
0 1 2 3

Team'’s average number of years of experience with the
development tool

*——-x Majority of work done using third-generation language
O———03 Work done using mixture of third-generation language and

modern development tool
O———0 Majority of work done using modern development tool

(Source: Project data submitted by PEP members)

FOR BEST RESULTS, MODERN DEVELOPMENT
TOOLS MUST BE INTEGRATED WITH THE
DEVELOPMENT ENVIRONMENT

While most PEP members using modern development tools have
achieved some increase in the hypothetical measure, only 20
per cent are consistently achieving much higher measures (see
Figure 1.6). That is to say, only 20 per cent of members are using
modern development tools to reduce substantially the time and
effort required to develop an application. Detailed analysis of the
project data submitted by PEP members showed that the wide
variations in the hypothetical measure did not relate directly to
length of experience with the development tool. We believe that
the hypothetical measures achieved with modern development
tools are simply less consistent than they are with third-generation
tools, and responses to our questionnaire confirmed this.

If they are to be used really effectively, modern development tools
must be integrated into the development environment — that
is, they must be used in eonjunction with the right development
approach, systems development techniques, and methods, and
their capabilities must be matched with the particular require-

Only a few PEP members are
achieving high hypothetical

measures

© Butler Cox & Partners Limited 1989

Chapter 1 Exploiting the potential of modern development tools

Figure 1.6 Only 20 per cent of PEP members are consistently achieving
high hypothetical measures

A Number of
organisations

Average for all PEP
members using third-
generation languages

Average for all PEP members
using a mixture of third-generation
languages and medern
development tools

Average for all PEP
members using modern
development tools only

|
|
|
|
| Members consistently achieving
e ! 4 | \ . - high hypothetical measures

0 20,000 40,000 60,000 80,000 100,600

Hypothetical measure, normalised to Cobol

(Source: Project data submitted by PEP members)

There is a complex set of relation- ments of the application. The complex set of relationships between
ships between the elements these elements of the development environment must also be
of the development understood.
environment

The term ‘development approach’ describes the complete life cycle,
phases, and activities of the development of an application. Most
organisations will be using at least one of the following development
approaches:

— The traditional, or conventional, approach, where progress is
achieved by proceeding in a linear fashion through each
successive phase of the life cycle.

— The iterative approach, where several passes are made through
one or more of the phases of the life cycle, with additional
functionality and detail being added each time.

— The small-systems approach, where new, small systems or small
enhancements to existing systems are required. This approach
is typically a variant of one of the major approaches, with
smaller project teams and less stringent management
techniques.

Other approaches, such as the package approach and the end-user-
computing approach, may be used by some organisations, but are

The development approachiised not widely adopted. The development approach used will, to a large

determines the appropriate extent, determine the development techniques that can be used,
development techniques because for each approach, only particular techniques will be
appropriate.

The term ‘systems development technique’ is used to describe the
procedures on which systems development methods are based.
Examples of systems development techniques are data analysis,
functional decomposition, and prototyping. Systems development
methods are commercialised systems development techniques.
In other words, a systems development method is a way of
implementing, in practice, the ideas embodied in a systems

© Butler Cox & Partners Limited 1989 9

e

Chapter 1 Exploiting the potential of modern development tools

development technique. Examples of systems development
methods are LSDM/SSADM from Learmonth and Burchett
Management Systems, and Prism, from the Hoskyns Group. The
various systems development techniques and methods are, in
turn, supported by particular development tools.

It is clear, therefore, that the elements of which the development
environment is composed are variously dependent on, or provide
support to, each other. For the full potential of this environment
to be exploited, it is essential that these elements be very carefully
selected and managed as an integrated whole.

PURPOSE AND STRUCTURE OF THE PAPER

There is currently a wealth of modern development tools available
on the market. This market, however, is continually evolving and
the products are covering a broader area of applications
development. As a result, modern development tools cover a wide
spectrum of functionality, performance, and hardware
environments, making it a very complex task to select and use
them effectively.

The purpose of this paper is therefore to offer guidance on how
to choose and make effective use of modern development tools,
primarily in the areas of transaction processing, both batch and
online, and decision-support systems. It is intended for managers
charged with selecting and implementing such modern
development tools, and for managers and technical staff
responsible for their support and use.

In Chapter 2, we explain how an organisation should identify and
select the modern development tools that will be available for use
by the systems development department. Most organisations will
require a set of development tools to develop the full range of
applications required by the business. We therefore suggest a
suitable procedure for selecting modern development tools to add
to a company’s resources, including guidelines for compiling the
criteria used for selecting them.

In most organisations, the introduction of a modern development
tool will require changes to methods, standards, team roles and
responsibilities, training, hardware, and the organisation
structure. In Chapter 3, we discuss how these changes can
successfully be brought about. Failure to plan for the introduction
of modern development tools can have an adverse impact on the
productivity of the development teams using them.

In Chapter 4, we define a procedure to ensure that the best
development approach, techniques, and tools are selected for each
individual application, be it maintenance or a new application.

RESEARCH SOURCES

To help us to identify the main areas of concern, we asked PEP
members to complete a brief questionnaire. Thirty-six members,
forming a representative sample, responded. We subsequently
held a one-day focus group to which we invited a cross-section
of PEP members to discuss their concerns, successes, and failures.
We conducted 21 telephone interviews to gather further

10

The various systems development
techniques are supported by
particular development

tools

© Butler Cox & Partners Limited 1989

Chapter 1 Exploiting the potential of modern development tools

® Butler Cox & Partners Limited 1989

information, and several face-to-face interviews with selected
PEP members to gather more detailed information on their use
of particular modern development tools. To ensure that we
presented a balanced view, we interviewed four vendors of
modern development tools — Information Builders (Focus), ICL
(QuickBuild), Pansophic (Telon), and Software Generation (APS).
We asked them about the technical capabilities of their respective
modern development tools, and sought their views on likely future
developments. We carried out an independent survey of over 230
modern development tools, reviewed the latest published research

material, and analysed the project information held on the PEP
database.

11

Chapter 2

Identifying and selecting modern
development tools

As organisations continue to develop a greater variety of
applications, they will require a more powerful range of
development tools. Selection of the right modern development
tools to meet an organisation's current and future application
needs is vitally important, but it is becoming more and more
complex as more modern development tools are introduced, and
their abilities continue to be extended. Every organisation should
regularly review the set of development tools that it has available
to ensure that it continues to meet the evolving needs of users.

RECOGNISE THAT A SET OF TOOLS
WILL BE REQUIRED

The role played by the systems development department within
most organisations is changing. No longer is the majority of the
effort spent developing large transaction-processing systems, with
a single, third-generation language. The applications required by
users today range from very large and complex transaction-
processing applications to very small and simple reporting
applications. As a consequence, the systems development depart-
ment in most organisations is now expected to develop and
maintain a growing range of applications using a mixture of
modern development tools and third-generation tools. The
application areas being supported by PEP members are shown in
Figure 2.1. All members are supporting transaction processing,
and 80 per cent support end-user computing and decision-support

Figure 2.1 PEP members are supporting a wide range of application
areas

Percentage of PEP members

Application area T T T T T T T T T 1
PP 10 20 30 40 50 60 70 80 90 100
Transaction processing
End-user computing
Decision-support systems

Systems software

Special systems

(Source: Butler Cox survey of PEP members)

12

Selection of the right modern
development tools is a
complex process

The demands on systems
development departments
are continually growing

© Butler Cox & Partners Limited 1989

Chapter 2 Identifying and selecting modern development tools

Over 230 modern development
tools are available in the
United Kingdom today

Modern development tools have
different design objectives

and address different
application areas

A set of development tools
will usually be required

© Butler Cox & Partners Limited 1989

systems. Our research showed that nearly 80 per cent of PEP
members are supporting three or more different application areas
(see Figure 2.2). To support these application areas, there are over
230 modern development tools available in the United Kingdom
today. Approximately 30 per cent of them are compatible with
DEC hardware, 25 per cent with IBM mainframe hardware, and
about 8 per cent each with ICL, Hewlett-Packard, and Prime
hardware. Thirty per cent are compatible with microcomputers
(mainly IBM and IBM-compatibles), a market that has grown
dramatically in the last three years. Several of the development
tools are able to run on a range of machines from one supplier,
or on the machines of different suppliers.

Figure 2.2 Each PEP member supports an average of three different
application areas

4 Number of
12 + PEP members
11}

10

9l
8t
Z L
gl
51
4l
3l
2
1t

1 2 3 B 5 6

Number of application areas supported

(Source: Butler Cox survey of PEP members)

In many respects, this multiplicity of development tools is
beneficial; they cover a wide range of application areas and
operate on many types of hardware. The problem is that the
different modern development tools have different design
objectives and address different application areas. Figure 2.3
overleaf shows how third-generation languages, fourth-generation
languages, application generators, and special packages (such as
financial modelling) provide coverage across the main application
types. For most organisations, therefore, no single modern
development tool will cover all the application areas in which they
have to maintain and develop their applications. To gain full
coverage of the range of applications required by today’s users,
most organisations will need to acquire a set of development tools.

In view of this situation, PEP members have adopted one of three
different approaches to selecting and using development tools:

— Restrict the types of applications to those that can be
developed with the current development tools. This approach

13

Chapter 2 Identifying and selecting modern development tools

Figure 2.3 Development tools cover a wide range of application areas
Application area Tools
Special systems (process Special
control, financial modelling) packages &
+ User fourth-
—- generation
; languages
End-user computing "
A
A = o F
Decision-support systems LI v —_
A =l I
Information management X
software* .
Low transaction rate v
Transaction processing Third- :
; ; generation Professional Al
High transaction rate languages == fourth- :
» generation '
- . languages v
Systems software .)4 Application
v generators
—— Widely used in these application areas
|omen- > Not widely used in these application areas
*Covers the applications that provide a means of transferring information from transaction-
processing applications to decision-support or end-user applications.

has been adopted by some members in an attempt to try to stem
the flood of new, smaller applications, while dealing with the
much larger, more critical applications. Other members have
adopted this approach as a temporary measure to restrict the
number of development application areas during the transition
from one development environment to another.

— Use the current development tools for all applications, even
if some of them are not ideally suited to a particular application
area. This approach is usually adopted by members who have
standardised on one development tool. It may be successful if
the single development tool enables all the required
applications to be developed effectively and efficiently, and
it has the advantage of concentrating development skills. It is,
however, likely that there has been a compromise between the
ability to develop all the required applications, and the
effectiveness and efficiency of the department.

— Carefully select a set of development tools that provides
coverage for all areas of application development, review the
set of development tools regularly, and upgrade it when
necessary. This approach ensures that the development tools
are available to develop all user requests in the most efficient
and effective manner, but it does mean that skills are less
concentrated.

A simple way of viewing these three approaches is to consider
the systems development department as a carpenter who has been
commissioned to build some furniture. The specification requires
that some of the joints will be nailed, and others screwed. The
three approaches would produce the following results:

14 © Butler Cox & Partners Limited 1989

Chapter 2

Organisations should adopt
a procedure to choose

an appropriate set of
development tools

® Butler Cox & Partners Limited 1982

Identifying and selecting modern development tools

— The carpenter refuses to have anything to do with the screws
because he has only a hammer. The customer may give him
that part of the job that can be done with nails and a hammer,
and give someone else the job of putting in the screws. More
probably, he will give the whole job to someone else.

— The carpenter accepts the job, even though he has only a
hammer, and puts in both the nails and the screws with the
tool that he has. This is somewhat clumsy and inefficient, but
the job is completed. The customer reluctantly accepts the job,
but is not pleased as it does not precisely match his
specification, and it took longer than he expected.

— The carpenter has the right tools and accepts the job. He puts
the nails in with the hammer and the screws in with the screw-
driver. The job is finished according to the specification, with
minimal effort and fuss. The customer readily accepts the job.

Ensuring that the right development tools are available to develop
and maintain the range of applications required by the systems
department’s customers is a difficult task. It will be simplified if
organisations follow a set procedure, which is described in the
next section. This procedure is designed to ensure that the set of
development tools available within an organisation is adequate
and appropriate to cover the kinds of applications that the
developers are likely to be called upon to develop. Other factors
will, of course, also have an impact on the eventual choice of
development tools. Such considerations as company policy on
vendors, the existing hardware on which any new development
tool will be expected to run, and the number of tools that the
development department can realistically support will all need
to be borne in mind when the selection procedure is initiated.

BE SYSTEMATIC ABOUT SELECTING
THE SET OF TOOLS

To ensure that the right modern development tools are selected
to develop and maintain their current applications, organisations
should adopt the following procedure:

— Assess how well the current set of development tools covers
the types of application likely to be developed.

— Identify and select new development tools to fill any gaps in
the coverage, or to improve the current set of development
tools. Remove those development tools that are no longer
required or that duplicate coverage. Clearly, this will be a
policy decision; a development tool cannot be removed if it is
still needed for maintenance or operational running.

— Review the coverage provided by the tools at regular intervals,

 especially if several applications have run into problems, or
if an application has attracted an unusual number of
complaints.

ASSESS THE APPLICATION COVERAGE OF THE
CURRENT SET OF DEVELOPMENT TOOLS

To assess how well the current set of development tools covers
an organisation’s needs, the past, current, and future applications
must be defined and characterised. The capabilities of the current
development tools also need to be defined.

15

Chapter 2 Identifying and selecting modern development tools

The characteristics of the applications will vary from one
organisation to another. However, we recommend that, for the
purposes of this exercise, the applications are characterised with
respect to the requirements that may be met by the use of modern
development tools. For the majority of applications, between 10
and 20 characteristics can be derived, along the lines of those
listed in Figure 2.4. These can be amended and supplemented to
suit an individual organisation. Each characteristic should be
defined in a clear and simple manner so that every reader will
have the same understanding of it. Characterising applications in
this manner will simplify the task of ensuring that the modern
development tools available cover all likely applications.

Figure 2.4 To select a set of development tools, an organisation needs
to define the characteristics of the applications it develops

Application type What type of application is it — for instance, transaction
processing, end-user computing, decision-support
systems, and so on?

Level of integration What level of integration is likely to be required be-
tween the application types, databases, and machine
environmenis?

Performance How critical is the response time of the application?

requirements

Urgency How urgent is the development of the application, and
how fixed are the deadlines for installation?

Hardware On what hardware will the application be expected to
operate?

Security What level of security must the application provide for
access to the application itself and to the data?

Volume of data What is the likely total volume of data?

Size What is the likely total size of the application?

Complexity How difficult will the application be to develop, in view
of its complexity?

Compliance with What essential application standards must the appli-

standards cation meet?

Interface with end user | What degree of familiarity will the users have with the
system?

Flexibility What is the likely extent and frequency of change?

An adequate set of definitions can be compiled by characterising
all new and maintenance projects from the past two years. The
types of application that are likely to be required in the future
can best be assessed with reference to the current backlog, and
in discussions with users about trends they see developing in their
business area over the next two years.

The strengths and weaknesses of the various development tools
should be listed, with reference to the particular applications for
which they are used. In doing this, it may be necessary to add
application characteristics that were originally overlooked. By
matching the strengths and weaknesses of the current
development tools with the various application characteristics,

16

The characteristies of typical
applications need to be
defined

© Butler Cox & Partners Limited 1989

Chapter 2 Identifying and selecting modern development tools

The strengths and weaknesses
of the current development
tools should be assessed

A plan should be drawn up,
including budget, timescales,
and responsibilities

Application of the criteria will
reduce the shortlist to a
manageable number

© Butler Cox & Partners Limited 1989

it will be possible to identify where there are weaknesses in the
application coverage, where there may be inadequate coverage
in the future, and where there are areas of overlap. Such
weaknesses, lack of coverage, or areas of overlap may be due to
numerous factors, such as the inability of the development tool
to provide the required function, or the poor productivity gained
with the development tool in a particular application area. The
eventual result of assessing the coverage provided by the current
set of development tools may be to add new modern development
tools, but it is equally likely that existing development tools might
be removed, where they duplicate coverage, or where they cover
an area of application that is no longer of concern to the user and
that therefore requires no further maintenance.

ADOPT A TWO-PHASE APPROACH TO SELECTING
NEW MODERN DEVELOPMENT TOOLS

To ensure that the modern development tools are fairly assessed
and that the selection procedure is completed in a consistent and
timely manner, we recommend that a plan be drawn up,
specifying the budget and timescale for the exercise, and
allocating responsibilities for each aspect of it. Initially, the plan
will contain broad guidelines only; as the evaluation proceeds, the
details can be refined and incorporated into the plan.

We recommend that the selection procedure for modern develop-
ment tools be carried out in two phases. The initial list may contain
scores of possible products, especially if an organisation is using
IBM or DEC hardware. A phased approach will ensure that all
potential products are assessed systematically, with a minimum
of effort.

Phase 1: Create a shortlist

The objective of the first phase is to reduce the initial list of
potential modern development tools to a shortlist of two or three
to be retained for further investigation in Phase 2. The selection

criteria are those that the modern development tool must satisfy.
For example:

— The modern development tool broadly provides the required
functionality or will enable the required applications to be
developed. (A more detailed assessment will be carried out in
Phase 2.)

_ The modern development tool supports the development
approach.

— The modern development tool runs on the required hardware
and operating system.

— The modern development tool’s user/developer interface
matches the intended user/developer profile.

If any one of these criteria is not met, that modern development
tool will be eliminated from further consideration.

The most cost-effective way of evaluating the large number of
modern development tools in the initial list is for an organisation
to discuss its requirements and its current development
environment with the vendor of each tool. Only when the vendor
has a clear understanding of a customer’s requirements can he
comment on the ability of his modern development tool to meet

17

Chapter 2 Identifying and selecting modern development tools

them. If his tool is not suitable, he may be able to suggest products
from other vendors which, combined with his, could provide
complete coverage for a particular type of application. In turn,
the vendor should supply references, ideally of organisations that
are using the same hardware and developing similar applications
with his modern development tool. Either by visiting those
organisations, or by discussing the modern development tool with
developers there, it should be possible to decide whether or not
it meets the criteria and whether the vendor’'s claims can be
supported.

Phase 2: Evaluate the shortlisted products

Phase 2 is a more detailed analysis of the modern development
tools identified in Phase 1, with greater emphasis on assessing
their suitability for a particular development approach and a
particular area of application. This assessment should be made
with reference to such factors as the cost of the modern
development tool, its shortcomings and special features, its likely
impact on the development environment, and its future prospects.
Figure 2.5 lists some of the more detailed questions that need to
be resolved as part of this assessment. This detailed analysis should
be coordinated and managed to ensure that the modern
development tools are fairly judged. Any response from the
vendor about the capabilities of the modern development tool,
his viability, the customer base, support arrangements, and so on,
should be in writing.

Figure 2.5 The shortlisted products need to be assessed with reference
to a range of factors

What are the costs associated with the modern development tool:

— For application development?
— For the production, operational, or end-user environment?
— For maintenance and enhancements?

What are the deficiencies and additional features provided by the modern development
tool, in terms of:

— Functionality?

— Processing speed?

— Interfaces to other tools?

— Interfaces to databases?

What impact will the modern development tool have on the development environment?
Will it require:

— Additional hardware?

— Changes to standards?

— Training?

What gains can be expected with the modern development tool, in terms of:
— Reduced documentation?

— Increased productivity?

— Higher-quality products?

— Reduced maintenance?

What are the prospects of the tool and the tool vendor:

— |s the vendor an established company or a market front runner?

— How many years has he been in the market and what is the user base?
— How has the tool advanced over the last year?

— What future enhancements are proposed?

— Does the hardware vendor recommend the tool?

18

The vendor should be involved,
wherever possible

More detailed analyses will
identify the best develop-
ment tool for a particular
organisation

BUTLER COX

© Butier Cox & Partners Limited 1989

Chapter 2 Identifying and selecting modern development tools

Where possible, the shortlisted
products should be evaluated
concurrently

The cost of trials is acceptable in
view of the risks involved in
choosing the wrong modern
development tools

© Butler Cox & Partners Limited 1989

Depending on the resources available, and on the urgency of the
need for the modern development tool, the analyses of the
shortlisted tools can be carried out concurrently, or one after the
other. We recommend that, wherever possible, they be carried
out concurrently. This approach does require a higher peak level
of resources, but will cost the same, and results will be achieved
more quickly. Furthermore, different teams will be involved in

the assessment of each tool, and one member of the team will
usually become its champion.

Regardless of the approach selected, the subsequent stages should
be well planned and managed to ensure that the most beneficial
modern development tool is selected:

— Identify a contact in each vendor organisation. These people
should be involved in the trials conducted to evaluate the
modern development tools, and should introduce them to the
analysis teams. Each team should consist of up to three
experienced developers or analyst/programmers from within
the organisation. Before the trials are carried out, the analysis
teams must be knowledgeable about the appropriate modern
development tools.

— Carefully define a small but realistic trial application that will
test the abilities of the various modern development tools.

— Use the modern development tools to construct the trial
application. Assess the selection criteria and collect the
information required to compare the tools. This stage of the
trial will show how the tools will perform in the development
of new applications and in rewrites of existing applications.

— Define and implement one small and one large enhancement
to the trial application. Again, monitor the performance of each
tool and collect the information required to compare them. This
stage of the trial will show how the tools will perform during
enhancements and maintenance.

— Measure the operational performance of the developed
application in the environment in which it will be expected
to run.

Ideally, these trials should be carried out in the organisation’s own
development environment, or alternatively, using the vendor’s
training facilities. The objective of the trials is to gain a better
understanding of the use and capabilities of the modern develop-
ment tools with respect to an organisation’s eventual needs. These
trials may seem a costly exercise in terms of time and effort, but
compared with the cost of selecting incorrect modern develop-
ment tools, it is an acceptable price to pay. If it is impractical to
conduct such a series of trials, a tool can be selected on the basis
of the organisation’s current knowledge of those on the shortlist.
A trial could then be conducted on the selected modern
development tool. Provided that there were no major problems,
that particular modern development tool would then be adopted.

If the series of trials has been completed, each modern
development tool should be ranked. A representative from each
analysis team should be available to answer any detailed
questions. The strengths and weaknesses of the tools that have
been on trial should be discussed. At the end of the meeting,

19

Chapter 2 Identifying and selecting modern development tools

one modern development tool should be selected for addition to
the organisation’s resources. If there is a tie between several
modern development tools, a small trial should be set up to resolve
the issue. If it is still not clear which is the best tool, the one with
the most users in the United Kingdom, or the one supplied by the
vendor with the best support and help-desk facilities should be
selected.

REVIEW COVERAGE AT REGULAR INTERVALS

The set of development tools available for use within the systems
development department should continually evolve to match the
required applications and support the development approaches
adopted. It is therefore necessary to review the set of
development tools at intervals appropriate to the rate of change
within a particular organisation. Reviews should also be carried
out at other times if several developments have run into difficulty,
or if the application areas change.

One PEP member, for example, found that one of its financial
applications, for which results were required daily, was taking
nearly 24 hours te run. This was found to be the result of
redeveloping several modules with a modern development tool.
At the time of redevelopment, only a small amount of information
had to be processed by the system. As the amount of information
increased, however, the execution time increased dramatically.
After receiving numerous complaints about the application from
users, the development department identified the problem as the
modern development tool’s code, which required enormous
machine resources. A more efficient modern development tool
was adopted to replace the existing one. The critical processing
modules have now been rewritten. The whole application is
gradually being rewritten with the new tool, replacing modules
as and when required.

CONTROL THE SIZE OF THE SET OF TOOLS

While it is likely that a set of development tools will be needed
in most organisations, care must be taken to manage it and control
its size. Adding yet another development tool may enable
applications to be developed more effectively and efficiently, but
it will also dilute the skill levels within the department. At one
time, one PEP member had 15 development tools in use. It is now
reducing this to three, and at an appropriate time, plans to
redevelop each of the existing applications with one of the
reduced number of development tools.

The appropriate number of development tools available for use
within an organisation depends on the number and type of
development environments and the hardware that it has. We
recommend that most organisations should have:

— A third-generation language, in order to develop applications
for which their current modern development tools are
unsuitable, or to maintain existing applications.

— At least one modern development tool, in order to improve
development productivity for new applications. Some
organisations will need several modern development tools —
for example, one fourth-generation language for prototyping
and a different fourth-generation language for development.

20

The set of tools should be reviewed
at intervals appropriate to an
organisation’s rate of change

The appropriate number of devel-
opment tools for an organisation
depends on the development
environments and the hard-

ware that it has

® Butler Cox & Partners Limited 1989

Chapter 2 Identifying and selecting modern development tools

— A set of end-user tools, such as a query language and a report
writer.

Once an organisation has decided on the set of development tools
it needs to provide adequate and appropriate coverage for the
kinds of applications that it is likely to require, it will need to
assess the implications of introducing them into the development
environment. Some changes will doubtless need to be made within
the organisation to ensure that modern development tools are
integrated smoothly into the development environment, and that
the benefits to be derived from them are fully realised, with the
minimum of disruption. How the necessary changes should be
identified and managed is the subject of Chapter 3.

@ Butler Cox & Partners Limited 1989 21

T

Chapter 3

Planning for the introduction of modern

development tools

It is, of course, impossible to produce a single plan that can be
used to introduce all types of modern development tools into all
types of organisation. Some organisations are generally quick to
react to change; others less so. They will therefore also be likely
to adopt new development tools at different rates. Moreover, the
type and complexity of the development tool will have a bearing
on how long it takes to integrate it into the development
environment. The level of planning and the amount of work
required to implement each stage of the plan will therefore vary
from one situation to the next, but we strongly believe that the
introduction and subsequent integration of a modern development
tool must be carefully planned and managed. The advice that we
provide in this chapter is intended primarily for those
organisations that are contemplating the introduction of modern
development tools, but it will also be applicable where such tools
have already been installed, especially where changes are having
to be made to the development environment to exploit and
support the tools.

Without careful planning and management, the benefits of a
modern development tool may never be fully realised. One PEP
member, for example, decided to introduce QuickBuild, but failed
to get the commitment of the development staff at the outset.
As a consequence, developers felt that they were forced, rather
than encouraged, to use the tool, and continually found reasons
not to use it. The problem was eventually overcome, but it need
never have arisen if the introduction of the tool had been properly
planned and managed. Another PEP member believed that his
own in-house expertise was adequate to conduct a pilot
application, and did net therefore involve the vendor. Again,
problems arose that were expensive and time-consuming to solve,
and which could have been avoided with careful planning and
management.

An effective plan for introducing a modern development tool
should consist of the following four stages:

— Stage 1: Internally market the tmplementation plan. This stage
is designed to ensure that all the staff involved with the modern
development tool know exactly what the implementation plan
is, what their responsibilities are, and how it will affect them.

— Stage 2: Initiate changes to exploit and support the modern
development tool. In this stage, changes are made to the
development environment so that the modern development
tool can be optimally supported and exploited. These changes
may be of a ‘one-off’ nature, such as reducing team sizes, or
they may be continuing changes, such as defining and creating
a ‘cook book’ (described later in this chapter).

22

The introduction of a modern
development tool must be
carefully planned and
managed

Otherwise, its full potential
may never be realised

Chapter 3 Planning for the introduction of modern development tools

Staff need to understand the
implications of the intro-
duction of a modern
development tool

The commitment of senior
systems managers is

® Butler Cox & Partners Limited 1989

essential

— Stage 3: Implement a pilot application. In Stage 3, the ability
of the modern development tool is tested on a pilot application.
If the correct tool has been selected, and Stages 1 and 2 have
been completed correctly, the pilot application will succeed.
Areas may well be identified where changes can be made to
make better use of the tool — for example, areas where the
documentation may be reduced, or where changes in the
procedures may be introduced.

— Stage%: Modify the development environment in the light of the
pilot application. In Stage 4, any recommendations resulting
from experience with the pilot application are implemented.

Stages 1, 2, and 3 should be planned in detail, at the outset.
Stage 4 is dependent on the results of the pilot application. We
recommend that, throughout the planning process, close contact
be maintained with the vendor. While the vendor may not have
detailed knowledge of a particular organisation’s environment,
he will have a wealth of experience in implementing the particular
modern development tool. The advice of other organisations with

experience of using the modern development tool should also be
sought.

INTERNALLY MARKET THE
IMPLEMENTATION PLAN

The objective of this stage is to ensure that all the staff involved
with the modern development tool are aware of the implement-
ation plan and of its effects on their working environment, their
roles and responsibilities, job security, market value, and so on.
In PEP Paper 7, Influence on Productivity of Staff Personality
and Team Working, we identified the staffing factors that are
important to productivity; managers should pay particular
attention to these factors when considering the introduction of
a modern development tool.

The commitment of senior systems department managers to the
use of the modern development tool, and the development
approach in which it will be used are also vitally important to the
successful introduction of the tool. To win their support, it will
be necessary to demonstrate that the money spent on the modern
development tool and the changes made to the development
environment will increase the development department’s
productivity. In PEP Paper 5, Managing Productivity in Systems
Development, we demonstrated how to calculate the return on
investment and the cash savings associated with new
developments.

A group should be created to ‘market’ the modern development
tool to the rest of the systems development department. This
group should comprise the proposed technical expert (who will
probably be one of the people who carried out the initial trial),
a technical expert from the vendor, a sales representative from
the vendor, and a senior project manager from within the systems
department. This group will be responsible for introducing the
modern development tool to development staff. We recommend
that all staff involved with the tool — developers, managers, and
user managers — attend a one-day presentation. Half the day
should be spent introducing the modern development tool, and

23

Chapter 3 Planning for the introduction of modern development tools

half should be spent discussing the plan for introducing it into the
organisation. This should encourage a positive attitude towards
the modern development tool and its use.

The vendor should take the lead in the first half-day session,

providing general background information on the tool, showing I

how it will be used in the proposed environment, describing the A one-day presentation should
types of applications it will be used for, and providing details of ?;e“z‘;f to introduce

the benefits that it can provide. In-house members of the group

will participate in a supporting role.

In the second half-day session, the in-house members of the group
will take the lead, clearly defining each stage of the plan and
indicating the proposed timescales. All questions should be
answered either during, or shortly after, the meeting. If
outstanding issues are left unresolved, they may become
stumbling blocks at a later stage. The pilot application should be
described, the expected time scales should be made clear, and the
members of the development team who will work on it should
be announced.

INITIATE CHANGES TO EXPLOIT AND SUPPORT
THE MODERN DEVELOPMENT TOOL

To maximise the benefits obtained from wusing modern
development tools, various changes may need to be made to the
development department. These changes could affect any aspect
of the development department, from the computer hardware to
the roles of the staff. To ensure that the potential benefits of
modern development tools are achieved, most organisations will
need:

— To introduce the role of analyst/programmer.

— To introduce the role of technical expert.

— To provide appropriate training.

— To reduce the size of project teams.

— To prepare for higher levels of user involvement.

— To increase the level of hardware support, both for
development and operational work.

— To introduce prototyping.
— To reduce the amount of documentation.
— To use the tools’ standard facilities and defaults.

— To define and implement a ‘cook book’ and a ‘tool-limitations
list’.

INTRODUCE THE ROLE OF ANALYST/PROGRAMMER

One of the advantages of modern development tools is that they
enable applications to be constructed without the developer
requiring detailed knowledge of the hardware environment on
which the applications will run. By introducing analyst/program-
mers to take advantage of this feature, the communication
problems that have commonly existed between analysts and
programmers can be removed. A survey of PEP members carried
out in late 1988 showed that just over 75 per cent of all
development staff are now classified as analyst/programmers.

24 © Butler Cox & Partners Limited 1989

Chapter 3 Planning for the introduction of modern development tools

The introduction of analyst/
programmers will make it
easier to exploit modern
development tools

The technical expert is the
focus of all enquiries

Vendors are a good
source of training

There are advantages
to running courses
in-house

@® Butler Cox & Partriers Limited 1989

The remainder are classified as either analysts or programmers,
using traditional tools for maintenance or development. Care must
be taken during the transition period, however. Not all analysts
wish to get involved in programming, and not all programmers
are interested in dealing with users. While analyst/programmers
should be involved in the whole development process, they should
also be allowed to concentrate on those parts of the process where

their strengths lie. This will result in a better exploitation of their
skills.

INTRODUCE THE ROLE OF TECHNICAL EXPERT

Whenever any new development tool is introduced, it is good
practice to designate a technical expert as a focal point for all
enquiries. The trials carried out during the selection process should
provide several of the developers with a reasonable knowledge
of the modern development tool. One of them would be the
obvious choice to become the technical expert for the chosen tool.
The technical expert will also be responsible for keeping up-to-
date on the latest enhancements to the tool and for resolving any
problems that arise.

PROVIDE APPROPRIATE TRAINING

All staff involved with the modern development tool should be

trained. Different types of staff will have different training
requirements:

— Systems development managers need to understand the
capabilities of the modern development tool and how it should
be used, as a basis for planning resources to support the
development of an application.

— Analyst/programmers need to understand how to develop
applications with the tool and what its capabilities are.

— Techwical support staff need to have detailed knowledge of
the modern development tool, both in terms of how it will be
used for development and for end-user access, and of its
limitations.

— End users: Need to understand the facilities provided for them
by the tool. Users and user managers who will be involved in
the development of applications should have a good
understanding of the capabilities of the modern development
tool and of the development approach within which it will be
used. User managers, especially, need to realise the limitations
of the tool and of the development approach.

Most vendors of modern development tools provide very good
technical training for all levels of development staff and users.
Initially, the members of the pilot team should be sent on the
vendor's course. If they find it effective, other staff should also
attend. Alternatively, in-house courses should be run. Some
vendors, such as ICL with QuickBuild, will help to set up such
courses. The advantage of in-house courses is that they can be
designed for a particular environment, for particular applications,
and for particular standards and procedures. They can also be
tailored to match the level and experience of those attending, and
to utilise the most appropriate training methods and media,
such as tutorials, videos, computer-based training, and so on.

Some of the more established vendors hold forums at which
technical experts can question product managers and swap

25

Chapter 3 Planning for the introduction of modern development tools

experiences with each other. Information Builders, for example,
has established such a meeting for UK users of its product, Focus;
this is called the ‘Top Gun’ event.

According to PEP members, the only area not covered adequately
by vendors is training traditional third-generation programmers
to think differently when using modern development tools.
Programmers still tend to use modern development tools to write
applications in a third-generation-language style, and thus make
less than effective use of the modern development tool. Many
third-generation-language programmers are not aware of the
facilities provided by the modern development tools at their
disposal. Many of these tools, especially application generators,
for instance, allow the developer to specify the application at a
higher level than was possible with third-generation languages;
many have re-usable application elements and capabilities for
defaults; many facilitate incremental construction and
prototyping, which is checked with the user in stages.
Programmers who are not properly trained can therefore spend
a lot of time doing work that would not be required if the modern
development tool were being properly exploited. Some vendors
are aware of this problem and are introducing training
programmes with a stronger emphasis on how to make the best
use of the modern development tool, rather than on its capabilities
and facilities.

REDUCE THE SIZE OF PROJECT TEAMS

Most modern development tools reduce the effort required in the
construction phase of development — that is, coding,
documentation, and testing. Thus, the teams required during the
construction phase can be smaller. Analysis of the PEP database
confirms this trend. During 1987, applications developed with
modern development tools had an average peak staff level of 7.4.
This is 22 per cent less than the corresponding peak staff level
for applications developed with third-generation tools. During
1988, the average peak staff level fell to 6.9 — 39 per cent less
than the corresponding peak staff level for applications developed
with third-generation tools. As a result, there will be fewer
channels of communication, less management effort, and more
productive developments.

PREPARE FOR HIGHER LEVELS OF USER INVOLVEMENT

With modern development tools, which provide the ability to
prototype applications, it is common for users to be involved at
the design stage of the application. The use of prototyping with
modern development tools is discussed further on page 28.
Analysis carried out in mid-1988 for PEP Paper 6, Managing
Contemporary System Development Methods, showed that user
involvement increased two- to four-fold when modern develop-
ment tools, rather than traditional tools, were used. In addition,
as there is a greater throughput of applications and as more new
developments are possible with the use of modern development
tools, user involvement at the design stage will increase still
further. All these points are discussed in detail in PEP Paper 6.

To maximise the benefits of user involvement with applications
development, analyst/programmers will need good business aware-
ness and people-related skills as well as technical knowledge. Their

The need for a change in pro-
gramming style with modern
development tools is not
addressed in training
programines

With modern development tools,
the construction phase of a
project requires fewer
development staff

With modern development tools,
users will be more involved
at the design stage of an

application

© Butler Cox & Partnefs Limited 1989

Chapter 3 Planning for the introduction of modern development tools

ability to communicate well with users is as important as their
ability to use the modern development tool. All analyst/program-
mers dealing directly with users should have their business aware-
ness, communications skills, and technical knowledge assessed,
and if necessary, be provided with training to improve them.

Some organisations have seen the emergence of so called ‘power
users’ — business people who not only use the modern develop-
ment tools, but push them to their limits, and build all, or
substantial parts, of the applications that they require. The
nmajority of PEP members, however, still have problems getting
users committed to new developments. On the one hand, user
departments often underrate the importance of their involvement
to the success of the development; on the other, developers report
that it is often difficult to gain access to the right users.

Users must play an
appropriate role

Several actions can be taken to ensure that users do play an
appropriate role:

— Draw up guidelines defining the roles and responsibilities of
user representatives in a development, stating how their
performance will be evaluated. The evaluation should be
carried out by the project sponsor or the systems department,
not the users’ line managers.

— Persuade the manager sponsoring the development to assign
to the team the staff who will have the greatest contribution
to make to the project, not those who are perceived as the most
dispensable within the department.

_ Ensure that the user representatives perceive the work as
critical and as an integral part of their job, not as a task that
they have unfortunately been picked to do. A positive attitude
from the user representatives is essential.

_ Ensure that the users’ other (non-systems) work is done by
someone else, so that they can concentrate on the development
project.

— Ensure that when the user representatives finish their
development-project responsibilities, there are non-systems
jobs for them to return to, so that they will be willing to
contribute again, if required.

_ Reward user representatives who are effective and helpful,
in order to encourage others.

The importance of such actions with respect to user representa-
tives is not confined to their role in the use of modern develop-
ment tools, but they are especially critical when users are involved
with development projects. Unless user representatives are
controlled and managed correctly when they are involved in
development work, the fuil benefit of their contribution will not
be realised.

INCREASE THE LEVEL OF HARDWARE SUPPORT

More processing capacity may The initial trials should make it clear whether additional hardware
be required once a modern resources will be required to handle the processing requirements of
development tool is the new modern development tool. There will also be a greater
introduced .. yirement for terminal access when a modern development tool
is adopted, and even more so if prototyping is adopted. Ideally,

there should be a terminal on each developer’s desk.

© Butler Cox & Partners Limited 1989 27

Chapter 3 Planning for the introduction of modern development tools

Several PEP members found that they needed more processing
capacity once a modern development tool had been introduced,
both to run the modern development tool and to run the new
applications being generated by it. If the usage of the system is
regularly monitored and the capacity required for all new
developments is assessed, the need for additional resources can
be anticipated. If this requirement is not anticipated, the resulting
bottlenecks may reduce the productivity of development teams,
and provide poor performance for the users.

Some modern development tools, such as Focus, permit
development work to be offloaded onto microcomputers or
minicomputers, thus reducing the pressure on mainstream
computing resources. Systems integration and testing would
usually still have to be carried out in the operational hardware
environment, however.

INTRODUCE PROTOTYPING

One of the strengths of most, although not all, modern
development tools is their ability to build prototypes. This strength
should be utilised wherever possible. Prototyping is particularly
suitable for the development of applications where the user is
willing to help with the definition, where the application is not
very well defined, or where the application is not too complex.
Prototyping can also reduce the amount of effort required to train
users. With certain applications, it may be possible to use one of
the prototypes as a computer-based training aid, thus providing
hands-on experience without incurring the risk of corrupting the
live application.

Two types of prototyping are in common use — prototyping for
iterative development and throwaway prototyping. Prototyping
for iterative development, sometimes known as evolutionary
prototyping, should be considered when the application meets the
criteria defined above and when the modern development tool
being used enables the application to be fully developed.
Throwaway prototyping should be used to help with requirements
definition when the application meets the criteria defined above
and when the development tool selected for the application does
not permit prototyping.

A new type of prototying, known as experimental prototyping,
is the development of small trial systems to assess whether a
particular modern development tool is able to perform as required,
or to try out several alternative designs or new technical features
to determine their flexibility or performance characteristics. It
can save a considerable amount of time and effort, and add to
knowledge of the modern development tool. This type of
experimental prototyping is normally carried out by the technical
expert.

Although prototyping is a very effective technique when used in
conjunction with a modern development tool, its use must be
carefully controlled. We have seen instances where users have
demanded that the first prototype (which was, in fact, only a
mock-up of the user interface software) be implemented, where
only parts of the application have been fully developed, and
where enormous amounts of time have been spent on throwaway

28

The ability of modern development
tools to build prototypes should
be exploited wherever possible

Two types of prototyping
are in common use

The use of prototyping
must be controlled

BUTLER COX

© Butler Cox & Partners Limited 1989

Chapter 3 Planning for the introduction of modern development tools

Modern development tools will
reduce the amount of docu-
mentation required for

an application

The standard facilities provided
by modern development tools
should be used as a matter

of course

Cook books and tool-limitations
lists help developers avoid the
problems that commonly arise

@© Butler Cox & Partners Limited 1989

prototyping. Care should be taken to prevent such situations as
these occurring. One American company, which uses Application
Factory from the Cortex Corporation, uses a development
approach in which the iterative prototyping phase is strictly
limited to no more than 90 working days. This approach has been
so successful that the company guarantees to build the required
application for a fixed price within a fixed time period. If the

delivered system fails to meet the user’s requirements, the user
pays nothing.

REDUCE THE AMOUNT OF DOCUMENTATION

Applications developed with traditional tools usually require
detailed documentation to explain the meaning and the structure
of the code. Some modern development tools make this traditional
style of program documentation virtually redundant, by high-
lighting the program text that will help to clarify the meaning of
the code, and automatically indenting code to indicate its
structure. The total amount of documentation required for an
application will thus be significantly reduced. Once the application
has been developed, listings showing the relationships between
the data fields, programs, and screens can also be generated
automatically. Some modern development tools provide good
documentation facilities for maintenance purposes, such as
automatically generating cross-reference listings and menu-
structure charts from the code and data structures. Fourth
Dimension from ACI UK is an example of this type of modern
development tool. User documentation is not, however, generated
automatically. The procedures and aids required by the user will
still have to be produced in the traditional manner.

It should be remembered, however, that a poorly documented
application is difficult to maintain, whatever language it is written
in. While modern development tools reduce the amount of
documentation required, they do not preclude the need to produce
it in a careful and timely manner.

USE THE TOOLS’ STANDARD FACILITIES AND DEFAULTS

Most modern development tools provide many standard facilities,
such as default screen formats, report layouts, input patterns, edit
masks, validation modules, and check-digit routines, which
organisations often ignore because they already have their own
standards. Very often, however, the existing standard screens and
layouts were defined to suit the programming language that was
used at that time, and are not best suited for use with modern
development tools. With some modern development tools, the
default options can be modified to match an organisation’s current
standards. Otherwise, we recommend that the standard defaults
provided by the modern development tool should be used as a
matter of course.

DEFINE AND IMPLEMENT A ‘COOK BOOK' AND A
‘TOOL-LIMITATIONS LIST’

Several PEP members use what they call a ‘cook book’ to help
resolve problems that arise in using a modern development tool.
Figure 3.1 is an extract from one PEP member’s cook book,
specifying how a screen-based system should be developed with

Focus. Normally, compilation of the cook book is the responsibility
of the technical expert.

29

Chapter 3 Planning for the introduction of modern development tools

Figure 3.1 A cook book advises users and developers on the use of a
modern development tool

Specifying a screen-based system

Do: Keep things simple :
Do you need flashy formatting? The more colours, special formatting,
and highlighting you use. the more complicated the code becomes.

Determine the functions of each screen as you would for a third-
generation language — the more the functions are broken down, the
simpler the coding.

Do: Be precise
Document the validation required behind each screen, for each field
which requires validation.

Be clear on screen processing — do not be afraid to use program
design language to define the program flow for the screen sequence
in pseudo-English — this is as important as it is with third-generation-
language specifications.

Do: Be careful with PFKEYS
When using PFKEYS to navigate through a system, use the default keys

when possible. If other keys are required for special functions, use PF5,
B; 7,8, 9,18, 11;

Do: Use painter
When designing the screens, use Focus painter. This helps you design,

and saves the programmer time. You will know that the screen can
be used in Focus.

Do: Issue your own information messages
When the user presses an invalid PFKEY, or invalid data is entered,
issue meaningful error messages.

When an action has been taken (for example, job submitted or record
deleted), issue a confirmation message.

Consider: Response times

A fourth-generation language may be quicker to code, but will be slower
than a third-generation language to respond. Is this critical to your
system?

A similar aid is the ‘tool-limitations list’. This contains detailed
information on the limitations of the various development tools
currently being used and is particularly helpful when deciding
which development tool to use for a particular application.
(This topic is discussed in detail in Chapter 4.) An example of
part of a tool-limitations list used by a PEP member is shown in
Figure 3.2. Again, responsibility for compiling the tool-limitations
list normally lies with the technical expert.

IMPLEMENT A PILOT APPLICATION

Before a modern development tool is made available for general
use, one or more pilot applications should be developed. The
experience gained will be used to refine the use of the modern
development tool and the development methods. If the selection
procedure has been followed correctly, and if appropriate changes
have been made in the development department to support the
tool, no major problems should arise with the pilot application.
It will simply confirm that the modern development tool can
develop the required applications, and increase the confidence
of the development department in its ability to do so.

The pilot application should be carefully selected since it is an
important step in gaining acceptance of the modern development
tool. We recommend that the application is:

30

A pilot application will indicate
where the use of the modern
development tool needs to

be refined

BUTLER COX

© Butler Cox & Partners Limited 1989

Chapter 3 Planning for the introduction of modern development tools

@ Butler Cox & Partners Limited 1989

Figure 3.2 The tool-limitations list specifies the limitations of a particular
modern development tool

Limitations of Focus from a PEP member’s tool-limitations list.*

Focus cannot update any file except a Focus or a VSAM file. These files cannot be
read by any other language except Focus or Cobol programs making use of Focus
Host Language Interface. However, Focus files can easily be created from QSAM

or VSAM files, or DL/1 databases. Similarly, QSAM files can easily be created from
Focus files.

Without central database control for simultaneous users, only one user can update
a file at a time. Theoretically, a maximum of 128 simultaneous users is possible, but
Information Builders indicates that about 20 is a more realistic limit. The operational
range is between five and 20 users; typically, 15 users are supported.

Focus has no facility for automatic forward recovery (which is available in IMS). It
is possible to code your own back-up logging and recovery routines in Focus.

Alternatively, frequent back-up copies of files can be taken. In the event of an
irretrievable corruption of the database, the back-up copy would be restored and
the user would have to re-enter his updates from the time the copy was taken.

No audit trail is provided for external files, except for IMS trace (which can be very
large). Limited audit information is available for Focus file modification.

The ‘non-procedural’ nature of the Focus language makes complex processing difficult
to achieve. Cobol subroutines should be used for complex logic and calculations
whenever necessary.

The 3800 (laser) printer format character sets (that is, boxes and lines) are not available
using Focus.

* These are the limitations of the version of Focus that one PEP member has experienced in
his particular environment. Information Builders informs us that the current version of Focus
overcomes most of these limitations.

— A real business application — that is, an application required
by users — but not one that is critical to the success of the
business. It is advisable to become reasonably experienced with
a modern development tool before using it to develop critical
business applications.

— Typical of the type of application for which the modern
development tool was selected.

— Small — that is, an application that can be developed fully in
two to three months. If it takes much longer than this to
produce results, developers will lose sight of the overall
development life cycle and the impact of the modern devel-
opment tool.

— As far as possible, in the normal development environment.

Extra effort will, of course, be required to monitor the project,
to collect detailed information about its progress, and to document
any difficulties that were experienced. This effort should not,
however, be taken into account in measuring the performance
of the modern development tool as it will not be incurred in a
normal project. The vendor should also be involved in the first
pilot application. This may be expensive, but in the majority of
cases, very productive. One PEP member who failed to do this
had to abandon the first project that a modern development tool
was used for. At the outset, the development department made
a very inaccurate estimate of the machine resources that would
be required by the modern development tool. It lost control of
the application, as users demanded more and more functionality
at the prototyping stage, and it failed to delegate responsibility

31

Chapter 3 Planning for the introduction of modern development tools

to the user department, where it would have been appropriate
to do so. All these factors contributed to the failure of the project,
and all could have been avoided.

On completion of the pilot application, the whole project should
be assessed to identify any changes that might enhance the use
of the modern development tool. The information gathered can
also be used to produce guidelines for estimating the cost and
effort likely to be involved in future development projects.

MODIFY THE DEVELOPMENT ENVIRONMENT

The development environment may need to be changed in some
manner to facilitate the introduction of improvements identified
as a consequence of the pilot application. For example, it may be
necessary to modify standards, to reduce the level of
documentation, or to increase the level of processing capacity.
Such changes should be assessed and, if required, implemented.
However, the temptation to make continual changes should be
resisted. We recommend that suggested changes be fully
documented and reviewed at regular intervals — say quarterly
— to decide whether they are applicable, and to assess the costs
and implications of implementing them.

With all the administrative and organisational changes implemen-
ted, the organisation is now in a position to use its set of devel-
opment tools to best advantage. The only outstanding problem
that it might now face is knowing which of the development tools
available for use is the most appropriate for a particular appli-
cation. Ensuring that the most appropriate tool is used for a
particular application is a far more complex task than choosing
a third-generation programming language to use on a project. Even
so, many organisations insist on continuing to follow the same
procedure. In Chapter 4, we point out what the pitfalls are, and
offer some advice on how to avoid them.

32

Suggested changes to the devel-
opment environment should

be reviewed at regular
intervals

BUTLER COX

© Butler Cox & Partners Limited 1989

Chapter 4

Ensuring that the most appropriate modern

Use of the wrong modern devel-
opment tool is a common

cause of development

failure

Modern development tools
must be chosen to match
the other elements of

the development
environment

© Butler Cox & Partners Limited 1989

development tool is used

We have seen that modern development tools can significantly
improve development productivity, but most PEP members were
also able to quote at least one disaster and numerous problems
associated with their use of modern development tools. Two
factors were common to nearly all of these development failures
— poor management of the use of contemporary systems
development methods, and the inability of the selected modern
development tool to develop the required application fully.

Managing the use of contemporary systems development methods
is the subject of PEP Paper 6. In that paper, we suggested how
the management problems associated with such methods might
be overcome. Here, we are concerned with the second problem
commonly faced by systems development managers — selecting
the most appropriate modern development tool to use for a
particular development project.

Members cited many problems deriving from the inability of the
selected modern development tools to develop the required
applications fully. The most common were:

— The developed application could not process the necessary
information within the time required.

— The modern development tool lacked the functions required
to develop the application.

— The developed application could not interface with other
applications and/or databases.

Either the project was completed, but at the expense of increased
effort and cost, or it was abandoned, an appropriate development
tool was identified, and the project was totally redeveloped.
Either way, it is a costly exercise, and the blame is usually
attributed to the shortcomings of the modern development tool.
This is usually an incorrect diagnosis. The majority of projects that
fail do so because the wrong tool was chosen for the application.
A modern development tool cannot be selected in isolation. It must
be considered in the context of the wider development
environment in which it will be used. In this chapter, therefore,
we suggest a procedure to use for ensuring that the most
appropriate development environment, including modern
development tools, is chosen, and recommend how that procedure
should be put into practice for each development project.

DEFINE THE PROCEDURE FOR MATCHING
THE DEVELOPMENT ENVIRONMENT
AND THE APPLICATION

The problem of selecting the right development tool for an
application rarely arose with third-generation languages because
they could be used to develop most of the types of application

33

Chapter 4 Ensuring that the most appropriate modern development tool is used

required. The traditional procedure for selecting an appropriate
third-generation language is illustrated in the first column of
Figure 4.1. The modern development tools currently available
cannot be used for all types of applications, however, and the
range of applications required is increasing. It is therefore essential
to match the development tool with the characteristics of the
application, if the full potential of the tool is to be realised for
a particular development project.

Figure 4.1 The procedures for selecting traditional and modern
development tools vary

Third-generation languages Modern development tools
Application Application
«—>Stage 1—» T—
| Y
Development approach Development approach

<—Stage 2—»

Y Y

Technigues and methods Techniques and methods
v <«—Stage 3— v e
Development tools Development tools

Stage 1 Stage 1
The type of application determines The type of application determines
which development approach should which development approach should
be adopted be adopted
Stage 2 Stage 2
The development approach is The development approach is
supported by various techniques and supported by various techniques and
development methods development methods
Stage 3 Stage 3
The techniques and methods are The techniques and methods are
supported by various development supported by various development
tools tools, whose capabilities match the

characteristics of the application

An analogy can be made here with house building. Using third-
generation tools was equivalent to building a house as a traditional
craftsman would do, designing and building each component from
basic materials. Using modern development tools is equivalent to
building a house by using prefabricated components, such as
windows, doors, and wall panels, as the basic elements. As with
modern house-building techniques, modern development tools
certainly enable the final product to be built much more quickly,
but unless the right set of components is selected, it will not be
possible to build the application according to the original design.

The problem of selecting appropriate modern development tools
arises because, in most organisations, the relationships between the
application, the development approach, the systems development
techniques and methods, and the modern development tools, are
not well understood. Most organisations are using the procedure
that was developed for third-generation languages to choose which

34

Choosing the right modern
development tool is a
complex process

© Butler Cox & Partners Limited 1989

Chapter 4 Ensuring that the most appropriate modern development tool is used

Elements of the development
environment need to be
defined and documented

© Butler Cox & Pariners Limited 1989

modern development tools to use for an application. In our
analogy, this is comparable to selecting the prefabricated
components without considering what type of building is to be
constructed — a flat, a house, an office block, or a hospital.

A proper selection procedure should ensure that the modern
development tool not only supports the systems development
techniques and methods, but that it is also able to develop the
required application. It is contrasted with the traditional
procedure in Figure 4.1. We believe that this formal procedure
should be adopted for selecting all development tools. If it is
implemented correctly and updated regularly, it will guarantee
the most effective match between the development environment
and the application. Combined with the effective management
of contemporary methods, this should ensure that projects
developed with modern development tools are successfully
completed.

Tesco Stores Ltd is in the process of implementing just such a
procedure. Tesco uses three main development tools — Telon,
Focus, and SDT, a fourth-generation language from McCormack
and Dodge. The company has clear guidelines for deciding which
development tool should be selected for a particular application.
These guidelines, accompanied by detailed instructions, are issued
to developers in a document entitled, The Development Language
Selection Criteria. This document gives the reasons for selecting
a particular language, and two diagrams, one for new applications
and one for maintenance, indicating which development tools will
be appropriate for applications with certain characteristics. An
example of the diagram for new applications is given overleaf
in Figure 4.2.

In the rest of this section, we explain the basic elements of the
procedure, and describe how it should be documented so that
modifications can be incorporated for future reference.

DEFINE THE ELEMENTS OF THE DEVELOPMENT
ENVIRONMENT

Before the procedure for selecting the application development
environment can be implemented, the elements need to be
defined and the definitions documented so that everyone involved
in the selection procedure has the same basic understanding of
the application development environment. This document is used
whenever a development project, either maintenance or new, is
started. We have grouped the elements that need to be defined
into four categories:

— Development approaches.

— Systems development techniques and methods.
— Development tools.

— Application characteristics.

The level of definition and the number of definitions in each
category will vary from one organisation to another. The
definitions should be reviewed on a regular basis to take into
account the evolutionary changes in the development
environment, and the introduction of new types of applications,

35

Chapter 4 Ensuring that the most appropriate modern development tool is used

Figure 4.2 Tesco has a procedure for selecting appropriate development
tools for each new application

Reports require

complex calculation D_ Telon
or data manipulation

SR Focus
reports from
Reports QSAM, VSAM or
Baleh flé IMSOB or Focus OB
handling
Telon
Report in same
. logical sequence
Batch file as file
handling and handling
Baich reporting Telon
Split into two
Report programs:

in different
sequence
to file handling

Telon for extract &
Focus for report

System runs in conjunction

with or major interface to cICS Telon CICS
another system
Telon IMS
Online
Part of the
financial
system SDT
Expected life
System is of system; Telon IMS
standalone <dyr
Telon CICS

(Source: Tesco Stores Lid)

development approaches, and systems development techniques,
methods, or tools. (These terms were defined in Chapter 1.)

Most PEP members probably already have much of this
information available in some form, and are using it as the basis
for selecting the approach, techniques, methods, and tools for the
development of each application. It is, however, important that
the selection procedure be rigorously applied and that the
procedures be modified as lessons are learnt., Otherwise, mistakes
will continue to be made. One company we know of , for example,
was persuaded by a member of the project team to develop a
critical customer-control system with a new fourth-generation
language. This person had experience with this language, and
believed that it was appropriate for the application in question.
The selection procedures were ignored. The fourth-generation
language could not, in fact, provide all the facilities required by
the application, and after several months of effort, the project
was in disarray.

Development approaches

All the major development approaches used within the
organisation should be briefly described, with an explanation of
the objectives and the actions required at each phase. It should
be clear to the reader how the phases flow from one to another.

36

The procedures can be modified
as lessons are learnt

© Butler Cox & Pariners Limited 1989

Chapter 4 Ensuring that the most appropriate modern development tool is used

Systems development techniques and methods

All the systems development techniques and methods available
within the organisation should be briefly defined, and associated
with the development approaches that they support. Several
development approaches may be supported by a single technique
or method, and several techniques and methods may support one
phase of a development approach.

Development tools

All development tools should be identified and described in a
similar manner to the systems development techniques and
methods, and associated with the various methods and technigues
that they support. Again, there may be multiple associations.

Application characteristics

To ensure that the development tool that is selected will facilitate
the efficient and successful development of the application, the
nature of the applications developed by an organisation needs to
be clearly understood. The nature of an application can be defined
in terms of a set of characteristics. Each new application can be
described in these terms, and hence, be defined in a consistent
manner. Most applications can be defined for this purpose in terms
of between 10 and 20 characteristics, relating primarily to the
development approaches and the development tools currently
used by a particular organisation. Examples of the kinds of
characteristics of an application that will determine whether or
not it is a suitable candidate for a particular development
approach are listed in Figure 4.3. Examples of the kinds of
application characteristics that will determine whether a
particular development tool is appropriate for it or not are listed
in Figure 4.4 overleaf. These lists can be amended and supple-
mented to suit an individual organisation.

The list of application characteristics used as the basis for selecting
a tool is similar to the one used in Chapter 2, and the list of
characteristics compiled for that purpose can serve as the basis
for this list. However, where the earlier list was compiled with

Figure 4.3 Every application has characteristics that will determine the
suitability of using particular development approaches

Scope of the impact A measure of the impact of the application throughout
the organisation. This could range from company-wide
applications to personal systems.

Clarity of the definition | This could range from well defined and easy to under-
of users' requirements | stand, to poorly defined and difficult to understand.

Urgency A measure of the urgency of the development of the
application, and of the deadline for installing it.

Number of locations The number of geographical locations or sites.

Complexity A measure of how difficult the application will be to
develop, in view of its complexity.

Security The level of security that the application must provide
for access to the application itself and to the data.

Audit requirements The level of audit that the application must provide. This
could range from none, to very high (for financial
systems).

© Butler Cox & Partners Limited 1989 a8

Chapter 4 Ensuring that the most appropriate modern development tool is used

Figure 4.4 Every application has characteristics that will determine the
suitability of using particular development tools

Application type

Definitions should reflect the type of application rather
than the business area — for instance, transaction
processing rather than financial systems.

Level of integration

A measure of the level of integration expected between
this application and other application types, databases,
and machine environments. This could range from
none, to numerous and very complex.

Performance
reguirements

A measure of the required performance of the appli-
cation. Some may require instant response times; for
others, response times will be less critical.

Type of development

An indication of whether the application is a modification,
an addition, or an enhancement.

Level of portability

A measure of the portability of the developed appli-
cation. This could be across different machine con-
figurations, or across the machines of different
manufacturers.

Likelihood of
enhancements

The expected time from first installation to the first major
enhancement.

Volume of data

An estimate of the total volume of data.

Security The level of security that the application must provide
for access to the application itself and to the data.

Complexity A measure of how difficult the application will be to
develop, in view of its complexity.

Size An estimate of the total size of the application.

Expected life An estimate of the life of the application.

Interface with end user| The degree of familiarity that the users will have with
the system.

Flexibility Ameasure of the likely extent and frequency of change.

a view to selecting a modern development tool to add to an
organisation’s existing set of development tools, this list will serve
as the basis for selecting-a particular development tool for a
specific application — in other words, it will contain certain
application characteristics for which a third-generation language
may be more appropriate than a modern development tool. For
example, a requirement for a high level of portability is more likely
to be met by a third-generation language than by a modern
development tool.

The characteristics must be clearly defined so that they will be
consistently interpreted by different readers. They should not be
too detailed or too technical, because they need to be kept to a
manageable number. The lists should be amended as the
development environment evolves. They provide the basis for the
preparation of the selection tables described in the next section.

PREPARE THE SELECTION TABLES

Two tables need to be prepared to serve as the basis for matching
the development approach and the development tools with the
application. Their structure and the kinds of information they
should contain are described in this section. Once prepared, the

38

© Butler Cox & Partners Limited 1989

The selection tables are prepared

only once, and are used for
all development projects

@ Butler Cox & Partners Limited 1989

Chapter 4 Ensuring that the most appropriate modern development tool is used

tables can be used for any development project. They are based
on the lists of characteristics described above, with input from
experts in the areas of development concerned. They will, of
course, need to be updated periodically to reflect changes in the
development environment.

Both tables are organised in a grid format and used in a similar
manner. The first is used to select the development approach for
a specific application. The second is used to ensure that the

development tools selected will enable the required application
to be developed.

An example of part of the table for selecting development tools
is shown in Figure 4.5. The application characteristics are listed
on the left-hand side of the table; the types of development tools
are listed across the top. The application characteristics should
be listed, as far as possible, in order of importance. A maximum
score should be assigned to each of the application characteristics
to indicate their relative importance — say, 20 for the most
important characteristic, and five for the least important. Each
application characteristic is broken down into a range of options,
each of which receives a score. In Figure 4.5, for example, the
‘expected life’ of the application is considered one of the most
significant characteristics and is given a maximum score of 20.
This is broken down into three options — ‘less than one year’,
‘between one and three years’, and ‘over three years’.

Figure 4.5 Use of the development-tool selection table ensures that
appropriate development tools are used for each application
Development tools available
Application characteristics Cobol Focus Telon
Expected life (20)
Less than one year 10 15 20
Between one and three years ¥ 10 20
Qver three years 5 15 20
Performance requirements (20)
Very high (interactive) 20 15 15
High (time-critical) 15 15 15
Medium 10 20 20
Low (not time-critical) 10 20 20
Volume of data (15)
Less than 5 megabytes 10 15 ie
More than 5 megabytes 12 5 13

The numeric value entered onto the grid is an indication of the
ability of the tool to develop an application that supports that
option. If a particular development tool can fully support that
option, it receives the maximum score for that characteristic. If
it provides adequate support, it receives a lower score. If it
provides no support, it scores zero. If, for example, the expected
life of the application being considered is over three years, the
application needs to be developed bearing in mind the continuing
support that the tool will be able to provide, and the ease of
maintenance of the application over the longer term. The
capability of each tool to develop such a system is considered in
turn. Cobol scores five as it is not the strategic development tool

39

Chapter 4 Ensuring that the most appropriate modern development tool is used

for this organisation, and it produces applications that are not the
easiest to maintain. Focus scores 15; although it is not the strategic
development tool either, it does produce applications that are easy
to maintain. Telon is the strategic development tool and produces
applications that are easy to maintain; it scores the maximum
of 20.

The procedure for compiling the selection tables is summarised
on the left-hand side of Figure 4.6. This part of the procedure is
carried out only once, before the process is initiated. Once the
selection tables have been finalised, they should be tried out on
several recently completed developments. This should reveal any
errors in the selection tables, and also demonstrate how well the
developments were supported by the development approach,
systems development techniques, methods, and tools chosen.
Modifications to the selection tables should be made as and when
appropriate.

PREPARE DOCUMENTATION

We recommend that these elements of the selection procedure
be fully documented, and regularly updated. The documentation
should consist of:

— The definitions of, and relationships between, the various
development approaches, systems development techniques,
methods, and tools.

— The approach and development-tool selection tables and the
instructions for their use.

All the comments and decisions made during the process should
also be documented. If a development should subsequently fail,
the appropriate part of the definitions or selection tables can be
amended by referring to the documentation. In this way, mistakes
will not be repeated.

ENSURE THAT THE PROCEDURE IS USED
FOR EVERY APPLICATION

The rest of the selection procedure, illustrated on the right-hand
side of Figure 4.6, should be carried out at the beginning of each
development project and is best done at a meeting attended by
one or two users, the internal technical experts, and several of
the systems development department’s project managers, all of
whom will contribute from their experience, and one of whom
will manage the development. Everyone present should be
acquainted with the definitions and the selection tables. This part
of the procedure is described below:

— For each application characteristic listed on the approach
selection table, identify the option that best relates to the
application under consideration for development. For each
approach, circle the score that that option has been awarded.

— Add up the circled numbers to obtain a total score for each
approach. Any column that contains a circled zero will score
a total of zero — in other words, that approach should not be
considered for this particular application because it is incapable
of meeting the requirements of one of the application
characteristics.

40

The definitions and the selection
tables should be fully
documented

The second part of the procedure
is applied for each new project

© Butler Cox & Partners Limited 1989

Chapter 4 Ensuring that the most appropriate modern development tool is used

Figure 4.6 Elements of the development environment should be selected according to a formal procedure

List the approa«_:h— From the application
related application characteristics, identify the
characteristics option that best relates to
¢ i the application under
consideration
Allocate scores
to each 'L
¢ Approach For each approach, circle
selection < the score that that option
Break each down table has been awarded
into a range of
options ¢
1 If all approaches score
| zero, do not proceed with
Score each option the application; otherwise,
with respect to select the approach with
each approach the highest score
Definitions of ¢
approaches,
techniques, Identify the techniques,
methods, and ——————| methods, and tools that
tools, and of the support this approach
relationships
List the between them
development- From the application
tool-related characteristics, identify the
application option that best relates to
characteristics r the application under
¢ consideration
rAllocate i For each dt/eiopment
i DEVEIC?D'"(;?”HOOI tool, circle the score that
¢ setgg!gm T that option has been
awarded
Break each down
into a range of ¢
CRUORS For each technique or
\ method, select the
_ development tool with the
Score each option highest score
with respect to each
[development tool ¢
Do all development tools score zero?
;— No —J— Yes 1
Definitions of Review the Select another
approaches, selected approach
techniques, development or :
methods, and —p| environment as a gnod"n&;r;ﬁ
tools, and of the whole before oF PR
relationships developing the Adopt a new
between them application approach

Part of the procedure
carried out once only, and
modified as necessary

Part of the procedure
carried out for every
individual application

@© Butler Cox & Partners Limited 1989

41

Chapter 4 Ensuring that the most appropriate modern development tool is used

— The development approach with the highest score is the one that
will enable the application to be developed most effectively,
providing that the development tools available also support the
application. If all the development approaches score zero, the
application should not be developed, asit is not supported by any
of the existing development environments. In this case, either
the requirements of the application should be reviewed, or a new
development approach should be adopted that will enable the
application to be developed.

— Identify the systems development techniques and methods that
support the chosen approach, drawing on the documentation
that defines the relationships between the development
approach, the systems development techniques, and the
methods.

— Identify the development tools that support the various systems
development techniques and methods, drawing on the same
documentation.

— For each of the application characteristics listed on the
development-tool selection table, identify the option that best
relates to the application under consideration. For each
development toolidentified in the previous step, circle the score
that that option has been awarded.

— Add up the circled numbers to obtain a total score for each
development tool. Any column that contains a circled zero will
score a total of zero — in other words, that development tool
should not be considered for this particular application, because
it is incapable of meeting the requirements of one of the
application characteristics.

— If several development tools support the same technique or
method, select the development tool with the highest score. If
all the development tools supporting a technique or method
score zero, none of the development tools is applicable. Either
anew development tool is required, or a different development
approach should be adopted, with different systems develop-
ment techniques, methods, and tools.

— Review the selected development environment as a whole,
checking that the various development tools that need to
interface with each other are compatible.

Insummary, modern development tools can provide great benefits.
If their potential is to be fully realised, however, they need to be
chosen and integrated into the development environment with due
regard to the relationships between the application in question, the
development approaches available, and the systems development
techniques and methods that can be used. Failure to observe the
critical nature of these relationships will produce a less-than-
adequate application and resultin loss of confidence in the modern
development tool.

The guidelines set out in this report for selecting, integrating, and

managing modern development tools provide organisations with a

systematic procedure for ensuring that an appropriate set of devel-

opment tools is available to their development departments, that the

department is well organised to support and exploit those develop- The procedure should be
ment tools, and that the best development tool is used for each rigorously followed
individual application. We believe that the procedure set out in this

report should be rigorously followed by any organisation seeking to

use modern development tools in its development environment.

42 © Butler Cox & Partners Limited 1989

© Butler Cox & Partners Limited 1989

Appendix

Preparing for the future

A wide variety of development tools and methods is now available
to help automate the process of developing applications software,
and new tools, with higher and higher levels of automation, are
continually appearing on the market. Predicting the likely
developments in the market for modern development tools is
fraught with difficulty, but ignoring the advances is not an
acceptable response for any systems development department.

Systems development managers therefore need to be aware of,
and to assess the likely impact of, the various forces and
technologies shaping the market for modern development tools.
They can then plan to introduce new tools or upgrade existing
ones at the most appropriate time. This will ensure that the
benefits to be derived from developing applications with modern
development tools are fully exploited today, but with an
awareness of the impact that new development technologies will
have. The market for modern development tools will be shaped
by developments in other types of application development tools,
by new technologies, and by the development of other concepts,
the majority of which have not, to date, played a very significant
role in the advance of modern development tools.

OTHER TYPES OF TOOLS WILL HAVE AN IMPACT
ON MODERN DEVELOPMENT TOOLS

The development of computer-aided software engineering (CASE)
tools, development workbenches, and object-oriented program-
ming systems will all have an impact on advances in modern
development tools.

CASE TOOLS

CASE tools have developed, and will continue to develop, in
stages. To date, most CASE tools have covered only the front and
back ends of the development life cycle, and have provided
limited integration between the various life-cycle stages.
However, more and more CASE tools are now providing extended
coverage of the life cycle and greater levels of integration.

When fully mature, CASE will embrace the whole of the
development life cycle, with a set of integrated tools. Currently,
there is no integrated-CASE (I-CASE) tool set that covers the entire
life cycle, manages all information (data models, data dictionary,
databases, and so on) with an integrated database management
system and data dictionary, and provides project-management
facilities. The concept of I-CASE is also sometimes described as the
fourth-generation environment.

Several vendors of modern development tools are working with
CASE vendors to provide better coverage of the life cycle and

43

Appendix Preparing for the future

better integration. An example of this is the recent announcement
by Pansophic and Cadre Technologies of their intention to produce
a CASE system, Teamwork/Telon. (Telon is an application
generator supplied by Pansophic.)

DEVELOPMENT WORKBENCHES

Development workbenches support and help to integrate various
development tools and provide a development environment that
enables applications to be designed, compiled, linked, and tested.
Other facilities provided by workbenches include word processing,
online documentation, and program-testing facilities. Some
examples of development workbenches are Maestro from Philips,
ISPF from Mackinney Systems, and TSO from Morino Associates.

OBJECT-ORIENTED PROGRAMMING SYSTEMS

Object-oriented programming systems (OOPSs) encourage the
developer to reuse design and code rather than re-invent it for
every application. They also provide a means of producing systems
that can be readily comprehended by someone with business
knowledge of the application. Object-oriented applications differ
from traditional applications in that they directly model the
application, as opposed to the data flow. The developed
application can thus mirror the real requirement, not only in its
operation but also in its design and construction.

In well chosen areas, OOPSs facilitate faster development than
conventional systems. They also provide for the development of
much more complex applications — including systems that support
image, graphics, voice, and video — than conventional
programming environments. OOPSs are, however, at an early
stage of development, and current systems have numerous
disadvantages. For example, developers are not familiar with the
basic concepts, they have difficulty cataloguing and retrieving
required objects (of which major systems contain hundreds of
thousands), and OOPSs require considerable hardware resources.
Examples of OOPSs are C+ + from AT&T Bell Laboratories, and
Smalltalk-80 from Xerox’s Palo Alto Research Center.

NEW TECHNOLOGIES WILL INCREASE
THE CAPABILITIES OF MODERN
DEVELOPMENT TOOLS

Amongst the new technologies, expert systems, data dictionaries,
and intelligent workstations will have a particular impact on
modern development tools as their capabilities are combined to
create even more powerful tools.

EXPERT SYSTEMS

Expert systems are computer systems containing organised
knowledge, both factual and heuristic, that concerns some specific
area of expertise, and are able to produce inferences for the user.
Several suppliers of modern development tools are currently
incorporating expert systems with their tools. Information
Builders are integrating Focus, a fourth-generation language, with
Level 5, an expert-system tool. This will provide an integrated
data and knowledge-base system. The advantage of using expert
systems with modern development tools is that the expert system

44

© Butler Cox & Pariners Limited 1982

© Butler Cox & Partners Limiied 1989

Appendix Preparing for the future

can be used to establish rules and carry out reasoning where the
modern development tool lacks this ability.

If properly exploited, expert systems can provide many benefits
in the area of systems development. For instance, rules could be
established to help in the maintenance task by defining the scope
of the impact of an enhancement or a change to an existing
application. Expert systems also have great potential in the area
of requirements definition — helping with the structured and
logical questioning of users. Expert systems could also provide
valuable aids in the testing area — providing test information and
improving confidence in the various tests performed.

DATA DICTIONARIES

The central role of the data dictionary in applications development
is becoming widely recognised. Data dictionaries provide a means
of storing and retrieving information on the data, design, and tools
associated with the particular applications under development.
Various development tools can exchange and consolidate
application design information via the data dictionary, which acts
as the complete design database.

Currently, IBM is developing a dictionary product, and international
standards for dictionaries are being agreed. Two data dictionary
products that are currently available and well integrated with
application development tools are the Data Dictionary System from
ICL, and SQL+*Design Dictionary from Oracle.

More and more dictionary products are moving towards becoming
information repositories. These hold not only design information,
but alsoinformation needed for implementation, and information
on the network configuration. The information repository is a very
powerful tool; when combined with expert systems, it can help to
optimise the design process and the actual performance of the
application. When the information repository isusedina distributed
or cooperative manner, care must be taken to ensure that gaining
access to the dictionary does not become a bottleneck, with one
designer locked out while another is working. Careful control of the
data dictionary is also essential, if various parts of the development
are carried out on independent machines, to ensure that the data
and the design maintain their integrity across the various machines.

INTELLIGENT WORKSTATIONS

More and more modern development tools can be used on the full
range of hardware (PC to mainframe) available from a particular
manufacturer. This means that more and more applications
development work can be done on hardware that is independent of
the main development or production mainframe. As the capabilities
of intelligent workstations increase — thatis, asthey acquire more
powerful processors, greater memory, and better screen resolution
— and as their costs continue to fall, the scope for using them to
develop applications becomes greater and greater.

NEW CONCEPTS WILL INFLUENCE THE USE
OF MODERN DEVELOPMENT TOOLS

Reverse engineering and reusable code and designs will both play
a role in extending the use of modern development tools.

45

Appendix Preparing for the future

REVERSE ENGINEERING

Reverse engineering will enable existing applications to be
redeveloped with the latest development tools. The amount of
automation provided by the reverse-engineering tools available
today varies greatly. Some of the tools simply extract design
information from the existing application, and the extracted
design is then used to develop the new application. Re-engineering
tools, however, also automatically construct the new application.
Both reverse engineering and re-engineering are discussed in
detail, with case histories of their use, in PEP Paper 8, Managing
Software Maintenance.

There are several reverse-engineering tools available for analysing
existing programs written in Cobol, to extract design information.
The design information may need to be supplemented before the
application can be rewritten with the latest modern development
tool. Examples of this type of tool are Via/Insight from Viasoft
and Recoder from Language Technology.

Re-engineering tools enable existing applications to be
redeveloped with the latest development tools automatically, with
minimal effort. The re-engineering tool analyses the existing
application and derives design information from the existing code.
This design information can then be used with the modern
development tool to reconstruct the application. There are fewer
re-engineering tools available today than reverse-engineering
tools, and their abilities vary widely. Two examples are Bachman
from Bachman Associates, and PSL/PSA from Meta Systems. The
Bachman re-engineering tool currently provides facilities:

— To design databases using an expert-system-style dialogue with
the database administrator.

— To optimise an existing database design by the above method,
along with knowledge of the existing design.

— To convert from one database management system to another.

In the last two cases, Bachman is as yet unable to modify program
code to take advantage of the new design.

REUSABLE CODE AND DESIGNS

Reusable code is not a new concept; it has been used very
successfully for application development in the scientific and
military fields. As the majority of applications developed contain
very similar if not identical chunks of code, the concept of
reusable code is to use existing common modules instead of writing
the identical code for each application.

When the application is being designed, the common modules are
identified. During development, the developer can then reference
the library of common modules, extract the required module, and
include it in the application.

The natural progression from reusable code is to reusable design.
One company that supplies a tool to aid in reusable design is
Oracle, whose SDW tool provides the developer with the ability
to build conceptual models of the required application. Oracle also
supplies various SDW dictionaries, which contain the basic designs
for various types of application, such as asset management,
purchase ledger, personnel management, and so on. The developer
can modify the basic design in the dictionary and use it to develop
the required design.

46

© Butler Cox & Partners Limited 1989

1

Butler Cox

Butler Cox is an independent international con-
sulting group specialising in the application of
information technology within commerce, in-
dustry and government.

The company offers a unique blend of high-level
commercial perspective and in-depth technical
expertise: a capability which in recent years has
been put to the service of many of the world’s
largest and most successful organisations.

The services provided include:

Consulting for Users

Guiding and giving practical support to organisa-
tions trying to exploit technology effectively and
sensibly.

Consulting for Suppliers
Guiding suppliers towards market opportunities
and their exploitation.

The Butler Cox Foundation
Keeping major organisations abreast of develop-
ments and their implications.

Multiclient Studies

Surveying markets, their driving forces and poten-
tial development.

Public Reports
Analysing trends and experience in specific areas
of widespread concern.

PEP

The Butler Cox Productivity Enhancement Pro-
gramme (PEP) is a participative service whose goal
is to improve productivity in application systems
development.

It provides practical help to systems development
managers and identifies the specific problems that
prevent them from using their development
resources effectively. At the same time, the pro-
gramme keeps these managers abreast of the
latest thinking and experience of experts and
practitioners in the field.

The programme consists of individual guidance for
each subsecriber in the form of a productivity

© Butler Cox & Partners Limited 1989

assessment, and also publications and forum
meetings common to all subseribers.

Productivity Assessment

Each subscribing organisation receives a confiden-
tial management assessment of its systems develop-
ment productivity. The assessment is based on a
comparison of key development data from
selected subscriber projects against a large com-
prehensive database. It is presented in a detailed
report and subseribers are briefed at a meeting
with Butler Cox specialists.

Meetings

Each quarterly PEP forum meeting focuses on the
issues highlighted in the previous PEP Paper. The
meetings give participants the opportunity to
discuss the topic in detail and to exchange views
with managers from other member organisations.

PEP Papers

Four PEP Papers are produced each year. They
concentrate on specific aspects of system develop-
ment productivity and offer practical advice based
on recent research and experience. The topics are
selected to reflect the concerns of the members
while maintaining a balance between management,
and technical issues.

Previous PEP Papers

1 Managing User Involvement in Systems
Development

2 Computer-Aided Software Engineering {CASE)

3 Planning and Managing Systems Development

4 Requirements Definition: The Key to System

Development Productivity

Managing Productivity in Systems Develop-

ment

6 Managing Contemporary System Development
Methods

7 Influence on Productivity of Staff Personality
and Team Working

8 Managing Software Maintenance

9 Quality Assurance in Systems Development

(7]

Forthcoming PEP Papers

Staffing the Systems Development Function
Trends in Systems Development among PEP
Members

Butler Cox & Partners Limited
Butler Cox House, 12 Bloomsbury Square,
London WC1A 2LL, England
=(01)831 0101, Telex 8813717 BUTCOX G
Fax (01)831 6250

Belgium and the Netherlands
Butler Cox BV
Burg Hogguerstraat 791,
1064 EB Amsterdam, the Netherlands
= (020) 139955, Fax (020) 131157

France
Butler Cox SARL
Tour Akzo, 164 Rue Ambroise Croizat,
93204 St Denis-Cédex 1, France
= (1)48.20.61.64, Télécopieur (1) 48.20.72.58

Germany (FR)
Butler Cox GmbH
Richard-Wagner-Str. 13, 8000 Miinchen 2, West Germany
=(089)5234001, Fax (089)5 23 35 15

United Stales of America
Butler Cox Inc.
150 East 58th Street, New York, NY 10155, USA
= (212)891 8188

Australia and New Zealand
Mr J Cooper
Butler Cox Foundation
3rd Floor, 275 George Street, Sydney 2000, Australia
= (02)236 6161, Fax (02) 236 6199

Finland
TT-Innovation Oy
Meritullinkatu 33, SF-00170 Helsinki, Finland
= (90) 135 1533, Fax (90) 135 1091

Ireland
SD Consulting
72 Merrion Square, Dublin 2, Ireland
2 (01) 766088/762501, Telex 31077 EI,
Fax (01) 767945

Ttaly
RSO Futura Srl
Via Leopardi 1, 20123 Milano, Italy
= (02) 720 00 583, Fax (02) 806 800

The Nordic Region
Statskonsult AB
Stora Varvsgatan 1, 21120 Malmo, Sweden
= (040) 1030 40, Telex 12754 SINTABS

Spain
Associated Management Consultants Spain SA
Rosalia de Castro, 84-2°D, 28035 Madrid, Spain
=(91)723 0995

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52

