
 Software Quality Measurement

 © Butler Cox pic 1990

Martin Langham

BE,P
Software Quality Measurement

PEP Paper 14, May 1990
by Martin Langham

Martin Langhamis a senior consultant with Butler Cox in London,
where he coordinates the company’s systems management
consulting activities. He has broad experience in the planning,
management, and implementation of technically advanced com-
puting applications, with a particular emphasis on database
management, distributed computing, and data communications.
During his time with Butler Cox, he has carried out numerous
consulting assignments. Recent projects in which he has been
involved include formulation of an information systemsstrategy
for an electricity supply utility, assessment of the management
aspects of an insurance company’s data communications network,
and preparation of recommendationsfor an international chemical
companyon the changes required to improve andstandardise its
European developmentactivities. He has also been extensively
involved in productivity assessments for PEP members,andis the
principal authorof the Butler Cox Foundation Report Managing the
Evolution of Corporate Databases.
Prior to joining Butler Cox, he spent 10 years with BIS ASL, where
he managedconsulting businessin the area of distributed systems.
Earlier, he worked as a consultant with both ICL and Unisys,
supporting major customersin both the public and private sectors.
Martin Langham hasa BScin physics from Bristol University and
is a memberof the British Computer Society. He is a frequent
speakerat conferencesand has published widely in the tradepress.

 Published by Butler Cox ple
Butler Cox House

12 Bloomsbury Square
London WC1A 2LL

England

Copyright © Butler Cox ple 1990
All rights reserved. No part of this publication may be reproduced by any method

without the prior consent of Butler Cox.

Printed in Great Britain by Flexiprint Ltd., Lancing, Sussex.

Butler Cox ple 1990

ae
Software Quality Measurement

PEP Paper 14, May 1990
by Martin Langham

Contents
Getting the best from software quality measurement 1
There is someresistance to software quality measurement 1
Existing software quality measurement programmesare often
limited in scope 3
Structure of the paper 5
Research sources 7

Using measurementsto improve the development process
and controlindividual projects 8
Use measurements to improve the development process 8
Use measurements to control individual projects 12
Defining users’ quality requirements in measurable terms 16
Understandusers’ quality requirements 16
Compile an appropriate set of measures 17
Set quality priorities for applications development 24
Using measurementsto predict the quality of the final
application 27
Set and measure quality conformancetargets 27
Set and measure quality design targets 30
Measure quality using validated empirical relationships 32
Recognise the limitations of each approach 37
Measuringthe quality of existing applications 38
Create a user-oriented set of measures 38
Store the informationin an easily accessible form 39
Identify where the quality of existing applications could
be improved 44
Putting a software quality measurement programme
in place 47

Bibliography 49

Chapter 1

Getting the best from software quality

Software quality measurement
provides essential management

information to the systems
department

Much of the published material is
too academic to be suitable for

 Butler Cox pic 1990

commercial use

measurement

Many systems departments have initiated software quality-
assurance programmes to increase the effectiveness of appli-
cations development. The majority of systems departmentsfind,
however,that it is very difficult to direct such programmes and
to justify their cost when thereis no quantitative evidenceof their
benefits. The missing component of many software quality-
assurance programmesis software quality measurement.

Software quality measurement enables the qualities of appli-
cations, such asreliability, ease of use, maintainability, and so
on, to be quantified in useful and consistent terms. Properly
implemented, a measurement programmewill help the systems
departmentto specify and produceapplicationsof the quality that
users require, to identify where improvements might be madeto
the development process, and to justify the costs of a software
quality-assurance programme. In effect, software quality
measurementprovidesessential managementinformation to the
systems department.

In practice, however, software quality measurement has met with
mixed success. In many systems departments, there is
considerable resistance to the concept, generally based on
misunderstandings about its purpose, its cost, and the level of
effort required to introduce it. In others, where quality
measurement programmeshave been implemented, only limited
benefits have been gained, because the scope of the programmes
has been too narrow.While there is a wealth of material available
on the subject of software quality measurement, muchofit is of
a very academic nature, not well suited to the commercial
environment, and much of it is applicable only to particular
aspects of applications development. What is required is a
practical, consistent, and comprehensive approach to measuring
software quality that will ensure that both users and developers
are satisfied with the applications that are delivered.

THERE IS SOME RESISTANCE TO SOFTWARE
QUALITY MEASUREMENT

While interest in the subject of software quality measurementis
growing, many systems departments are still developing
applications whose quality is never measured. They offer various
reasons for their reluctance to institute measurement
programmes, the most commonof which, as shownin Figure 1.1
overleaf, is a lack of knowledge about how to measure quality.
Most of the others are based on misconceptionsaboutthe role of
quality measurementin the applications developmentprocess, and
about the burden that such programmes might place on the
department in terms of cost and effort.

Chapter 1 Getting the best from software quality measurement

Figure 1.1 The most commonreason for not measuring software quality
is a lack of understanding of how to doit

Reasons Percentage of organisations
10 20 30 40

Do not understand how to
measure quality

Doubt value of measurement

Believe that measurement
takes too muchtime/effort

Have no quality problems (jatess

Believe it is too early to intro-
duce quality measurement

(Source: Telephone survey of PEP members)
THE OBJECTIVES OF QUALITY MEASUREMENT
ARE NOT CLEARLY UNDERSTOOD
Some systems departments believe that software quality measure-
ment is unnecessary because they do not haveserious quality
problems. This view is based on a misunderstanding of the role
of software quality assurance, whichis to produce software with
appropriate quality characteristics, not to produce the best quality
at any cost. Only with a carefully controlled measurement
programmein place can the systems department be confident that
it is achieving the levels of quality that the business requires, and
can afford.
Many systems staff are apprehensive about the motives of
introducing a software quality measurement programme.
Development managers must therefore make it very clear to
everyonein the systems departmentandin the user departments
that the objectives of the programme derive from business
objectives, and are not aimed at measuring the performance of
individuals. This means that quality will be assessed at the project
level, not at the level of the individual developer. Individual
developers will not, however, be unaffected by the introduction
of software quality measurement; for a programmeto work well,
manyof their attitudes and procedureswill have to change. Their
support and commitmentis essential and they must therefore fully
appreciate the real objectives of a measurement programme and
trust that the results will be used constructively.

THERE ARE CONCERNS ABOUT THE EXTRA BURDEN
ON THE SYSTEMS DEPARTMENT
Some development managersare sceptical about the value of a
software quality measurement programme,arguing that it cannot
produce useful results at a reasonable cost. Experience shows,
however, that this is not the case.

The role of software quality
assurance is misunderstood

Many systems staff are appre-
hensive about the motives
for introducing software
quality measurement

©Butler Cox pic 1990

Chapter 1

Software quality measurement
can lead to significant cost

savings

It is important to start collecting
measurement data as soon as

possible

At present, by far the greatest
emphasis is given to measuring

qualities that are oflittle
interest to users

© Butler Cox ple 1990

Getting the best from software quality measurement

Gerald E Murine, the founder of METRIQS,the first specialist
software quality measurement company, claims that organisations
that use his company’s services have achieved considerable cost
savings. In an article published in the November 1988edition of
Quality Progress, he quotes the results of the comparative analysis
of data collected over a nine-year period on a project whose
software quality was measuredandsimilar projects whose quality
was not measured.The total cost of the project, including the cost
of measuring software quality throughout the development
project, was reduced by 35 per cent. Most of the savings resulted
from reductions in coding and module-testing effort. There were
also considerable improvements in the quality of the software.
Evidence from PEP assessments confirms that the more ‘hard’
evidence developers have about the development process and the
projects in which they are involved, the better able they are to
control their work.
A few PEP members believe that it is too early for them to
introduce quality measurement. It is important, however,to start
collecting measurement data as soon as possible so that systems
managers have a basis on which to plan future developments.
Waiting until the development environment is stable is not
justified; if software quality measurementis to be of value in the
long term, it must be implemented in such a waythat it is still
useful in a changing environment. Collecting the data required
to measure software quality properly is not too onerous a task
— useful benefits can be gained by spending the equivalent of
1 or 2 per cent of development effort on gathering measurement
data. In many systems departments, muchofthe data will already
be available in a machine-readable form from systems used to
manage development resources, change requests, and the
correction of software faults.

EXISTING SOFTWARE QUALITY MEASUREMENT
PROGRAMMESARE OFTEN LIMITED IN SCOPE
Our survey of PEP members showed that nearly 40 per cent
already measure the quality of the software they produce, and
that a further 60 per cent either definitely intend to adopt a
software quality measurement programme, or will probably do
so (see Figure 1.2, overleaf). However, many of those who do
measure software quality measure only a few characteristics of
the software that they produce and support. Most of the measures
serve to assess technical qualities, such as reliability and
maintainability, rather than user-perceived qualities, such as ease
of use andflexibility. Figure 1.3, on page 5, showstheresults of
a survey of the most commonly used software quality
measurements. By far the greatest emphasisis given to measuring
qualities that areoflittle interest to users. This is consistent with
the results of our own survey of PEP members’ objectives in
introducing software quality measurement, shown on page6, in
Figure 1.4. Top priority goes to improving the development
process; improving user satisfaction ranksonly third.
Wedonotbelieve that this is due to a lackof interest in achieving
this objective, but to a lack of communication between developers
and users about software quality requirements. This, in turn,
arises from the fact that software quality characteristics are rarely

Chapter 1 Getting the best from software quality measurement

 Figure 1.2 Many PEP members are beginning to measure softwarequality

Do notintend to introduce: F a quality measurementWill probably introduce programmea@ quality measurementprogramme
\ Have a qualityIntend to | Measurementintroduce a | programmequalitymeasurement_programme \ (Source: Survey of PEP members)

defined in meaningful and measurable terms. Software qualitywill remain an abstract conceptto users unless they can specifytheir quality requirements in measurable units, and developerscan deliver applications that demonstrably meet thoserequirements.

Theproblem for developers is compounded by the fact that thereare several types of users whose expectations of quality have tobe met. These include the application users and their managers,systems development managers, maintenance and technical sup-port staff, and computer operations staff. As Figure 1.5 onpage 7 shows, each groupofusers is interested in different outputsfrom the systems developmentprocess. Each of these groups hasits own perceptionsof the characteristics of a high-quality system,and in somecases, they will have conflicting requirements.
Satisfying the quality demands of all the various parties willrequire a much broader perspective to be taken of the measure-ment process than has hitherto been common. As Figure 1.4shows, most PEP members who had

_

introduced qualitymeasurement programmes had doneso in order to improve thedevelopmentprocess.It is this aspect of quality thatis of greatestinterest to systems development managers anditis in this areathat techniques and methods for measuring software quality aremost widely available. Other types of users, however, are moreconcerned with the quality of the final application, with pre-dictions of the quality of the final application while it is beingdeveloped, or with the quality of existing applications. Only verylimited techniques are available for measuring these aspects ofsoftware quality. As Figure 1.6 on page 7 shows, a qualitymeasurement programme must coverall these aspectsif it is toserve its true purpose.

There are several types of userswhose expectations of qualityhave to be met

The measurementprocess mustbe seen in a much broaderperspective

© Butler Cox pic 1990

Chapter 1 Getting the best from software quality measurement

There are no well defined tech-
niques to help manage the

© Butler Cox pic 1990

quality of the final
application

Figure 1.3. Most software quality measurementsareoflittle interest to

users

Measurementscollected Percentage of replies

12S TES Ce SOOma2
Numberof operational
problems

Numberofincidents

Enhancementeffort

Machinecostsin
production

Numberof changes
actioned

Lines of code

Numberoftransactions
processed
Numberof service
levels missed
Numberof service
levels met
Numberof agreed
service levels
Numberof programs
changed

(Source: Special interest group on software metrics of the Quality Assurance
Forum, Meeting no. 3)

STRUCTURE OF THE PAPER
One of the major problemsin applications developmentis that
trouble spots are frequently not identified until after they have
jeopardised the success of an entire project. Software quality
measurements provide the development manager with valuable
information that should help him to pinpoint the stages in the
development process where problems are occurring, and to
evaluate accurately the effects of any changes that are
subsequently madeto the process. In Chapter 2, we describe the
role that software quality measurement can play in helping to
improve the development process and to control individual
projects.
The techniquesthat are used to improve the development process
and to control individual developmentsare quite simple, and can
be easily adapted to the particular circumstances of individual
systems departments. No similarly well developed techniquesexist
to help manage the quality of the final applicationas it is delivered
to the users. At present, it is often difficult to know, at the
development stage, whether the quality of the final application

Chapter 1 Getting the best from software quality measurement

 Figure 1.4 PEP members have a wide rangeof objectives for introducingsoftware quality measurement

Objectives Percentage of respondents

10 20 30 40 50 60 70 80 9g0
Improve the develop-
ment process
Improve applications
reliability

Improveusersatisfaction

Control the develop-
ment process
Gain the benefits of
new tools/techniques

Improve planning

Justify costs/timescales

Improve requirement
specifications
Support user service-
level agreements

Other

 (Source: Survey of PEP members)

will be acceptable to users. Emerging techniques of softwarequality measurement will enable systems managersto take a morerigorous approach to defining users’ quality requirements inmeasurable terms, and we suggest how they should begin to buildon these in Chapter 3.
Ensuring that users’ quality expectations are metis a difficult task,however, because the final application is not available formeasurement until the end of the project, andit is then too lateto correct any quality defects. Project managers therefore needSome meansof predicting whether they will achieve the agreedquality requirements ofthe users. This aspect of software qualitymeasurementis the subject of Chapter 4.It is concerned with waysin which project managers can monitor the progress of anapplication by measuring the quality of the interim products ofthe development process and taking action to modify thoseproducts where the software quality measurementsindicate thatthe final quality is likely to be unsatisfactory.
In most organisations, the development of new systems accountsfor only about half of the systems department’s time andeffort.Software maintenance is an equally large consumerof resources,and in Chapter 5, we describe the major contribution that soft-ware quality measurement can maketo improving the quality of

6
© Butler Cox ple 1990

Chapter 1 Getting the best from software quality measurement

Figure 1.5 Different groups of users are interested in different outputs from the systems development process

Systems Ss an ‘Desipecify system Design —development

|

requirements > systemprocess EC

Outputs from
the process

Main users of Development Maintenance eer Operations
the outputs management staff staff

Figure 1.6 A software quality measurement programme should cover all the aspects of applications development,

from the processitself to the final product

MeasureChanges tothe product product
\ ke

Product in testing/operation

Changes to the
development process

Measure Predict productC | produc
onitte process qualityTeMate

existing applications by indicating where it might be possible to
reduce their complexity, and hence,the cost and effort involved
in maintaining them.

RESEARCH SOURCES
Our research began with a review of the published literature on
the subject of software quality measurement. Wealso met prac-
titioners in the field — academics, suppliers of software quality
measurement tools, quality-assurance specialists, and systems
development managers in commercial organisations. We should
like to offer our particular thanks to Peter Mellor of the Centre
for Software Reliability, Barbara Kitchenham of the NCC, and
Hugh Browton and his team, of STC Technology Limited (STL).
Wealso conducted telephone interviews with 20 PEP members
and sent out a questionnaire both to PEP membersandto other
commercial systems departments. Where appropriate, the results
of these surveys have been includedin this report.

© Butler Cox ple 1990 %

Chapter 2

Using measurements to improve the development
process and control individual projects

Most PEP membersbelieve that the main objective of a softwarequality measurement programmeis to improve the developmentprocess. We use the term ‘developmentprocess’ to describe themethods, techniques, tools, and organisational practices used fordeveloping and maintaining application systems. Systemsdepartments often plan to make changes to the developmentprocess — adopting the latest CASE tools or a new applicationgenerator, for example — but have no meansof establishing whateffects these changes will have on the quality of their applications.In this chapter, we describe how measurements can be used tomanage the systems developmentprocess, either to improve theprocess itself, or to provide better control over developmentprojects as they move through the stages of the process.

USE MEASUREMENTS TO IMPROVETHE DEVELOPMENT PROCESS
Quite rightly, systems departments often choose first to use ameasurement programme to improve specific parts of thedevelopmentprocess. Starting in this way meansthat the data-collection task can be kept to a minimum and that any benefitsresulting from the measurement programme will apply to allsubsequent development and maintenance projects. Softwarequality measurements can be used both to identify areas in theprocess where problemsare occurring, and to assess the effectsof changes to the process.
IDENTIFYING PROBLEMSIN THE DEVELOPMENT PROCESS
In many systems departments, the process of developingapplications is a mysterious art. Prescribed techniques arefollowed without question, and there is no way of quantifyingeither the positive contribution or the adverseeffects of particulartechniques to the quality of the application. Indeed, our consultingexperience showsthatit is quite possible for a systems departmentto be unawareofseriousflawsin its development process, eventhough these flaws may well preventit from achieving the qualityand productivity objectives that it has set. This problem can betackled in twostages: identifying the possible causes of a qualityproblem, and then applying the measures to identify the rootcause.
Identify the possible causes of a lack of qualityThefirst stage is to obtain a full understanding of the area thatis causing concern so that possible causes of the problem areidentified for subsequent assessment. The best tool for thistask is an Ishikawaor ‘fishbone’ diagram, an example of whichis shown in Figure 2.1. This type of diagram was inventedby Dr KaoruIshikawain 1952 to control processes in the Kawasakiiron works in Japan. (Dr Ishikawa is now recognised as Japan’s

The most quoted objective of
software quality measure-ment is to improve the
development process

Many systems departments are
unawareof serious flaws in
their development process

Ishikawa or ‘fishbone’ diagrams
can help to identify the causes
of quality problems

jutier Cox pic 1990

Chapter 2 Using measurements to improve the development process
and control individual projects

 Figure 2.1 An Ishikawa or ‘fishbone’ diagram can help to identify the possible causes of a quality problem

The ‘head’ of the fish is the effect that is being investigated. The large ‘fishbones’ are the possible major causes of
that effect, and the small ‘fishbones’ are the possible sub-causes.

External Poor
influences methods

Many user changes Poortesting of releases
Excessive time pressure

Poor development methods Applications
are unreliable

Use of low-level language Untrained users

Lack oftest tools Unskilled developers

Poor tools People problems

leading authority on quality control.) The Ishikawa diagram has
since been widely adopted throughout the world as an aid to
solving quality problems.
The head of the‘fish’ is the effect that is being studied (unreliable
applications, in our example). The large ‘fishbones’ are the
possible major types of causesof that effect — for example, poor
tools or methods, people problems, or external influences. The
small ‘fishbones’are, in turn, the possible sub-causes, and so on.
The objective is to identify the truly important causes, and
fishbone diagrams are therefore often used in brainstorming
sessions wherepossible causes of poor quality are discussed and
analysed, and subsequently explored further using measures of
software quality. The possible causes to be explored might, for
instance, be that:
— Faults are introduced disproportionately in one stage of the

development process.
— Most of the faults are of one type.
— Changes requested by users during development cause many

of the faults.
Use measurementdata to identify the root cause

Measurement data can help The secondstage is to use measurement data to identify which
to identify which of the of the possible causesof the problemis the real culprit. Each cause

possible causesis the to be investigated will need a carefully designed ‘experiment’to
real culprit collect data and analyse it. Two points are very important in

ensuring that the investigation producesa result that management
can rely on:
— Sufficient data should be collected and analysed to produce

statistically significant results. A description of ‘statistical
significance’is beyond the scopeof this paper. A useful primer
onstatistical analysisis listed in the bibliography.

— The conditions under which the data is collected should not
change.

© Butler Cox ple 1990 9

Chapter 2 Using measurements to improve the development process
and control individual projects

These two conditions imply the need for a stable development
process in which each changeis carefully considered. Progress
is gradual but sure. This approach to process improvement is
typical of the Japanese approach to quality management.
Measuresof defect densities can often be used to identify the root
causes of development problems. Defect densities measure the
numberoferrors per unit of work produced. At the requirements-
definition and system-design stages, for example, defect density
can be expressedaserrors per page of text or per function point.
At later stages in the developmentcycle, defect density can be
measured as errors per thousand lines of code.
To makethe best use of defect density measures, organisations
needto apply clear and consistent definitions of the measurement
units, so that any developer can capture consistent data that can
be compared. Questions to be considered include whetherto countmultiple occurrencesof the sameerror separately, how to define
a page of text, and so forth.
If common definitions of defect densities are established,organisations can compare the quality of their development workwith that of other organisations to identify the areas of theirdevelopmentprocess that produce an above-average numberoferrors. Such industry comparisons are frequently used in PEPassessments to provideinsights into the strengths and weaknessesof a PEP member’s development process.
Figure 2.2 is a diagram that was used to analyse the developmentstages at which errors originated and were identified in onedevelopment project. About half of the errors originating at thefunctional-design stage did not, for example, cometo light untilthe testing stage. This type of analysis can be used to identifywhere inspections and walkthroughsare (and are not) an effectivemeans of improving quality.
ASSESSING THE EFFECTS OF CHANGES TOTHE DEVELOPMENT PROCESS
Oncethe root cause of a quality problem has been identified, thesystems department will make changes to the developmentprocess in an attempt to resolve the problem. Quality measure-ment data can be used to assess whether the change has theintended effect. A paper publishedin the September1988 editionof Quality Assurance explains how the IBM CICS support teamat IBM United Kingdom Laboratories, Hursley Park, did just this.
IBM recognisedthe needto set levels for software reliability anddefects such that customers would perceive the softwareas beingof high quality. The companyalso recognised the need to defineformally the development processes that would enable theseobjectives to be achieved. Analysis of the root causes of thedefects showed that the majority of problems resulted frominadequate design. As a consequence, three changes were madeto the development process:
— Extensive use was madeof a high-level language (PLAS) forwriting new code.
— A formal specification and design language (Z notation) wasintroduced.

10

Defect densities are a useful wayof identifying the root causes
of development problems

IBM used quality measurements
to assess whether changes to
the development process
had the desired effect

© Butler Cox pic 1990

Chapter 2. Using measurements to improve the development process
and control individual projects

Figure 2.2 Software measurements can be used to analyse thedevelopment stages at which errors originate and

are identified

Numberof errors

La E
Requirements Functional Coding Testing

definition design

Stages at which errors originated

Errors identified at the testing stage
©) Errors identified at the coding stage

Errors identified at the functional-design stage
IM Errors identified at the requirements-definition stage

— Greater management attention was given to ensuring that
development methods were complied with, and to monitoring
and controlling changes to existing code.

This revised process wasused for some of the development work
for release B of CICS.
Three different development techniques were used — traditional
techniques using English-language design to change old Assembler
code, software-engineering techniques using English-language
design and PLAScode, and software-engineering techniques using
Z design and PLAScode.Figure 2.3, overleaf, shows one of aseries
of analyses that IBM madeto identify the effects of using these
three techniques. For each technique, it shows the number of
defects removed per thousand new or changed source instructions
at each ofsix life-cycle stages (product-level design, component-
level design, module-level design, unit testing, functional
verification testing, and product/system verification testing). With
the combined Z design and PLAS technique, fewer defects are
introduced, and they are removed in a far more uniform way
throughout the developmentprocess.In addition, fewerdefects
are discoveredat thetesting stages, implying that a morereliable
product will be released.

© Butler Cox ple 1990 4

Chapter 2 Using measurements to improve the development process
and control individual projects

Figure 2.3 Software measures can be used to compare the effects ofdifferent development techniques on the stages at whichdefects are removed

The figure compares the number of problems removed at each .develop-
cea dace: foree different development techniques used by IBM's CICSsupport team. With one of the techniques (Z design and PLAS), fewer
defects are introduced, and they are removed more uniformly throughout the
development process.

Problems removed perthousand new or
changed sourceinstructions25

, Assemblercay20 fi *

15

 T T T T
PLD CLD MLD UT FVT P/SVT

Development stage

PLD Product-level designCLD Component-level designMLD Module-level designUT. Unit testing
FVT _Functional verification testingP/SVT Product/system verification testing (Source: Quality Assurance, vol. 14, no. 3, September 1988)

USE MEASUREMENTS TO CONTROL
INDIVIDUAL PROJECTS
The conventional approach of relying solely on a developmentmethodto control a project has three main disadvantages — it isdifficult and expensive to assess the extent to which the methodis being applied, the highly prescriptive nature of manydevelopment methodsinhibits developers’ initiative and can bedemotivating, and the risks of project failure are high unlessmethods and applications are very carefully matched. Usingsoftware quality measurementin conjunction with a developmentmethod is a more objective way of assessing the progress of aproject because it can identify problems that occur during thedevelopment of an application, and indicate where correctiveaction should be taken.
IDENTIFYING PROBLEMS IN THE DEVELOPMENT PROJECT
In essence, a development method is concerned with the qualityof the inputs to the development process, not the quality of theoutputs. Software quality measurements assess the outputs fromthe developmentprocess, so that potential quality problems canbe identified and corrected before the application is delivered,

Relying solely on a development
methodto control a project
has disadvantages

Software quality measurements
complement the develop-
ment approach

© Butler Cox pic 1990

Chapter 2 Using measurements to improve the development process

At suitable checkpoints, actual
measures can be compared

with predefined limits

Some software quality measures
can be monitored continuously

Butler Cox pic 1990

and control individual projects

and they thus complement the development method. Two
techniques can be used:
— Comparing measurements made at specific points in the

development process with predefinedlimits.
— Using measurements to identify the few components of the

application that cause most of the problems.
Both of these techniques are based on the expectation that the
measurements madeduring a project that results in a good-quality
final application will follow a typical pattern, and that project
difficulties will be revealed by unusual measures.
Compare actual measurements with predefined limits
The first method of using software measurement to monitor a
development project is to set predefined limits during project
planning. At each suitable checkpoint, say at the end of each
stage, the actual measures are compared with the predefined
limits. Those that fall outside the limits are subjected to further
analysis to identify the causes, and corrective action can then be
taken.
It is importantto set reliable and usefullimits based on the norms
for other projects. PEP memberscan use the data collected from
their PEP assessments. For example, the proportion of effort
normally used at each stage of a project of a particular size can
be used to set staff-resource limits for each stage. A project that
exceeds the limit for, say, the design stage, can be expected to
overrun at the implementation stage as well. Other suitable limits
that might be set are:
— Test runs per thousandlines of source code.
— Computer time per thousandlines of source code produced

and tested.
— Theratio of the size of the design documentto the size of

the requirements specification (in pages).

These measurements can be made only at the end of a stage or
after completion of a module.
Some software measurements can be monitored continuously,
however, and without too muchextra effort:
— The rate at which requests for changes are madeandtherate

at which they are implemented. Plotted over time, these
measures should produce convergent lines. Divergence
indicates possible problems.

— The trend inincidentreports during system testing. (Sample
plots were shown in PEP Paper 13, Software Testing.) This
graph should indicate a uniform trend that declines towards
the end of system testing. If the trend does not decline,
problemsare likely to occur.

— Thestability of the requirements and the design, monitored
by counting the numberof design changes and measuringthe
number and size of modules developed that were not
originally planned. High andrising levels of change indicate
problems.

13

Chapter 2 Using measurements to improve the development process
and control individual projects

In PEP Paper 13, we described how past experience can beused
to set predefined limits for the numberoferrors that can typically
be expected at the system-testing stage. Testing progress can then
be continuously monitored againstthis limit. This type of measure
and those described above can be used to make frequent
assessments of the ‘health’ of a project.
Identify the few components that cause
most of the problems
It is often the case that most of the quality problems of an
application are caused by a small number of the software
components. The ability to identify, at the developmentstage,
those components that are most likely to cause the quality
problems will makeit possible for corrective action to be taken
before the application is delivered. Overtime,it is possible to build
up a profile of the types of software modulesthat are likely to
cause quality problems. Two useful measures to start with are:
— The ratio of actual modulesizes to their expected sizes. Highratios may indicate modules that are too big to be developed

and tested efficiently.
— The amountof computerand staff resources used to produceand test a module. A high level of resources in relation tothe module’s size will indicate that there are problems indevelopingit.
USING THE MEASUREMENTSTO INDICATE WHERE
CORRECTIVE ACTION SHOULD BE TAKEN
The techniques described above can be used to pinpoint the stageof the development process or the software module in which aquality problem originates. Further analysis will be needed toestablish the root cause of the problem because,in practice, therecould be several possible reasonsforit. Suppose, for example, thatthe computer time used for runningtestsis plotted over time, andis found to fall outside the predefined limits at the end of thesystem-build stage. Higher-than-normal run times could be dueto the early commencementof system and integration testing, thedevelopment of code witha higher-than-usual numberof errors,or the testing of processor-bound algorithms. Likewise, lower-than-normal run times could be caused by uncompleted unittesting or by the discovery of easy-to-detect errors.
Research into using project-monitoring techniques to identifyquality problems has been carried out in an ESPRIT project(REQUEST)led by STL(asister company of ICL). This researchhas produceda system that is able both to identify the cause ofan applications development problem and to provide relevantadvice on how tocorrectit. The system has been produced as partof an automated quality-management system that will help aquality or project manager throughout the life of a softwareproject. The quality-management system provides:
— A project-planning andinitiation subsystem to help createquality plans, to specify measurable quality targets andrequired measures, and to predict final product quality.
— A project-monitoring subsystem that uses quality measure-ment data to advise on project status in quality terms, asdescribed above.

14

Overtime, it is possible to build
up a profile of the types of
software modules that
are likely to cause
quality problems

Further analysis will be needed
to establish the root cause
of the problem

STL’s ESPRITresearch has pro-
duced a system that can
identify the causes of a
development problem
and advise on how
to correctit

Butler Cox pic 1990

Chapter 2 Using measurements to improve the development process

Software quality measurement
is likely to play an increas-

ingly important role in

 Butler Cox ple 1990

controlling applica-
tions quality

and control individual projects

— A project-assessment subsystem that reports on the final
product quality achieved and on expected maintenance and
support costs implied by the level of quality achieved.

The prototypeof this system runs under Unix and parts of it have
been demonstrated to the author. The project-monitoring
subsystem has been used successfully on several STC software
development projects. We expect that this type of system will
become commercially available by 1992/93.

In this chapter, we have described how software quality measure-
ment can be used to improve the development process and to
control individual development projects. The techniques are
simple, well understood, and easily adaptable to the particular
circumstancesof individual systems departments. Unfortunately,
nosimilarly well developed measurement techniques are currently
available to help manage the quality of the final application as
it is delivered to the users. In the future, software measurement
is likely to play an increasingly important role in controlling
applications quality, just as the measurementof elapsed time and
resources is used today to monitor and control project duration
andeffort. It is therefore important that systems managers begin
to build on the emerging techniquesthatare available. In the next
chapter, we offer guidelines on how they should dothis, to ensure
that they deliver applications that meet their users’ quality
expectations.

15

Chapter 3

Defining users’ quality requirements in
measurable terms

In this chapter, we show how software quality measurements can
be used to help managefinal applications quality so that users’
expectations are met. There are three stages in managing the
quality of the final application: understanding the users’ quality
requirements, identifying an appropriate set of measures, andsetting quality priorities for applications developmentin terms ofthose measures.

UNDERSTAND USERS’ QUALITY REQUIREMENTS
Systems departments often state that they could producebetter-quality applications if their users gave them more time. On theother hand, users often do not understand why so muchdevelopmenteffort is spent on work that does not appear to bedirectly related to their requirements. The result is that neitherusersnor developers are satisfied with the quality of the deliveredapplications.
We believe that this problem arises because it is difficult fordevelopers and users to communicate with each other about thequality requirements of applications software. In turn, thisdifficulty stems from the fact that software quality characteristicsare not usually defined in useful and measurable terms.Applications software quality will remain an abstract concept tousers unless they can specify their quality requirements inmeasurable units, and developers can deliver applications thatdemonstrably meet those requirements.
Thefirst stage in managing the quality of an application as it isdelivered to the users is therefore to understand the qualityrequirements of its users. The classic definition of quality is‘fitness for purpose’ and this means that different types ofapplications, and applications used by different types of users,will have different quality ‘profiles’. Producing applications withan inappropriate quality profile wastes resources and does littleto satisfy users.
There are several obstacles to be overcome before the systemsdepartment can be certain that it has identified the importantcriteria by which users will judge the quality of an application.In particular, users often cannot express their quality require-ments in terms meaningful to development staff. The systemsdepartment must therefore define quality characteristics in termsthat enable users to understand both how the characteristics aremeasuredand whatthe implications of poorandhigh quality are.Another problem arises from the fact that there are often conflictsbetween the quality requirements of different groups of users.As we emphasised in Chapter 1, the systems department must beable to reconcile the often conflicting quality needs of the variousgroups.

16

Software quality characteristics
are not usually defined in use-
ful and measurable terms

The first stage is to understand
the quality requirements
of users

« Cox pic 1990

Chapter 3 Defining users’ quality requirements in measurable terms

Users find it easier to specify
quality requirements with
reference to applications
they use than to abstract

specifications

Quality measures must be
derived from the business
objectives of the software

quality measurement
programme

 © Butler Cox ple 1990

The best way to understandand establish users’ quality require-
mentsis to conduct a survey of users’ perceptions of the quality
needsfor future developments. Such a survey should relate their
future needsto their experience with existing applications. Users
find it much easier to specify their quality requirements with
reference to applications that they use regularly, than to abstract
specifications of systems.
Figure 3.1 showstheresults of a typical user-satisfaction survey,
used by Butler Coxin its consulting work. Users are asked to rate
eight qualities of an application on a scale from one (poor) to seven
(excellent). The solid black line shows the average quality
assessmentsforall the applications surveyed and the other two
lines show the quality assessments for two particular applications.
Such a survey can be used to identify the quality factors that are
rated lowest, and to which attention should be directed for new
applications. In the example shown,the ‘average’line indicates
that users were generally least satisfied with the ease of use of
the system and its associated aspects — user documentation,
training, and support. A section of the questionnaire that was used
to produce these results is shown in Figure 3.2, overleaf.

COMPILE AN APPROPRIATE SET OF MEASURES
Theset of measuresthat will be used for assessing the quality of
an application should be derived from the business objectives of
the software quality measurement programme. Unless the
programmehasa business purposethat is clearly expressed and
agreed,it will not produce significant and long-term benefits. The
objectives should apply to all applications that are being developed

Figure 3.1 User surveys can be usedto identify quality factors that

need to be improved

Quality rating
Excellent 7

De}

 Average
a Application 1
 Application 2

17

Chapter 3 Defining users’ quality requirements in measurable terms

Figure 3.2 User survey questionnaires serve as the basis for identifying

where quality needs to be improved

Whatis your opinion of the existing systems applications that you use?
The attachedlist contains the most important systems applications. Please select
from that list up to three applications that are the most important for you and
that you use frequently. Please answerthe following questions for each of the
applications selected by entering a score between 1 and into the three
columns of boxes (leave boxes blank which do not apply to you).

insufficient poor good excellent
1 2 3 4 5 6 /

completely not very important essential
irrelevant important

First Second Third
application application application

3.1 Two-digit code for the application
(see attachedlist)

3.2 How importantis this application
for your work?

3.3 Howsatisfied are you with this
application?

3.4 How doyouassessthis application
concerning:
— Completenessof results?
— Correctness ofresults?
— Timeliness of results?
— Clarity of results?
— Ease of use?
— User manual?
— Training facilities?
— Support available from systems

staff? Oo
oo
oo
0o
0o

ao
f

no
Oo
o0
0o
00

oo
f

Do
oo
oo
oo

ao
f

and supported by the department — most users have access toseveral applications and will require consistent quality acrossallof them.
The quality measurement objectives may be taken from theinformation systemsplan or separately agreed with the users andsystems managers. Each of the objectives should then be brokendown into subsidiary objectives until the lowest level definescharacteristics that can be directly measured. Figure 3.3illustratesthis process. Thus, the objective of improving applicationsreliability may be broken downin two objectives: to reduce thenumberof defects found in new applications, and to improve themean time between failures of an application. Both of thesecharacteristics can be directly measured.
It is also important to ensure that the set of measures describesall of the characteristics that the systems department wishes tomeasure, and that there is the minimum ofoverlap andinteractionbetween them. It therefore needs to select a set of softwarequality measures that are both generally applicable andcomprehensive. The NCC publication, Measuring SoftwareQuality, by Richard Watts, provides useful guidelines for selectingsuch a set of measures, under six headings:

18

Quality measurement objectives
should be broken down into
subsidiary objectives until
they define characteristics
that can be directly
measured

© Butler Cox pic 1990

Chapter 3 Defining users’ quality requirements in measurable terms

Figure 3.3 Software quality objectives should derive from business objectives and be broken downto level

where they can be directly measured

Business
objectives

Improve Reduce — Improve
customer maintenance applications
service effort ‘reliability

Measures need to be ‘normalised’
before they can be compared

 jutler Cox pic 1990

Standardisation and comparability: Ideally, measures of soft-
ware quality should enable applications quality to be compared
on astandard scale. However,it is not possible to compare some
quality measurements between applications or between different
organisations, and nor are comparisons with other organisations
always essential; valuable information can be gained from
identifying trends and extreme variances in the measures.
Before the quality measures for different applications can be
compared, the effects that the different application charac-
teristics, such as size and frequency of use, have on the quality
measure have to be compensated for. In other words, the
measures have to be ‘normalised’ before they can be compared.
Objectivity: Quality measures should be as objective as possible
so that the value does not depend onthe tester’s judgementduring
measurement, analysis, or evaluation. Measures made by
subjective assessments (ease of use, for example) maystill be
reliable indicators of quality, but the results need to be assessed
carefully before any conclusions are drawn.
Reliability: The measures should be reliable, which meansthat,
given similar circumstances, the measurement process should
produce the same result each time it is carried out.
Validity: The measures should producea valid assessment of an
application’s qualities. There are three ways in which a measure
can assess software quality:
— Therelationship between the measure and the quality factor

can be direct — as forreliability.
— Therelationship can depend on an understanding of the way

in which quality affects the characteristic being measured —
as in using maintenanceeffort to assess ease of maintenance.

— Therelationship may depend upon empirical validation of a
relationship, such as that between design complexity and
softwarereliability.

Economy: Quality measures should be cost effective, so that the
benefit gained from using the measures is much greater than the
cost of making them.

19

Chapter 3 Defining users’ quality requirements in measurable terms

Usefulness: The measures should provide information that helps
management to decide on the action that needs to be taken.
Different software quality characteristics have varying degrees
of measurability, however. Some, such as reliability, can be
directly measured and the results can be compared from appli-
cation to application. Others are harder to measure and impossible
to compare. Usability, for example, can be assessed by the user
only in subjective terms, and in any case, will be defined
differently from application to application. Constraints such as
these should be considered whenselecting the measures that will
be used.
Several researchersinto quality assurance have producedlists of
quality measures. One of the most widely accepted among
software quality-assurance experts, and the one that we
recommend to PEP members,is that developed originally in the
United States for the Rome Air Development Center, and known
as the RADC approach. The RADC approach to measuring
software quality derives from research work carried out in the
late 1970s and early 1980s. RADC had been pursuing a programme
intended to achieve better control of software since 1976. The
programme’s aim wasto identify the key issues and provide a valid
method for specifying and measuring quality requirements for
software developed for major Air Force weapon systems.
The programmedefined set of 11 user-oriented characteristics,
or quality factors — reliability, flexibility, maintainability, re-
usability, correctness, testability, efficiency, usability, integrity
(which actually refers to security), interoperability, and portability
— which extend throughout the software life cycle. These 11 The RADC programmedefined
quality factors were originally defined to help predict the quality a set of 11 user-oriented
of a final application as it is being developed. In Chapter 4, we characteristics
show how the factors are used for this purpose. We have also
devised an appropriate user-oriented measure for each of the
factors so that the quality of existing applications can be assessed.
These measures are described in Chapter 5.
Although the RADC approach wasoriginally defined for military
applications,it has successfully been applied to the development
of commercial computing applications. (Full details of the RADC
research have been published by the US National TechnicalInformation Service as Software Quality Measurement for
Distributed Systems — Final Report. Copies can be obtained from
ILI, Index House, Ascot, Berkshire. The approach is clearly
described in the books by J Vincent, A Waters, and J Sinclair,
listed in the bibliography.)
Figure 3.4 shows how the 11 RADC quality factors match the fourquality characteristics that we defined in PEP Paper 9. For the
purpose of this paper, however, it is more convenient toclassify
the factors into three groups: those that are independent of aparticular application, those that are specific to a class ofapplication, and those that are application-specific.
QUALITY FACTORS INDEPENDENT OF THE APPLICATION
Six of the 11 RADC quality factors describe characteristics thatcan be defined independently of the application, which meansthat the quality measures for different applications can be

 © Butler Cox pic 1990

Chapter 3 Defining users’ quality requirements in measurable terms

Low levels of maintenance

 Butler Cox

productivity may indicate
inflexible applications

1990

Figure 3.4 The 11 RADC quality factors can be categorised in terms of

the four quality characteristics defined in PEP Paper 9

Quality characteristics :
Functional Technical Operational Ease of use
Integrity Correctness Efficiency. Usability
Interoperability Re-usability Reliability
Portability Maintainability

: Flexibility
Testability

compared. The reliability of an operating system, for example,
can be compared with that of a computer game.
Reliability
Reliability is defined as therate of failure of an application in use.
The failures may be a partial or complete functional failure, or
inaccuracies in results. The measureof this quality factor answers
the user’s question: ‘‘Will the application work whenI use it and
will it produce accurate results?” It can be readily measured
because the frequency of application failures is often recorded
by the operations department.
Flexibility
Theflexibility of an application is the ease with which perfective
and adaptive maintenancecan be done. (Perfective maintenance
is changing the software’s structure to improve its performance
and maintainability; adaptive maintenance is concerned with
enhancing and extending systems software to incorporate the
evolving needs of users.) The measure of this quality factor
answers the question: ‘‘How easily can the functions of the
application be changed?”
A further useful measure of flexibility is a comparison of the
productivity of the developmentstaff involved in making changes
with the productivity of those carrying out new development
work. This comparison (which can be based on Pls for
enhancements and new developments) can be used to decide
whether to scrap and rewrite an application or to continue
maintaining it.
Maintainability
The maintainability of an application is the ease with which
corrective maintenance activity can be carried out. This measure
answers the question: ‘‘How easily can faults be fixed?’ A
measure of the maintainability of an application is the average
effort required (in developer hours) to find and fix a fault.
Re-usability
There-usability of an applicationis the extent to whichall or parts
of the code can be re-used in other applications. This measure
answers the question: ‘‘Does this application provide an oppor-
tunity to save costs by re-using its components in other
applications?”’
Measurementof this quality factor is difficult because the level
of actual, as opposed to intended, re-use cannot be established

21

Chapter 3 Defining users’ quality requirements in measurable terms

until long after the application has been developed. A practical
measureof re-usability is the proportion of the application that
is composed of re-used modules.
Correctness
The correctness of an application is the extent to which the
application conforms to the stated requirements. This measure
answers the question: ‘‘How faithfully have the users’ require-
ments been implemented?’’ Correctness does not, however, assess
the ability of the application to producecorrect results. This ability _
is an aspectof the reliability of the application. A suitable method
of measuring correctness is the number of application defects
found. A defect is any difference between the application
requirements and its implementation.
Testability
The testability of an application is the ease with which the
application can be tested to ensure that it will perform its intended
function. This measure is an important attribute affecting the
reliability and the cost of maintaining an application. It answers
the question: “‘Can I test the application thoroughly andeasily?”’
A measureof the testability of the application is the numberof
test cases that are needed to test the application fully.

QUALITY FACTORS SPECIFIC TO A CLASS OF APPLICATION
Twoof the 11 quality factors (efficiency and usability) describe
characteristics that must be defined specifically for each class
of application. Thus,for the class of workstation-based appli-
cations, the important efficiency measures are memory
requirements and speed of calculation. For batch programs,
the important efficiency measures are processor usage and
elapsed time to process a given volume of transactions.
Efficiency
The efficiency of an application is measured in terms of the
computerresources neededto provide the required functions
with the required response time. Efficiency can be measured
in terms of processor usage, disc-storage requirements, and soon. Response time is not a measure of the efficiency of anapplication because it is a characteristic of the particularcombination of hardware and systems software in which theapplication runs, rather than a characteristic of the applicationssoftware. The measure ofthis quality factor answers the user’squestion: ‘‘Will the application use a reasonable (affordable)amount of computer resources?”
Usability
An application has a high measureof usability if it can be usedeasily to produce useful results. The measure of this quality
factor has two components: the effort required to learn and Usability is related to the effortuse the application, and the usefulness of the application. It required to learn how touse ananswers the user’s question: ‘‘Will the application be useful @PPlication... .to me?”’
Research has shownthat these two components of usabilityare a good indicator both of the likely level of use and of usersatisfaction with an application. Users consider an application

22 © Butler Cox plc 1990

Chapter 3 Defining users’ quality requirements in measurable terms

to have highlevelof usability when the return on the time they
invest in learning the application is commensurate with the
benefits obtained from using it. Figure 3.5 shows how these two
componentsinteract to define the usability characteristics of the

application.

Figure 3.5 Usability is a combination of ease of use and usefulness

High

Application suitable Excollone
for use only by usability
professionals

Usefulness

Poorusability Trivial application

Low
Low High

Ease of use

Ease of use can be assessed only when the application is in
everyday use. A suitable method of measuring ease of use is to
count the numberof unfoundedfault reports and the numberof
requests for support made byusersof the application. Where ease
of useis of particular concern,the application should be designed
to capture instances of incorrect use automatically.

. . and is entirely subjective The level of usefulness of an application is entirely subjective,
and can be assessed only by carrying out user surveys. Properly
conducted surveys can provide a consistent assessment of the
usefulness of an application and the wayit is changing overtime.

QUALITY FACTORS SPECIFIC TO AN APPLICATION

Three of the 11 quality factors (integrity, interoperability, and
portability) describe characteristics of the application that are
based on specific application requirements. For example, a
portability requirement could befor the application to run on two
specific computer systems. This type of requirement will differ
from one application to another. These three quality factors are
therefore application-specific and cannot be compared between
applications.

The qualities of integrity, interoperability, and portability also
depend on features of the application design. The best way to
measure these qualities in an application is by meansof a checklist

© Butler Cox ple 1990 23

 __(tstitititititiiditiid#t(*#

nee

Chapter 3 Defining users’ quality requirements in measurable terms

of relevant facilities. Integrity qualities, for example, can be
inferred by the presence of features such as audit trails and access-
control facilities.
Integrity
The integrity quality factor as defined by RADCis really about
measuring the security and safety of an application. It provides
a measureof the ability of an application to resist unauthorised
access (security) and to protect those who use it from being
harmed in some way(safety). The measureof this quality factor
answers the user’s question: ‘‘Is the application secure and safe
to use?”’
This factor is one of the hardest to measure because any un-
authorised access will be illicit and any damage caused by the
application should be rare. This quality factor can be assessed only
by inspecting those aspects of the application design that affect
security and safety.
Interoperability
Interoperability is the ease with which an application system can
be interlinked with other applications — linking a spreadsheet
with a mainframe database, for example. This measure answers
the question: ‘‘Howeasily can the application be linked to another
application?’’ A measureof the interoperability of an application
can be gained by measuring the effort (in developer hours)
required to carry out the linkage.
Portability
Portability is the ease with which an application can be transferred
from one computing environment to another. It answers the
question: ‘“‘How easily can the application be transferred to
another software and hardware environment?’’ A measure of
portability can be gained by measuring the developer hours
required to transfer an application to a different environment —
for example, the effort required to recompile and test a Cobol
application to run on a different computer.

SET QUALITY PRIORITIES FOR APPLICATIONS
DEVELOPMENT
When developing a new application, it is not always possible to
meetall of the quality requirements desiredby all groupsof users.
There are two main reasonsforthis. First, a high level of quality
in one of the 11 RADC quality factors may imply a low level of
quality in one of the other factors. For example, a high level of
portability will usually imply a low levelof efficiency, and vice
versa. The main conflicts that can occur between the quality
factors are shownin Figure 3.6. Second, the project managerwill
often have to maketrade-offs between the time, cost, and quality
of the application. The implication is that quality should not be
specified at a higher level than the application warrants. For
example, the maintainability requirements of the application can
be reducedif the lifetime of the application is knowntobeshort.
The conflicts in quality priorities occur becauseof the conflicting
requirements of the main groups who‘use’ an application — the
application’s users, their managers, the development managers,
the maintenance and support teams, and computer operations

24

Integrity is one of the hardest
quality factors to measure

Quality should not be defined at
a higher level than the
application warrants

Chapter 3 Defining users’ quality requirements in measurable terms

Figure 3.6 A high level of quality in one factor may imply a low level

in another factor

Factors
Correctness

Reliability
Efficiency
Integrity
Usability

Maintainability
Testability
Flexibility
Portability
Re-usability

Interoperability

A high level of quality in one factor implies a low level in the other

A high level of quality in one factor implies a high level in the other

(aa No relationship between the quality factors, or application-dependent

staff. Figure 3.7, overleaf, shows whichof the 11 quality factors
are of most interest to each of these groups. Because of the
complexity of these conflicting interests, most systems
departments will need to select just two or three of the quality
factors that they need to control during development. The cost
of controlling more qualities than this becomes prohibitive.

Usually, the most important quality factors to concentrate on are
the three thatwill increase usersatisfaction through reduced costs
and better service — maintainability, flexibility, and reliability.

depend:on ue cian cee The choice will, however, depend on the nature of the system
aySEEEeetide in question. Typical quality requirements for specific types of

application are:

The choice of quality factors will

— Systems with a long life: maintainability, flexibility, and
portability.

— Publicly accessed systems: usability, integrity, and reliability.
— Systems that can cause damage to property or lives if they go

wrong: reliability, correctness, testability, andintegrity.
— Systems that use advanced technology: portability.

A valuable technique for minimising the cost of providing high
(user perceived) quality is to develop an operational-use profile.
Such a profile shows the expected level of use of each of the

The cost of providing high functions of the application. Suppose, for example, that an
quality may be minimised application has twomain functions, one of which will be used for

by developing an oper- 90 per cent of the time and the otherfor 10 per cent of the time.
ational-use profile In this situation,it is obviously better to concentrate on improving

© Butler Cox ple 1990 25

Chapter 3 Defining users’ quality requirements in measurable terms

Figure 3.7 Different groups of users have different quality needs q)

Group of users
 Quality factor Application User Development Maintenanceusers management management and support Operations

Reliability v Vv
Efficiency Vv
Usability v

Integrity
Correctness Vv SI

NS SN

Interoperability

Maintainability
Flexibility
Portability
Testability
Re-usability

 <

S
i
S

N
S
S

the quality of the most frequently used part of the application
rather than to spread the quality-assurance effort evenly over
both of the application’s functions.
We havedescribed in this chapter the growing awarenessof the
role of software quality measurementin controlling the quality
of the final application at the development stage, and we have
discussed some of the approaches that the systems department
might take to ensure that users’ quality expectations are met. It
is a difficult task, however, because the final application is not
available for measurement until the end of the project. Project
managerstherefore need some meansofpredicting whether they
will achieve the agreed quality requirements of the users. We turn
our attention to this aspect of software quality measurement in
Chapter4.

26

© Butler Cox pic 1990

Chapter 4

Using measurementsto predict the quality of

Once an application is complete,
it is too late to correct any

quality defects

In the quality-of-conformance
approach, a project is sub-
jectively assessed for its
conformance to quality

standards

©Butler Cox ple 1990

the final application

In the previous chapter, we provided guidanceonsetting quality
objectives with reference to users’ demands, and compiling a set
of measures that will serve as the basis against which project
managers can assess whether those objectives are likely to be
achieved. However,it is not practical to wait until an application
has been completed and then measureits quality, because it is
then too late to correct any quality defects. Project managers
therefore need to be able to predict whether they will achieve
the quality requirements of the users from assessments of the
interim products of the development process, so they can take
corrective action before it is too late. There are three main
approachesto this task:
— The quality-of-conformance approach uses the RADCquality

factors to monitor the quality of the application being
developed by assessing how well the development process
conforms to good practice. The assumption is that a well
managed project will produce the quality intended. This
approach concentrates on the conformanceaspect of quality.

— The quality-of-design approach, developed by Tom Gilb, sets
quality targets and builds these into the design of the system.
This approach concentrates on the design aspect of quality.

— The empirical approach predicts the quality of the final
software by using validated empirical relationships between
the characteristics of the interim products of the software
being developed and the quality of the final product. This
approachalso concentrates on the design aspect of quality,
but is more objective than Gilb’s approach becauseit relies
on established empirical relationships between the character-
istics and final quality.

In each case, the measurements made during the development
of a project are usedto predict the quality of the final application
while it is being developed, and to identify trends and patterns
that could lead to improvements in the development process.
Figure 4.1, overleaf, depicts the essential differences between the
three approaches.

SET AND MEASURE QUALITY
CONFORMANCE TARGETS
This approach tackles the problem of predicting final quality
during development by subjectively assessing the development
project for its conformance to quality standards to establish
whetherit will produce the required quality. Each of the 11 RADC
quality factorsis progressively subdivided until it can be expressed
as quality criteria that can be assessed during development. As
Figure 4.2, overleaf, shows, the criteria may be broken down
further into subcriteria and then into measurable attributes of

27

Chapter 4 Using measurements to predict the quality of the final application

Figure 4.1 There are three approaches to predicting the quality of the final product

Define
required jquality i

y y}_—__________ Quality of iBeen conformance |ee!

ne

ee approach ifr Redesignif is oe iA necessary i

tay---1 Redesign or s i’ * rebuild as Quality inecessary design i————— approach 1
Build ; |eat i_.| Redesign or ifapplication ial soil as.| |Tiaalateseee y.necessary Empirical

approachSS

Final
product

Figure 4.2 Each quality factor is broken down into measurable attributes|

Example

Quality factors Efficiency

Criterion Execution efficiency

Subcriterion Data usage

; Is data grouped forAttribute efficient processing?

Possible measures:Metric or — No or yesmeasurement — Rated on a scale
(For example, 0 to 7)

the application. In the example shown,oneof the quality criteriafor efficiency is execution efficiency, which in turn can be divi-ded into several subcriteria, one of which is data usage. The

28 © Butler Cox ple 1990

Chapter 4 Using measurementsto predict the quality of the final application

Quality criteria are broken down
into measurable attributes,

which are scored on a

©Butler Cox ple 1990

numerical scale

measurable attribute of data-usage execution efficiency is the
extent to which the datais groupedfor efficient processing. This
can either be assessed simply as ‘yes’ or ‘no’, or rated on a scale
— for example, from 0 (not grouped atall for efficient processing)
to 7 (optimised for efficient processing).
Thecriteria usedto assess one ofthe quality factors may also apply
to other factors. Figure 4.3 lists the measurable attributes that
are usedto assess the extent to which the completeness criterion
is met. This criterion contributes to the quality factors of
reliability, correctness, and usability.

Figure 4.3 The measure of completenesscontributes to the assessment

of the reliability, correctness, and usability quality factors

The completeness quality criterion has nine measurable attributes:
— Unambiguousreference(input, function, output).
— All external data references defined, computed, or obtained from external

source.
— All defined functions used.
— All referenced functions defined.
— All conditions and processing defined for each decision point.
— All defined and referencedcalling sequence parameters agree.
— All problem reports resolved.
— Design agrees with requirements.
— Code agrees with design.
Eachof theseattributes should be rated on the same scale (for example,0 to 7);
the measure of completenessis the average of the nineratings.

A simple examplewill help to illustrate how the RADC approach
might work. Supposethat the quality factors of a car are defined
as maximum speed, economy, and safety. The ‘speed’ quality
factor can be broken downinto the quality criteria of low wind
resistance, low rolling resistance, high power/weight ratio,
lightness of construction, and so on.It is obvious that many of
thesecriteria also apply to the economyquality factor. Subdividing
the rolling-resistancecriterion into measurableattributes produces
wheel-bearing friction, energy losses through the tyres and
suspension, and so forth. These attributes are scored on a
numerical scale — usually subjectively — and theresults for all
the attributes are added togetherto create a score for the quality
factor. The score is then expressed as a percentage of the total
possible score, and is interpreted as follows:
— 95 to 100 per cent: There is a high probability of meeting the

quality targets.
— 90 to 94 per cent: Progress should not be impeded, but the

items responsible for reducingthe score should be dealt with.
— 60 to 89 percent: Problemsare likely to result in a poor-quality

final product andincreased costs; immediate action is required
to identify and rectify the problems.

— 0 to 59 per cent: There are insurmountable problems; the
project should be re-organised, or the development approach
should be changed.

Manyorganisations that develop large, complex, software systems
(particularly in government, military, and telecommunications
systems) have invested considerable effort in implementing the
RADCapproachto software quality measurement. In particular,

29

Chapter 4 Using measurements to predict the quality of the final application

several Japanese IT companies have applied this approach to a
range of applications and claim that it has led to considerable
improvementsin quality. As Figure 4.4 shows, the approach also
resultedin significant reductions in effort and cost — in various
projects, companies noted a 50 per cent reductionin testing effort,
a 46 per cent reduction in coding effort, a 25 per cent reduction
in specification effort, and a 33 per cent reductionin cost.

In Japan, the quality-of-conform-ance approach has resulted insignificant reductions in
effort and cost

Figure 4.4 Japanese companieshave gained considerable benefits from using the RADC approachto software qualitymeasurement

Project A Project B Project C
Software type Operating system (Assembler)} Cost control (Cobol) Business application (Cobol)Phases All Design, code Design, code
Factors controlled Usability Correctness CorrectnessReliability Reliability
Elements measured 28 15 (Design) 9 (Design)22 (Code) 8 (Code)
Numberof software quality 4 3 imeasurementstaff
Proportion of total project cost 25% 20.8% 12.7%
Results 25%reduction in specifi- 50.8%reduction in testing 46.2%reduction in codingcation effort effort effort33%reduction in cost

(Source: Quality Progress, November 1988)

The RADC approach does, however, have several significantdrawbacks:
— There is no proven connection betweentheinterim measuresand the quality of the final product.
— The measurements and scoring of the attributes are largelysubjective.
— Collecting the data is labour-intensive and difficult toautomate.
— The approachis valid only for a developmentprocessthat issimilar to that used in the RADC study (requirements analysis,preliminary design, detailed design, implementation, and testandintegration).

SET AND MEASURE QUALITY DESIGN TARGETS
During the development of an application, developers arecontinually making conscious or unconscious design trade-offsbetween the various quality attributes of the final application.An example ofsuch a trade-offis to improveoperationalefficiencyat the expenseof ease of maintenance. Setting appropriate designobjectives therefore affects the way in which developmentstaffapproach their work and helps to channel developmenteffort inthe appropriate way.
An experimenthas beencarried out to assess the effects of settingdifferent objectives on the results of application development.

30

 © Butler Cox pic 1990

Chapter 4 Using measurements to predict the quality of the final application

The results of applications
developmentare clearly
affected by the design

objectives that are
set

Managing the ‘producibility’
of the application design

allows the quality of
the final application

to be predicted

In the quality-of-design approach,
quality objectives are set at

the design stage in meas-
urable terms

© Butler Cox pic 1990

Five groups of programmers were given different design objectives
for the sameapplication: to minimise memory usage, to minimise
the numberof statements, to maximise outputclarity, to use the
least effort, and to make the program as understandable as
possible. When thefive final applications were compared, each
of them met its specific design objective. The results of this
experiment, which were described in Goals and Performance in
Computer Programming, by Gerald E Weinberg and Edward L
Schulman, of the School of Advanced Technology at the
University of New York, showedthat‘‘programming performance
can be strongly influencedbyslight differences in objectives’’.
The conclusion of the paper wasthat ‘‘No programming project
should be undertaken without clear, explicit, and reasonable goals
[design objectives]’’.
David Card, author of a recent book, Measuring Software Design
Quality, states that the objective of the system designer is to
create a producible design. A producible design will have the
qualities of simplicity and ease of understanding, and is mostlikely
to lead to a reliable and maintainable application. Managing the
producibility of the application design allows the quality of the
final application to be predicted. The ideas set out in his book
represent the leading edge of academic thinking on software
quality assurance. As far as we are aware, no-onehasactually
managedto achieve the ideals set out in this book. One approach
that goes some way towardsthem is that developed by Tom Gilb,
the well known quality metrics guru and consultant. His approach,
which is closely related to his idea of design by objectives,
attemptsto predict and manage the quality of the final application
by estimating the contribution that each aspect of the design
makes to the quality objectives.
With Gilb’s approach, quality objectivesare clearly defined at the
design stage in measurable terms. Figure 4.5 provides an example
of the definition for the ‘reliability’ quality factor. This detailed
definition of each quality measure ensuresthat it is as meaningful
as possible. The quality objectives are usually broken down into
several subsidiary quality objectives, each of which can be
measured. Usability, for example, can be broken downinto ease
of learning, operator error rates, and so on. This meansthat the
quality objectives for the final application are expressedin directly
measurable terms. The success or failure in meeting the
application quality objectives can thus be directly assessed at the
end of the project.
The application quality plan is developed by assessing the
contribution that each design feature makesto each of the quality

Figure 4.5 With Gilb’s approach, measurable quality objectives are set

at the design stage

The‘reliability’ quality factor might, for example, be defined as mean time between
failures, with the following characteristics:

Measuring unit: Days
Measuringtool: Problem-management system
Worst case: 1 day
Planned level: 5 days
Best case: 30 days
Currentlevel 3 days
Consequencesoffailure: Service-level agreement penalties

31

Chapter 4 Using measurements to predict the quality of the final application

objectives. This process uses a quota-control table, an example
of which is shownin Figure 4.6. In the example, the objective for
the ‘ease of learning’ quality factor would be expressed in a
measurable way — users should be able to learn how to usethe
application in less than 30 minutes, for instance. The contributions
that a variety of design features make to meeting this objective
are then assessed. Thus, in the example, the assessors believe thatproviding single-line help messageswill enable all users to learnhowto use the system in less than 30 minutes. However, providingfull-screen help messagesis, in the view of the assessors, likelyto result in only partial achievementof this quality objective —only about one-in-three users would be able to learn how to usethe system in less than 30 minutes. Thus, the quota-control tablecan help to identify those design features that are likely to makea significant contribution to a range of quality objectives. If the‘total’ for each quality factoris less than 100 per cent, it is unlikelythat the objective can be met, even if all the design features areincludedin the system.

Figure 4.6 In Gilb’s approach, the application quality plan is developedby assessing the contribution that each design featuremakesto each of the quality objectives

Quality factor
 Design feature aeEase oflearning Reliability of user

operation
Single-line help 100% 50% + 40
Fullscreen help 33% 20% + 10
Automatic help, based on 2the difficulty the user is 10% 10% +5experiencing
 Colour screens 10% +5

Gilb’s approach suffers from the weakness that there is noestablished relationship between a design feature and the qualityof thefinal application. The connection hasto beestablished bythe subjective judgement of experienced system designers. Gilbsuggests that the task of quantifying each quality objective is madeeasier by breaking down the objectives into simpler ones, inamannersimilar to that required by the RADC approach.

MEASURE QUALITY USING VALIDATEDEMPIRICAL RELATIONSHIPS
Neither the RADC nor Gilb’s approach to predicting finalapplication quality is completely satisfactory because neitherisbased on objective relationships between the measures of theinterim products of development and the quality of the finalproduct. A better approach is to make use of empiricalrelationships, established by research, between the characteristicsof the interim development product and final product quality.Such an approach is more objective and is easy to apply becausethe relationships are expressed as simple mathematical formulae.

32

The application quality plan isdeveloped by assessing thecontribution that eachdesign feature makesto each of the qual-
ity features

The empirical approach is basedon identifying objective rela-tionships between measures
of the interim products
and the quality of the
final product

ler Cox pic 1990

Chapter 4 Using measurements to predict the quality of the final application

The complexity of an application
is one goodindicator of its

likely quality

A measure of design complexity
is most beneficial in detecting

potential quality problems
at an early stage

Measuring the complexity of
information flow is a

widely recognised
way of assessing

system-design
complexity

© Butler Cox pic 1990

An important relationship is that between the complexity of the
system design and the maintainability of the final application. By
ensuring that design complexity does not exceed a predefined
level, the project manager can ensure that the maintainability of
the final application reaches the target quality level.
In general, the complexity of an application is a good indicator
of its likely quality. Complexity (or its opposite, simplicity) is a
quality criterion that contributes to seven of the 11 RADC quality
factors — correctness, reliability, efficiency, maintainability,
testability, flexibility, and re-usability. In addition, unlike many
of the other quality criteria, it does not adversely affect efficiency
so that trade-offs between these eight quality factors and
efficiency do not have to be allowed for when considering
complexity.
It is important, however, to distinguish between the complexity
of the problem that the application has been designed to solve
and the complexity of the application itself. A complex problem
does not necessarily imply a complex solution, although the task
of developing a simple solution for a complex problem may be
difficult.
Complexity can be measured in two ways: by measuring the
complexity of the design based on the interconnections between
the modules and programsthat make up a system, or by measuring
the complexity of the code itself. A measure of design complexity
is most beneficial in detecting potential quality problems at an
early stage, when they can be fixed quickly and cheaply.
Unfortunately, the collectionof the basic data required to measure
design complexity can be laborious, and at present, there are no
tools available to carry out this task automatically. Measuring code
complexity has the disadvantagethat it cannottakeplace before
the code has been written.If a module turns out to be too complex,
further workis neededto simplify it. However,tools are available
for measuring the complexity of code written in the more popular
third-generation languages.
MEASURING DESIGN COMPLEXITY
A high proportion of software errors discovered late in the
developmentlife cycle have their origins in the system-design
stage. Figure 4.7, overleaf, showsthe distribution of the sources
of software errors for three actual development projects. The
majority of the errors are related in some way to the design of
the system. Reducing design complexityis highly likely to reduce
the numberofdesignerrors, thereby increasing thelikelihood of
delivering a high-quality system. Design complexity measures
define the success of the systems designer in developing a
producible design.
Manyschemeshave been suggested for measuring system-design
complexity. Many of these are based on assessing the modular
structure of a system; the most widely recognised is the
information-flow complexity measure proposed by S M Henry and
D G Kafura, of the University of Wisconsin-La Crosse, and lowa
State University, respectively, which provides a measure of
module coupling (that is, the links between modules). This
measureis calculated from the information ‘fan-in’ and ‘fan-out’
for each module. (Details of this measure can be found in

33

Chapter 4 Using measurements to predict the quality of the final application

 Figure 4.7 The source of most software errors lies in the design of thesystem

Requirements
specification

Language andenvironment
Other

/ Design-related

(Source: Weiss, D M, and Basili, V R. Evaluating software development byanalysis of changes. IEEE Transactions on Software Engineering,vol. 11, no. 2, February 1985)
‘Software Structure Metrics Based on Information Flow’, pub-lished in IEEE Transactions on Software Engineering, vol. SE-7,no. 5, September 1981.)
Information fan-in is calculated from the numberof modules thatcall a module, the number of commondata items read by themodule, and the number of parameters input to the module.Information fan-out is calculated from the number of modulescalled by a module, the number of common data items amendedby the module, and the numberof parameters output from themodule.
Modules with a large fan-out value tend to control a large numberof other modules and therefore may have too manyfunctions.Moduleswith a large fan-in value are used by many other modulesand therefore, ideally, need to have a single clearly definedfunction, and to be reliable and operationally efficient. Theyshould therefore be kept small and simple. Thus, from a software-design viewpoint, modules with high fan-in or fan-out valuesindicate areas where the application may be badly modularised.Such designs should be reviewed before coding commences.
Recent studies have shownthat modules with high fan-out valuesare likely to lead to a variety of quality-related problems. One ofthese studies analysed 226 programsin a communications system.The results showedthat of the 40 programsthat had the highestfan-out values, 82 per cent had a significant problem such ashigher-than-average error change rates, or were judged to be ofabove-average complexity.
Further work on refining this measure of design complexity hasshownthat there is a high correlation between design complexityand error rates. Figure 4.8 showsthe results of this analysis foreight applications. The complexity of a module is also correlatedwith the ease with which it can be changed. Figure 4.9, onpage 36, showsthe proportion of changes (for the same eight

34

Modules with high fan-in and
fan-out values should
be avoided

Thereis a high correlation
between design com-
plexity and error
rates

© Butler Cox pic 1990

Chapter 4 Using measurements to predict the quality of the final application

At present, measures of design
complexity are expensive to

collect and have limited

© Butler Cox pic 1990

application

 Figure 4.8 The complexity of system design correlates with software
error rates

The figure shows the correlation between system design complexity and
errors per thousand lines of code for eight applications.

Errors per thousand|_ lines of code
 ! L !

20 25 30 35
System design complexity*

* Complexity was defined by complex mathematical formulae involving
number of modules, module format, and intra-module complexity.

(Source: Card, D N, and Glass, R_L. Measuring software design quality. London: Prentice-Hall, 1990)

applications) that were difficult to make, plotted against module
complexity (measured by McCabe’s complexity measure, which
is described briefly below). This clearly shows that less complex
modules have a smaller proportion of hard-to-implement changes.

Measuresof design complexity show considerable promisefor the
future but at their present state of development, they are
expensive to collect and they have only limited application.
Fan-in and fan-out, for example, can be calculated only where
a modular approach to developmentis used. This usually implies
the use of third-generation languages, as the modular approach
is less common with fourth-generation languages. In general, few
measures are available for assessing the design complexity of an
application written in a fourth-generation language. Systems
departments can, however, gain many of the benefits of using a
measure of design complexity by establishing design guidelines
that prohibit the construction of systems with modules that would
have high fan-in and fan-out values.
MEASURING CODE COMPLEXITY
Measuresof the complexity of an application are easierto collect
at the coding stage, and are a morereliable indicator of

35

Chapter 4 Using measurements to predict the quality of the final application

 Figure 4.9 Module complexity can be used to predict softwaremaintainability

The figure shows the correlation between module complexity and theproportion of difficult-to-implement changes made to eight applications.

A Percentage100 of changes

257 0 1 1 1 115 20 25 30
Module complexity

(Source: Adapted from Card, D N, and Glass, R L. Measuring softwaredesign quality. London: Prentice-Hall, 1990)
applications quality. The most common measure of code com-plexity is McCabe’s complexity measure. This simple measureisdefined as the numberof decision statements in a section of code,plus one. Code with a McCabe value higher than 10 seems tohave disproportionately more bugs than code with valuesof lessthan 10.
Many studies have shown that programs with high levels ofcomplexity also have high error rates. One study of the Unixoperating system, for example, showed a very high correlation(0.98) between modules witha high numberof errors and moduleswith a high level of complexity. In another study, 47,000 linesof Fortran code were analysed to assess how well McCabe’scomplexity measure could predict the numberof actual changesto modules based on data for a year’s error reports. An almostperfect correlation (0.9985) was found between the complexitymeasure of a program and the number of changes made.
Another measurethat can be used to obtain an assessment of codecomplexity is the ratio of object code instructions to source codestatements. The expectationis that programsusing very powerfulsource-language statements will have a higher ratio than thoseusing simple statements. Experience suggests that applicationswritten in a simple language are more reliable and easier tomaintain. Thus, programs with highratios of object-to-source-codesize should be carefully evaluated.

The commonest measure of codecomplexity is McCabe’s
complexity measure

Programs with high levels ofcode complexity also have
high error rates

Applications written in a simpleJanguage are morereliable
and easier to maintain

Cox pic 1990

Chapter 4 Using measurementsto predict the quality of the final application

None of the established
approaches to predict-

ing final quality is
ideal

Software quality measurement
programmes should be able

to cope with changes in

 jutler Cox pic 1990

the development
process

Measurement of code complexity can be a useful technique for
improvingthereliability and maintainability of application code.
Its use, however, is limited to third-generation procedural
languages such as Cobol because there are, as yet, no well
established measuresof the complexity of code written in fourth-
generation languages.

RECOGNISE THE LIMITATIONS OF EACH APPROACH
None of the three approaches described above for managing a
project to deliver the required quality profile is completely
satisfactory for PEP members. Our recommendations are:
— Adapt the RADC approachto the development method being

usedin order to provide a more focused approach to software-
quality audits.

— Use Gilb’s approach to establish clear quality goals and to
create the developmentplans and application-design features
that will achieve these goals for qualities (such as usability)
that cannot easily be quantified in other ways.

— Make use of design and code complexity measures where
possible to assess and control the qualities of correctness,
reliability, efficiency, maintainability, testability, and
flexibility.

Analysis of the measures discussed in this chapter is reasonably
straightforward while the development process remains
unchanged. However, PEP members should bear in mind that
advancesin system development tools (integrated computer-aided
software engineering, in particular) will leadto significant changes
in the applications life cycle. They should therefore take great
care in planningtheir software quality measurement programme
to ensure that future changes in the development process do not
invalidate a valuable set of software measurementdata.
Wehave been concernedin this chapter with describing ways in
which project managers can monitor the progress of an application
by measuring the quality of the interim products of the
developmentprocess, and taking action to modify those products
where the measuresindicate that the final quality is likely to be
unsatisfactory. In most organisations, however, software
maintenance accounts for about the same amountof time and
effort as the development of new systems. The contribution that
software quality measurement can maketo improving the quality
of existing applications and thereby reducing the cost of their
maintenance is the subject of the next chapter.

37

Chapter 5

Measuring the quality of existing applications

So far in this report, we have concentrated on showing how
software quality measurements can be used as applications aredeveloped — to improve the developmentprocessitself, to controlan applicationasit is developed, andto predict the quality of thefinal product. Much of the development department’s workload,however,is concerned with maintainingexisting applications. Inthis chapter, we show how software quality measurement can beused to monitor and improve the quality of existing operationalapplications, thereby leading to a reduction in maintenancecosts.
The quality of existing applications must, of course, be measuredin termsof the users’ satisfaction with thefinal systems that aredelivered to them. This should not be too onerous a task sincea small numberof well chosen measureswill provide the basisof a comprehensive measurement programme. The data collectedin this process should be made widely available, and in the formthat most clearly demonstrates the point of a particular analysis.The analyseswill be of interest not only to those who collect andanalyse the data, but also to development staff, developmentmanagers, and user managers.It is in the interests of all thoseinvolvedto use software quality measurements to detect difficult-to-maintain or unreliable applications and to determine whichapplications can have their maintainability improved.

CREATE A USER-ORIENTED SET OF MEASURES
Once an application has been implemented,it is important toverify that it does, in fact, meet the users’ quality requirements;the systems department must be able to demonstrate that it isdelivering the quality that was expected. In principle, usersatisfaction can be defined (on a scale of 0 to 1) as the qualityof the delivered application divided by the quality that the userswere expecting.
To do this, systems departments need to present software qualitymeasurementsin termsthat are relevant to users’ perceptions ofthe quality of the application rather than in termsthat indicatethe need for support from the systems department. For example:
— Thereliability of an application should be measured in termsof failures per hundred hours of operation, rather than in termsof faults per thousandlines of code.
— Theflexibility of an application should be specified in termsof the time taken to act on a request fora change, rather thanin terms of the total number of changes made.
— Errors should beclassified by the impact they have on usersrather than by the type of design or coding fault that causedthem. Telling users that a particular class of error will cause

38

Software quality measurementcan be used to monitor and
improve the quality of
existing applications

Quality measurement data should
be made widely available

Software quality measures mustbe presented in terms that are
relevant to users

Chapter 5 Measuring the quality of existing applications

User-oriented measures therefore
need to be devised

A small numberof well chosen
basic measurements should

be adequate for most
programmes

It is not common practice, at
present, for user managers

© Butler Cox pic 1990

to receive software
measurement
information

an application to be unavailable for use for several hoursis
much more meaningful than telling them that the problem was
caused by a coding error.

In our research, we were unable to identify a comprehensive set
of measuresfor assessing the quality of existing applications. We
have therefore taken each of the 11 RADC quality factors,
described in Chapter 3, and devised an appropriate user-oriented
measurefor it. (The RADC quality factors were originally defined
to help manage andpredict quality during the developmentof an
application.) In devising the measures, we have been conscious
of the need for standardisation and comparability (the two most
important measurementselection criteria described in Chapter3).
The measures we suggest are set out in Figure 5.1, overleaf. It
lists the basic data items that need to be captured from the
application in order to produce the measures. The final
‘calculation’ columngives the formula for calculating each quality
measure from the basic data items. The calculations ensure that
the measures are normalised so that they can be used to compare
the quality of different applications, where practical.

As in a database application, each of the basic data items must
be carefully defined at the lowest level and in detail. For example,
it is usually necessary to define the basic unit of staff effort as
hours,to allow for the effects of overtime or different working
hoursin different locations. The relevantpart of the draft (and,
as yet, unapproved) IEEE standard P-1061/D20 for a software
quality metrics methodology (see Figure 5.2, on page 41) provides
a useful template for the descriptions of the basic data items.

Since the same basic data items are needed for several of the
software quality measures, a comprehensive programme for
measuring the quality of existing applications can be based on a
small numberof well chosen basic measurements. These are listed
in Figure 5.3, on page 41.

STORE THE INFORMATIONIN AN EASILY
ACCESSIBLE FORM
Evenin large systems departments, the complexity and volume
of the basic data items needed for measuring the quality of existing
applicationsis not large, and many of them will be available in
the managementinformation systemsalready in use in the systems
department(see Figure 5.4, on page 42). The data can easily be
stored and manipulated on a spreadsheet system. As basic data
items are entered into the spreadsheet, the quality measures can
be calculated automatically. Staff whocollect the information will
thus receive instant analyses of it, but the database can also be
easily distributed to developmentstaff and managersto carry out
their own analyses. Currently, it is not commonpractice for user
managers to receive software measurement information (see
Figure 5.5, on page 42), but if they are to make informed
judgements, they, too, should receive the analyses.

Although the responsibility for data capture, and perhapsfirst-
stage analysis, resides with development staff, the quality-
assurance function must take overall responsibility for the
management of the data and the production of the overall

39

Chapter 5 Measuring the quality of existing applications

Figure 5.1 Most qualities of existing applications can be quantified directly or indirectly

 Quality factor Measure Basic data items Calculation

Reliability Meantime to fail (MTTF) Hours of use (H) MTTF = N, = (HxS)
Numberoffailures (Nj)
Application size (lines of code or
function points) (S)

Flexibility Effort to implement a Developer hours per change (He) F = He = Scchange in requirements Function points orlines of code(F) changed (Sc)
Maintainability Effort required to diagnose

|

Numberoffaults fixed (No) M = Hf = Noand respondto a fault (M)

|

Developer hours for fixing faults (Hf)
Re-usability Proportion of application Size of re-used code (Sr) R=Sr:Sconsisting of re-used code

|

Application size (lines of code or(R) function points) (S)
Correctness Conformance to Numberof defects (D) C= pssrequirements (C) Application size (lines of code or

function points) (S)
Testability Effort required to test the Numberof test cases (1) Be 3sapplication fully (Ef) Application size (lines of code or

function points) (S)
Efficiency Online efficiency (E) Numberoftransactions (Tr)

Computer resources used:
— CPUtime(R,) E, = R, + Tr— Disc transfers (Ro) Ep = Ro = Tr— Network traffic (Ra) E, = Rg + Tr= Ete

Usability Easeof use (Ea) Numberof unfounded fault reports (Na) Ea = N3 +(HxUxS)Hoursof use (H)
Numberof users (U)
Application size (lines of code or
function points) (S)

Integrity Access-control quality Subjective ratings for:
— User-access control
— Database-accesscontrol
— Memoryprotection
— Recording and reporting access

violations
— Immediate notification of access

violations

None(use the
subjective ratings)

 the application to another
environment (Ee) Interoperability Effort required to link the Effort in hours to link applications (HI) El = HI+Sapplication to another(El) Application size (lines of code or

function points) (S)
Portability Effort required to transfer Effort in hours (He) Ee = HesApplication size (lines of code or

function points) (S)

analyses. The analyses can be presented in a variety of ways,illustrated in Figure 5.6, on page 43:
— Trend line charts show the variation in a software measure(suchas reliability) over time. Theyare useful for determiningif there is a trend or pattern in the occurrence of a specifictype of error.
— Histograms show frequencyof data by various categories andclassifications. They are used in PEP assessments, for example,

40

© Butler Cox pic 1990

Chapter 5 Measuring the quality of existing applications

Figure 5.2 The description of data items in the draft IEEE standard for a

software quality metrics methodology can be used as the
basis for describing the basic data items

Note that the draft IEEE standard from whichthis is an extract has not yet been
approved.

Item Description
Name Nameof the data item.
Metrics The metrics that are associated with the data

item.
Definition Unambiguous description of the data item.
Source Location where data originates.
Collector Entity responsible for collecting the data.
Timing Time(s)in life cycle at which data is to be

collected. (Some data items are collected more
than once.)

Procedures Methodology used to collect data (e.g.,
automated or manual).

Storage Location where data is stored.
Representation The mannerin which data is represented; its

precision and format (e.g., Boolean,
dimensionless, etc.).

Sample The percentage of the available data thatis to
becollected.

Verification The mannerin which the collected data is to
be checkedfor errors.

Alternatives Methods that may be usedto collect the data
otherthan the preferred method.

Integrity Whois authorisedto alter this data item and
under what conditions.

Figure 5.3 A programme for measuring the quality of existing

applications can be based on a small numberof
basic data items

 Numberof application users
Hours of application use
Numberof transactions processed
Computer resources used (CPUtime, disc transfers, networktraffic, . .)
Numberof application failures
Numberof application defects
Number of unfounded user fault reports
Number offaults fixed
 Developer hours required perfault
Developer hours required per change
Developer hours required to link the application to another
Developer hours required to transfer the application to another environment
 Size of application
Size of change } Lines of code or function points
 Numberoftest cases
Size of re-used code

to show the distribution of Productivity Indexes (PIs) over a
range of projects.

— Pareto diagramsare a particular type of histogram that can
be used to show errors by type and frequency. They can be

© Buller Cox ple 1990 41

Chapter 5 Measuring the quality of existing applications

 Figure 5.4 Manyof the basic data items required for measurin ig the quality of existing applications will already

activity

data

 used project schedules Basic
measurement
database

be available

Change Problem Computer-resource eeaesnagement eImanagement manag usage management

Maintenance Failure Resources Manpowereffort,

Figure 5.5 At present, software measurementinformation is sent mainlyto development managers and quality-assurancestaff

Groupsreceiving software
measurementinformation Percentageof organisations

10 20 30
Development managers

Quality-assurancestaff

Operations managers

Other

User managers

(Source: Survey of PEP members and of members of the Quality AssuranceForum)
usedto highlight the few butvital error types that account forthe greatest numberof actualerrors, and the many buttrivialerror types that account for few errors.
Scatter diagrams show the existence (or lack) of a relationshipbetween twofactors. If a straight line is apparentin the plot(as in our example), thereis likely to be a relationship betweenthe factors.
Control charts show a software measurement plotted over timewithin statistical control limits. If the plotted line exceeds

42 © Butler Cox

Chapter 5 Measuring the quality of existing applications

Figure 5.6 Software quality measurements and trends can be presented
in five main ways

Trendline charts

Histograms [

Pareto diagrams

Scatter diagrams

Control diagrams

eitherof the limits, there is a strong possibility that something
is going wrong with the developmentprocess. A control chart
of error rates helps to determine if a process is either ‘in
control’ (with only random errors occurring) or ‘out of control’
(with errors occurring more generally).

 Cox ple 1990 - 43

Chapter 5 Measuring the quality of existing applications

IDENTIFY WHERE THE QUALITY OF EXISTING
APPLICATIONS COULD BE IMPROVED

The quality of existing applications needsto be closely controlled
because the systems department’s maintenance effort is
determined as much bythe quality, or maintainability, of existing
applicationsasit is by the volumeof code being maintained. The
tendency is for older applications, which have usually been
repeatedly enhanced and amended,to be harder and morecostly
to maintain.
The high cost of maintaining applicationsis strongly related to thecomplexity of the application. A high level of complexity causesthree main problems:
— The more complex a system is, the more difficult it is tounderstand, and therefore to maintain.
— More complex programs require morecorrective maintenancethroughout their lives because they contain more errors.
— Maintenance carried out on complex applications tends toincrease their complexity disproportionately because themaintenance programmer does not fully understand theapplication structure. _
Thedecline in the maintainability of the applications portfolio canbe arrested or even reversed by using software quality measure-ment to detect hard-to-maintain and unreliable applications, andto determine which applications can have their maintainabilityimproved.

REDUCING COMPLEXITY TO REDUCE MAINTENANCE COSTS
An experimentcarried out by Virginia Gibson,assistant professorof managementinformation systemsat the University of Maine,and JamesSenn,director of the IT ManagementCenterat GeorgiaState University, confirmsthat well structured programsare easierto maintain than poorly structured ones. In the experiment,experienced programmers were asked to carry out the samemaintenancetask on three functionally equivalent versions of aCobol system. Thestructure of the system had been progressivelyimproved in each of the three versions — for example, byeliminating long jumps in code and complex control sequences.The effort required to make the changes was 18 per centless forthe best-structured version. There was also a significant reductionin errors caused by unforeseenside effects of the changes. (Theexperiment also went on to assess the ability of automatedcomplexity-measurement tools to measure the differences incomplexity of the three versions and found that several tools,including McCabe’s complexity measure, were able to measurethe differences.)
The result of this experiment suggests that it makes sense torestructure existing applications to reduce their complexity.Restructuring tools are becoming available to enable this processto be largely automated. A description of restructuring tools canbe found in PEP Paper 8, Managing Software Maintenance, whichwas published in November 1988.

44

Maintenanceeffort is determined

as much bythe quality ofexisting applications asby the volumeof code

Well structured programs are
easier to maintain than
poorly structured
ones

ler Cox pic 1990

Chapter 5 Measuring the quality of existing applications

Periodic restructuring can reduce
maintenance costs considerably

© Butler Cox pic 1990

A model for predicting the maintenance-cost implications of
periodically restructuring an application to reduce its complexity
has been suggested by Capers Jones of Software Productivity
Research Inc in the United States. The model’s parameters and
initial conditions were derived from Jones’s observations of ageing
software projects over many years. The parameters of the model
are historical data on the rate of addition and deletion of code
from maintained applications and the annual rate at which the
application complexity, measured in terms of McCabe’s com-
plexity measure, increases. The initial conditions are the size of
the application, the complexity of the application, and the
expected lifetime of the application.
Sample output from the model is shown in Figure 5.7, which
predicts the software-maintenancecosts over seven years for an
application originally consisting of 25,000 lines of code of above-
average complexity. Two predictions are shown.Thefirst is based
on the assumption that there will be no restructuring, and the
second is based on the assumption that restructuring will take
place in Year 4. After seven years, the cumulative saving is nearly
$70,000. This model predicts only the likely impact that re-
structuring will have on maintenance costs. However, it isa useful
aid in settinginitial levels for the maintainability quality factor
and for calculating the cost implications of restructuring.

DECIDING WHICH APPLICATIONS NEED TO BE RESTRUCTURED

There are several application quality measurement tools that
can be used to identify those programs that will benefit most

 Figure 5.7 Restructuring can reduce the cost of maintenance

The graph shows how the predicted annual cost of maintaining a program
can be reduced by restructuring it to make it less complex.

Cost per year
\dtook & thousand)

gO
sor

60P

40PF

20F Restructuring

45

Chapter 5 Measuring the quality of existing applications

from restructuring. Reducing the complexity of these programs
will also reduce the cost of maintaining them in the future.
The SNAPSHOTtool from Language Technology, for example, can
be used to analyse a set of Cobol programs. This tool produces
a comprehensivelist of measurements of the programs’ structures,
complexities, and their conformance with structured-pro-
gramming rules. The assessments of the structure and complexity
are based on McCabe’s complexity measure.
SNAPSHOTpresents the results of the analysis as a series of
charts, one of which is shownin Figure 5.8. This chart classifies
programs according to their complexity and their degree of
structure. It places programs in one of four quadrants andsummarises their distribution by providing totals and percentagesof the programsin each quadrant. The worst programs(those thatare unstructured and highly complex)fall in Quadrant 1. The bestprograms(those that are well structured and of low complexity)
fall in Quadrant 4.

Figure 5.8 The SNAPSHOTtoolcategorises a set of programsaccordingto their level of complexity and theirdegree of structure

The mid-point of the x-axis represents the threshold of acceptable complexity;the mid-point of the y-axis represents the threshold of the acceptable degree ofstructure.

High

3 programs
37.5% of total programs0 programs 10,077lines of code
38.45% oftotal lines

Quadrant 3} Quadrant1
Quadrant 4} Quadrant 2
 Degreeof structure 4 programs 1 program
50% oftotal programs 12.5%of total programs15,006lines of code 1,127lines of code57.25%oftotal lines 4.3% oftotallines

Low

Low Complexity High
An alternative way of identifying those programs that arecandidates for restructuringis to count the numberof faults andchangesin each program and to use this data to identify thoseprogramsthat create the most problems. This methodtakes longerthan using an analysis tool, butit is likely to identify the programsthat, although reasonably well structured, are subject to aconsiderable rate of change and that would therefore benefit fromrestructuring.

46

The SNAPSHOTtool categorises
programs according to their
complexity and degree of
structure

Chapter 6

Putting a software quality measurement
programmein place

In this paper, we have shown how a measurement programme
can be used to achieve practical goals, and how each type of
objective can be achieved. Figure 6.1 summarisesthe actions that
systems managers should take to ensurethat the software quality
measurement programmethat is put in place is practical and
comprehensive andthatit will have the support of both users and
systems developers.
 Figure 6.1 Action checklist

 Improving the development process
Step 1: \dentify software quality problem areas in the development process by
gaining a full understanding of the area of concern and identifying alllikely
causes of development problems, for subsequent analysis
Step 2: Analysethe likely causes of the problem that have beenidentified, using
carefully selected software quality measurements to discover where the major
problemslie.
Step 3: Make changesto the process that will solve the problems that have
been identified.
Step 4: Use software quality measurements again to check that the changes
introduced have had the effect that was intended andthat no otherside-effects
have occurred.
 Controlling a developmentproject
Step 1: Establish measures that can be obtained during the application
developmentprocessthatwill indicate the ‘health’ of the project.
Step 2: Develop organisational norms for application development measures
from

a

historical database of measures of previous projects.
Step 3: Collect measures from the application project being managed and
compare these measures with the normsestablished in Step 2 to identify
unusual measures.
Step 4: Use the characteristic pattern of unusual measures to identify the action
required to bring the application project back under control.
 Defining users’ quality requirements
Step 1: Understand andsetpriorities for users’ quality requirements from
surveys and from analysis of users’ requirements.
Step 2: Choose a comprehensive and usable set of quality measures, based on
the 11 RADC quality factors.
Step 3: Define a unique set of quality priorities for each application and choose
those quality factors that will enable the quality priorities to be met.
Predicting the final product quality
Step 1: Choose a combination of the three methods described in Chapter 4
(quality of conformance, quality of design, empirical measures) that best suits
the organisation’s circumstances and the users’ quality requirements.
Step 2: Develop the chosen approach and fine-tuneit to the organisation’s
development environment.
Step 3: Demonstrate the achievement of the correct quality with user-oriented
software quality measures.
 Measuring the quality of existing applications
Step 1: Establish measures of maintainability (design and code complexity,
numberof user changes, application failure rates, and so on).
Step 2: Measure the application portfolio and identify the ‘bad apples.’
Step 3: Take action to improve the ‘bad apples’ based on the problems
identified by the measurement results.

© Butler Cox ple 1990 AT

Chapter 6 Putting a software quality measurement programmein place

Quality assurance has becomean essential part of the software
development process, and quality measurement has, in turn,
becomea critical element of the organisation’s quality assurance
task. Without reliable measuresof the quality of the development
process and of the final product, specifying and producing
applications of the quality that users require, assessing the effects
of changes to the developmentprocess, and justifying the costs
of a software quality assurance programme will be virtually
impossible tasks for the systems development manager.

48

© Butler Cox pic 1990

© Butler Cox ple 1990

Bibliography

Books
Card, D N, and Glass, R L. Measuring software design quality.
London: Prentice-Hall, 1990.
Ehrenberg, ASC. A primer in data reduction: an introductory
statistics textbook. Chichester: John Wiley, 1986.
Grady, R B, and Caswell, D L. Software metrics: establishing a
company-wide program. London:. Prentice-Hall, 1987.
Ishikawa, K. What is total quality control? the Japanese way.
London: Prentice-Hall, 1985.
Vincent, J, Waters, A, and Sinclair, J. Software quality assurance:
volume 1: practice and implementation. London: Prentice-Hall,
1988.
Vincent, J, Waters, A, and Sinclair, J. Software quality assurance:
volume 2: a programguide. London: Prentice-Hall, 1988.
Standards
Standard dictionary of measures to produce reliable software.
IEEE 982.1. New York: Institute of Electrical and Electronics
Engineers, 1988.
Standardfor software quality metrics methodology. IEEE 1061.
New York: Institute of Electrical and Electronics Engineers, 1989.

49

Butler Cox
Butler Cox is an independent, international con-
sulting company specialising in areas relating to
information technology.
The company offers a unique blend of high-level
commercial perspective and in-depth technical
expertise: a capability which in recent years has
been put to the service of many of the world’s
largest and most successful organisations.
The services provided include:
Consulting for Users
Guiding and giving practical support to organisa-
tionstrying to exploit technology effectively andsensibly.
Consulting for Suppliers
Guiding suppliers towards market opportunities
and their exploitation.
The Butler Cox Foundation
Keeping major organisations abreast of develop-
ments and their implications.
Multiclient Studies
Surveying markets,their driving forces and poten-
tial development.
Education
Through the Cranfield IT Institute (CITI),educating systems specialists, IT managers, linemanagers, and professionals to understand morefully how to apply and use today’s technology.

PEP
The Butler Cox Productivity Enhancement Pro-gramme(PEP)is a participative service whose goalis to improve productivity in application systemsdevelopment.
It providespractical help to systems developmentmanagers andidentifies the specific problems thatprevent them from using their developmentresources effectively. At the same time, the pro-gramme keeps these managers abreast of thelatest thinking and experience of experts andpractitioners in the field.
The programmeconsists of individual guidance foreach subscriber in the form of a productivityassessment, and also publications and forummeetings commonto all subscribers.

©Butler Cox ple 1990

Productivity Assessment
Each subscribing organisation receives a confiden-tial managementassessmentofits systems develop-ment productivity. The assessment is based on acomparison of key development data fromselected subscriber projects against a large com-prehensive database.It is presentedin a detailedreport and subscribers are briefed at a meetingwith Butler Cox specialists.
Meetings
Each quarterly PEP forum meetingfocuseson theissues highlighted in the previous PEP Paper. Themeetings give participants the opportunity todiscuss the topic in detail and to exchange viewswith managers from other memberorganisations.
PEP Papers
Four PEP Papers are produced each year. Theyconcentrate on specific aspects of system develop-mentproductivity and offer practical advice basedon recent research and experience. Thetopicsareselected to reflect the concerns of the memberswhile maintaining a balance between management
and technical issues.
Previous PEP Papers
1 Managing User Involvement in Systems

Development
2 Computer-Aided Software Engineering (CASE)3 Planning and Managing Systems Development
4 Requirements Definition: The Key to System

Development Productivity
5 Managing Productivity in Systems Develop-

ment
6 Managing Contemporary System Development

Methods
7 Influence on Productivity of Staff Personality

and Team Working
8 Managing Software Maintenance
9 Quality Assurance in Systems Development
10 Making Effective Use of Modern Development

Tools
11 Organising the Systems Development Depart-

ment
12 Trends in Systems Development Among PEPMembers
13 Software Testing
14 Software Quality Measurement
Forthcoming PEP Papers
Selecting Application Packages
Project Estimating and Control

Butler Cox ple

Butler Cox House, 12 Bloomsbury Square,
London WC1A 2LL, England

® (071) 831 0101, Telex 8813717 BUTCOX G
Fax (071) 831 6250

Belgium and the Netherlands
Butler Cox Benelux bv
Prins Hendriklaan 52,

1075 BE Amsterdam, The Netherlands
@ (020) 755 111, Fax (020) 755 331

France
Butler Cox SARL

Tour Akzo, 164 Rue Ambroise Croizat,
93204 St Denis-Cédex 1, France@ (1) 48.20.61.64, Télécopieur (1) 48.20.72.58

Germany (FR), Austria, and Switzerland
Butler Cox GmbH

Richard-Wagner-Str. 13, 8000 Miinchen 2, West Germany@ (089) 5 23 40 01, Fax (089) 5 23 35 15
Australia and New Zealand

Mr J Cooper
Butler Cox Foundation

Level 10, 70 Pitt Street, Sydney, NSW 2000, Australia@ (02) 223 6922, Fax (02) 223 6997
Finland

TT-Innovation Oy
Meritullinkatu 33, SF-00170 Helsinki, Finland@ (90) 135 1533, Fax (90) 135 2985

Ireland
SD Consulting

72 Merrion Square, Dublin 2, Ireland
®@ (01) 766088/762501, Telex 31077 EI,

Fax (01) 767945
Italy

RSO Futura Srl
Via Leopardi 1, 20123 Milano, Italy
@ (02) 720 00 583, Fax (02) 806 800

Scandinavia
Butler Cox Foundation Scandinavia AB

Jungfrudansen 21, Box 4040, 171 04 Solna, Sweden
@ (08) 730 03 00, Fax (08) 730 15 67

Spain and Portugal
T Network SA

Nuihez Morgado 3-6°b, 28036 Madrid, Spain
@ (91) 733 9866, Fax (91) 733 9910

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55

