

© Butler Cox plc 1990

Martin Langham

Software Quality Measurement

PEP Paper 14, May 1990
by Martin Langham

Martin Langham is a senior consultant with Butler Cox in London,
where he coordinates the company’s systems management
consulting activities. He has broad experience in the planning,
management, and implementation of technically advanced com-
puting applications, with a particular emphasis on database
management, distributed computing, and data communications.

During his time with Butler Cox, he has carried out numerous
consuliing assignments. Recent projects in which he has been
involved include formulation of an information systems strategy
for an electricity supply utility, assessment of the management
aspects of aninsurance company’s data communications network,
and preparation of recommendations for an international chemical
company on the changes required to improve and standardise its
European development activities. He has also been extensively
involved in productivity assessments for PEP members, and is the
principal author of the Butler Cox Foundation Report Managing the
FEuvolution of Corporate Databases.

Prior to joining Butler Cox, he spent 10 years with BIS ASL, where
he managed consulting business in the area of distributed systems.
Earlier, he worked as a consultant with both ICL and Unisys,
supporting major customers in both the public and private sectors.

Martin Langham has a BSc in physics from Bristol University and
is a member of the British Computer Society. He is a frequent
speaker at conferences and has published widely in the trade press.

Published by Butler Cox ple
Butler Cox House
12 Bloomsbury Square
London WC1A 2LL
England

Copyright © Butler Cox ple 1990

All rights reserved. No part of this publication may be reproduced by any method
without the prior consent of Butler Cox.

Printed in Great Britain by Flexiprint Ltd., Lancing, Sussex.

@© Butler Cox plc 1930

Software Quality Measurement

PEP Paper 14, May 1990

by Martin Langham
Contents
Getting the best from software quality measurement 1
There is some resistance to software quality measurement 1
Existing software quality measurement programmes are often
limited in scope 3
Structure of the paper 5
Research sources 7
Using measurements to improve the development process
and control individual projects 8
Use measurements to improve the development process 8
Use measurements to control individual projects 12
Defining users’ quality requirements in measurable terms 16
Understand users’ quality requirements 16
Compile an appropriate set of measures 17
Set quality priorities for applications development 24
Using measurements to predict the quality of the final
application 27
Set and measure quality conformance targets 27
Set and measure quality design targets 30
Measure quality using validated empirical relationships 32
Recognise the limitations of each approach 37
Measuring the quality of existing applications 38
Create a user-oriented set of measures 38
Store the information in an easily accessible form 39
Identify where the quality of existing applications could
be improved 44
Putting a software quality measurement programme
in place 47
Bibliography 49

Chapter 1

Getting the best from software quality

Software quality measurement
provides essential management
information to the systems
department

Much of the published material is
too academic to be suitable for
comimercial use

© Butler Cox plc 1990

measurement

Many systems departments have initiated software quality-
assurance programmes to increase the effectiveness of appli-
cations development. The majority of systems departments find,
however, that it is very difficult to direct such programmes and
to justify their cost when there is no quantitative evidence of their
benefits. The missing component of many software quality-
assurance programmes is software quality measurement.

Software quality measurement enables the qualities of appli-
cations, such as reliability, ease of use, maintainability, and so
on, to be quantified in useful and consistent terms. Properly
implemented, a measurement programme will help the systems
department to specify and produce applications of the quality that
users require, to identify where improvements might be made to
the development process, and to justify the costs of a software
quality-assurance programme. In effect, software quality
measurement provides essential management information to the
systems department.

In practice, however, software quality measurement has met with
mixed success. In many systems departments, there is
considerable resistance to the concept, generally based on
misunderstandings about its purpose, its cost, and the level of
effort required to introduce it. In others, where quality
measurement programmes have been implemented, only limited
benefits have been gained, because the scope of the programmes
has been too narrow. While there is a wealth of material available
on the subject of software quality measurement, much of it is of
a very academic nature, not well suited to the commercial
environment, and much of it is applicable only to particular
aspects of applications development. What is required is a
practical, consistent, and comprehensive approach to measuring
software quality that will ensure that both users and developers
are satisfied with the applications that are delivered..

THERE IS SOME RESISTANCE TO SOFTWARE
QUALITY MEASUREMENT

While interest in the subject of software quality measurement is
growing, many systems departments are still developing
applications whose quality is never measured. They offer various
reasons for their reluctance to institute measurement
programmes, the most common of which, as shown in Figure 1.1
overleaf, is a lack of knowledge about how to measure quality.
Most of the others are based on misconceptions about the role of
quality measurement in the applications development process, and
about the burden that such programmes might place on the
department in terms of cost and effort.

Chapter 1 Getting the best from software quality measurement

Figure 1.1 The most common reason for not measuring software quality
is a lack of understanding of how to do it

Reasons Percentage of organisations

T T ==

10 20 30 40

Do not understand how to
measure guality

Doubt value of measurement

Believe that measurement
takes too much time/effort

Have no guality problems

Believe it is too early to intro-
duce quality measurement

(Source: Telephone survey of PEP members)

THE OBJECTIVES OF QUALITY MEASUREMENT
ARE NOT CLEARLY UNDERSTOOD

Some systems departments believe that software quality measure-
ment is unnecessary because they do not have serious quality
problems. This view is based on a misunderstanding of the role
of software quality assurance, which is to produce software with
appropriate quality characteristics, not to produce the best quality
at any cost. Only with a carefully controlled measurement
programme in place can the systems department be confident that
it is achieving the levels of quality that the business requires, and
can afford.

Many systems staff are apprehensive about the motives of
introducing a software quality measurement programme.
Development managers must therefore make it very clear to
everyone in the systems department and in the user departments
that the objectives of the programme derive from business
objectives, and are not aimed at measuring the performance of
individuals. This means that quality will be assessed at the project
level, not at the level of the individual developer. Individual
developers will not, however, be unaffected by the introduction
of software quality measurement; for a programme to work well,
many of their attitudes and procedures will have to change. Their
support and commitment is essential and they must therefore fully
appreciate the real objectives of a measurement programme and
trust that the results will be used constructively.

THERE ARE CONCERNS ABOUT THE EXTRA BURDEN
ON THE SYSTEMS DEPARTMENT

Some development managers are sceptical about the value of a
software quality measurement programme, arguing that it cannot
produce useful results at a reasonable cost. Experience shows,
however, that this is not the case.

The role of software quality
assurance is misunderstood

Many systems staff are appre-
hensive about the motives

for introducing software
quality measurement

© Butler Cox pic 19390

Chapter 1

Software quality measurement
can lead to significant cost
savings

It is important to start collecting
measurement data as soon as
possible

At present, by far the greatest
emphasis is given to measuring
qualities that are of little
interest to users

© Butler Cox ple 1990

Getting the best from software quality measurement

Gerald E Murine, the founder of METRIQS, the first specialist
software quality measurement company, claims that organisations
that use his company’s services have achieved considerable cost
savings. In an article published in the November 1988 edition of
Quality Progress, he quotes the results of the comparative analysis
of data collected over a nine-year period on a project whose
software quality was measured and similar projects whose quality
was not measured. The total cost of the project, including the cost
of measuring software quality throughout the development
project, was reduced by 35 per cent. Most of the savings resulted
from reductions in coding and module-testing effort. There were
also considerable improvements in the quality of the software.
Evidence from PEP assessments confirms that the more ‘hard’
evidence developers have about the development process and the
projects in which they are involved, the better able they are to
control their work.

A few PEP members believe that it is too early for them to
introduce quality measurement. It is important, however, to start
collecting measurement data as soon as possible so that systems
managers have a basis on which to plan future developments.
Waiting until the development environment is stable is not
justified; if software quality measurement is to be of value in the
long term, it must be implemented in such a way that it is still
useful in a changing environment. Collecting the data required
to measure software quality properly is not too onerous a task
— useful benefits can be gained by spending the equivalent of
1 or 2 per cent of development effort on gathering measurement
data. In many systems departments, much of the data will already
be available in a machine-readable form from systems used to
manage development resources, change requests, and the
correction of software faults.

EXISTING SOFTWARE QUALITY MEASUREMENT
PROGRAMMES ARE OFTEN LIMITED IN SCOPE

Our survey of PEP members showed that nearly 40 per cent
already measure the quality of the software they produce, and
that a further 60 per cent either definitely intend to adopt a
software quality measurement programme, or will probably do
so (see Figure 1.2, overleaf). However, many of those who do
measure software quality measure only a few characteristics of
the software that they produce and support. Most of the measures
serve to assess technical qualities, such as reliability and
maintainability, rather than user-perceived qualities, such as ease
of use and flexibility. Figure 1.3, on page 5, shows the results of
a survey of the most commonly used software quality
measurements. By far the greatest emphasis is given to measuring
qualities that are of little interest to users. This is consistent with
the results of our own survey of PEP members’ objectives in
introducing software quality measurement, shown on page 6, in
Figure 1.4. Top priority goes to improving the development
process; improving user satisfaction ranks only third.

We do not believe that this is due to a lack of interest in achieving
this objective, but to a lack of communication between developers
and users about software quality requirements. This, in turn,
arises from the fact that software quality characteristics are rarely

Chapter 1 Getting the best from software quality measurement

Figure 1.2 Many PEP members are beginning to measure software
quality

Do not intend to introduce

; a quality measurement
Will probably introduce prggran}nfme

a quality measurement
programme

Have a quality

Intend to 38% measurement
introduce a programme
quality

measurement

programme

(Source: Survey of PEP members)

defined in meaningful and measurable terms. Software quality
will remain an abstract concept to users unless they can specify
their quality requirements in measurable units, and developers
can deliver applications that demonstrably meet those
requirements.

The problem for developers is compounded by the fact that there
are several types of users whose expectations of quality have to
be met. These include the application users and their managers,
systems development managers, maintenance and technical sup-
port staff, and computer operations staff. As Figure 1.5 on
page 7 shows, each group of users is interested in different outputs
from the systems development process. Each of these groups has
its own perceptions of the characteristics of a high-quality system,
and in some cases, they will have conflicting requirements.

Satisfying the quality demands of all the various parties will
require a much broader perspective to be taken of the measure-
ment process than has hitherto been common. As Figure 1.4
shows, most PEP members who had introduced quality
measurement programmes had done so in order to improve the
development process. It is this aspect of quality that is of greatest
interest to systems development managers and it is in this area
that techniques and methods for measuring software quality are
most widely available. Other types of users, however, are more
concerned with the quality of the final application, with pre-
dictions of the quality of the final application while it is being
developed, or with the quality of existing applications. Only very
limited techniques are available for measuring these aspects of
software quality. As Figure 1.6 on page 7 shows, a quality
Imeasurement programme must cover all these aspects if it is to
serve its true purpose.

There are several types of users
whose expectations of quality

have to be met

The measurement process must
be seen in a much broader

perspective

© Butler Cox pic 1990

Chapter 1 Getting the best from software quality measurement

There are no well defined tech-
niques to help manage the

© Butler Cox plc 1990

quality of the final
application

Figure 1.3 Most software quality measurements are of little interest to
users

Measurements collected Percentage of replies

T T T T T T T

OS2 R 5N BREE B

Q) =i 42
Number of operational
problems

Number of incidents

Enhancement effort

Machine costs in
production

Number of changes
actioned

Lines of code

Number of transactions
processed

Number of service
levels missed

Number of service
levels met

Number of agreed
service levels

Number of programs
changed

(Source: Special interest group on software mefrics of the Quality Assurance
Forum, Meeting no. 3)

STRUCTURE OF THE PAPER

One of the major problems in applications development is that
trouble spots are frequently not identified until after they have
jeopardised the success of an entire project. Software quality
measurements provide the development manager with valuable
information that should help him to pinpoint the stages in the
development process where problems are occurring, and to
evaluate accurately the effects of any changes that are
subsequently made to the process. In Chapter 2, we describe the
role that software quality measurement can play in helping to
improve the development process and to control individual
projects.

The techniques that are used to improve the development process
and to control individual developments are quite simple, and can
be easily adapted to the particular circumstances of individual
systems departments. No similarly well developed techniques exist
to help manage the quality of the final application as it is delivered
to the users. At present, it is often difficult to know, at the
development stage, whether the quality of the final application

Chapter 1 Getting the best from software quality measurement

Figure 1.4 PEP members have a wide range of objectives for introducing
software quality measurement

Objectives Percentage of respondents

10 20 30 40 50 60 70 80 90

Improve the develop-
ment process

Improve applications
reliability

Improve user satisfaction

Contral the develop-
ment process

Gain the benefits of
new toolsftechniques

Improve planning

Justify costs/timescales

Improve requirement
specifications '

Support user service-
level agreements

Other

(Source: Survey of PEP members)

will be acceptable to users. Emerging techniques of software
quality measurement will enable systems managers to take a more
rigorous approach to defining users’ quality requirements in
measurable terms, and we suggest how they should begin to build
on these in Chapter 3.

Ensuring that users’ quality expectations are met is a difficult task,
however, because the final application is not available for
measurement until the end of the project, and it is then too late
to correct any quality defects. Project managers therefore need
some means of predicting whether they will achieve the agreed
quality requirements of the users, This aspect of software quality
measurement is the subject of Chapter 4. It is concerned with ways
in which project managers can monitor the progress of an
application by measuring the quality of the interim products of
the development process and taking action to modify those
products where the software quality measurements indicate that
the final quality is likely to be unsatisfactory.

In most organisations, the development of new systems accounts
for only about half of the systems department’s time and effort.
Software maintenance is an equally large consumer of resources,
and in Chapter 5, we describe the major contribution that soft-
ware quality measurement can make to improving the quality of

6 © Butler Cox plc 1990

Chapter 1 Getting the best from software quality measurement

Figure 1.5 Different groups of users are interested in different outputs from the systems development process

requirements —————
process & system system
System User guide to .

Qutputs from User System . ; Operational
the process requirements design !mpl?(g?jrétfmon theg?,gg%mer system

/ \ / v i L/ L
Main users of Development Maintenance oo Operations
the outputs management staff staff

Figure 1.6 A software quality measurement programme should cover all the aspecis of applications development,
from the process itself to the final product

Changes to the Changes to l\g?fgfé?
deve1op21em process the ptdua que}lity
Software product in development :>l Product in testing/operation
Measure Predict product
Control produc
quality progEss quality

existing applications by indicating where it might be possible to
reduce their complexity, and hence, the cost and effort involved
in maintaining them.

RESEARCH SOURCES

Our research began with a review of the published literature on
the subject of software quality measurement. We also met prac-
titioners in the field — academics, suppliers of software quality
measurement tools, quality-assurance specialists, and systems
development managers in commercial organisations. We should
like to offer our particular thanks to Peter Mellor of the Centre
for Software Reliability, Barbara Kitchenham of the NCC, and
Hugh Browton and his team, of STC Technology Limited (STL).

We also conducted telephone interviews with 20 PEP members
and sent out a questionnaire both to PEP members and to other
commercial systems departments. Where appropriate, the results
of these surveys have been included in this report.

® Butler Cox ple 1990 T

Chapter 2

Using measurements to improve the development
process and control individual projects

Most PEP members believe that the main objective of a software
quality measurement programme is to improve the development
process. We use the term ‘development process’ to describe the
methods, techniques, tools, and organisational practices used for
developing and maintaining application systems. Systems
departments often plan to make changes to the development
process — adopting the latest CASE tools or a new application
generator, for example — but have no means of establishing what
effects these changes will have on the quality of their applications.
In this chapter, we describe how measurements can be used to
manage the systems development process, either to improve the
process itself, or to provide better control over development
projects as they move through the stages of the process.

USE MEASUREMENTS TO IMPROVE
THE DEVELOPMENT PROCESS

Quite rightly, systems departments often choose first to use a
measurement programme to improve specific parts of the
development process. Starting in this way means that the data-
collection task can be kept to a minimum and that any benefits
resulting from the measurement programme will apply to all
subsequent development and maintenance projects. Software
quality measurements can be used both to identify areas in the
process where problems are occurring, and to assess the effects
of changes to the process.

IDENTIFYING PROBLEMS IN THE DEVELOPMENT PROCESS

In many systems departments, the process of developing
applications is a mysterious art. Prescribed techniques are
followed without question, and there is no way of quantifying
either the positive contribution or the adverse effects of particular
techniques to the quality of the application. Indeed, our consulting
experience shows that it is quite possible for a systems department
to be unaware of serious flaws in its development process, even
though these flaws may well prevent it from achieving the quality
and productivity objectives that it has set. This problem can be
tackled in two stages: identifying the possible causes of a quality
problem, and then applying the measures to identify the root
cause,

Identify the possible causes of a lack of quality

The first stage is to obtain a full understanding of the area that
is causing concern so that possible causes of the problem are
identified for subsequent assessment. The best tool for this
task is an Ishikawa or ‘fishbone’ diagram, an example of which
is shown in Figure 2.1. This type of diagram was invented
by Dr Kaoru Ishikawa in 1952 to control processes in the Kawasaki
iron works in Japan. (Dr Ishikawa is now recognised as Japan’s

The most guoted objective of
software quality measure-
ment is to improve the
development process

Many systems departments are
unaware of serious flaws in
their development process

Ishikawa or ‘fishbone’ diagrams
can help to identify the causes
of quality problems

© Butier Cox plc 1990

Chapter 2 Using measurements to improve the development process
and control individual projects

Figure 2.1 An Ishikawa or ‘fishbone’ diagram can help to identify the possible causes of a quality problem

The ‘head’ of the fish is the effect that is being investigated. The large ‘fishbones' are the possible major causes of
that effect, and the small ‘fishbones' are the possible sub-causes.

External Poor
influences methods

Many user changes Poor testing of releases

Excessive time pressure

Poor development methods S s
Applications

are unreliable

Use of low-level language Untrained users

Lack of

fast torla Unskilled developers

Poor tools People problems

leading authority on quality control.) The Ishikawa diagram has
since been widely adopted throughout the world as an aid to
solving quality problems.

The head of the ‘fish’ is the effect that is being studied (unreliable
applications, in our example). The large ‘fishbones’ are the
possible major types of causes of that effect — for example, poor
tools or methods, people problems, or external influences. The
small ‘fishbones’ are, in turn, the possible sub-causes, and so on.
The objective is to identify the truly important causes, and
fishbone diagrams are therefore often used in brainstorming
sessions where possible causes of poor quality are discussed and
analysed, and subsequently explored further using measures of
software quality. The possible causes to be explored might, for
instance, be that:

— Faults are introduced disproportionately in one stage of the
development process.

— Most of the faults are of one type.

— Changes requested by users during development cause many
of the faults.

Use measurement data to identify the root cause

Measurement data can help The second stage is to use measurement data to identify which
to identify which of the of the possible causes of the problem is the real culprit. Each cause
possible causes is the to be investigated will need a carefully designed ‘experiment’ to

real culprit collect data and analyse it. Two points are very important in

ensuring that the investigation produces a result that management
can rely on:

_ Sufficient data should be collected and analysed to produce
statistically significant results. A description of ‘statistical
significance’ is beyond the scope of this paper. A useful primer
on statistical analysis is listed in the bibliography.

— The conditions under which the data is collected should not
change.

© Butler Cox plc 1990 9

Chapter 2 Using measurements to improve the development process
and control individual projects

These two conditions imply the need for a stable development
process in which each change is carefully considered. Progres_s
is gradual but sure. This approach to process improvement is
typical of the Japanese approach to quality management.

Measures of defect densities can often be used to identify the root

causes of development problems. Defect densities measure the Defect densities are a useful way
number of errors per unit of work produced. At the requirements- of identifying the root causes
definition and system-design stages, for example, defect density of development problems

can be expressed as errors per page of text or per function point.
At later stages in the development cycle, defect density can be
measured as errors per thousand lines of code.

To make the best use of defect density measures, organisations
need to apply clear and consistent definitions of the measurement
units, so that any developer can capture consistent data that can
be compared. Questions to be considered include whether to count
multiple occurrences of the same error separately, how to define
a page of text, and so forth.

If common definitions of defect densities are established,
organisations can compare the quality of their development work
with that of other organisations to identify the areas of their
development process that produce an above-average number of
errors. Such industry comparisons are frequently used in PEP
assessments to provide insights into the strengths and weaknesses
of a PEP member’s development process.

Figure 2.2 is a diagram that was used to analyse the development
stages at which errors originated and were identified in one
development project. About half of the errors originating at the
functional-design stage did not, for example, come to light until
the testing stage. This type of analysis can be used to identify
where inspections and walkthroughs are (and are not) an effective
means of improving quality.

ASSESSING THE EFFECTS OF CHANGES TO
THE DEVELOPMENT PROCESS

Once the root cause of a quality problem has been identified, the
systems department will make changes to the development
process in an attempt to resolve the problem. Quality measure-
ment data can be used to assess whether the change has the

intended effect. A paper published in the September 1988 edition ﬁﬁeaﬁi?;;ﬁjﬂf;ffﬁes 0
of Quality Assurance explains how the IBM CICS support team had the desired effect

at IBM United Kingdom Laboratories, Hursley Park, did just this.

IBM used quality measurements

IBM recognised the need to set levels for software reliability and
defects such that customers would perceive the software as being
of high quality. The company also recognised the need to define
formally the development processes that would enable these
objectives to be achieved. Analysis of the root causes of the
defects showed that the majority of problems resulted from
inadequate design. As a consequence, three changes were made
to the development process:

— Extensive use was made of a high-level language (PLAS) for
writing new code.

— A formal specification and design language (Z notation) was
introduced.

© Butler Cox plc 1990

Chapter 2 Using measurements to improve the development process
and control individual projects

Figure 2.2 Software measurements can be used to analyse the
development stages at which errors originate and
are identified

A
w Number
of errors

| BN

Requirements Functional Coding Testing
definition design

Stages at which errors originated

Errors identified at the testing stage
Errors identified at the coding stage
Errors identified at the functional-design stage

B Errors identified at the requirements-definition stage

— Greater management attention was given to ensuring that
development methods were complied with, and to monitoring
and controlling changes to existing code.

This revised process was used for some of the development work
for release B of CICS.

Three different development techniques were used — traditional
techniques using English-language design to change old Assembler
code, software-engineering techniques using English-language
design and PLAS code, and software-engineering techniques using
Z design and PLAS code. Figure 2.3, overleaf, shows one of a series
of analyses that IBM made to identify the effects of using these
three techniques. For each technique, it shows the number of
defects removed per thousand new or changed source instructions
at each of six life-cycle stages (product-level design, component-
level design, module-level design, unit testing, functional
verification testing, and product/system verification testing). With
the combined Z design and PLAS technique, fewer defects are
introduced, and they are removed in a far more uniform way
throughout the development process. In addition, fewer defects
are discovered at the testing stages, imiplying that a more reliable
product will be released.

© Butler Cox ple 1990 11

Chapter 2 Using measurements to improve the development process

and control individual projects

Figure 2.3 Software measures can be used to compare the effects of
different development techniques on the stages at which
defects are removed

The figure compares the number of problems removed at each.develop-
meem gtage, fcxprh{ee different development techniques used by IBM's CICS
support team. With one of the techniques (Z design and PLAS), fewer
defects are introduced, and they are removed more uniformly throughout the
development process.

A
Problems removed per
thousand new or
changed source
instructions
25 |
. Assembler
4y
20 A \\
! \
f \
/ \
15 F /, \\
~
’/ ,’/ -.\\:\
10 5 e *‘\\
7 s v T~~___ PLAS only
Y S
b ~,
5 I o, g
0 1

1 I I
PLD CLD MLD uTt FVT P/SVT

Development stage

PLD Product-level design

CLD Component-level design

MLD Module-level design

uTt Unit testing

FVT Functional verification testing
P/SVT Product/system verification testing

(Source: Quality Assurance, vol. 14, no. 3, September 1988)

USE MEASUREMENTS TO CONTROL
INDIVIDUAL PROJECTS

The conventional approach of relying solely on a development
method to control a project has three main disadvantages — it is
difficult and expensive to assess the extent to which the method
is being applied, the highly prescriptive nature of many
development methods inhibits developers’ initiative and can be
demotivating, and the risks of project failure are high unless
methods and applications are very carefully matched. Using
software quality measurement in conjunction with a development
method is a more objective way of assessing the progress of a
project because it can identify problems that occur during the
development of an application, and indicate where corrective
action should be taken.

IDENTIFYING PROBLEMS IN THE DEVELOPMENT PROJECT

In essence, a development method is concerned with the quality
of the inputs to the development process, not the quality of the
outputs. Software quality measurements assess the outputs from
the development process, so that potential quality problems can
be identified and corrected before the application is delivered,

Relying solely on a development
method to control a project

has disadvantages

Software quality measurements
complement the develop-

ment approach

© Butler Cox pic 1990

Chapter 2 Using measurements to improve the development process
and control individual projects

and they thus complement the development method. Two
techniques can be used:

— Comparing measurements made at specific points in the
development process with predefined limits.

— Using measurements to identify the few components of the
application that cause most of the problems.

Both of these techniques are based on the expectation that the
measurements made during a project that results in a good-quality
final application will follow a typical pattern, and that project
difficulties will be revealed by unusual measures.

Compare actual measurements with predefined limits

The first method of using software measurement to monitor a
development project is to set predefined limits during project
At suitable checkpoints, actual planning. At each suitable checkpoint, say at the end of each
measures can be compared stage, the actual measures are compared with the predefined
with predefined limits limits. Those that fall outside the limits are subjected to further
analysis to identify the causes, and corrective action can then be

taken.

It is important to set reliable and useful limits based on the norms
for other projects. PEP members can use the data collected from
their PEP assessments. For example, the proportion of effort
normally used at each stage of a project of a particular size can
be used to set staff-resource limits for each stage. A project that
exceeds the limit for, say, the design stage, can be expected to
overrun at the implementation stage as well. Other suitable limits
that might be set are:

— Test runs per thousand lines of source code.

— Computer time per thousand lines of source code produced
and tested.

— The ratio of the size of the design document to the size of
the requirements specification (in pages).

These measurements can be made only at the end of a stage or
after completion of a module.

Some software quality measures Some software measurements can be monitored continuously,
can be monitored continuously however, and without too much extra effort:

— The rate at which requests for changes are made and the rate
at which they are implemented. Plotted over time, these
measures should produce convergent lines. Divergence
indicates possible problems.

— The trend in incident reports during system testing. (Sample
plots were shown in PEP Paper 13, Software Testing.) This
graph should indicate a uniform trend that declines towards
the end of system testing. If the trend does not decline,
problems are likely to occur.

— The stability of the requirements and the design, monitored
by counting the number of design changes and measuring the
number and size of modules developed that were not
originally planned. High and rising levels of change indicate
problems.

® Butler Cox plc 1990 13

Chapter 2 Using measurements to improve the development process

and control individual projects

In PEP Paper 13, we described how past experience can belused
to set predefined limits for the number of errors that can typically
be expected at the system-testing stage. Testing progress can then
be continuously monitored against this limit. This type of measure
and those described above can be used to make frequent
assessments of the ‘health’ of a project.

Identify the few components that cause

most of the problems

It is often the case that most of the quality problems of an
application are caused by a small number of the software
components. The ability to identify, at the development stage,
those components that are most likely to cause the quality
problems will make it possible for corrective action to be taken
before the application is delivered. Over time, it is possible to build
up a profile of the types of software modules that are likely to
cause quality problems. Two useful measures to start with are:

— The ratio of actual module sizes to their expected sizes. High
ratios may indicate modules that are too big to be developed
and tested efficiently.

— The amount of computer and staff resources used to produce
and test a module. A high level of resources in relation to
the module’s size will indicate that there are problems in
developing it.

USING THE MEASUREMENTS TO INDICATE WHERE
CORRECTIVE ACTION SHOULD BE TAKEN

The techniques described above can be used to pinpoint the stage
of the development process or the software module in which a
quality problem originates. Further analysis will be needed to
establish the root cause of the problem because, in practice, there
could be several possible reasons for it. Suppose, for example, that
the computer time used for running tests is plotted over time, and
is found to fall outside the predefined limits at the end of the
system-build stage. Higher-than-normal run times could be due
to the early commencement of system and integration testing, the
development of code with a higher-than-usual number of errors,
or the testing of processor-bound algorithms. Likewise, lower-
than-normal run times could be caused by uncompleted unit
testing or by the discovery of easy-to-detect errors.

Research into using project-monitoring techniques to identify
quality problems has been carried out in an ESPRIT project
(REQUEST) led by STL (a sister company of ICL). This research
has produced a system that is able both to identify the cause of
an applications development problem and to provide relevant
advice on how to correct it. The system has been produced as part
of an automated quality-management system that will help a
quality or project manager throughout the life of a software
project. The quality-management system provides:

— A project-planning and initiation subsystem to help create
quality plans, to specify measurable quality targets and
required measures, and to predict final product quality.

— A project-monitoring subsystem that uses quality measure-
ment data to advise on project status in quality terms, as
described above.

14

Over time, it is possible to build
up a profile of the types of
software modules that

are likely to cause

quality problems

Further analysis will be needed
to establish the root cause
of the problem

STL’s ESPRIT research has pro-
duced a system that can
identify the causes of a
development problem

and advise on how

to correct it

© Butler Cox plc 1990

Chapter 2 Using measurements to improve the development process

Software quality measurement
is likely to play an increas-
ingly important role in

© Butler Cox plc 1990

controlling applica-
tions quality

and control individual projects

— A project-assessment subsystem that reports on the final
product quality achieved and on expected maintenance and
support costs implied by the level of guality achieved.

The prototype of this system runs under Unix and parts of it have
been demonstrated to the author. The project-monitoring
subsystem has been used successfully on several STC software
development projects. We expect that this type of system will
become commercially available by 1992/93.

In this chapter, we have described how software quality measure-
ment can be used to improve the development process and to
control individual development projects. The techniques are
simple, well understood, and easily adaptable to the particular
circumstances of individual systems departments. Unfortunately,
no similarly well developed measurement techniques are currently
available to help manage the quality of the final application as
it is delivered to the users. In the future, software measurement
is likely to play an increasingly important role in controlling
applications quality, just as the measurement of elapsed time and
resources is used today to monitor and control project duration
and effort. [t is therefore important that systems managers begin
to build on the emerging techniques that are available. In the next
chapter, we offer guidelines on how they should do this, to ensure
that they deliver applications that meet their users’ quality
expectations.

15

Chapter 3

Defining users’ quality requirements in

measurable terms

In this chapter, we show how software quality measurements can
be used to help manage final applications quality so that users’
expectations are met. There are three stages in managing the
quality of the final application: understanding the users’ quality
requirements, identifying an appropriate set of measures, and
setting quality priorities for applications development in terms of
those measures.

UNDERSTAND USERS’ QUALITY REQUIREMENTS

Systems departments often state that they could produce better-
quality applications if their users gave them more time. On the
other hand, users often do not understand why so much
development effort is spent on work that does not appear to be
directly related to their requirements. The result is that neither
users nor developers are satisfied with the quality of the delivered
applications.

We believe that this problem arises because it is difficult for
developers and users to communicate with each other about the
quality requirements of applications software. In turn, this
difficulty stems from the fact that software quality characteristics
are not usually defined in useful and measurable terms.
Applications software quality will remain an abstract concept to
users unless they can specify their quality requirements in
measurable units, and developers can deliver applications that
demonstrably meet those requirements.

The first stage in managing the quality of an application as it is
delivered to the users is therefore to understand the quality
requirements of its users. The classic definition of quality is
‘fitness for purpose’ and this means that different types of
applications, and applications used by different types of users,
will have different quality ‘profiles’. Producing applications with
an inappropriate quality profile wastes resources and does little
to satisfy users.

There are several obstacles to be overcome before the systems
department can be certain that it has identified the important
criteria by which users will judge the quality of an application.
In particular, users often cannot express their quality require-
ments in terms meaningful to development staff. The systems
department must therefore define quality characteristics in terms
that enable users to understand both how the characteristics are
measured and what the implications of poor and high quality are.
Another problem arises from the fact that there are often conflicts
between the quality requirements of different groups of users.
As we emphasised in Chapter 1, the systems department must be

able to reconcile the often conflicting quality needs of the various
groups.

16

Software quality characteristics
are not usually defined in use-
ful and measurable terms

The first stage is to understand
the quality requirements

of users

© Butler Cox plc 1990

Chapter 3 Defining users’ quality requirements in measurable terms

Users find it easier to specify
quality requirements with
reference to applications
they use than to abstract
specifications

Quality measures must be
derived from the business
objectives of the software
guality measurement
programme

© Butler Cox plc 1990

The best way to understand and establish users’ quality require-
ments is to conduct a survey of users’ perceptions of the quality
needs for future developments. Such a survey should relate their
future needs to their experience with existing applications. Users
find it much easier to specify their quality requirements with
reference to applications that they use regularly, than to abstract
specifications of systems.

Figure 3.1 shows the results of a typical user-satisfaction survey,
used by Butler Cox in its consulting work. Users are asked to rate
eight qualities of an application on a scale from one (poor) to seven
(excellent). The solid black line shows the average quality
assessments for all the applications surveyed and the other two
lines show the quality assessments for two particular applications.
Such a survey can be used to identify the quality factors that are
rated lowest, and to which attention should be directed for new
applications. In the example shown, the ‘average’ line indicates
that users were generally least satisfied with the ease of use of
the system and its associated aspects — user documentation,
training, and support. A section of the questionnaire that was used
to produce these results is shown in Figure 3.2, overleaf.

COMPILE AN APPROPRIATE SET OF MEASURES

The set of measures that will be used for assessing the quality of
an application should be derived from the business objectives of
the software quality measurement programme. Unless the
programme has a business purpose that is clearly expressed and
agreed, it will not produce significant and long-term benefits. The
objectives should apply to all applications that are being developed

Figure 3.1 User surveys can be used to identify quality factors that
need to be improved

b
1 Quality rating
Excellent 7

Average

————— Application 1

Application 2

17

Chapter 3 Defining users’ quality requirements in measurable terms

Figure 3.2 User survey questionnaires serve as the basis for identifying
where quality needs to be improved

What is your opinion of the existing systems applications that you use?

The attached list contains the most important systems applications. Please select
from that list up to three applications that are the most important for you and
that you use frequently. Please answer the following questions for each of the
applications selected by entering a score between 1 and 7 into the three
columns of boxes (leave boxes blank which do not apply to you).

insufficient poor good excellent

1 2 3 4 5 6 .
completely not very important essential
irrelevant important

First Second Third
application application application

3.1 Two-digit code for the application
(see attached list)

3.2 How important is this application
far your waork?

3.3 How satisfied are you with this
application?

3.4 How do you assess this application
concerning:

— Completeness of results?
— Correctness of results?
— Timeliness of results?

— Clarity of results?

— Ease of use?

— User manual?

— Training facilities?

0JO00000oo oo
Joooooog ook
O0o0Oooooo oof

— Support available from systems
staff?

and supported by the department — most users have access to
several applications and will require consistent quality across all
of them.

The quality measurement objectives may be taken from the
information systems plan or separately agreed with the users and
systems managers. Each of the objectives should then be broken
down into subsidiary objectives until the lowest level defines
characteristics that can be directly measured. Figure 3.3 illustrates
this process. Thus, the objective of improving applications
reliability may be broken down in two objectives: to reduce the
number of defects found in new applications, and to improve the
mean time between failures of an application. Both of these
characteristics can be directly measured.

It is also important to ensure that the set of measures describes
all of the characteristics that the systems department wishes to
measure, and that there is the minimum of overlap and interaction
between them. It therefore needs to select a set of software
quality measures that are both generally applicable and
comprehensive. The NCC publication, Measuring Software
Quality, by Richard Watts, provides useful guidelines for selecting
such a set of measures, under six headings:

18

Quality measurement objectives
should be broken down into
subsidiary objectives until

they define characteristics

that can be directly

measured

© Butler Cox plc 1990

Chapter 3 Defining users’ quality requirements in measurable terms

Figure 3.3 Sofiware quality objectives should derive from business objectives and be broken down to a level
where they can be directly measured

Business
objectives
Improve Reduce Improve
customer maintenance applications
service effort reliability

Reduce changes) Improve Improve mainte- |dentify Improve main- | | Reduce defects | [Improve mean
after functional maintenance nance resource bad tainability of new|| found in new time between
design stage timeliness planning programs applications applications failures

Standardisation and comparability: Ideally, measures of soft-
ware quality should enable applications quality to be compared
on a standard scale. However, it is not possible to compare some
quality measurements between applications or between different
organisations, and nor are comparisons with other organisations
always essential; valuable information can be gained from
identifying trends and extreme variances in the measures.

Before the quality measures for different applications can be

Measures need to be ‘normalised’ compared, the effects that the different application charac-
before they can be compared teristics, such as size and frequency of use, have on the quality
measure have to be compensated for. In other words, the

measures have to be ‘normalised’ before they can be compared.

Objectivity: Quality measures should be as objective as possible
so that the value does not depend on the tester’s judgement during
measurement, analysis, or evaluation. Measures made by
subjective assessments (ease of use, for example) may still be
reliable indicators of quality, but the results need to be assessed
carefully before any conclusions are drawn.

Reliability: The measures should be reliable, which means that,
given similar circumstances, the measurement process should
produce the same result each time it is carried out.

Validity: The measures should produce a valid assessment of an
application’s qualities. There are three ways in which a measure
can assess software quality:

— The relationship between the measure and the quality factor
can be direct — as for reliability.

— The relationship can depend on an understanding of the way
in which quality affects the characteristic being measured —
as in using maintenance effort to assess ease of maintenance.

— The relationship may depend upon empirical validation of a
relationship, such as that between design complexity and
software reliability.

Economy: Quality measures should be cost effective, so that the
benefit gained from using the measures is much greater than the
cost of making them.

® Butler Cox plc 1990 19

Chapter 3 Defining users’ quality requirements in measurable terms

Usefulness: The measures should provide information that helps
management to decide on the action that needs to be taken.

Different software quality characteristics have varying degrees
of measurability, however. Some, such as reliability, can be
directly measured and the results can be compared from appli-
cation to application. Others are harder to measure and impossible
to compare. Usability, for example, can be assessed by the user
only in subjective terms, and in any case, will be defined
differently from application to application. Constraints such as
these should be considered when selecting the measures that will
be used.

Several researchers into quality assurance have produced lists of
quality measures. One of the most widely accepted among
software quality-assurance experts, and the one that we
recommend to PEP members, is that developed originally in the
United States for the Rome Air Development Center, and known
as the RADC approach. The RADC approach to measuring
software quality derives from research work carried out in the
late 1970s and early 1980s. RADC had been pursuing a programme
intended to achieve better control of software since 1976. The
programme’s aim was to identify the key issues and provide a valid
method for specifying and measuring quality requirements for
software developed for major Air Force weapon systems.

The programme defined a set of 11 user-oriented characteristics,

or quality factors — reliability, flexibility, maintainability, re-

usability, correctness, testability, efficiency, usability, integrity

(which actually refers to security), interoperability, and portability

— which extend throughout the software life cycle. These 11 The RADC programme defined
quality factors were originally defined to help predict the quality a set of 11 user-oriented
of a final application as it is being developed. In Chapter 4, we characteristics

show how the factors are used for this purpose. We have also

devised an appropriate user-oriented measure for each of the

factors so that the quality of existing applications can be assessed.

These measures are described in Chapter 5.

Although the RADC approach was originally defined for military
applications, it has successfully been applied to the development
of commercial computing applications. (Full details of the RADC
research have been published by the US National Technical
Information Service as Software Quality Measurement for
Distributed Systems — Final Report. Copies can be obtained from
ILI, Index House, Ascot, Berkshire. The approach is clearly
described in the books by J Vincent, A Waters, and J Sinclair,
listed in the bibliography.)

Figure 3.4 shows how the 11 RADC quality factors match the four
quality characteristics that we defined in PEP Paper 9. For the
purpose of this paper, however, it is more convenient to classify
the factors into three groups: those that are independent of a
particular application, those that are specific to a class of
application, and those that are application-specific.

QUALITY FACTORS INDEPENDENT OF THE APPLICATION

Six of the 11 RADC quality factors describe characteristics that
can be defined independently of the application, which means
that the quality measures for different applications can be

2 Butler Cox pic 1990

Chapter 3 Defining users’ quality requirements in measurable terms

Figure 3.4 The 11 RADC quality factors can be categorised in terms of
the four quality characteristics defined in PEP Paper 9

Quality characteristics
Functional Technical Operational Ease of use
Integrity Correctness Efficiency Usability
Interoperability Re-usability Reliability
Portability Maintainability
Flexibility
Testability

compared. The reliability of an operating system, for example,
can be compared with that of a computer game.

Reliability

Reliability is defined as the rate of failure of an application in use.
The failures may be a partial or complete functional failure, or
inaccuracies in results. The measure of this quality factor answers
the user’s question: ‘‘Will the application work when I use it and
will it produce accurate results?’’ It can be readily measured
because the frequency of application failures is often recorded
by the operations department.

Flexibility

The flexibility of an application is the ease with which perfective
and adaptive maintenance can be done. (Perfective maintenance
is changing the software’s structure to improve its performance
and maintainability; adaptive maintenance is concerned with
enhancing and extending systems software to incorporate the
evolving needs of users.) The measure of this quality factor
answers the question: ‘‘How easily can the functions of the
application be changed?”

A further useful measure of flexibility is a comparison of the
. productivity of the development staff involved in making changes
Lo Ieve.IS.Of mamf“egfnie with the productivity of those carrying out new development
B ro?ﬁgﬁ;jﬁi’:ﬁ;&ﬁatﬁﬁ work. This comparison (which can be based on Pls for
enhancements and new developments) can be used to decide
whether to scrap and rewrite an application or to continue

maintaining it.

Maintainability

The maintainability of an application is the ease with which
corrective maintenance activity can be carried out. This measure
answers the question: ‘‘How easily can faults be fixed?” A
measure of the maintainability of an application is the average
effort required (in developer hours) to find and fix a fault.

Re-usability

The re-usability of an application is the extent to which all or parts
of the code can be re-used in other applications. This measure
answers the question: ‘‘Does this application provide an oppor-
tunity to save costs by re-using its components in other
applications?’”’

Measurement of this quality factor is difficult because the level
of actual, as opposed to intended, re-use cannot be established

@ Butler Cox pic 1990 21

Chapter 3 Defining users’ quality requirements in measurable terms

until long after the application has been developed._A p_ractical
measure of re-usability is the proportion of the application that
is composed of re-used modules.

Correctness

The correctness of an application is the extent to which the
application conforms to the stated requirements. This measure
answers the question: ‘‘How faithfully have the users’ require-
ments been implemented?’” Correctness does not, however, assess
the ability of the application to produce correct results. This ability
is an aspect of the reliability of the application. A suitable method
of measuring correctness is the number of application defects
found. A defect is any difference between the application
requirements and its implementation.

Testability

The testability of an application is the ease with which the
application can be tested to ensure that it will perform its intended
function. This measure is an important attribute affecting the
reliability and the cost of maintaining an application. It answers
the question: **Can I test the application thoroughly and easily?"’
A measure of the testability of the application is the number of
test cases that are needed to test the application fully.

QUALITY FACTORS SPECIFIC TO A CLASS OF APPLICATION

Two of the 11 quality factors (efficiency and usability) describe
characteristics that must be defined specifically for each class
of application. Thus, for the class of workstation-based appli-
cations, the important efficiency measures are memory
requirements and speed of calculation. For batch programs,
the important efficiency measures are processor usage and
elapsed time to process a given volume of transactions.

Efficiency

The efficiency of an application is measured in terms of the
computer resources needed to provide the required functions
with the required response time. Efficiency can be measured
in terms of processor usage, disc-storage requirements, and so
on. Response time is not a measure of the efficiency of an
application because it is a characteristic of the particular
combination of hardware and systems software in which the
application runs, rather than a characteristic of the applications
software. The measure of this quality factor answers the user’s
question: **Will the application use a reasonable (affordable)
amount of computer resources?’’

Usability

An application has a high measure of usability if it can be used

easily to produce useful results. The measure of this quality

factor has two components: the effort required to learn and Usability is related to the effort
use the application, and the usefulness of the application. It required to learn how to use an

answers the user’s question: *“Will the application be useful aPPlication . . .
to me?”’

Research has shown that these two components of usability
are a good indicator both of the likely level of use and of user
satisfaction with an application. Users consider an application

22

© Butler Cox pic 1930

Chapter 3 Defining users’ quality requirements in measurable terms

to have a high level of usability when the return on the time they
invest in learning the application is commensurate with the
benefits obtained from using it. Figure 3.5 shows how these two
components interact to define the usability characteristics of the

application.
Figure 3.5 Usability is a combination of ease of use and usefulness

High

Application suitable ExcollGit

for use only by 0

professionals Lablily

Usefulness
Poor usability Trivial application
Low
Low High
Ease of use

Ease of use can be assessed only when the application is in
everyday use. A suitable method of measuring ease of use is to
count the number of unfounded fault reports and the number of
requests for support made by users of the application. Where ease
of use is of particular concern, the application should be designed
to capture instances of incorrect use automatically.

. . and is entirely subjective The level of usefulness of an application is entirely subjective,
and can be assessed only by carrying out user surveys. Properly
conducted surveys can provide a consistent assessment of the
usefulness of an application and the way it is changing over time.

QUALITY FACTORS SPECIFIC TO AN APPLICATION

Three of the 11 quality factors (integrity, interoperability, and
portability) describe characteristics of the application that are
based on specific application requirements. For example, a
portability requirement could be for the application to run on two
specific computer systems. This type of requirement will differ
from one application to another. These three quality factors are
therefore application-specific and cannot be compared between
applications.

The qualities of integrity, interoperability, and portability also
depend on features of the application design. The best way to
measure these qualities in an application is by means of a checklist

© Butler Cox plc 1930 23

e e

Chapter 3 Defining users’ quality requirements in measurable terms

of relevant facilities. Integrity qualities, for example, can be
inferred by the presence of features such as audit trails and access-
control facilities.

Integrity

The integrity quality factor as defined by RADC is really about
measuring the security and safety of an application. It provides
a measure of the ability of an application to resist unauthorised
access (security) and to protect those who use it from being
harmed in some way (safety). The measure of this quality factor
answers the user’s question: ‘‘Is the application secure and safe
to use?”’

This factor is one of the hardest to measure because any un-
authorised access will be illicit and any damage caused by the
application should be rare. This quality factor can be assessed only
by inspecting those aspects of the application design that affect
security and safety.

Interoperability

Interoperability is the ease with which an application system can
be interlinked with other applications — linking a spreadsheet
with a mainframe database, for example. This measure answers
the question: ‘‘How easily can the application be linked to another
application?”” A measure of the interoperability of an application
can be gained by measuring the effort (in developer hours)
required to carry out the linkage.

Portability

Portability is the ease with which an application can be transferred
from one computing environment to another. It answers the
question: ‘“‘How easily can the application be transferred to
another software and hardware environment?’’ A measure of
portability can be gained by measuring the developer hours
required to transfer an application to a different environment —
for example, the effort required to recompile and test a Cobol
application to run on a different computer.

SET QUALITY PRIORITIES FOR APPLICATIONS
DEVELOPMENT

When developing a new application, it is not always possible to
meet all of the quality requirements desired by all groups of users.
There are two main reasons for this. First, a high level of quality
in one of the 11 RADC quality factors may imply a low level of
quality in one of the other factors. For example, a high level of
portability will usually imply a low level of efficiency, and vice
versa. The main conflicts that can occur between the quality
factors are shown in Figure 3.6. Second, the project manager will
often have to make trade-offs between the time, cost, and quality
of the application. The implication is that quality should not be
specified at a higher level than the application warrants. For
example, the maintainability requirements of the application can
be reduced if the lifetime of the application is known to be short.

The conflicts in quality priorities occur because of the conflicting
requirements of the main groups who ‘use’ an application — the
application’s users, their managers, the development managers,
the maintenance and support teams, and computer operations

24

Integrity is one of the hardest
quality factors to measure

Quality should not be defined at
a higher level than the
application warranis

© Butler Cox pic 1990

Chapter 3 Defining users’ quality requirements in measurable terms

The choice of quality factors will
depend on the nature of the
system, but they must be

limited in number

The cost of providing high
quality may be minimised
by developing an oper-

© Butler Cox plc 1990

ational-use profile

Figure 3.6 A high level of quality in one factor may imply a low level
in another factor

Factors
Correctness @ Y

Reliability

Efficiency

Integrity
Usability

Maintainability

Testability W
Flexibility ' '
Portability

Re-usability

Interoperability

e

B A high level of quality in one factor implies a low level in the other

D A high level of quality in one factor implies a high level in the other

l:l No relationship between the quality factors, or application-dependent

staff. Figure 3.7, overleaf, shows which of the 11 quality factors
are of most interest to each of these groups. Because of the
complexity of these conflicting interests, most systems
departments will need to select just two or three of the quality
factors that they need to control during development. The cost
of controlling more qualities than this becomes prohibitive.

Usually, the most important quality factors to concentrate on are
the three that will increase user satisfaction through reduced costs
and better service — maintainability, flexibility, and reliability.
The choice will, however, depend on the nature of the system
in question. Typical quality requirements for specific types of
application are:

— Systems with a long life: maintainability, flexibility, and
portability.

— Publicly accessed systems: usability, integrity, and reliability.

— Systems that can cause damage to property or lives if they go
wrong: reliability, correctness, testability, and integrity.

— Systems that use advanced technology: portability.

A valuable technique for minimising the cost of providing high
(user perceived) quality is to develop an operational-use profile.
Such a profile shows the expected level of use of each of the
functions of the application. Suppose, for example, that an
application has two main functions, one of which will be used for
90 per cent of the time and the other for 10 per cent of the time.
In this situation, it is obviously better to concentrate on improving

25

Chapter 3 Defining users’ quality requirements in measurable terms

Figure 3.7 Different groups of users have different quality needs

Group of users

Quality factor Application User Development Maintenance
users management management and support Operations

Reliability v v
Efficiency v 2

Usability v

Integrity

SRS
N

Correctness t/

Interoperability

Maintainability

o
el

Flexibility
Portability
Testability v
Re-usability v

AR YR &

the quality of the most frequently used part of the application
rather than to spread the quality-assurance effort evenly over
both of the application’s functions.

We have described in this chapter the growing awareness of the
role of software quality measurement in controlling the quality
of the final application at the development stage, and we have
discussed some of the approaches that the systems department
might take to ensure that users’ quality expectations are met. It
is a difficult task, however, because the final application is not
available for measurement until the end of the project. Project
managers therefore need some means of predicting whether they
will achieve the agreed quality requirements of the users. We turn
our attention to this aspect of software quality measurement in
Chapter 4.

26 © Butler Cox pic 1990

Chapter 4

Using measurements to predict the quality of

Once an application is complete,
it is too late to correct any
quality defects

In the quality-of-conformance
approach, a project is sub-
jectively assessed for its
conformance to quality
standards

@ Butler Cox plc 1890

the final application

In the previous chapter, we provided guidance on setting quality
objectives with reference to users’ demands, and compiling a set
of measures that will serve as the basis against which project
managers can assess whether those objectives are likely to be
achieved. However, it is not practical to wait until an application
has been completed and then measure its quality, because it is
then too late to correct any quality defects. Project managers
therefore need to be able to predict whether they will achieve
the quality requirements of the users from assessments of the
interim products of the development process, so they can take
corrective action before it is too late. There are three main
approaches to this task:

— The quality-of-conformance approach uses the RADC quality
factors to monitor the quality of the application being
developed by assessing how well the development process
conforms to good practice. The assumption is that a well
managed project will produce the quality intended. This
approach concentrates on the conformance aspect of quality.

— The quality-of-design approach, developed by Tom Gilb, sets
quality targets and builds these into the design of the system.
This approach concentrates on the design aspect of quality.

— The empirical approach predicts the quality of the final
software by using validated empirical relationships between
the characteristics of the interim products of the software
being developed and the quality of the final product. This
approach also concentrates on the design aspect of quality,
but is more objective than Gilb’s approach because it relies
on established empirical relationships between the character-
istics and final quality.

In each case, the measurements made during the development
of a project are used to predict the quality of the final application
while it is being developed, and to identify trends and patterns
that could lead to improvements in the development process.
Figure 4.1, overleaf, depicts the essential differences between the
three approaches.

SET AND MEASURE QUALITY
CONFORMANCE TARGETS

This approach tackles the problem of predicting final quality
during development by subjectively assessing the development
project for its conformance to quality standards to establish
whether it will produce the required quality. Each of the 11 RADC
quality factors is progressively subdivided until it can be expressed
as quality criteria that can be assessed during development. As
Figure 4.2, overleaf, shows, the criteria may be broken down
further into subcriteria and then into measurable attributes of

27

Chapter 4 Using measurements to predict the quality of the final application

Figure 4.1 There are three approaches to predicting the quality of the final product
Define I
required
quality

v v
, - Quality of
Df_s'gt.” conformance
application . o e approach
Redesign if
A necessary
Y . - Redesign or o Y
rebuild as Qual@y of
necessary [i design
. approach
Build i =
application | Redesign or \ 4
| rebuild as ORRTR F N W o [SR
<« necessary Empirical
approach
pp
Final
product
Figure 4.2 Each quality factor is broken down into measurable attribute:,
Example
Quality factors Efficiency
Criterion Execution efficiency
L T
IE 1
v
t Suberiterion Data usage
——
v
’ Is data grouped for
Attribute efficient processing?
Possible measures:
Metric or — No or yes
measurement — Rated on a scale
(For example, 0 to 7)

the application. In the example shown, one of the quality criteria

for efficiency is execution efficiency, which in turn can be divi-

ded into several subcriteria, one of which is data usage. The

28 © Butler Cox'plc 1990

Chapter 4 Using measurements to predict the quality of the final application

Quality criteria are broken down
into measurable attributes,
which are scored on a

© Butler Cox plc 1990

numerical scale

measurable attribute of data-usage execution efficiency is the
extent to which the data is grouped for efficient processing. This
can either be assessed simply as ‘yes’ or ‘no’, or rated on a scale
— for example, from 0 (not grouped at all for efficient processing)
to 7 (optimised for efficient processing).

The criteria used to assess one of the quality factors may also apply
to other factors. Figure 4.3 lists the measurable attributes that
are used to assess the extent to which the completeness criterion
is met. This criterion contributes to the quality factors of
reliability, correctness, and usability.

Figure 4.3 The measure of completeness contributes to the assessment
of the reliability, correciness, and usability quality factors

The completeness quality criterion has nine measurable attributes:

Unambiguous reference (input, function, output).

— All external data references defined, computed, or obtained from external
source.

— All defined functions used.

All referenced functions defined.

— All conditions and processing defined for each decision point.

— All defined and referenced calling sequence parameters agree.

— All problem reports resolved.

— Design agrees with reguirements.

Code agrees with design.

Each of these attributes should be rated on the same scale (for example, 0 to 7);
the measure of completeness is the average of the nine ratings.

A simple example will help to illustrate how the RADC approach
might work. Suppose that the quality factors of a car are defined
as maximum speed, economy, and safety. The ‘speed’ quality
factor can be broken down into the quality criteria of low wind
resistance, low rolling resistance, high power/weight ratio,
lightness of construction, and so on. It is obvious that many of
these criteria also apply to the economy quality factor. Subdividing
the rolling-resistance criterion into measurable attributes produces
wheel-bearing friction, energy losses through the tyres and
suspension, and so forth. These attributes are scored on a
numerical scale — usually subjectively — and the results for all
the attributes are added together to create a score for the quality
factor. The score is then expressed as a percentage of the total
possible score, and is interpreted as follows:

— 95 to 100 per cent: There is a high probability of meeting the
quality targets.

— 90 to 94 per cent: Progress should not be impeded, but the
items responsible for reducing the score should be dealt with.

— 60 to 89 per cent: Problems are likely to result in a poor-quality
final product and increased costs; immediate action is required
to identify and rectify the problems.

— 0 to 59 per cent: There are insurmountable problems; the
project should be re-organised, or the development approach
should be changed.

Many organisations that develop large, complex, software systems
(particularly in government, military, and telecommunications
systems) have invested considerable effort in implementing the
RADC approach to software quality measurement. In particular,

29

Chapter 4 Using measurements to predict the quality of the final application

several Japanese IT companies have applied this approach to a
range of applications and claim that it has led to considerable
improvements in quality. As Figure 4.4 shows, the approach glso
resulted in significant reductions in effort and cost — in various
projects, companies noted a 50 per cent reduction in testing effort,
a 46 per cent reduction in coding effort, a 25 per cent reduction
in specification effort, and a 33 per cent reduction in cost.

In Japan, the quality-of-conform-
ance approach has resulted in
significant reductions in

effort and cost

measurement

Figure 4.4 Japanese companies have gained considerable benefits from usin

g the RADC approach to software quality

Project A

Project B

Project C

Software type

Operating system (Assembler)

Cost control (Cobol)

Business application (Cobol)

Phases All Design, code Design, code

Factors controlled Usability Correctness Correctness
Reliability Reliability

Elements measured 28 15 (Design) 9 (Design)
22 (Code) 8 (Code)

Number of software qu'ah'ty 4 3 1

measurement staff

Proportion of total project cost 25% 20.8% 12.7%

Results 25% reduction in specifi-
cation effort effort

33% reduction in cost

50.8% reduction in testing

46.2% reduction in coding
effort

(Source: Quality Progress, November 1988)

The RADC approach does, however, have several significant
drawbacks:

— There is no proven connection between the interim measures
and the quality of the final product.

— The measurements and scoring of the attributes are largely
subjective.

— Collecting the data is labour-intensive and difficult to
automate.

— The approach is valid only for a development process that is
similar to that used in the RADC study (requirements analysis,
preliminary design, detailed design, implementation, and test
and integration).

SET AND MEASURE QUALITY DESIGN TARGETS

During the development of an application, developers are
continually making conscious or unconscious design trade-offs
between the various quality attributes of the final application.
An example of such a trade-off is to improve operational efficiency
at the expense of ease of maintenance. Setting appropriate design
objectives therefore affects the way in which development staff
approach their work and helps to channel development effort in
the appropriate way.

An experiment has been carried out to assess the effects of setting
different objectives on the results of application development.

30

© Butler Cox pic 1990

Chapter 4 Using measurements to predict the quality of the final application

The results of applications
development are clearly
affected by the design
objectives that are

set

Managing the ‘producibility’
of the application design
allows the quality of

the final application

to be predicted

In the quality-of-design approach,
quality objectives are set at

the design stage in meas-

urable terms

@ Butler Cox plc 1990

Five groups of programmers were given different design objectives
for the same application: to minimise memory usage, to minimise
the number of statements, to maximise output clarity, to use the
least effort, and to make the program as understandable as
possible. When the five final applications were compared, each
of them met its specific design objective. The results of this
experiment, which were described in Goals and Performance in
Computer Programiing, by Gerald E Weinberg and Edward L
Schulman, of the School of Advanced Technology at the
University of New York, showed that ““programming performance
can be strongly influenced by slight differences in objectives’’.
The conclusion of the paper was that ‘‘No programming project
should be undertaken without clear, explicit, and reasonable goals
[design objectives]’’.

David Card, author of a recent book, Measuring Software Design
Quality, states that the objective of the system designer is to
create a producible design. A producible design will have the
qualities of simplicity and ease of understanding, and is most likely
to lead to a reliable and maintainable application. Managing the
producibility of the application design allows the quality of the
final application to be predicted. The ideas set out in his book
represent the leading edge of academic thinking on software
quality assurance. As far as we are aware, no-one has actually
managed to achieve the ideals set out in this book. One approach
that goes some way towards them is that developed by Tom Gilb,
the well known quality metrics guru and consultant. His approach,
which is closely related to his idea of design by objectives,
attempts to predict and manage the quality of the final application
by estimating the contribution that each aspect of the design
makes to the quality objectives.

With Gilb’s approach, quality objectives are clearly defined at the
design stage in measurable terms. Figure 4.5 provides an example
of the definition for the ‘reliability’ quality factor. This detailed
definition of each quality measure ensures that it is as meaningful
as possible. The quality objectives are usually broken down into
several subsidiary quality objectives, each of which can be
measured. Usability, for example, can be broken down into ease
of learning, operator error rates, and so on. This means that the
quality objectives for the final application are expressed in directly
measurable terms. The success or failure in meeting the

application quality objectives can thus be directly assessed at the
end of the project.

The application quality plan is developed by assessing the
contribution that each design feature makes to each of the quality

Figure 4.5 With Gilb’s approach, measurable quality objectives are set
at the design stage

The ‘reliability’ quality factor might, for example, be defined as mean time between
failures, with the following characteristics:

Measuring unit: Days

Measuring tool: Problem-management system
Worst case: 1 day

Planned level: 5 days

Best case: 30 days

Current level 3 days

Conseqguences of failure: Service-level agreement penalties

31

Chapter 4 Using measurements to predict the quality of the final application

objectives. This process uses a quota-control table, an example

of which is shown in Figure 4.6. In the example, the ObjECtiVP: for The application quality plan is
the ‘ease of learning’ quality factor would be expressed in a developed by assessing the
measurable way — users should be able to learn how to use the con}‘rfbntjon that each
application in less than 30 minutes, for instance. The contnl?utit_)ns design feature makes

that a variety of design features make to meeting this objective to each of the qual-

are then assessed. Thus, in the example, the assessors believe that ity features

providing single-line help messages will enable all users to learn
how to use the system in less than 30 minutes. However, providing
full-screen help messages is, in the view of the assessors, likely
to result in only partial achievement of this quality objective —
only about one-in-three users would be able to learn how to use
the system in less than 30 minutes. Thus, the quota-control table
can help to identify those design features that are likely to make
a significant contribution to a range of quality objectives. If the
‘total’ for each quality factor is less than 100 per cent, it is unlikely
that the objective can be met, even if all the design features are
included in the system.

Figure 4.6 In Gilb’s approach, the application quality plan is developed
by assessing the contribution that each design feature
makes to each of the quality objectives

Quality factor
S iraye Ease of learning Heiiii;iggtgnuser
Single-line help 100% 50% + 40
Full-screen help 33% 20% =+ 10
Automatic help, based on
the difﬁcu!ty the user is 10% 10% + 5
experiencing
Colour screens 10% 10% + 5
Total 150% 90% = 60

Gilb’s approach suffers from the weakness that there is no
established relationship between a design feature and the quality
of the final application. The connection has to be established by
the subjective judgement of experienced system designers. Gilb
suggests that the task of quantifying each quality objective is made
easier by breaking down the objectives into simpler ones, in a
manner similar to that required by the RADC approach.

MEASURE QUALITY USING VALIDATED
EMPIRICAL RELATIONSHIPS

Neither the RADC nor Gilb’s approach to predicting final
application quality is completely satisfactory because neither is
based on objective relationships between the measures of the
interim products of development and the quality of the final
product. A better approach is to make use of empirical
relationships, established by research, between the characteristics

The empirical approach is based
on identifying objective rela-
tionships between measures

of the interim development product and final product quality. of the interim products
Such an approach is more objective and is easy to apply because and the guality of the
the relationships are expressed as simple mathematical formulae. final product

32 @ Butler Cox pic 1990

Chapter 4 Using measurements to predict the quality of the final application

The complexity of an application
is one good indicator of its
likely quality

A measure of design complexity
is most beneficial in detecting
potential quality problems

at an early stage

Measuring the complexity of
information flow is a

widely recognised

way of assessing
system-design

complexity

@ Butler Cox plc 1990

An important relationship is that between the complexity of the
system design and the maintainability of the final application. By
ensuring that design complexity does not exceed a predefined
level, the project manager can ensure that the maintainability of
the final application reaches the target quality level.

In general, the complexity of an application is a good indicator
of its likely quality. Complexity (or its opposite, simplicity) is a
quality criterion that contributes to seven of the 11 RADC quality
factors — correctness, reliability, efficiency, maintainability,
testability, flexibility, and re-usability. In addition, unlike many
of the other quality criteria, it does not adversely affect efficiency
so that trade-offs between these eight quality factors and

efficiency do not have to be allowed for when considering
complexity.

It is important, however, to distinguish between the complexity
of the problem that the application has been designed to solve
and the complexity of the application itself. A complex problem
does not necessarily imply a complex solution, although the task

of developing a simple solution for a complex problem may be
difficult.

Complexity can be measured in two ways: by measuring the
complexity of the design based on the interconnections between
the modules and programs that make up a system, or by measuring
the complexity of the code itself. A measure of design complexity
is most beneficial in detecting potential quality problems at an
early stage, when they can be fixed quickly and cheaply.
Unfortunately, the collection of the basic data required to measure
design complexity can be laborious, and at present, there are no
tools available to carry out this task automatically. Measuring code
complexity has the disadvantage that it cannot take place before
the code has been written. If a module turns out to be too complex,
further work is needed to simplify it. However, tools are available
for measuring the complexity of code written in the more popular
third-generation languages.

MEASURING DESIGN COMPLEXITY

A high proportion of software errors discovered late in the
development life cycle have their origins in the system-design
stage. Figure 4.7, overleaf, shows the distribution of the sources
of software errors for three actual development projects. The
majority of the errors are related in some way to the design of
the system. Reducing design complexity is highly likely to reduce
the number of design errors, thereby increasing the likelihood of
delivering a high-quality system. Design complexity measures
define the success of the systems designer in developing a
producible design.

Many schemes have been suggested for measuring system-design
complexity. Many of these are based on assessing the modular
structure of a system; the most widely recognised is the
information-flow complexity measure proposed by S M Henry and
D G Kafura, of the University of Wisconsin-La Crosse, and lowa
State University, respectively, which provides a measure of
module coupling (that is, the links between modules). This
measure is calculated from the information ‘fan-in’ and ‘fan-out’
for each module. (Details of this measure can be found in

33

Chapter 4 Using measurements to predict the quality of the final application

Figure 4.7 The source of most software errors lies in the design of the
system

Requirements
specification

Language and
environment

Other

Design-related

(Source: Weiss, D M, and Basili, V R. Evaluating software development by
analysis of changes. IEEE Transactions on Software Engineering,
vol. 11, no. 2, February 1985)

‘Software Structure Metrics Based on Information Flow’, pub-
lished in IEEE Transactions on Software Engineering, vol. SE-7,
no. 5, September 1981.)

Information fan-in is calculated from the number of modules that
call a module, the number of common data items read by the
module, and the number of parameters input to the module.
Information fan-out is calculated from the number of modules
called by a module, the number of common data items amended
by the module, and the number of parameters output from the
module.

Modules with a large fan-out value tend to control a large number
of other modules and therefore may have too many functions.
Modules with a large fan-in value are used by many other modules
and therefore, ideally, need to have a single clearly defined
function, and to be reliable and operationally efficient. They
should therefore be kept small and simple. Thus, from a software-
design viewpoint, modules with high fan-in or fan-out values
indicate areas where the application may be badly modularised.
Such designs should be reviewed before coding commences.

Recent studies have shown that modules with high fan-out values
are likely to lead to a variety of quality-related problems. One of
these studies analysed 226 programs in a communications system.
The results showed that of the 40 programs that had the highest
fan-out values, 82 per cent had a significant problem such as
higher-than-average error change rates, or were judged to be of
above-average complexity.

Further work on refining this measure of design complexity has
shown that there is a high correlation between design complexity
and error rates. Figure 4.8 shows the results of this analysis for
eight applications. The complexity of a module is also correlated
with the ease with which it can be changed. Figure 4.9, on
page 36, shows the proportion of changes (for the same eight

34

Modules with high fan-in and
fan-out values should

be avoided

There is a high correlation
between design com-

plexity and error
rates

© Butler Cox plc 1990

Chapter 4 Using measurements to predict the quality of the final application

At present, measures of design
complexity are expensive to
collect and have limited

® Butler Cox plc 1890

application

Figure 4.8 The complexity of system design correlates with sofiware
error rates

The figure shows the correlation between system design complexity and
errors per thousand lines of code for eight applications.

X
Errors per thousand
| lines of code

S L

10

A 4

20 25 30 35
System design complexity”

* Complexity was defined by complex mathematical formulae invalving
number of modules, module format, and intra-module complexity.

(Source: Card, D N, and Glass, R L. Measuring software design quality.

Londan: Prentice-Hall, 1990)

applications) that were difficult to make, plotted against module
complexity (measured by McCabe’s complexity measure, which
is described briefly below). This clearly shows that less complex
modules have a smaller proportion of hard-to-implement changes.

Measures of design complexity show considerable promise for the
future but at their present state of development, they are
expensive to collect and they have only limited application.
Fan-in and fan-out, for example, can be calculated only where
a modular approach to development is used. This usually implies
the use of third-generation languages, as the modular approach
is less common with fourth-generation languages. In general, few
measures are available for assessing the design complexity of an
application written in a fourth-generation language. Systems
departments can, however, gain many of the benefits of using a
measure of design complexity by establishing design guidelines
that prohibit the construction of systems with modules that would
have high fan-in and fan-out values.

MEASURING CODE COMPLEXITY

Measures of the complexity of an application are easier to collect
at the coding stage, and are a more reliable indicator of

35

Chapter 4 Using measurements to predict the quality of the final application

Figure 4.9 Module complexity can be used to predict software
maintainability

The figure shows the correlation between module complexity and the
proportion of difficult-to-implement changes made to eight applications.

Percentage

100k of changes

261

0 L L ! 1
15 20 25 30

Module complexity

A 4

(Source: Adapted from Card, D N, and Glass, R L. Measuring software
design quality. London: Prentice-Hall, 1990)

applications quality. The most common measure of code com-
plexity is McCabe’s complexity measure. This simple measure is
defined as the number of decision statements in a section of code,
plus one. Code with a McCabe value higher than 10 seems to
have disproportionately more bugs than code with values of less
than 10.

Many studies have shown that programs with high levels of
complexity also have high error rates. One study of the Unix
operating system, for example, showed a very high correlation
(0.98) between modules with a high number of errors and modules
with a high level of complexity. In another study, 47,000 lines
of Fortran code were analysed to assess how well McCabe’s
complexity measure could predict the number of actual changes
to modules based on data for a year’s error reports. An almost
perfect correlation (0.9985) was found between the complexity
measure of a program and the number of changes made.

Another measure that can be used to obtain an assessment of code
complexity is the ratio of object code instructions to source code
statements. The expectation is that programs using very powerful
source-language statements will have a higher ratio than those
using simple statements. Experience suggests that applications
written in a simple language are more reliable and easier to
maintain. Thus, programs with high ratios of object-to-source-code
size should be carefully evaluated.

36

The commonest measure of code
complexity is McCabe's
complexity measure

Programs with high levels of
code complexity also have
high error rates

Applications written in a simple
language are more reliable
and easier to maintain

© Butler Cox pic 1990

Chapter 4 Using measurements to predict the quality of the final application

None of the established
approaches to predict-
ing final quality is
ideal

Software quality measurement
programmes should be able

to cope with changes in

the development

process

© Butler Cox plc 1990

Measurement of code complexity can be a useful technique for
improving the reliability and maintainability of application code.
Its use, however, is limited to third-generation procedural
languages such as Cobol because there are, as yet, no well

established measures of the complexity of code written in fourth-
generation languages.

RECOGNISE THE LIMITATIONS OF EACH APPROACH

None of the three approaches described above for managing a
project to deliver the required quality profile is completely
satisfactory for PEP members. Our recommendations are:

— Adapt the RADC approach to the development method being

used in order to provide a more focused approach to software-
quality audits.

— Use Gilb’s approach to establish clear quality goals and to
create the development plans and application-design features
that will achieve these goals for qualities (such as usability)
that cannot easily be quantified in other ways.

— Make use of design and code complexity measures where
possible to assess and control the qualities of correctness,

reliability, efficiency, maintainability, testability, and
flexibility.

Analysis of the measures discussed in this chapter is reasonably
straightforward while the development process remains
unchanged. However, PEP members should bear in mind that
advances in system development tools (integrated computer-aided
software engineering, in particular) will lead to significant changes
in the applications life cycle. They should therefore take great
care in planning their software quality measurement programme
to ensure that future changes in the development process do not
invalidate a valuable set of software measurement data.

We have been concerned in this chapter with describing ways in
which project managers can monitor the progress of an application
by measuring the quality of the interim products of the
development process, and taking action to modify those products
where the measures indicate that the final quality is likely to be
unsatisfactory. In most organisations, however, software
maintenance accounts for about the same amount of time and
effort as the development of new systems. The contribution that
software quality measurement can make to improving the quality
of existing applications and thereby reducing the cost of their
maintenance is the subject of the next chapter.

37

Chapter 5

Measuring the quality of existing applications

So far in this report, we have concentrated on showing how
software quality measurements can be used as applications are
developed — to improve the development process itself, to control
an application as it is developed, and to predict the quality of the
final product. Much of the development department’s workload,
however, is concerned with maintaining existing applications. In
this chapter, we show how software quality measurement can be
used to monitor and improve the quality of existing operational
applications, thereby leading to a reduction in maintenance costs.

The quality of existing applications must, of course, be measured
in terms of the users’ satisfaction with the final systems that are
delivered to them. This should not be too onerous a task since
a small number of well chosen measures will provide the basis
of a comprehensive measurement programme. The data collected
in this process should be made widely available, and in the form
that most clearly demonstrates the point of a particular analysis.
The analyses will be of interest not only to those who collect and
analyse the data, but also to development staff, development
managers, and user managers. It is in the interests of all those
involved to use software quality measurements to detect difficult-
to-maintain or unreliable applications and to determine which
applications can have their maintainability improved.

CREATE A USER-ORIENTED SET OF MEASURES

Once an application has been implemented, it is important to
verify that it does, in fact, meet the users’ quality requirements;
the systems department must be able to demonstrate that it is
delivering the quality that was expected. In principle, user
satisfaction can be defined (on a scale of 0 to 1) as the quality
of the delivered application divided by the quality that the users
were expecting. '

To do this, systems departments need to present software quality
measurements in terms that are relevant to users’ perceptions of
the quality of the application rather than in terms that indicate
the need for support from the systems department. For example:

— The reliability of an application should be measured in terms
of failures per hundred hours of operation, rather than in terms
of faults per thousand lines of code.

— The flexibility of an application should be specified in terms
of the time taken to act on a request for a change, rather than
in terms of the total number of changes made.

— Errors should be classified by the impact they have on users
rather than by the type of design or coding fault that caused
them. Telling users that a particular class of error will cause

38

Software quality measurement
can be used to monitor and
improve the quality of
existing applications

Quality measurement data should
be made widely available

Software quality measures must
be presented in terms that are
relevant to users

Chapter 5 Measuring the quality of existing applications

User-oriented measures therefore
need to be devised

A small number of well chosen
basic measurements should

be adequate for most
programmes

It is not common practice, at
present, for user managers
to receive software
measurement

information

@ Butler Cox plc 1990

an application to be unavailable for use for several hours is

much more meaningful than telling them that the problem was
caused by a coding error.

In our research, we were unable to identify a comprehensive set
of measures for assessing the quality of existing applications. We
have therefore taken each of the 11 RADC quality factors,
described in Chapter 3, and devised an appropriate user-oriented
measure for it. (The RADC quality factors were originally defined
to help manage and predict quality during the development of an
application.) In devising the measures, we have been conscious
of the need for standardisation and comparability (the two most
important measurement selection criteria described in Chapter 3).
The measures we suggest are set out in Figure 5.1, overleaf. It
lists the basic data items that need to be captured from the
application in order to produce the measures. The final
‘calculation’ column gives the formula for calculating each quality
measure from the basic data items. The calculations ensure that
the measures are normalised so that they can be used to compare
the quality of different applications, where practical.

As in a database application, each of the basic data items must
be carefully defined at the lowest level and in detail. For example,
it is usually necessary to define the basic unit of staff effort as
hours, to allow for the effects of overtime or different working
hours in different locations. The relevant part of the draft (and,
as yet, unapproved) IEEE standard P-1061/D20 for a software
quality metrics methodology (see Figure 5.2, on page 41) provides
a useful template for the descriptions of the basic data items.

Since the same basic data items are needed for several of the
software quality measures, a comprehensive programme for
measuring the quality of existing applications can be based on a
small number of well chosen basic measurements. These are listed
in Figure 5.3, on page 41.

STORE THE INFORMATION IN AN EASILY
ACCESSIBLE FORM

Even in large systems departments, the complexity and volume
of the basic data items needed for measuring the quality of existing
applications is not large, and many of them will be available in
the management information systems already in use in the systems
department (see Figure 5.4, on page 42). The data can easily be
stored and manipulated on a spreadsheet system. As basic data
items are entered into the spreadsheet, the quality measures can
be calculated automatically. Staff who collect the information will
thus receive instant analyses of it, but the database can also be
easily distributed to development staff and managers to carry out
their own analyses. Currently, it is not common practice for user
managers to receive software measurement information (see
Figure 5.5, on page 42), but if they are to make informed
judgements, they, too, should receive the analyses.

Although the responsibility for data capture, and perhaps first-
stage analysis, resides with development staff, the quality-
assurance function must take overall responsibility for the
management of the data and the production of the overall

39

Chapter 5 Measuring the quality of existing applications

Figure 5.1 Most qualities of existing applications can be quantified directly or indirectly
Quality factor Measure Basic data items Calculation
Reliability Mean time to fail (MTTF) Hours of use (H) MTTF = N; = (HxS)
Number of failures (Ny)
Application size (lines of code or
function points) (S)
Flexibility Effort to implement a Developer hours per change (He) F = He = Sc
change in requirements Function points or lines of code
(F changed (Sc)
Maintainability Effort required to diagnose | Number of faults fixed (N>) M = Hf = N,
and respond to a fault (M) Developer hours for fixing faults (Hf)
Re-usability Proportion of application Size of re-used code (Sr) R=2S =8
consisting of re-used code | Application size (lines of code or
(R) function points) (S)
Correctness Conformance to Number of defects (D) C=D=+58
requirements (C) Application size (lines of code or
function points) (S)
Testability Effort required to test the Number of test cases (T) Ef =T =8
application fully (Ef) Application size (lines of code or
function points) (S)
Efficiency Onling efficiency (E) Number of transactions (Tr)
Computer resources used:
— CPU time (R;) E{ =Ry = Tr
— Disc transfers (Ry) Ex = R, = Tr
— Network traffic (Ry) Ey =Ry = Tr
— Elc
Usability Ease of use (Ea) Number of unfounded fault reports (Na3) Ea = N3 = (HxUxS)
Hours of use (H)
Number of users (U)
Application size (lines of code or
function points) (S)
Integrity Access-control quality Subjective ratings for:
— User-access control None (use the
— Database-access control subjective ratings)
— Memory protection
— Recording and reporting access
viclations
— Immediate notification of access
violations
Interoperability Effort required to link the Effort in hours to link applications (HI) El =Hl =8
application to another (El) Application size (lines of code or
function points) (S)
Portability Effort required to transfer Effort in hours (Hc) Ee: = e 5
the application to another Application size (lines of code or
environment (Ee) function points) (S)

analyses. The analyses can be presented in a variety of ways,
illustrated in Figure 5.6, on page 43:

— Trend line charts show the variation in a software measure
(such as reliability) over time. They are useful for determining
if there is a trend or pattern in the occurrence of a specific
type of error.

— Histograms show frequency of data by various categories and
classifications. They are used in PEP assessments, for example,

40

Chapter 5 Measuring the quality of existing applications

Figure 5.2 The description of data items in the draft IEEE standard for a
software quality metrics methodology can be used as the
basis for describing the basic data items

Note that the draft IEEE standard from which this is an extract has not yet been

approved.

Item Description

Name Name of the data item.

Metrics The metrics that are associated with the data
item.

Definition Unambiguous description of the data item.

Source Location where data originates.

Collector Entity responsible for collecting the data.

Timing Time(s) in life cycle at which data is to be
collected. (Some data items are collected more
than once.)

Procedures Methodology used to collect data (e.g.,
automated or manual).

Storage Location where data is stored.

Representation The manner in which data is represented; its

precision and format (e.g., Boolean,
dimensionless, etc.).

Sample The percentage of the available data that is to
be collected.

Verification The manner in which the collected data is to
be checked for errors.

Alternatives Methods that may be used to collect the data
other than the preferred method.

Integrity Who is authorised to alter this data item and

under what conditions.

Figure 5.3 A programme for measuring the quality of existing
applications can be based on a small number of
basic data items

Number of application users

Hours of application use

Number of transactions processed

Computer resources used (CPU time. disc transfers, network traffic, . . .)

Number of application failures

Number of application defects

Number of unfounded user fault reports
Number of faults fixed

Developer hours required per fault

Developer hours required per change

Developer hours required to link the application to another

Developer hours required to transfer the application to another environment

Size of application

Size of change } Lines of code or function points

Number of tesi cases
Size of re-used code

to show the distribution of Productivity Indexes (PIs) over a
range of projects.

— Pareto diagrams are a particular type of histogram that can
be used to show errors by type and frequency. They can be

© Butler Cox plc 1980 41

Chapter 5 Measuring the quality of existing applications

Figure 5.4 Many of the basic data items required for measuring the quality of existing applications will already

be available
Change Problem Computer-resource Pg?ﬁg@f&g’gg
management management usage management
Maintenance Failure Resources - Manpower effort,
activity data used project schedules

Basic
measurement
database

Figure 5.5 At present, software measurement information is sent mainly
to development managers and quality-assurance staff

Groups receiving software Percentage of organisations
measurement information ‘ . ' .
10 20 30 40

Development managers

Quality-assurance staff

Operations managers

Other

User managers

(Source: Survey of PEP members and of members of the Quality Assurance
Forum)

used to highlight the few but vital error types that account for
the greatest number of actual errors, and the many but trivial
error types that account for few errors.

— Scatter diagrams show the existence (or lack) of a relationship
between two factors. If a straight line is apparent in the plot
(as in our example), there is likely to be a relationship between
the factors.

— Control charts show a software measurement plotted over time
within statistical control limits. If the plotted line exceeds

42 © Butler Cox pic 1990

Chapter 5 Measuring the quality of existing applications

Figure 5.6 Software quality measurements and trends can be presented
in five main ways

Trendline charts

Histograms

Pareto diagrams

Scatter diagrams

Control diagrams

either of the limits, there is a strong possibility that something
is going wrong with the development process. A control chart
of error rates helps to determine if a process is either ‘in
control’ (with only random errors occurring) or ‘out of control’
(with errors occurring more generally).

© Butler Cox plc 1990 . 43

Chapter 5 Measuring the quality of existing applications

IDENTIFY WHERE THE QUALITY OF EXISTING
APPLICATIONS COULD BE IMPROVED

The quality of existing applications needs to be closely controlled
because the systems department’s maintenance effort is
determined as much by the quality, or maintainability, of existing
applications as it is by the volume of code being maintained. The
tendency is for older applications, which have usually been
repeatedly enhanced and amended, to be harder and more costly
to maintain.

The high cost of maintaining applications is strongly related to the
complexity of the application. A high level of complexity causes
three main problems:

— The more complex a system is, the more difficult it is to
understand, and therefore to maintain.

— More complex programs require more corrective maintenance
throughout their lives because they contain more errors.

— Maintenance carried out on complex applications tends to
increase their complexity disproportionately because the
maintenance programmer does not fully understand the
application structure.

The decline in the maintainability of the applications portfolio can
be arrested or even reversed by using software quality measure-
ment to detect hard-to-maintain and unreliable applications, and
to determine which applications can have their maintainability
improved.

REDUCING COMPLEXITY TO REDUCE MAINTENANCE COSTS

An experiment carried out by Virginia Gibson, assistant professor
of management information systems at the University of Maine,
and James Senn, director of the IT Management Center at Georgia
State University, confirms that well structured programs are easier
to maintain than poorly structured ones. In the experiment,
experienced programmers were asked to carry out the same
maintenance task on three functionally equivalent versions of a
Cobol system. The structure of the system had been progressively
improved in each of the three versions — for example, by
eliminating long jumps in code and complex control sequences.
The effort required to make the changes was 18 per cent less for
the best-structured version. There was also a significant reduction
in errors caused by unforeseen side effects of the changes. (The
experiment also went on to assess the ability of automated
complexity-measurement tools to measure the differences in
complexity of the three versions and found that several tools,
including McCabe’s complexity measure, were able to measure
the differences.)

The result of this experiment suggests that it makes sense to
restructure existing applications to reduce their complexity.
Restructuring tools are becoming available to enable this process
to be largely automated. A description of restructuring tools can
be found in PEP Paper 8, Managing Software Maintenance, which
was published in November 1988.

44

Maintenance effort is determined
as much by the quality of
existing applications as

by the volume of code

Well structured programs are
easier to maintain than
poorly structured

ones

© Butler Cox plc 1990

Chapter 5 Measuring the quality of existing applications

Periodic restructuring can reduce
maintenance costs considerably

© Butler Cox plc 1890

A model for predicting the maintenance-cost implications of
periodically restructuring an application to reduce its complexity
has been suggested by Capers Jones of Software Productivity
Research Inc in the United States. The model’s parameters and
initial conditions were derived from Jones'’s observations of ageing
software projects over many years. The parameters of the model
are historical data on the rate of addition and deletion of code
from maintained applications and the annual rate at which the
application complexity, measured in terms of McCabe's com-
plexity measure, increases. The initial conditions are the size of
the application, the complexity of the application, and the
expected lifetime of the application.

Sample output from the model is shown in Figure 5.7, which
predicts the software-maintenance costs over seven years for an
application originally consisting of 25,000 lines of code of above-
average complexity. Two predictions are shown. The first is based
on the assumption that there will be no restructuring, and the
second is based on the assumption that restructuring will take
place in Year 4. After seven years, the cumulative saving is nearly
$70,000. This model predicts only the likely impact that re-
structuring will have on maintenance costs. However, it is a useful
aid in setting initial levels for the maintainability quality factor
and for calculating the cost implications of restructuring.

DECIDING WHICH APPLICATIONS NEED TO BE RESTRUCTURED

There are several application quality measurement tools that
can be used to identify those programs that will benefit most

Figure 5.7 Restructuring can reduce the cost of maintenance

The graph shows how the predicted annual cost of maintaining a program
can be reduced by restructuring it to make it less complex.

' Cost per year

100k _{$ thousand)

i

0

80

60

401

o0b Restructuring

A 4

Chapter 5 Measuring the quality of existing applications

from restructuring. Reducing the complexity of these programs
will also reduce the cost of maintaining them in the future.

The SNAPSHOT tool from Language Technology, for example, can
be used to analyse a set of Cobol programs. This tool produces
a comprehensive list of measurements of the programs’ structures,
complexities, and their conformance with structured-pro-
gramming rules. The assessments of the structure and complexity
are based on McCabe’s complexity measure.

SNAPSHOT presents the results of the analysis as a series of
charts, one of which is shown in Figure 5.8. This chart classifies
programs according to their complexity and their degree of
structure. It places programs in one of four quadrants and
summarises their distribution by providing totals and percentages
of the programs in each quadrant. The worst programs (those that
are unstructured and highly complex) fall in Quadrant 1. The best
programs (those that are well structured and of low complexity)
fall in Quadrant 4.

Figure 5.8 The SNAPSHOT tool categorises a set of programs
according to their level of complexity and their
degree of structure

The mid-point of the x-axis represents the threshold of acceptable complexity:
the mid-point of the y-axis represents the threshold of the acceptable degree of
structure.

High

3 programs
37.5% of total programs
0 programs 10,077 lines of code
38.45% of total lines

Quadrant 3 | Quadrant 1
Quadrant 4 | Quadrant 2

Degree of structure

4 programs 1 program
50% of total programs 12.5% of total programs
15,006 lines of code 1,127 lines of code
57.25% of total lines 4.3% of total lines
Low
Low Complexity High

An alternative way of identifying those programs that are
candidates for restructuring is to count the number of faults and
changes in each program and to use this data to identify those
programs that create the most problems. This method takes longer
than using an analysis tool, but it is likely to identify the programs
that, although reasonably well structured, are subject to a
considerable rate of change and that would therefore benefit from
restructuring.

46

The SNAPSHOT tool categorises
programs according to their
complexity and degree of
Structure

© Butler Cox plc 1990

@ Butler Cox plc 1990

Chapter 6

Putting a software quality measurement
programme in place

In this paper, we have shown how a measurement programme
can be used to achieve practical goals, and how each type of
objective can be achieved. Figure 6.1 summarises the actions that
systems managers should take to ensure that the software quality
measurement programme that is put in place is practical and
comprehensive and that it will have the support of both users and
systems developers.

Figure 6.1 Action checklist

Improving the development process

Step 1: |dentify software quality problem areas in the development process by
gaining a full understanding of the area of concern and identifying all likely
causes of development problems, for subsequent analysis.

Step 2: Analyse the likely causes of the problem that have been identified, using
carefully selected software quality measurements to discover where the major
problems lie.

Step 3: Make changes to the process that will solve the problems that have
been identified.

Step 4: Use software quality measurements again to check that the changes
introduced have had the effect that was intended and that no other side-effects
have occurred.

Controlling a development project

Step 1: Establish measures that can be obtained during the application
development process that will indicate the ‘health” of the project.

Step 2: Develop organisational norms for application development measures
from a historical database of measures of previous projects.

Step 3: Collect measures from the application project being managed and

compare these measures with the norms established in Step 2 to identify
unusual measures.

Step 4: Use the characteristic pattern of unusual measures o identify the action
required to bring the application project back under control.

Defining users’ quality requirements

Step 1: Understand and set priorities for users’ quality requirements from
surveys and from analysis of users’ reguirements.

Step 2: Choose a comprehensive and usable set of quality measures, based on
the 11 RADC quality factors.

Step 3: Define a unique set of quality priorities for each application and choose
those quality factors that will enable the quality priorities to be met.

Predicting the final product quality

Step 1: Choose a combination of the three methods described in Chapter 4
(quality of conformance, quality of design, empirical measures) that best suits
the organisation’s circumstances and the users’ quality regquirements.

Step 2: Develop the chosen approach and fine-tune it to the organisation’s
development environment.

Step 3: Demonsirate the achievement of the correct quality with user-oriented
software quality measures.

Measuring the quality of existing applications

Step 1: Establish measures of maintainability (design and code complexity,
number of user changes, application failure rates, and so on).

Step 2: Measure the application portfolio and identify the ‘bad apples.’

Step 3: Take action to improve the ‘bad apples’ based on the problems
identified by the measurement results.

47

Chapter 6 Putting a software quality measurement programme in place

Quality assurance has become an essential part of the software
development process, and quality measurement has, in turn,
become a critical element of the organisation’s quality assurance
task. Without reliable measures of the quality of the development
process and of the final product, specifying and producing
applications of the quality that users require, assessing the effects
of changes to the development process, and justifying the costs
of a software quality assurance programme will be virtually
impossible tasks for the systems development manager.

48

© Butler Cox plc 1990

& Butler Cox plc 1990

Bibliography

Books

Card, D N, and Glass, R L. Measuring software design quality.
London: Prentice-Hall, 1990.

Ehrenberg, A S C. A primer in data reduction: an introductory
statistics textbook. Chichester: John Wiley, 1986.

Grady, R B, and Caswell, D L. Software metrics: establishing a
company-wide program. London: Prentice-Hall, 1987.

Ishikawa, K. What is total quality control? the Japanese way.
London: Prentice-Hall, 1985.

Vincent, J, Waters, A, and Sinclair, J. Software qualily assurance:

volume 1: practice and implementation. London: Prentice-Hall,
1988.

Vincent, J, Waters, A, and Sinclair, J. Software quality assurance:
voluwme 2: a program guide. London: Prentice-Hall, 1988.
Standards

Standard dictionary of measures to produce reliable software.
IEEE 982.1. New York: Institute of Electrical and Electronics
Engineers, 1988.

Standard for software quality metrics methodology. IEEE 1061.
New York: Institute of Electrical and Electronics Engineers, 1989.

49

Butler Cox

Butler Cox is an independent, international con-
sulting company specialising in areas relating to
information technology.

The company offers a unique blend of high-level
commercial perspective and in-depth technical
expertise: a capability which in recent years has
been put to the service of many of the world’s
largest and most successful organisations.

The services provided include:

Consulting for Users

Guiding and giving practical support to organisa-
tions trying to exploit technology effectively and
sensibly.

Consulting for Suppliers
Guiding suppliers towards market opportunities
and their exploitation.

The Butler Cox Foundation
Keeping major organisations abreast of develop-
ments and their implications.

Multiclient Studies
Surveying markets, their driving forces and poten-
tial development.

Education

Through the Cranfield IT Institute (CITI),
educating systems specialists, IT managers, line
managers, and professionals to understand more
fully how to apply and use today’s technology.

PEP

The Butler Cox Productivity Enhancement Pro-
gramme (PEP) is a participative service whose goal
is to improve productivity in application systems
development.

It provides practical help to systems development
managers and identifies the specific problems that
prevent them from using their development
resources effectively. At the same time, the pro-
gramme keeps these managers abreast of the
latest thinking and experience of experts and
practitioners in the field.

The programme consists of individual guidance for
each subscriber in the form of a productivity
assessment, and also publications and forum
meetings common to all subscribers.

© Butler Cox plc 1990

Productivity Assessment

Each subscribing organisation receives a confiden-
tial management assessment of its systems develop-
ment productivity. The assessment is based on a
comparison of key development data from
selected subscriber projects against a large com-
prehensive database. It is presented in a detailed
report and subscribers are briefed at a meeting
with Butler Cox specialists.

Meetings

Each quarterly PEP forum meeting focuses on the
issues highlighted in the previous PEP Paper. The
meetings give participants the opportunity to
discuss the topic in detail and to exchange views
with managers from other member organisations.

PEP Papers

Four PEP Papers are produced each year. They
concentrate on specific aspects of system develop-
ment productivity and offer practical advice based
on recent research and experience. The topics are
selected to reflect the concerns of the members
while maintaining a balance between management
and technical issues.

Previous PEP Papers
1 Managing User Involvement in Systems
Development

2 Computer-Aided Software Engineering (CASE)

3 Planning and Managing Systems Development

4 Requirements Definition: The Key to System
Development Productivity

5 Managing Productivity in Systems Develop-

ment

6 Managing Contemporary System Development
Methods

7 Influence on Productivity of Staff Personality
and Team Working

8 Managing Software Maintenance

9 Quality Assurance in Systems Development

10 Making Effective Use of Modern Development
Tools

11 Organising the Systems Development Depart-
ment

12 Trends in Systems Development Among PEP
Members

13 Software Testing

14 Software Quality Measurement

Forthcoming PEP Papers
Selecting Application Packages
Project Estimating and Control

Butler Cox plc
Butler Cox House, 12 Bloomsbury Square,
London WC1A 2LL, England
@ (071) 831 0101, Telex 8813717 BUTCOX G
Fax (071) 831 6250

Belgium and the Netherlands
Butler Cox Benelux bv
Prins Hendriklaan 52,
10756 BE Amsterdam, The Netherlands
@ (020) 755 111, Fax (020) 755 331

France
Butler Cox SARL
Tour Akzo, 164 Rue Ambroise Croizat,
93204 St Denis-Cédex 1, France
= (1) 48.20.61.64, Télécopieur (1) 48.20.72.58

Germany (FR), Austria, and Switzerland
Butler Cox GmbH
Richard-Wagner-Str. 13, 8000 Miinchen 2, West Germany
= (089) 5 23 40 01, Fax (089) 5 23 35 15

Australia and New Zealand
Mr J Cooper
Butler Cox Foundation
Level 10, 70 Pitt Street, Sydney, NSW 2000, Australia
= (02) 223 6922, Fax (02) 223 6997

Finland
TT-Innovation Oy
Meritullinkatu 33, SF-00170 Helsinki, Finland
@ (90) 135 1533, Fax (90) 135 2985

Ireland
SD Consulting
72 Merrion Square, Dublin 2, Ireland
@ (01) 766088/762501, Telex 31077 EI,
Fax (01) 767945

Ttaly
RSO Futura Srl
Via Leopardi 1, 20123 Milano, Italy
@ (02) 720 00 583, Fax (02) 806 800

Scandinavia
Butler Cox Foundation Scandinavia AB
Jungfrudansen 21, Box 4040, 171 04 Solna, Sweden
= (08) 730 03 00, Fax (08) 730 15 67

Spain and Portugal
T Network SA
Ntunez Morgado 3-6°b, 28036 Madrid, Spain
= (91) 733 9866, Fax (91) 733 9910

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55

