Computer-Aided Software -

BE,P

222>
'y)’))) >
Yy

2AA
SR
P’)’)) I
S

|
!
)
{
|

R |
PrILLLITYS
e’
gl

14
i

T

i
e

l
(.
&

(
(
|

Computer-Aided Software Engineering (CASE)

13

@ Butler Cox & Partners Limited 1987

Position Paper 2, June 1987
by Simon Forge

Simon Forge is a Senior Consultant with Butler Cox,
working out of both the Paris and London offices.
Since joining Butler Cox in 1986, he has conducted
research for a Butler Cox Foundation report on
system development methods.

Before joining Butler Cox in 1986 he was an
independent consultant, working for such consult-
ancy groups as Arthur D Little and Ewbank Preece
as well as software houses such as Steria in France.

Previously he was a Principal Consultant with
Ewbank Preece, specialising in the convergence of
computing with telecommunications. His consult-
ancy work included:

— Project supervision on behalf of a third-world
client of a Japanese contractor for software and
hardware for an airport radar system, including
contract negotiations.

— Software audit of a distributed system for
power-station operation.

He has also acted as project manager for the design
of ship automation systems as well as for the devel-
opment software and hardware for meteorological
data processing.

A graduate in automatic control from Sussex
University, Simon Forge has MSc and PhD degrees
in control engineering and digital signal processing.
He is a Chartered Engineer, and a member of the
Institution of Electrical Engineers. He is the author
of various papers, the most recent being on soft-
ware engineering for distributed processing.

Published by Butler Cox & Partners Limited
Butler Cox House
12 Bloomsbury Square
London WC1A 2LL
England

Copyright © Butler Cox & Partners Limited 1987

All rights reserved. No part of this publication may be reproduced by any method
without the prior consent of Butler Cox.

Printed in Great. Britain by Flexiprint Ltd., Lancing, Sussex.

Computer-Aided Software Engineering (CASE)

®© Butler Cox & Partners Limited 1987

Position Paper 2, June 1987

Contents
The purpose of this paper 1
What is CASE? 2
The origins and development of CASE systems 2
What differentiates CASE from other system development
aids? 2
Descriptions of four typical CASE products 4
Who supplies CASE? 7
How much does CASE cost? 7
What are the benefits from CASE? 8
How does CASE perform in practice? 8
The benefits from CASE are mainly in higher productivity
and improved user satisfaction 11
Limitations of CASE 12
There are problems in implementing CASE 12
How to choose and use CASE 13
Who should use CASE and how to decide 13
Choosing the product to suit your needs 13
In managing implementation, two stages are necessary 14
Changes will be necessary to exploit CASE fully 15
The future of CASE 17
CASE products will evolve and become less expensive 17
CASE research in the laboratory 17
CASE can help the role of the information systems
department to change 18
Conclusion 19

Overthe past few years a new term has been added
to the jargon of system development — ‘CASE’ —an
abbreviation for computer-aided software engineer-
ing. It is used to describe a certain kind of software
development aid, analogous to the computer-aided
design and engineering aids used in other branches
of technology. CASE originated from the initiative
of the US Department of Defense to support the
writing of software for complex real-time systems,
using the ADA language.

More recently, however, suppliers of proprietary
CASE products have started to promote their wares
to those responsible for conventional data process-
ing applications development. A number of users
have started to make use of such products. At the
same time, there is an ever increasing range of other
proprietary system development aids (methods,
tools, workbenches, ...) appearing in the market-
place. Each supplier claims their own product is the
answer to the system builders’ problems. There is
some confusion amongst both potential users and
the suppliers of the respective roles and virtues of
these products. It is not obvious how CASE relates
to them. Is it really something different or is it just
another name for a workbench or advanced system
building tool?

© Butler Cox & Partners Limited 1987

Chapter 1
The purpose of this paper

Because of its origins, CASE may appear to be less
relevant in the normal commercial systems environ-
ment than the other products developed to suit that
environment. But our view is that CASE does
warrant serious consideration and is likely to
become a valuable aid in the future.

The purpose of thisreport is to present a snapshot of

the state-of-the-art in the use of CASE and to
attempt to answer such questions as:

1. What is CASE? How does it differ from the other
system development aids currently being used?

2. What are the benefits from using CASE?

3. Who is likely to find CASE most useful and how
should they choose which CASE product to use?

4. How is CASE likely to develop in future?

The paper draws on the author’s research and per-
sonal experience in software development and
management.

Chapter 2
What is CASE?

The first question we attempt to answer in this paper
is, ““What is CASE?"" It is the application of a par-
ticular kind of computer-based tool to the system
development process. It is normally implemented by
buying a proprietary system consisting of a set of
software tools and, sometimes, the hardware on
which to run them.

CASE systems are not the only such aids that may be
applied by the system builder. Below, we briefly
review their origin and particular nature which
distinguishes them from other tools. We illustrate
their various facilities by reference to four typical
CASE products. Finally, we give estimates of the
costs that may be incurred by using CASE.

THE ORIGINS AND DEVELOPMENT OF
CASE SYSTEMS

Since the 1970s there have been many attempts
to make software development more consistent,
reliable, and manageable. Various system develop-
ment methods based on the concept of the system
life cycle have appeared. They consist of standard
procedures to be followed, techniques to be used,
and standard documentation. The methods define
what has to be done and the tools generally define
how to do it. They primarily help in improving the
quality of the resulting software and make the plan-
ning and control of the development process more
manageable and less dependent on the personal
skills of the staff.

Various development tools have also been invented
to support the methods. They help the analysts and
programmers execute the various activities and use
the techniques forming the method. They are essen-
tial to the successful use of the methods and are the
primary source of productivity gains. Unsupported
methods can fail because of the clerical drudgery
they can impose if the routine administrative pro-
cedures (such as documentation) are not automated.

CASE systems originated as a collection of tools used
to support one kind of system development — real-
time systems in the defence environment. Besides
supporting the development process tasks directly,

they also embody the concept of assembling soft-
ware from common building blocks in a similar way
to that used for constructing different electronic
assemblies from a range of standard components.
Their purpose is to make the software development
process more reliable and repeatable.

CASE systems have developed over time typically
by bundling together tools that were originally
designed to be used individually and to support only
one phase of the system building process. More
recently, integrated toolkits have emerged in which
the interfaces between the separate elements are
fully automated.

CASE SYSTEMS HAVE WIDENED IN SCOPE

The scope of CASE tools has widened and is still
continuing to do so. They are no longer confined to
realtime or embedded-system development. They
can now be used for large-scale administrative
applications development.

Their scope is extending in the following ways:

— From being used for realtime, dedicated micro-
processor systems running under monitors or
specialised operating systems to being used for
commercial data processing applications using
Cobol.

— From offering support to only the programming
phase, to supporting requirements’ analysis, sys-
tem specification and design, and maintenance.

— From treating data as a subsidiary concern to
treating data and databases as the primary
concern.

WHAT DIFFERENTIATES CASE FROM OTHER
SYSTEM DEVELOPMENT AIDS?

The two key characteristics that differentiate CASE
from other previous assortments of development
tools are:

— The integration of the tools to serve the whole
development life cycle in a consistent and homo-

BUTLERCOX

© Butler Cox & Partners Limited 1987

genous way. A common user interface is provided
for the developer.

— The decoupling of the analysis and design of the
system from the use of a specific target program-
ming language.

The main factors that CASE systems incorporate to
achieve these characteristics are:

— Integration of the various development phases so
that handover of information from one to the
next is performed automatically, without re-
entry of data, or any human intervention to set
up interfaces or translate formats. All the tools
should be completely compatible.

— Use of a central database (or ‘encyclopaedia’) of
all the design specifications to unite the tools and
phases (see Figure 2.1). This central database may
house its own data dictionary as well as the design

Figure 2.1 CASE systems use a central database to unite
the various tools

Analyse requirements in a formalised manner

Analysis Develop specifications as entities

and relations

Specification database

Prepare conceptual design. Main entities and
relations are mapped to computing solutions

¥

Prepare detailed technical design for
data and processing (flow charts, etc.)

Design

Data
dictionary

Design
database

\

Generate pseudo-code as high-level
description

Coding X
A Y Y

Generate L Generate
tests target code

Programme
code
database

The CASE design encyclopaedia is the collation of databases
from each of the three levels

© Butler Cox & Partners Limited 1987

Chapter 2 What is CASE?

Figure 2.2 The dictionary or encyclopaedia of system
structure and specifications is the hub of
CASE systems

Typical encyclopaedia contents
Element Definition Examples
Object Function Service
Person Data
Processing
Information storage
Attribute Information provided | Name, type, definition,
for each object last update, comments
Relation Relations between Data domains
objects containing objects
Processing using an
entity

specifications and program descriptions (see
Figure 2.2). It is used to validate and check
throughout development, acting at each phase as
arepository for the design advances and for valid-
ation. Program tests may be generated from it.

— Reliance on graphics to produce a consistent user
interface for all tools right through the life cycle.

— Support for database access. This varies consi-
derably by product but the trend is to provide
data-structure and access support for several
types of database.

— Decomposition of complex system structures
using object-orientated analyses — entities, rela-
tions, objects are the building blocks at all levels
of the creative process.

— Use of intermediate levels of abstraction to
describe the system. This can be at:

® The design specification stage, at an abstract
conceptual level, close to the definition of
business requirements.

® The program-design stage, using a pseudo-code
above the normal high-level programming
language. This allows freedom to generate
code in any target language or environment.
These tools for formalising design in a pro-
edural way, like a high-level program, can be
used for ‘reverse engineering’ — the ability to
generate specifications from code. This is
valuable in maintenance, for understanding
and documenting changes. Existing code, not
created on the CASE system may even be
‘reverse engineered’ in some systems.

The evolution from the earliest programming aids to
the facilities offered by CASE systems today is
shown in Figure 2.3 (overleaf). But CASE products
are still evolving. Figure 2.4 (overleaf) shows how

Chapter 2 What is CASE?

Figure 2.3 The evolution of CASE by the integration of
tools via a design database and a common
graphics interface

Facilties added to aid

system development

A

CASE today ., — — — —

-

Graphics interfaces

r

Pseudo-code
generators

|
: Formal specifiers

1
Reguirements' analysers
1

| Development
workbenches

I
| Autodocumenters

ASBTs — code and

| databases

: Code generators

T
| Data dictionaries

Debugger

Compilers

Keyboard editor

p—t+—t - +—= ——

their current state of development compares with
discrete development tools and programmers’
workbenches.

DESCRIPTIONS OF FOUR TYPICAL
CASE PRODUCTS

CASE products vary enormously in scope, price, and
application area. We concentrate on those intended
for the information systems department of a large
corporation.

CASE SYSTEMS CAN BE BASED ON WORKSTATIONS
ALONE OR ON A DEVELOPMENT MACHINE

The CASE system is made up of a number of soft-
ware modules residing in a workstation, a develop-
ment machine, or both. They provide the presen-
tation display in the workstation, with a windows
manager, and modules for each phase based around
the design encyclopaedia. Figure 2.5 (opposite)
shows an ideal configuration for a CASE system.

Physical implementation may be as a network of
high-power workstations, with their own discs and
servers for common files and printing. Apollo Com-

bl : i
Assanpie puter sells over 20 per cent of its workstations to the
CASE market, but the dominant workstation is the
— T = 7 7 PC-AT, usually with colour screen, CGA board,
' ' : : = additional memory, and a hard disc. Alternatives are
1950 1960 1970 1980 1990 Year a dedicated development machine, or to use the
target machine itself, with development work-
stations attached (see Figure 2.6).
Four major products are described below and their
main features and approximate costs are listed on
page 6 (in Figure 2.7). Readers should note that as
these products are still evolving, the features shown
Figure 2.4 The relative maturity of system development tools
A
BASE Used by all companies /—‘
Leaders in industry implement 4%
KEY for competitive edge B
5
§ PACING In pilot systems
o
©
>
'5 EMERGING In laboratory
=
1990 2000
4

© Butler Cox & Partners Limited 1987

Chapter 2 What is CASE?

Figure 2.5 The ideal software configuration for a CASE system

Mainframe components

Workstation components

[r Requirements analyser l | Specifications description |

| | Documenter
i | Data design Prototype
; l [Textedior |
I Graphics manager
l I Processing Pesudoicode Code generator
| WIMPS interface | design generator
| | Simulator
1 Schematics I
| generator |

Design encyclopaedia

Figure 2.6 Possible physical configurations for CASE systems

Workstation Development environment Target environment

1. Standalone or networked workstations

Workstation(s) with hard discs Target
and development software machine

]
=

b

2. Workstations networked to development
machine

Development § Target
Graphics workstations - machine machine

have presentation [>

software only

3. Shared target production/development
machine with workstations

Workstations with discs and paris =X Target
of the development software machine

© Butler Cox & Partners Limited 1987 51

Chapter 2 What is CASE?

Figure 2.7 Four typical CASE products that cover all or a significant part of the life cycle

PHASE OF THE ALCIDE
LIFE CYCLE PACBASE (METSI!+ DELTA) IEW MULTIPRO V3
Requirements analysis ~ v — (Meeting support) »
Specification - - i
Conceptual design » - - =

Data I 4 w2 v

Processing - - IDA v v

DBMS ~ 7 P -
Detailed design 7 v (Beta-test) o

Data S =

Processing weak >

DBMS access » -
Auto-code generator = »~ DELTA (Beta-test) (late 1987)
Test -
Integration and test on target o~ v —
Maintenance » w v -
Supports project management +~ MCP (PMW, not integrated) w
ATTRIBUTES
Encyclopaedia/structure-base v v » v
Logical description or ! » » Conceptual Specifications
pseudo-code models base only
Cobol-oriented P - e P
Method-oriented MERISE, Yourdon MERISE, SDMS, MERISE, MERISE, SADT,

others IEM, AXIAL, others EXPERT, others
Configuration Target or development | Standalone development Standalone PC-AT Standalone development
mainframe plus PC-AT workstation | workstations; optional | machine on networked
central consolidation PC-ATs

Approximate cost of Small $150k Large (26 workstations) Workstation $12k $40k plus
typical configuration Large $450k $400k, entry-level $200k | Central facilitity $100k $15k per workstation

Key: » =phase the product supports or attribute it has.

applying to each of the products are likely to change.
The table is not meant to be a guide as to which
product to buy but rather to indicate the kinds of
features that are typical of CASE products at the
time this paper was written. All of them use graphics
and workstations (usually a top-end IBM PC-AT with
hard disc and colour graphics) either standalone or
with a development machine.

PACBASE

PAC, aset of development tools from CGI, hasa long
history, going back to 1972. The latest version,
PACBASE was launched in 1983 and addresses all
phases of the software development life cycle, but
not the overall project management. It is already
well-established, at least in the French market.

ALCIDE

METSI (France) and DELTA (Switzerland) have put
together a system, ALCIDE, covering all aspects-of
life-cycle and project management using IDA (a
development aid) and Delta (a code generator). Itis

complex and rich in features, being supported by the
latest university research in Europe. It is closely
linked to the US company, META Systems, and its
ISDOS products. It is one of the few CASE systems
to be complete and integrated. It fully exploits the
intermediate level of abstraction of a pseudo-code,
with the possibility of ‘reverse engineering’ of code.
Productivity gains of around 50 per cent over the
total life cycle are claimed.

IEW (INFORMATION ENGINEERING WORKBENCH)

The Information Engineering Workbench product
from James Martin uses an expert system to form
models and check coherence. It is most impressive
in terms of its utilisation of graphics but currently it
covers only the analysis and conceptual design
phases. Code generators and detailed design tools
are in beta-test, for release in October 1987. The
project management tool, PMW (Project Manager
Workbench), is not integrated with the PC-AT work-
station. Design encyclopaedias can be consolidated
onamainframe-based facility. Prototyping and end-
user interfacing are well supported.

© Butler Cox & Partners Limited 1987

MULTIPRO V3

A set of distributed PC-ATs provide MULTIPRO’s
development environment of a workbench and a set
of tools covering analysis, design, and project
management. Design tools are based on the US
product Excelerator from Index Technology. The
supplier claims a 20 to 30 per cent gain in produc-
tivity is possible in these phases with 8 to 10 per cent
over the life cycle. The product is well accepted,
being used in 50 sites with 1,500 workstations,
worldwide.

Apart from its current lack of code generation and
support for the later phases of development, the
product appears well integrated, with comprehen-
sive tools and a consistent user interface. A code
generator is expected later in 1987.

WHO SUPPLIES CASE?

CASE products have evolved largely in the United
States and spread to Europe via local software
houses that may enhance or resell a US product.
IDA, part of ALCIDE is entirely re-engineered by
developments in European universities, so that its
US origins are to be found in its principles rather
than in its implementation.

The market is currently made up of several small
companies that specialise in CASE, with a few larger
software service companies that have developed a
set of ‘traditional’ products, created in the early
seventies, into an integrated environment.

HOW MUCH DOES CASE COST?

An important point to remember in evaluating
whether to use CASE or not is that the cost of the
proprietary product forms only a fraction of the total
costs that will be incurred. It may also lead to the
need to increase the computing power available on
the system development machine.

PURCHASE PRICE OF CASE SYSTEMS

The costs given in Figure 2.7 are approximate. Prices

© Butler Cox & Partners Limited 1987

Chapter 2 What is CASE?
vary due to differences in configuration:

— The type of development machine or target
machine.

— The number of workstations connected; there is
often a price per workstation.

— The size of installation; most CASE environments
are modular so options can be added at will.

For example, a small installation on a supermini-
computer with under 10 workstations could be
bought for $150,000. A large installation on a
mainframe development machine with more work-
stations could cost $500,000.

CASE COSTS MUCH MORE THAN THE PURCHASE PRICE

The CASE system may represent only 50 per cent of
the total capital cost and only 30 per cent of the
recurring costs. A more realistic estimate of the total
cost might include the following approximate rela-
tive costs.

Non-recurring items:

— Feasibility study to evaluate and

choose CASE tools 10 per cent
— Installation of tools, including

manpower 20 per cent
— Training 20 per cent
— Purchase of CASE tools 50 per cent
Recurring items, per annum:
— Overhead on machine capacity 70 per cent
— Maintenance contract 30 per cent

The overhead item in the recurring costs is due to the
fact that CASE tools can be expensive in their
demand for more machine power. Certain code
generators require the development machine to be
expanded by between 150 per cent and 250 per cent
in power to sustain fast response times and maintain
the development pace.

Chapter 3

What are the benefits from CASE?

As we have shown in Chapter 2, the costs of imple-
menting CASE are substantial. It is therefore now
appropriate to try and evaluate the benefits. We also
need to consider the limitations of current CASE
products in achieving these benefits.

HOW DOES CASE PERFORM IN PRACTICE?

We have already outlined in general terms the
benefits that CASE (and other development aids) are
intended to achieve. Apart from improved pro-
ductivity, measured in lines of code (or function
points) per man-day, these other benefits are
difficult to quantify, particularly in financial terms.
We therefore feel it helpful to first refer to the actual
experience of four user organisations to describe the
impact of CASE. Below, we outline the recent ex-
perience of four different European organisations,
each using a different CASE system. They are:

— A transport authority that has decided to integ-
rate IDA, a development tool, with DELTA, a
code generator, as the programming aid in the
form of the product ALCIDE referred to above.

— A pharmaceutical and chemical company that has
implemented various generations of PAC over the
last 15 years.

— A manufacturer of electronic equipment that
uses the Information Engineering Workbench
(IEW).

— A major bank that uses MULTIPRO.

EXPERIENCE WITH ALCIDE IN A TRANSPORT AUTHORITY

A major transport authority with several different
computing environments decided to integrate IDA,
covering the development phase, plus a code gen-
erator, DELTA, as the programmingaid. From these,
the integrated product, ALCIDE, referred to in the
previous chapter, has been produced.

Major problems promoting investment in CASE
were:

— A heavy maintenance load which new program-
mers had difficulty in serving.

— The need to change computers every three to five
years, with software 15 years old.

— The fact that users were demanding more appli-
cation power.

— Further new system demands as more power
became available.

To solve these problems tools were sought which
would:

— Allow design by the users.
— Allow implementation by programmers.
— Provide documentation aids.

— Support maintenance of existing software as well
as new developments.

No fourth-generation language is yet used, though a
query language for the specifications database is
used. The Cobol code generator was chosen as
various target machines, from DEC MicroVAX to
IBM, and Bull DPS7/8, HP, Philips, and Olivetti, can
all be served from the same pseudo-code source. IDA
was chosen because its specification language offers
high-level design. The benefits are:

— It can be decentralised.
— It provides standardised documents.

— It offers experimental validation.

The database design workbench can be used for
several database types — Codasyl, sequential
indexed, and relational. ALCIDE’s CASE environ-
ment follows MCP for project management and
MERISE for the development method. Formal speci-
fications, with object-relation structures are used to
provide models for simulation and prototyping.
Graphics output, now via DEC MicroVAX, is to be
ported to a PC-based workstation, under MS-
Windows. Experience so far is limited but the major
costs of assembling and implementing a new product
are considered worthwhile in view of the reduction
in maintenance anticipated:

— Reversion from application to pseudo-code for
new and existing programmes.

T 1y

BUTLER COX

© Butler Cox & Partners Limited 1987

Chapter 3 What are the benefits from CASE?

— Complete documentation.

— Generation of standard documentation for
existing applications by reversion to pseudo-code.

— Three levels of cross-reference to validate from
maintained code up to specifications.

Training courses of two weeks each on IDA and -

DELTA are needed for staff.

The project is only in the pilot phase now, with major
effort having gone into formation of the CASE plat-
form on a BULL DPS 8/70 with terminals, and on
standalone MicroVAX workstations.

ALCIDE will be used for:

— Development of large projects involving Codasyl
databases and Cobol for commercial data pro-
cessing.

— Design of other large systems and microcomputer
projects.

— Applications that require automatic code genera-
tion, without a design study.

ALCIDE has brought rigour in design and architec-
ture of systems plus automation of documentation.
Productivity gains, especially in the maintenance
phase, are yet to be measured; maintenance is the
area in which spectacular economies are hoped for.

The main difficulties have been with the program-
mer interface on the terminals. (The graphics work-
stations are better.) Moreover, the environment is
incomplete. Tools to design screen forms and other
implementation tools are still to be added.

Future development will be based on small test
projects. In 1988 they expect to reformulate the
development and maintenance strategy following
the outcome of the pilot studies.

Technical developments will include:

— Re-engineering the graphics interfaces on the
workstations.

— Providing interfaces to fourth-generation lan-
guages, and relational DBMS.

— Providing models and simulated animations.

EXPERIENCE WITH PACBASE IN A PHARMACEUTICAL
COMPANY '

A major pharmaceutical and chemical company has
been using various generations of PAC products
since 1972. Operations are based on IBM 3081s and
IBM 3083s at four sites with 420 terminals, 250 video
terminals, and 70 PCs, in various European coun-
tries. A dictionary with 18,000 references hasbeen

© Butler Cox & Partners Limited 1987

built up, and there are 3,500 files and 5,500 pro-
grams of 1.4 million PAC lines. A study in 1983 of the
computing department efficiency concluded that
the predicted increase from 2 million to 6.2 million
lines of Cobol code would require an increase from
30 up to 78 programming staff in development and
maintenance. Installation of PACBASE in 1983 has
allowed the department to increase productivity
three-fold to 163 lines per manday. The program-
ming team has decreased to 28 people but has main-
tained the existing code and developed 4.2 million
lines of Cobol.

Although tools are only used in programming, prin-
cipally in rapid code generation, actual payback time
of the PACBASE tools was 16 months. The company
was in a strong position to exploit new tools as its
basic programs were already in PAC form and adata
dictionary existed. PAC-TP and PAC-Batch had
been in use since 1980.

The major advantages are seen as ease of training,
documentation aids, standardisation of procedures,
and ease of use, as well as improved productivity.
The toolset has some problems however. It is not
designed for end users, only professionals. The
performance and ease of use of PAC-code are not at
the level of fourth-generation languages such as
Focus, now being tried. Moreover, the data dict-
ionary structure that comes with the kit does not
have the rigour of a modern DBMS. This makes the
task of purging and update of the data dictionary
even harder. This is seen as a significant problem.

Ease of training is also seen as a particular advantage
— aprogrammer can be trained on the toolset in 25
days. A programmer for the PAC environment who
has a good secondary education and two years of
higher education can become proficient withinafew
months of leaving college.

Costs of installation are in the order of:

Capital:
Feasibility study $6,000
Purchase PACBASE software $150,000
Installation $90,000
Total capital cost $246,000
Recurring costs:
Overhead on machine time,
and backups $50,000 pa
Maintenance $23,000 pa
Total recurring cost $73,000 pa

The above example covers program generation. The
next step is to attack analysis and design and the
company hopes installation of PAC-Design will re-
place the paper-and-pencil approach still used. This

Chapter 3 What are the benefits from CASE?

will lead to tools that designers and users can use
together.

EXPERIENCE WITH IEW IN AN ELECTRONICS
MANUFACTURER

A manufacturer of electronic controls and equip-
ment with over $1 billion turnover and 14,000 staff,
has computing centred on IBM 3083, 3380, and 4381
machines, plus decentralised DEC VAXs and IBM
4341s, with 900 screens and 200 PCs in 65 sites in
Europe. The information systems department has
decided to use James Martin’s Information Engin-
eering Workbench. The tools are in initial testing
phase now and are incomplete; only analysis and
design are covered. IEM — a project management
tool —and a code generator are now in beta-test, and
is due for release later in the year. The tools support
IEW methods. AXTAL (from IBM) had previously
been tried and abandoned.

Tools are currently used at the interface with end
users. The methodology used calls for heavy
involvement from the system users. This is con-
sidered well worthwhile: if a user is not prepared
to devote resources, the project is abandoned.
The approach imposes structure and discipline
on design and analysis, forcing end-user validation.
Sub-groups of five to ten people are formed under
two effective project leaders, one from the com-
puting department, one from the user area. Tensions
within this structure are inevitable but lines of
responsibility into both departments have been
found necessary. Up to ten sessions each of two
to three days are necessary. Data structures are
designed and added to a master encyclopaedia.
Definitions of internal and external data flows,
processing, and entity decomposition are carried out
in these sessions. Heavy reliance is placed on the
colour graphics PC-workstations. With these, a user
can easily formulate and change proposed structures
during the definition dialogue. Users find it easier to
articulate needs and change prototype schematics.
In this situation, the analyst becomes a consultant.
Insistence on fixed-length meetings is aimed at
achieving consensus between user and develop-
ment-consultant.

The problems encountered include:

— Getting users to accept the need to structure data
first.

— Tools are available for only the analysis and
design phases.

— Events are not yet treated as objects.

— Output documents take a long time to formulate
and print on the configuration used.

So far, four encyclopaedias have been built up for

10

major projects involving 860 data flows, and 270
entities with 1,190 attributes.

The next step is to add a code generator.

EXPERIENCE WITH MULTIPRO IN A LARGE BANK

A major European bank, created from the fusion
of two separate banks, found itself with many types
of equipment, and a wealth of methods. Over 1,000
terminal users supported on IBM 3081, Unix, and
other computers were demanding new applications.
A large legacy of old programs had been bequeathed
from the two previous banks. These systems needed
integration or replacement; there was no documen-
tation, nor dependable staff support as body-shop
programmers were the norm.

The first step was to install a development method
and to provide support for it. Two products, MERISE
and EXPERT were chosen. A CASE system to for-
malise design, and that would support the method,
force consistency and standardisation, and provide
documentation aids, was sought via a series of dis-
cussions with suppliers. MULTIPRO was chosen as it
was new, but not too complex. It could easily be
assimilated by a development team which was
already overloaded.

MULTIPRO is now used to support a range of too}s.
Its WIMPS (‘windows, icons, mouse and menu pull-
down system’) interface is proving to be an excellent
productivity aid. The tools are used in analysis and
high-level design. Physical design aids and code-
generators are still to be added.

A formal approach to installation was adopted:

— Awareness was created in top management.

— A team of four programmer/analysts was formed
to undertake pilot trials on a standalone work-
station for several products and configurations.

— Results were evaluated and a final choice made.

— An investment plan was presented. This consis-
ted of a three-year budget of over $1 million to be
spent on:

® Workstation software and a network.
® A workbench machine for MULTIPRO.
® MULTIPRO software for the workbench.
® A data dictionary.
® PC-AT hardware for 100 developers.
® Support for the MERISE method.
Additional installation costs include staff time, esti-

mated at $400,000 a year over three years. It is too
soon to evaluate the return on this investment.

BUTLER COX

1:.10

© Butler Cox & Partners Limited 1987

Chapter 3 What are the benefits from CASE?

THE BENEFITS FROM CASE ARE MAINLY IN
HIGHER PRODUCTIVITY AND IMPROVED
USER SATISFACTION

While the above case histories throw some light on
the benefits to be expected from CASE, hard prac-
tical experience is limited by the novelty of using
such products in a commercial environment. We
therefore now draw some conclusions on the bene-
fits that CASE should deliver, at least in theory.

Productivity and user satisfaction are the two im-
portant parameters in measuring the information
system departments performance. CASE can im-
prove both these parameters.

PRODUCTIVITY IS INCREASED IN A VARIETY OF WAYS

Higher productivity may be assessed as direct
savings in analyst, programmer, and end-user time.
However there are a large number of less tangible
benefits that contribute to, or are additional to,
better productivity.

Total savings

Suppliers’ claims for total savings vary enormously.
All suppliers say each installation is unique and
generalisations cannot be made, as products have to
be adapted to the user company and its methods.
However, general claims of 10 per cent to 50 per cent
direct savings over the whole development life cycle
are common. One of our case-history users notes an
impressive 60 per cent saving but thisisin a carefully
controlled, centralised environment with a long
history of consistently using the predecessors of the
CASE system.

Direct savings
The total savings quoted above come from a number
of contributions that speed up development:

— In requirements analysis, the interaction with
users can be accelerated by graphical aids.

— In system specification, a library of design speci-
fications can validate later phases and be used for
maintenance to understand the functional flow.
Notions of entities, relations, and objects are used
to build up a functional definition, and are well
understood by end users.

— In system design, CASE graphically supports
rapid generation of high-level structures from
specifications for the data design and processing
design, with clear indications of database require-
ments and validation checks.

— In prototyping, examples for end-user validation
can be introduced at several phases to demon-
strate the programmer’s or analyst’s understand-
ing of the users’ needs in a form users can more
easily relate to.

© Butler Cox & Partners Limited 1987

— Indetailed system design, the high-level concepts
are translated into physical designs with a wealth
of checks and rules, matching the target environ-
ment to the design specifications. A high-level
pseudo-code description may be generated.

— Atany stage, a file and documentation, describ-
ing the relations and composition of the software,
may be automatically generated in a formalised
manner.

— In coding, auto-code generators may translate the
pseudo-code description to produce Cobol for the
target environment, with savings in time and
errors.

— In maintenance, CASE has its greatest benefits.
Documentation, standardised structures, and
high-level descriptions aid comprehension of old
code. Validation of code against specifications
checks for conflicts in the evolution of the system.
The most advanced systems offer ‘reverse engin-
eering’ — the ability to take old code, whether
generated on the system or not, and reverse the
process to provide a high-level specification from
which new code can be generated for a new
target machine, or to control extensions without
introducing conflicts.

Less tangible benefits
Less tangible benefits include:

— Having a central resource holding all the com-
pany’s programs in a high-level representation.

— Standardisation of the development approach,
with a uniform human interface in all the devel-
opment phases, so that transfer of development
or staff is made much easier.

— Training time and end-user interaction time are
reduced by the graphics and mouse-based inter-
faces.

— The end-user involvement with systems develop-
ment and the systems department is improved as
support for such interaction can be specifically
included. Validation of system design by proto-
typing is an important technique here.

BETTER USER SATISFACTION COMES FROM THE
IMPROVED USER INTERFACE

Few suppliers claim definite benefits from the
improved user interface in CASE systems, but im-
proved user satisfaction due to CASE appears torest
on:

— Faster development.
— Lower maintenance charges.

— Validation and tangibility of output during the
design process, especially where prototyping can
be used.

11

Chapter 3 What are the benefits from CASE?

— Raising software production from the technical
detail level to the level of business entities and
relations, so that the gulf between users and the
systems department is narrowed.

LIMITATIONS OF CASE

CASE systems are not a complete answer to the
productivity problem. They are limited, in that:

— Their flexibility and versatility is restricted. They
are currently oriented to centralised software
production on larger projects. For small projects
they can be cumbersome and expensive.

— They are still principally aimed at a single pro-
gramming language, Cobol.

— They are not intended for complex multiple-
machine architectures.

— The current CASE systems described in Chapter
2 are not intended for realtime systems.

— Their portability may be restricted. CASE systems
are aimed at particular development environ-
ments, usually IBM, with DEC falling a poor
second. On the target side though, some products
specifically exploit the higherlevel abstraction to
produce code for a range of target machines (for
example ALCIDE).

— The cost of an entry-level system may be pro-
hibitive.
— A particular management style and company

structure are needed, where centralised opera-
tion and methods are in place.

— Training is needed to exploit CASE fully. In
certain organisations, a complete rethink of the
creative process is necessary, as it can limit design
options.

— For very high performance systems, such as high-
volume transaction processing, it may be neces-
sary to go outside the languages and tools of the
CASE system to a specialist environment.

— Database interaction may be limited. Most CASE
systems offer outputs and interfaces to the major
IBM databases but few do to all sequential in-
dexed, relational, and Codasyl databases.

THERE ARE PROBLEMS IN IMPLEMENTING
CASE

The problems experienced in implementing CASE
occur in three areas:

— Technical.

12

— Company structure and systems department
organisation.

— Training and acceptance.

Users appear more perturbed by the first than the
other two problem areas.

TECHNICAL PROBLEMS
Technical problems include:

— The run-time power of a central development
system may need to be increased much more than
expected (perhaps by 250 to 300 per cent).

— Using a large CASE system on a development
machine not demonstrated by the supplier may
lead to unpleasant surprises in performance.

— Document output can be slow if the preparation
and print facilities are inadequate.

— Interfacing CASE systems to existing data dic-
tionaries may slow performance.

OTHER PROBLEMS

Training has proved a problem where there is strict
delineation between end users, analysts, and pro-
grammers. Programmers, analysts, and end users
tend to become more closely involved with each
other when using CASE.

Acceptance may be difficult. CASE will mean very
significant changes in system development pro-
cedures. Convincing all the dp staff to use the new
approach and the tools may not be easy. Some CASE
users express a hope that 80 to 90 per cent of the
department would endorse the methods quickly, but
the rest would take time to convert to the new
methods.

Depending on the methods, various levels of com-
mitment are needed from end users. Responsibility
for specification errors shifts from the information
systems department alone, to the information sys-
tems department plus the end user when using
CASE systems. As end users become aware of this,
they may resist it. One CASE system manager deci-
ded that if the end user will not commit a project
manager during the requirements analysis phase,
then he will not develop the application.

A managerial and technical problem is that of
security. Storing the references, definitions, and
designs of every piece of software and data in one
location poses significant problems of access control
and physical backup.

BUTLER COX

© Butler Cox & Partners Limited 1987

Chapter 4

How to choose and use CASE

Having reviewed the costs, benefits, and limitations
of CASE, we now address the questions of whether,
and how, to make the best use of CASE. Clearly, the
answer to these questions depends on the nature of
the organisation and its system development needs
and problems. In the following sections we give some
guidance on:

— Who should use CASE and how the decision on
whether to use CASE may be made.

— How to choose the most appropriate product if it
is decided to use CASE.

— How to manage the implementation of CASE.

— What the implications of using CASE may entail.

WHO SHOULD USE CASE AND HOW TO DECIDE

CASE systems are most appropriate for users that:

— Have a major backlog of applications and a heavy
maintenance load.

— Have a computing load that is increasing.

— Use professional staff for centralised software
development.

— Are prepared to invest large amounts in both
money and skilled staff time.

— Have astrong vision of the future and are able to
identify development and maintenance as a
business problem that must be turned into an
opportunity.

— Have a leader and top management strongly
behind the need to change.

Those who expect that their business will needa 100
to 200 per cent increase in the volume of applica-
tions over the next five years should consider CASE
seriously. Critical questions in deciding whether to
use CASE include:

— Is it really needed? What is the justification?

— What budget is available? Entry-level CASE
systems require at least $100,000.

— Can the existing development environment
support CASE, or is a new one needed?

© Butier Cox & Partners Limited 1987

— Will the organisation accept a centralised
repository for all the company’s specifications
and pseudo-code?

— Isit prepared toregenerate or coordinate existing
code to be coherent with the new code?

— How can existing systems and code be maintained
during the transition?

— Are the resources available to install CASE and
train staff?

— Arethe ‘politics’ favourable to a major change in
the development process with more end-user
involvement?

— Is the management style of the company in line
with this form of development?

— What is the application portfolio? If it is a mixture
of realtime and commercial dp, then the former
may not be well accommodated. Packages and

" existing system building tools will have to be
treated with care.

The key questionis: *‘Can you afford to wait?’’ The
CASE systems market is not mature but in the next
two years major advances are expected. Deferring
any decision for one to two years may be prudent,
but initial planning could start now if you have
serious quality, backlog, and user-dissatisfaction
problems, as these are symptoms of a potential crisis.

The alternatives to using CASE now are:

— Adopting an advanced system building tool,
perhaps one that involves end users heavily, if
support can be coordinated.

— Integrating your own set of tools and methods, if
the staff resources are available.

— Preserving the status quo, and waiting until CASE
is more mature, some time in the 1990s.

CHOOSING THE PRODUCT TO SUIT YOUR
NEEDS :

Products currently available are limited and often
only partially cover the diverse needs of the infor-

13

Chapter 4 How to choose and use CASE

mation systems department. No proprietary method
will cover all a company’s needs. CASE products
which are particularly suited to attacking the most
serious development problems should be selected.

In selecting a product, questions to be considered
include:

— What productivity increase can the supplier
demonstrate?

— Will it support existing code, documentation,
specifications and operating systems, as well as
new ones?

— What is the net effect on development costs and
on the life-cycle costs of software?

— What methods does the CASE system support?

— How will it support integration of applications
from different areas of the business in the future?

— Which databases does it interface to now, and will
it interface to in the future?

— What is the position on any advanced system
building tool already in use?

— How much end-user involvement does it allow, or
call for, and how much scope do you want to give
end users?

— On what development environments does the
CASE system run satisfactorily.

— What packages will it interface with, already in
use or planned?

— How does it fit with your mix of computing
(batch, TP, and so on)?

— How easy is it to use for analyst/programmers and
end users, and what training is necessary for each
(at what cost)?

— What security measures for access and backup
are provided?

— What impact will it have on your existing skills
and the development process? Can they be
re-used?

— Does installation require long and expensive
supplier support?

— Doesit have a future? CASE systems may have to
be written off over 5 to 10 years, so that what is
in beta-test and what is promised is important.

— Is your culture centralised and carefully
controlled or do you need pro-active support? The
product should fit the culture.

— Who is the supplier and what are their survival
chances? A CASE system should be chosen.as
much on the status of the supplier as on that of the
product. Eventually all the company’s existing

14

and new systems (and so all the dp-related
business) will depend on that system.

— How widely is it used?
— What interfaces are available to other products?

— Does it require a standalone development system
or could it be used on an existing production
machine and what load would that impose?

IN MANAGING IMPLEMENTATION, TWO
STAGES ARE NECESSARY

Implementing a CASE system at your development
centre implies fundamental change in the informa-
tion systems department in organisational as well as
technical ways. One way to smooth such a signi-
ficant change is:

— To plan it, top-down.

— To implement it, bottom-up, turning plans into
action in a piece by piece approach.

In planning, careful preparation is necessary:

— Prepare a vision statement which defines the
goals and is easily assimilated by top manage-
ment, with clear savings, benefits, expenditure,
and payoff.

- — Present this, and ensure top management is

prepared to invest the resources and that the
manager for the information systems department
is completely in favour of the expenditure. Vital
resources will have to be diverted to the CASE
system installation.

— Prepare a budget schedule for a task force to
implement a pilot project, with three or four
people of average ability in it. Time and cost of
implementation varies with the formalisation of
the company structure.

— Enlist an evangelist in senior systems manage-
ment, if possible the manager of the department,
to promote the concept with user department
managers.

— For implementation, review the processing
power of the development system to ensure it is
adequate and procure new capacity if necessary.

— Allow a timescale of at least three to six months
for planning re-organisation, procedures, train-
ing, and installation and 12 to 36 months for com-
plete conversion of all the systems development
staff.

— Make use of the supplier’s post-sales support if
necessary.

— Set up a formal training scheme, initially for the
task force and subsequently for the rest of the
department.

BUTLER (X

© Butler Cox & Partners Limited 1987

— Use the installed CASE system on a pilot project
that is not critical but does require serious effort
(not a toy). Some users are restricting the use of

CASE to only large, new projects (over 10
man-years).

— Evaluate the results and use them in planning
how to progress the implementation.

— Begin re-organising the department along the
lines dictated by the CASE system operation,
once it has proved its worth, with standards and
procedures that fall in line both with your own
and with the system’s standards and procedures.

CHANGES WILL BE NECESSARY TO EXPLOIT
CASE FULLY

CASE systems bring a new style of working to the
department that is best supported by:

— Use of system development methods.
— New organisation structures.
— Generalised roles for staff.

— New relationships with end users.

METHODS ARE NEEDED

A first change in the development approach could be
to install a system development method, if none is
already in use. CASE systems are designed to sup-
port a method; without one the creative process
becomes chaotic.

ORGANISATION AND ROLES WILL CHANGE

The organisation of the department will have to be
reviewed as CASE tools tend to blur the division
between analysis and programming. At the same
time, they reduce the need for detailed knowledge
of the programming environment that was pre-
viously required. The distinct roles of analyst and
programmer may need integration into one role.
Some specification and analysis tools can be
exploited by end users directly, so this should be
allowed for. The trend to advance the responsibility
of end users in the life cycle has to be carefully
watched and exploited. A new team structure, ofa
smaller number of development staff, plus end users
and a coordinator, for end-user interfacing, hasbeen
found to work.

In summary:

— Integrate analysts and programmers into small
teams, each perhaps with its own office.

— Make end users part of the development team for
certain phases.

— If existing applications have to be maintained

© Butler Cox & Pariners Limited 1987

Chapter 4 How to choose and use CASE

outside the CASE environment, or if there is
a demand for high-performance systems that
cannot be produced within it, concentrate the
specialist expertise required in separate teams.
Try to introduce documentation that is com-
patible with the new systems.

One of the boons of CASE systems s that their users
are shielded from some of the detail. This has re-
duced the training necessary for development staff.
As we explained earlier, one user has been able to
train programmers straight from a two year college
course into full team membersin under four months,
a process that would normally take more than
twelve months.

THE CASE APPROACH TO DESIGN INVOLVES
PROTOTYPING

Two major impacts are on end-user commitmentand
documentation. CASE systems provide the oppor-
tunity for prototyping. This can improve system
quality because of the iterative process of end-user
validation which may also replace the document-
ation (depending on the method). Detailed written
specifications may not be so necessary.

End-user commitment is increased by this validation
‘process’. Moreover, CASE reduces the workload of
documentation because it:

— Automates the ‘mechanical’ documentation,
particularly structured specifications.

— Restricts the documentation written by staff to
end-user manuals. These may be written by end
users in the team. Detailed specification
documentation can be generated, if necessary,
from the database.

CASE SYSTEMS IMPOSE CONSTRAINTS

As the computer processing load in the interactive,
conceptual, and analytic phases will be high, com-
puter power provided for development needs tobe
adequate to cater for this added load.

All CASE systems have their own procedures and
styles of working. In implementing a CASE system,
some compromise between the department’s nor-
mal mode of operation and that imposed by the
CASE system will have to be accepted.

CASE SYSTEMS DELIVER DATABASES AS MUCH AS
PROCESSING APPLICATIONS

CASE aids the link between users and databases,
following the increasing trend towards providing
management information as much as automation of
routine operations. CASE may be used for develop-
ment of databases plus end-user retrieval and
analysis tools.

15

Chapter 4 How to choose and use CASE

THE TECHNOLOGY IS STILL MATURING AND COMPANY
REQUIREMENTS WILL CHANGE

It is reasonable to expect a far higher degree of
automation plus price/performance improvements
in the next five years, so development and expan-
sion of the CASE system should be allowed for.
Expect CASE systems to evolve.

BUTLERCOX

16

© Butler Cox & Partners Limited 1987

Finally, we speculate on the possible future of CASE
systems and the way in which their use may impact
system development.

CASE PRODUCTS WILL EVOLVE AND BECOME
LESS EXPENSIVE

We can expect CASE systems to evolve in several
ways:

— The range of system development silpported will
extend from Cobol into fast TP and commercial
realtime systems.

— Graphics (with WIMPS) will become the dominant
human interface.

— Most CASE systems today are incomplete in some
phases and aspects of the system development
life cycle. We can expect these to be progressively
filled over the next 10 years, to provide more of
a ‘flexible database/program creation system’
than a ‘software factory’. Moreover, the consist-
ency of the human interface may extend from the
CASE system to packages and the end-user appli-
cation interfaces themselves. Also one incom-
plete area that many suppliers are intending to fill
is that of automatic code-generation.

— The bias toward a centralised architecture may
change. A federated structure, more suitable for
end-user computing, is likely to emerge. Coordi-
nation of distributed design databases and data
dictionaries will be provided.

— Current systems tend to concentrate on the
phases after systems planning. An extension
upwards into ‘enterprise analysis’ — driven by
the business needs and information flow of the
enterprise — is something that could improve the
match between systems and the business and
company structure.

For any given capability, we expect the price of
CASE products to fall significantly. They are still
embryonic products with suppliers trying to recover
the high costs of development. Once their use
becomes more widespread, their price will fall.
But as we have pointed out, there are still many

®© Butler Cox & Partners Limited 1987

Chapter 5
The future of CASE

improvements needed so that the prices of the
leading products, offering better functionality, are
likely to remain fairly high for some time.

CASE RESEARCH IN THE LABORATORY

In attempting to look ahead, it may seem over
ambitious (or optimistic) to expect too much of
CASE.

There are, however, several publicly supported
initiatives in Europe to develop the advanced faci-
lities to which we have referred. For example:

— The Esprit project AMICE, with 20 companies
involved, is exploring enterprise analysis for CIM
systems, but with more general applications
expected to emerge.

— The Eureka Software Factory (ESF), a 10-year
programme to automate development at a pro-
fessional level.

— The Eureka Advanced Software Technology
project (EAST) a six-year drive to produce a range
of integrated tools.

— The standard tools environment or workbench
produced by the Esprit programme — Portable
Common Tools Environment (PCTE). This is
now being developed into a commercial product
by Emeraude Gie, which has ambitions for
it to become a standard platform for CASE
systems.

We also expect that expert systems will have arole
to play in future CASE products. IEW already
exploits expert systems in a limited way for
coherence checking and validating the phases.
Expert systems could also assist in optimised code
generation on human interfaces to accommodate
naive users and advance with them. Expert systems
themselves, with their emphasis on leveraging
scarce expertise, prototyping, and animation are
already seen by some as the future of end-user
system development. A vision of the far future isend
users being able to prepare optimised assembler code
for a realtime system, from their business plans, the

17

Chapter 5 The future of CASE

technical expertise needed to analyse and program
being encapsulated in an expert system.

CASE CAN HELP THE ROLE OF THE
INFORMATION SYSTEMS DEPARTMENT
TO CHANGE

The above advances will make end-user computing
easier. This will reinforce a long-term trend towards
the information systems department becoming more
of a consultant, planner, and counsellor, and less of
a developer, implementor, and maintainer.

18

BUTLERCOX

© Butler Cox & Partners Limited 1987

© Builer Cox & Partners Limited 1987

Chapter 6

Conclusion

In this paper we have reviewed the current status of
CASE and shown that a number of large European
companies are starting to make use of it to ease the
problems of commercial systems development. The
products currently available are stillimmature, but
in the right circumstances can lead to worthwhile
benefits. Asthey evolve, they should offer a better
match to their potential user’s needs and offer ad-
vantages to a much wider range of system builders.

19

Butler Cox

Butler Cox is an independent international
consulting group specialising in the application of
information technology within commerce,
industry and government.

The company offers a unique blend of high-level
commercial perspective and in-depth technical
expertise: a capability which in recent years has
been put to the service of many of the world’s
largest and most successful organisations.

The services provided include:

Consulting for Users

Guiding and giving practical support to
organisations trying to exploit technology
effectively and sensibly.

Consulting for Suppliers
Guiding suppliers towards market opportunities
and their exploitation.

The Butler Cox Foundation
Keeping major organisations abreast of
developments and their implications.

Multiclient Studies
Surveying markets, their driving forces and
potential future.

Public Reports
Analysing trends and experience in specific areas
of widespread concern.

PEP

The Butler Cox Productivity Enhancement
Programme (PEP) is a participative service whose
goal is to improve productivity in application
system development.

It provides practical help to system development
managers and identifies the specific problems that
prevent them from using their development
resources effectively. At the same time, the
programme keeps these managers abreast of the
latest thinking and experience of experts and
practitioners in the field.

© Butler Cox & Partners Limited 1987

The programme consists of individual guidance for
each subscriber in the form of a productivity
assessment, and also position papers and forum
meetings common to all subscribers.

Productivity Assessment

Each subscribing organisation receives a
confidential management assessment of its system
development productivity. The assessment is
based on a comparison of key development data
from selected subscriber projects against a large
comprehensive database. It is presented in a
detailed report and subscribers are briefed at a
meeting with Butler Cox specialists.

Position Papers

Four PEP position papers are produced each year.
They focus on specific aspects of system
development productivity and offer practical
advice based on recent research and experience.

Forum Meetings

Each quarterly PEP forum meeting focuses on the
issues highlighted in the previous PEP paper, and
permits deep consideration of the topic. They
enable participants to exchange experience and
views with managers from other subscriber
organisations.

Topics for 1987

Each year PEP will focus on four topics directly
relating to improving systems development and
productivity. The topics will be selected to reflect
the concerns of the subscribers while maintaining
a balance between management and technical
issues.

The topics selected for 1987 are:

— Managing user involvement in systems
development.

— Using tools to improve productivity.
— Planning and managing projects effectively.

— Using methods to improve productivity.

Butler Cox & Partners Limited
Butler Cox House, 12 Bloomsbury Square,
London WC1A 2LL, England
2 (01)831 0101, Telex 8813717 BUTCOX G
Fax (01) 831 6250

Benelux
Butler Cox BV
Burg Hogguerstraat 791
1064 EB Amsterdam
= (020) 139955, Fax (020) 131157

France
Butler Cox SARL
Tour Akzo, 164 Rue Ambroise Croizat,
93204 St Denis-Cedex 1, France
=(161)48.20.61.64, Fax (161)48.20.72.58

Germany (FR)
Butler Cox Deutschland Ltd.
Richard-Wagner-Str. 13
8000 Miinchen 2
=(089)5234001, Fax (089)52335 15

United States of America
Butler Cox Inec.
150 East 58th Street, New York, NY 10155, USA
= (212)486 1760 Fax (212) 319 6368

Australia
Mr J Cooper
Consultants (Computer and Financial) ple Australia
Level 5, 303 Pitt Street, Sydney 2000, Australia
- ®(02) 2870400, Fax (02) 2870450

Italy
SISDO
20123 Milano, Via Caradosso 7, Italy
= (02) 4984651, Telex 350309, Fax (02) 481 8842

The Nordic Region
Statskonsult AB
Stortorget 9, S-21122 Malmo, Sweden
= (040) 1030 40, Telex 12754 SINTABS

Spain
Mr Sidney M Perera
Rosalia de Castro, 84-2°D, 20835 Madrid, Spain
=(91)723 0995

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25

