......
.n..umn_

BEP

......

......

utler Cox plc 1980

Paul Green

]
n’
D)
n')
el
A

Illlrlll

2 ; AW
AL =

BE,P

Application Packages

PEP Paper 15, September 1990
by Paul Green

Paul Greenis a consultant in Butler Cox’s London office, where he
specialises in systems strategy and management. Since joining
Butler Cox, he has been involved in a wide variety of projects,
including the formulation of an information systems strategy for
a large oil company, the definition of a ‘vision’ for the future of
office systems for a major corporation considering relocation of its
head office, and the development of systems development

standards for a public-sector client. He has also carried out several
PEP assessments.

Prior tojoining Butler Cox, Paul Green spent three years with Peat
Marwick McLintock, where he was involved in a wide range of
consulting assignments in the systems area. During this time, he
gained significant experience of projects that involved application
packages, selecting and implementing packages for clients in the
transport, financial services, and manufacturing sectors. His early
career was with Thorn EMI Datasolve’s Consultancy Division, and
with Amersham International.

He has a BSc and an MA, both in economics, and is an associate
member of the Institute of Management Consultants.

Published by Butler Cox plc
Butler Cox House
12 Bloomsbury Square
London WC1A 2LL
England

Copyright @ Butler Cox plc 1990

All rights reserved. No part of this publication may be reproduced by any method
without the prior consent of Butler Cox.

Printed in Great Britain by Flexiprint Ltd., Lancing, Sussex.

© Butler Cox plc 1990

6

Application Packages

PEP Paper 15, September 1990

by Paul Green
Contents
Application packages are playing an increasingly
important role in systems delivery 1
Application packages are becoming more sophisticated 3
Application packages will become even more attractive
in the future 4
Management concerns about application packages can
often be alleviated 5
Purpose and structure of the paper 9
Research sources 10
The benefits of application packages are quantifiable
and demonstrable L1
Process productivity is much higher for application
package projects 11
Use of application packages results in time and cost
savings 13
The business benefits of using application packages
can be calculated 15
Application packages are often used for strategic
reasons 18
Established methods are available for selecting
application packages 20
Informal approaches expose the organisation to
unnecessary risk 21
A formal method is usually a better alternative 23
Proprietary methods are worth considering 31
Modifying application packages may be a viable option 35
Company policy may preclude modification 35
The true cost of modifying a package must be calculated 36
Modifications to the package core should be discouraged 36
The implications of making modifications should be
understood 40
Application packages must be correctly implemented 42
Different implementation approaches are appropriate for
packages and bespoke developments 42
The type of package selected will dictate the appropriate
implementation method 45
Getting the best from application packages 48
Appendix: Questionnaire analysis 50

Chapter 1

Application packages are playing an increasingly

There are four generations of

application packages -

The use of application packages

@ Butler Cox plc 1990

continues to grow

important role in systems delivery

Application packages have been widely available for the last
25 years, and during this time, they have developed significantly.
They have moved away from being systems with limited flexibility
that could be used only to meet a very specific application
requirement, to very flexible, ‘soft’ systems, which address wider
business needs by offering fully integrated business solutions. This
development has resulted in four identifiable generations of
application packages, the characteristics of which are shown in
Figure 1.1, overleaf. Each generation of package still exists; as
the more modern parameterised and flexible products have come
onto the market, basic packages and modular packages have not
disappeared. This means that application packages can now offer
organisations sophisticated and relatively inexpensive ‘off-the-
shelf” solutions.

Both the number of application packages and the number of
suppliers of packages have continued to grow. Many thousands
of application packages are now available, from simple products
designed for a single user to run on a microcomputer, to
sophisticated applications that can support thousands of users and
process millions of transactions daily on the most powerful
computers. Application packages range in cost from a few tens
of pounds to over £1 million for modules of some sophisticated,
large-scale products.

While there are several large and well known suppliers of
application packages, such as Computer Associates, there are still
opportunities for new suppliers to grow rapidly if they have a good
product, and new suppliers continue to appear. QSP, a supplier
of accounting packages, for example, has become a major force
in its chosen marketplace over the last five years.

In the last 10 years, in particular, the use of application packages
has grown dramatically. In 1980, only about one-third of organi-
sations used application packages; today, almost all do. More sig-
nificantly, however, organisations are using packages for a much
wider range of applications. In the past, many organisations used
only one or two application packages. Currently, while packages
still represent less than 25 per cent of applications in two-thirds
of organisations, they represent between 25 and 50 per cent of
applications in a quarter of organisations. The proportion of
organisations’ systems portfolios represented by application
packages is shown in Figure 1.2, on page 3.

Our research shows that their use will continue to increase. We
spoke to several systems development managers of large
organisations who had decided, as a matter of policy, to make
greater use of application packages. Typically, they believe that,
within three to five years, about 80 per cent of their information
systems will be based on application packages. About 90 per cent

Chapter 1 Application packages are playing an increasingly important role in

systems delivery

Figure 1.1 There are four generations of application packages

Generation | Package classification | Package characteristics

First Basic package Batch-based product.
Inflexible, with few, if any,
parameters.

Scope for modification limited.
Designed to process a specific
business application.

Limited reporting facilities.

Second Modular package Mainly batch-based product, with
simple, online user interface.
Flexibility is improved, with more
parameters and discrete modules
that can add functionality in
predefined areas.

Scope for modification is still limited
but is enhanced, as changes can be
made to modules.

Predominantly a standalone
application, but batch input and
output can transfer information to
and from other systems.

Reporting faciliies are still limited,
but more options are available as
modules provide more data.

Third Parameterised package | Basic processing is still provided by
a batch system, but a sophisticated
online user interface is available.
Flexibility is considerably improved,
with many parameters enabling
different areas of the package to be
used in several ways,

Modification is now easier through
the setting of parameters and the
use of package-specific tools.
Integration with other applications is
enhanced.

Reporting facilities are more sophisti-
cated, with content and format being
controlled by parameters.

Fourth Flexible package All processing can be online. Batch
processing is optional.

Modern development tools are used
to produce very flexible or ‘soft’
packages, with many parameters.
Modification is easy, using
parameters, package-specific tools,
and standard modern development
tools.

The package is now part of a fully
integrated software range that aims
to provide a complete business
solution. Sophisticated and flexible
reporting facilities are available.
Reports can be siructured by
package-specific tools and/or
modern development tools.

of PEP members believe that their own use of packages will
increase, and 25 per cent think that this increase will be quite
dramatic.

In some quarters, however, there are still serious concerns about
the use of application packages. Significant numbers of systems
managers believe that no application package can meet their

© Butler Cox plc 1990

Chapter 1 Application packages are playing an increasingly important role in

Application packages should
always be considered

© Butler Cox plc 1980

systems delivery

Figure 1.2 Application packages play a significant role in organisations’
portfolios of information systems

Proportion of systems Percentage of organisations reporting penetration

portfolio represented by of application packages

application packages T g y x ; . ;
10 20 30 40 50 60 70

Less than 25%

25 to 50%

50 o 75%

75 to 100%

(Source: Survey of PEP members)

organisation’s specific requirements, and there are other concerns
relating to the perceived risk of a loss of control over systems,
the inability to gain a competitive advantage if everyone has
access to the same packages, and perceived difficulties with
technical architectures and with systems integration.

As we show in this paper, none of these concerns is, in fact, a
valid reason for dismissing application packages. We recommend
that application packages should always be considered when a
request for a new or enhanced computerised information system
is received. The benefits of using application packages in
preference to bespoke developments can be clearly demonstrated
in terms of cost savings, time savings, skill savings, and guaranteed
quality. Standard methods for selecting appropriate packages for
particular applications and a standard approach to implementation
will ensure that these benefits are realised.

For the purposes of this paper, we define an application package
as a commercially available set of one or more compuler programs
that is designed to create a complete business applicalion.
Examples of application packages would therefore include an
accounts payable or personnel package. Some so-called ‘packages’
fall outside our definition because they do not, by themselves,
form a complete application. Thus, spreadsheet programs, word
processing packages, fourth-generation languages, and computer-
aided design systems are not application packages.

APPLICATION PACKAGES ARE BECOMING
MORE SOPHISTICATED

Our research shows that PEP members are not only making more
use of application packages, but are using them to provide a wider
range of systems. Traditionally, application packages were used
for back-office administrative tasks — that is, to provide
information systems to support the departments that provide an
internal service to the business, rather than an external service
to the organisation’s customers. A prime example of this is the

Chapter 1 Application packages are playing an increasingly important role in

systems delivery

widespread use of accounting packages, which have been
successful because they provide a thorough and rigorous solution
to processing standard types of information in a clearly defined
way.

In recent years, there has been a move to use application packages
for more than these well defined, non-organisation-specific
systems. Our research shows that about 40 per cent of
organisations now use industry-specific application packages to
provide front-office as well as back-office systems. (Front-office
business systems directly support the business in its interaction
with customers.) This trend has been promoted by the many
software suppliers who have specialised in producing products
for a specific industry. This has enabled them to build up a detailed
understanding of the requirements of the business market that
they serve, and facilitated the production of application packages
that can deliver real benefits to the front-office operations in
many organisations. Examples include application packages
developed for the banking and insurance industries and for the
health-care sector.

APPLICATION PACKAGES WILL BECOME EVEN
MORE ATTRACTIVE IN THE FUTURE

Both business pressures (to make time and cost savings in a period
of skill shortages), and technical developments will encourage
systems development managers to make greater use of application
packages.

BUSINESS PRESSURES WILL ENCOURAGE GREATER
USE OF PACKAGES

Business pressures have continued to intensify, both in the private
and public sectors. This has led to increased time pressures on
systems development departments to introduce new systems at
a time when many development managers already face large
development backlogs. To overcome these problems, both
development managers and users are increasingly turning towards
packages, with the expectation that time and resource savings will
be made.

The cost of undertaking bespoke system development has
continued to rise sharply as skill shortages have led to salary
inflation for development staff. At the same time, the
price/performance of computer hardware has continued to
improve. One of the traditional reservations that development
managers have had about using application packages is the impact
on machine resources of using inefficient code supplied as part
of a package. The improved price/performance of hardware has
meant that, even if application package code is inefficient, its
effect is less marked.

Governments are also beginning explicitly to encourage the use
of application packages. For example, in order to maintain the
competitiveness of its industry, the Japanese government is
encouraging both the development and use of application
packages. The use of application packages in Japan is low by
international standards, and in common with the rest of the

Packages are increasingly being
used for front-office systems

Improved price/performance of
hardware makes packages

more attractive

r Cox plc 1980

Chapter 1 Application packages are playing an increasingly important role in
systems delivery

Packages are seen as a way of developed world, Japan faces a severe shortage of skilled systems
alleviating staff shortages staff. The government believes that making greater use of
application packages will help to alleviate this shortage, and will

mean that Japanese corporations will have the information

systems necessary to continue to compete effectively in world

markets. Our research among PEP members also suggests that

many European organisations are turning to application packages
to alleviate staff shortages.

ADVANCED TOOLS WILL FACILITATE THE DEVELOPMENT
OF MORE FLEXIBLE PACKAGES

Butler Cox has been predicting for some time that application
packages will form an increasingly important part of organisations’
software infrastructures. (The software infrastructure is the
portfolio of basic software that is used to support an organisation’s
applications.) We believe that the use of application packages will
become more attractive because suppliers of packages are
increasingly using advanced software development tools, such as
CASE, fourth-generation languages, and so on, to develop their
products.

At first sight, this may seem to be counter-intuitive because tools
such as these will increase the effectiveness of in-house
developments, and may therefore be seen as a threat to
application packages. However, suppliers are beginning to use
these tools to develop new types of packages that are more flexible
than their predecessors. The possibility of using these flexible
packages, which can be easily modified to meet requirements
Flexible packages can be easily closely, will mean that this type of application package will be
modified with advanced increasingly important in the future. An example is the Chameleon
development tools accounting system, supplied by Tetra. This product has been
designed to offer a sound basic accounting system that can be
easily modified to meet an organisation’s specific needs. Such
products offer what amounts to a bespoke application, at a similar
price to an ‘off-the-shelf’ solution.

In the future, we believe that ‘off-the-shelf’ software components
will play a greater role in applications development. Our recent
research for the Butler Cox Foundation suggests that within the
next five years, information systems will begin to be built in a
new way, based on object-oriented methods. New systems will
be built by combining different ‘objects’ from the software
infrastructure, from in-house development, and from software
objects that are purchased from the type of supplier who today
provides application packages.

MANAGEMENT CONCERNS ABOUT APPLICATION
PACKAGES CAN OFTEN BE ALLEVIATED

During our research, many organisations mentioned concerns they
had about application packages that could militate against their
use, even if there were clear, measurable benefits in using
them. These issues can be grouped into five categories — concerns
that no application package will meet the organisation’s

@ Butler Cox plc 1920 2

Chapter 1 Application packages are playing an increasingly important role in

systems delivery

particular requirements, concerns that suppliers may not remain
committed to supporting their products, a lack of opportunity to
realise competitive advantage, technical architecture difficulties,
and systems integration difficulties. Systems management can
take actions to reduce all of these concerns.

APPLICATION PACKAGES CAN MEET A VARIETY
OF REQUIREMENTS

Several systems development managers to whom we spoke during
our research were concerned that, for at least some applications,
there were no packages available that could meet their
organisation’s specific requirements. One organisation told us that
although several packages had been evaluated, none could meet
its particular needs, because its business was so different in nature
from that of other organisations.

We believe that such arguments are no longer generally valid. We
show in Chapter 2 that using an application package that does
not fully meet all the requirements can still provide more benefits
to an organisation than developing a bespoke application that
meets all the requirements. Systems managers should seriously
question whether their organisation’s requirements really are
different from those of others. In most business areas that lend
themselves to computerisation, the fundamental requirements for
new computer systems will be similar. The differences will usually
be in the working procedures that have developed within the
organisation over time; these may well be unique to particular
organisations. We know of some that have successfully changed
their traditional working procedures so that they can use packaged
software.

THE RISK OF BECOMING VULNERABLE TO SUPPLIERS
CAN BE MINIMISED

Several organisations we spoke to during our research were
concerned that using application packages exposed them to
unnecessary risk because they would no longer have control over
the development of their computer applications. This risk occurs
because suppliers of application packages introduce new releases
of their software at regular intervals to maintain the com-
petitiveness of their products. Problems can occur for users of
application packages if new versions of the software do not meet
their evolving requirements. Alternatively, the supplier may take
a strategic decision to specialise in product development for a
particular hardware and software infrastructure. If the user of
the application package does not have the appropriate
infrastructure, he may either have to change his policy or be faced
with using outmoded software, which suppliers may refuse to
support. Our research suggests that the risk is greatest for
organisations that do not have one of the more widely used
technical architectures — for example, one based on standard
products from a leading supplier such as IBM or Digital.

To reduce this risk, organisations should include rigorous criteria
in the package-selection process. Thus, if the continued develop-
ment and support of the application package for a particular

Most business areas have funda-
mental requirements that can
be satisfied by a package

The risk is least for those who
use IBM or Digital hardware

© Butler Cox ple 1990

Chapter 1 Application packages are playing an increasingly important role in

Package users should ensure that
they can obtain the package
source code if the supplier

goes out of business

Soft packages can be used to
provide a competitive

© Butler Cox ple 1990

advantage

systems delivery

technical architecture is a criterion, it should be specified,
investigated during selection, and if possible, included in the
contract agreed with the supplier. At the very least, this will
ensure that the user has a written commitment from the supplier
to continue development and support of the product. If possible,
organisations should insist that penalty clauses, for non-
performance by the supplier, are written into their contracts.

At a time when many small suppliers of packages are entering
the market with new products, there is a risk that they may not
all survive, or that some may be taken over. If the supplier goes
out of business, or is bought out, the future of the product is
uncertain. Concerns are related to issues such as the future

development and support of the product and the ownership of
the software.

Arrangements should always be made for the source code of the
package to be held in escrow so that it is available to the
organisations using the package in the event of the supplier
ceasing to trade. For complex or business-critical applications, the
costs of holding source code in escrow are minimal compared with
the implications of having to redevelop systems from scratch.

APPLICATION PACKAGES CAN BE USED TO GAIN
A COMPETITIVE ADVANTAGE

Many organisations believe that using application packages
prevents them from realising a competitive advantage from their
information systems, because the same capabilities are available
to all users of the package. This issue should be considered
carefully when deciding whether or not to use an application
package to provide a new information system. If the system is to
support front-office operations, and must be significantly different
from competitors’ systems to provide a competitive edge, it may
be appropriate to use bespoke development.

However, with the growing availability of ‘soft’ or very flexible
packages, competitive advantage may be derived from the ways
in which organisations use application packages, and from the
modifications that they make to them. One organisation that has
used an application package in this way is a leading international
airline, which has modified an accounting package to give it online
access to up-to-date financial information for all its worldwide
operations. This has enabled the company to improve its
management of resources and finances significantly.

The rapid introduction of new front-office systems, based on
application packages, can create an opportunity for achieving a
competitive advantage. However, before an organisation can gain
a competitive advantage in this way, it must usually have both
an underlying technical and business infrastructure to enable it
to take advantage of the application package facilities. A large
financial services company, for example, realised that it could
establish a new line of business, and needed to use a package to
do so quickly, before competitors also became aware of the
business opportunities. This organisation used an application
package to establish a competitive advantage, although it could
not have done so without its existing telecommunications

=1

Chapter 1 Application packages are playing an increasingly important role in

systems delivery

infrastructure and branch network, which enabled the new
business to be marketed effectively to customers.

TECHNICAL ARCHITECTURE DIFFICULTIES CAN BE
OVERCOME

Most organisations take their technical architecture into
consideration when selecting application packages. However,
their policies vary widely, as indicated in Figure 1.3. The four
policies shown in Figure 1.3 are not mutually exclusive. Some
organisations combine policies. For example, they may consider
extending both the hardware and the software components of the
architecture. About 36 per cent of organisations consider only
application packages that conform to the technical architecture,
while about 14 per cent modify packages to conform to their
architecture. About 50 per cent of organisations extend the
software components of the architecture to accommodate
packages; about 25 per cent of organisations extend the hardware
components.

Figure 1.3 PEP members have different policies for ensuring that
application packages conform with the technical
architecture

Policy Percentage of PEP members

Extend the software 10 20 30 40 50 60
components of the
technical architecture to
accommodate a package

Select only those packages
that conform to the
technical architecture

Extend the hardware
components of the
technical architecture to
accommodate a package

Modify packages to
conform to the technical
architecture

(Source: Survey of PEP members)

Some organisations we spoke to during our research had selected
their hardware and software infrastructure because of the
availability of packages to run in their chosen environment. Thus,
the choice of packages can play a significant part in shaping
technical architectures.

Management will often be faced with a business decision that
entails striking a balance between the business needs that can be
satisfied by an application package, and the need to keep the
technical architecture as simple as possible. Butler Cox has long
been a champion of the concept of a coordinated organisation-
wide technical architecture because of all the benefits that this
can bring. Nevertheless, we do not believe that organisations
should restrict themselves to selecting only application packages

About half of organisations
are prepared to extend
their software infra-
structure to accom-
modate packages

© Butler Cox plc 1990

Chapter 1 Application packages are playing an increasingly important role in
systems delivery

that conform to the architecture, or modifying packages to
conform with the architecture.

By considering only conforming packages, organisations may
unnecessarily limit their choice, and may fail to realise the full
potential business benefits. Moreover, modifying application
packages to conform to the technical architecture can be very
costly, can lead to problems with the support of the package, and

Extending the hardware com- may prevent the easy use of future releases of the software. We
ponents of the technical do not recommend that organisations extend the hardware
architecture to accom- components of their architecture to accommodate a package as

modate a package often

this often leads to compatibility problems and prevents
leads to problems

information being used across systems as required. However, if
suitable software interfaces exist to overcome this problem,
extensions of the hardware components of the architecture may
be appropriate. Extending the software components of the
architecture usually causes fewer interface problems and is
usually more acceptable.

Any extension to the technical architecture to accommodate an
application package must be considered carefully, so as to
minimise complexity and cost, particularly in terms of developing
staff skills in more than one architecture. When extending the
technical architecture, PEP members must seek to minimise the
problems of interfacing different systems, by ensuring that
workable software interfaces are available.

DIFFICULTIES OF INTERFACING PACEKAGES
WITH OTHER SYSTEMS CAN BE SOLVED

Several organisations we spoke to reported complex problems
when interfacing their application packages with other systems.
Organisations should consider the requirements for interfaces
carefully when deciding whether to use an application package,
and when selecting a specific product. Short-term interface
A commitment to provide the requirements must be clearly defined, and potential long-term
required interfaces should be yequirements must be made explicit. PEP members should then
written into the contract ..\ commitment from suppliers that both immediate and longer-
term requirements can be met. Commitment to provide the
working interfaces required when the system is implemented
should be included in the final contract signed with the supplier.
Clauses should be included to penalise suppliers if specified
interfaces are not available or do not work.

PURPOSE AND STRUCTURE OF THE PAPER

Our research has revealed that application packages will play an
increasingly important role within PEP members’ applications
portfolios. The purpose of the paper is to explain the benefits of
using packages, and the best way of selecting and implementing
them. We believe that this paper provides, for the first time,
quantifiable evidence of the productivity benefits of using
application packages. We show PEP members how they can
achieve the best results from using application packages.

In Chapter 2, we describe the benefits of using application
packages, particularly in terms of reduced costs and timescales
for delivering new applications. We report the theoretical

© Butler Cox plc 1330 9

e

Chapter 1 Application packages are playing an increasingly important role in

systems delivery

productivity improvements of using application packages,
compared with undertaking bespoke system development. We also
explain how the total business case for using an application
package can be assessed.

In Chapter 3, we show how the selection of an application package
can be successfully undertaken. We recommend that organisations
use a formal method for selecting application packages, and
describe the main components and characteristics of such a
method. We also review commercially available methods for
selecting application packages.

In Chapter 4, we show that it may be possible to modify a package
so that it provides a better fit with business requirements.
However, many PEP members have experienced problems
modifying packages. We explain how these problems can be
overcome and how different types of modification are best
undertaken.

In Chapter 5, we explain the importance of application package
implementation. Implementation must be successfully undertaken
if the benefits are to be achieved. We describe the main
differences between implementing an application package and a
bespoke system development. In order to achieve the benefits of
using application packages, we recommend that organisations use
a method for implementing packages that is specific to packages
and that takes advantage of their unique features.

RESEARCH SOURCES

At the beginning of the research programme for this paper, we
circulated a detailed questionnaire to all PEP members. The aim
of this questionnaire was to identify the main issues surrounding
the selection, implementation, and use of application packages.
There was a response rate of over 70 per cent to the questionnaire,
and we have included a detailed analysis of the results as an
appendix to this paper. We selected several organisations for more
detailed investigation, either through personal or telephone
interviews. Our aim has been to understand fully the benefits and
problems associated with using application packages, and the
selection and implementation procedures that are used.

We supplemented our research by talking to other organisations
that either had extensive experience in the selection, imple-
mentation, and use of application packages, or that had taken a
strategic position with regard to the use of application packages.
We also reviewed other recent research and articles on the
subject, and sought specialist opinion, where appropriate. In
addition to this, we have drawn on the considerable experience
of Butler Cox consultants, who have been involved in many
application-package-related projects.

10

© Butler Cox plc 1980

Chapter 2

The benefits of application packages are quantifiable
and demonstrable

The benefits of using application packages are so great that
organisations should always consider their use. When faced with
a request for a new or enhanced computerised information
system, systems development managers have traditionally
responded by assessing the possibility of building the required

New systems should be based on systems using bespoke development before considering the use
packages unless there are clear of application packages. This should no longer be the case. It
reasons for not doing so should be assumed that any new system will be based on an

application package, unless there are clear reasons that this cannot
be so. This approach is justified by the scale of benefits that can
be achieved from using application packages, whether such
benefits are measured in terms of improved process productivity,
time and cost savings, the overall benefits to the business, or
better-quality systems.

PROCESS PRODUCTIVITY IS MUCH HIGHER
FOR APPLICATION PACKAGE PROJECTS

In our survey, we asked PEP members to estimate the time and
cost savings they had gained by using packages, rather than
developing a bespoke system. We sought the same information
in the interviews we held with PEP members. Using this
information as a basis, we have estimated the benefits of using
application packages in terms of the measure of process
productivity, the Productivity Index (PI), and the measure of
Manpower Buildup (MBI), which will be familiar to PEP members.

The average PI for all projects in the PEP database is 15, while
the average MBI is 3, indicating a medium pace of manpower
buildup. The savings from using application packages reported by
PEP members suggest that the average PIfor application package
projects is about 17. This PI of 17 is the theoretical PI for
application package projects, and is based on the assumption that

Packages seem to improve the the same project processes apply to the selection and
Productivity Index by two implementation of an application package as those that apply to
points a bespoke system development. An increase of two points on the
PI scale represents significant savings in terms of both cost and

time.

During our research, we were also able to obtain reliable data
relating to 29 application package projects in 10 different
organisations. We used the PADS software to calculate the
theoretical PIs and MBIs for these projects. The average Pl of these
projects was 22. Not all application package projects had high PIs,
however; three had PIs below the average, one of which had a
PI of only 9. The average theoretical MBI of these projects is 3,
the same as the overall PEP average, indicating that application
package projects also tend to have a medium rate of manpower
buildup.

© Butler Cox plc 1920 11

e

Chapter 2 The benefits of application packages are quantifiable and
demonstrable

The reason for the discrepancy between PEP members’ reported
productivity gains from using application packages and the data
from the 29 application package projects is that many costly and
time-consuming activities, such as selecting and buying a package,
are not included in the information used to calculate the
theoretical Pls for these projects.

Thus, while the use of application packages appears to increase

PEP members’ PIs by about two points, the potential improve- Larger productivity improve-

ments are even greater. Although it is unrealistic for most PEP ments can be obtained by
members to expect the use of application packages to result in minimising the cost and
a seven-point increase in PIs (to an average of 22), greater time required to
improvements could be obtained by minimising both the cost and select a package

time required to select a package.

Figure 2.1 shows the scale of benefits that can be expected. We
have tabulated the elapsed time in months, the effort in man-
months, and the likely costs for the main-build stage of projects
with Pls of 15 (the PEP average), 17 (the average achieved by
PEP members using application packages), and 22 (the theoretical
average achievable using application packages). In each case, we
have assumed a medium rate of manpower buildup — that is, an
MBI of 3 — and a typical size of project — about 40,000 lines of
code. We have assumed a cost of $£4,000 per man-month of effort,
this being about the average for PEP members. The table
shows that a two-point increase in PI (from 15 to 17), resulting
from using an application package rather than undertaking
bespoke development, would reduce the delivery time for a
typical new system by about one-and-a-half months. The

Figure 2.1 Using application packages can result in substantial savings
of time, effort, and cost

The table shows information for a ‘typical' PEP project with a size of 40,000
lines of code and an MBI of 3. Data is shown for Pls of 15 (the overall PEP
average), 17 (the Pl represented by PEP members’ reported time and cost
savings resulting from the use of application packages), and 22 (the average
theoretical Pl for the 29 application package projects). The costs of the projects
have been calculated by assuming a cost of £4,000 per man-month of effort
(this is close to the PEP average). The benefits of using application packages
can be seen by comparing the costs, effort, and timescales of a project with a
Pl of 17 with those for a project with a Pl of 15. Using an application package
for a typically sized project would save about £100.000, and the project would
be completed one-and-a-half months earlier and would use about half the effort.

When we compare the Pl of 22, representing the theoretical average Pl for the
29 application package projects, with the PEP average Pl of 15, we can see
that there are large potential savings in time and effort that could be made.

Time taken to
PI complete the

project Effort required
(months) (man-months) | Cost (£)

PEP average 15 9.5 58.0 230,000

Pl represented by PEP
members’ reported time
and cost savings 17 8.0 31.0 125,000

Average theoretical Pl for
application package
projects 22 4.5 6.0 24,000

S Butler Cox plc 1990

Chapter 2 The benefits of application packages are quantifiable and

Obtaining measures of the lines
of code and function points
represented by a package

will enable the pro-
ductivity gains to
be calculated

PEP members believe that the
most important benefit is

© Butler Cox plc 1920

time savings

demonstrable

development cost for this system would be reduced to nearly half
that of developing a bespoke system. If a PI of 22 could be
achieved, applications would be delivered in about half the time
and at about one-tenth of the cost.

PEP members who want to estimate accurately the productivity
gains that can be achieved by using an application package should
try to obtain a measure of both the lines of code and function
points that they will receive by buying a package. These measures
should relate to the parts of the package that will be used. If only
half the functions of a package will be used, estimates of the
function points and lines of code necessary to provide these
functions should be made. Using this data, it will be possible to
estimate the PI for package-based development and to compare
this with the likely PI for developing a bespoke system.

USE OF APPLICATION PACKAGES RESULTS
IN TIME AND COST SAVINGS

Our calculation of the theoretical Pls achievable by using
application packages suggests that, compared with bespoke
development, reductions in effort, and hence, cost, are
considerably greater than reductions in time. According to the
results of our survey, however, PEP members believe that the
most important reason for using application packages is time
savings; cost saving is ranked third. As Figure 2.2 illustrates,
significantly more PEP members reported savings of over
50 per cent in time than in cost. Small benefits (savings of under
10 per cent) are more frequently achieved for cost savings than
for time savings.

Figure 2.2 PEP members report greater time savings from using
application packages than cost savings

Percentage of PEP members reporting savings
in each category

10 20 30 40

Savings less than 10%
Savings of 10 to 25%
Savings of 25 to 50%

Savings greater than 50%

Cost savings

| Time savings

(Source: Survey of PEP members)

This apparently conflicting evidence may be explained by the fact
that the costs used to calculate the theoretical Pls are based on
the man-months of effort required for the main-build stage of a
project. These exclude many of the cost items that PEP members
will have taken into account when assessing the savings made by

13

Chapter 2 The benefits of application packages are quantifiable and
demonstrable

using an application package. These items will include the cost
of the selection exercise, the cost of the package, training costs,
and so on.

During our research, we were unable to find any organisation that) _
had kept complete records of all the additional costs associated Package selection and acquisition
with application package projects. Each of the cost items is, involves some potentially

" : high costs
however, potentially high:

— Package selection. Considerable amounts of time and
resources can be used just to select an application package.
For large, complex applications, the selection process often
involves a team of between three and six members of staff,
working for an elapsed period of about six months.

— Cost of the package. Once a product is chosen, it can be
expensive to acquire. The price of widely available
application packages ranges from a few tens of pounds to over
&1 million per module for the most powerful application
packages.

— Documentation. Some package suppliers charge significant
sums for documentation, and if many copies are required, the
cost of acquiring a full set of documentation can represent
up to 25 per cent of the cost of the packaged software.

— Support and training. Typically, organisations that use
application packages have support agreements with the
suppliers, and supplier personnel will undertake at least some
staff training. The costs of both training and support can be
high, however. The cost of initial training is often in the
region of 10 per cent of the cost of the package. The costs
of support will be incurred as long as an organisation uses
a package. Typical annual costs are in the region of
10 to 15 per cent of the initial package cost. Of course, an
organisation will incur support costs for both in-house
bespoke system developments and for using application
packages. Support costs for application packages may, in fact,
be no more than for in-house developments. However, they
are normally more visible because payments are made to a
third party.

— Negotiating the contract. Package suppliers will typically
have their own standard contracts and terms of business.
These are frequently one-sided documents, drawn up for the
supplier’s benefit, and many organisations that use appli-
cation packages negotiate contracts. For large projects, this
very often involves seeking expert legal opinion from either ~ Criteria for accepting the
internal or external specialists. Criteria for accepting the Package should be
: 5 included in the
package should be agreed and included in the contract, covitact
covering issues such as numbers of transactions that can be
processed, and response times. The ways of measuring
supplier performance should also be agreed, along with the
penalties for not meeting the agreed performance levels. The
negotiations can take several months, and require agreement
and commitment from all parties involved.

— Modifying the package. Modification costs can be greater than
the initial cost of the package and are frequently difficult to
estimate. This issue is addressed in more detail in Chapter 4.

14 © Butler Cox ple 1990

Chapter 2 The benefits of application packages are quantifiable and
demonstrable

THE BUSINESS BENEFITS OF USING APPLICATION
PACKAGES CAN BE CALCULATED

In order to assess the potential benefits of using an application
package rather than undertaking bespoke system development,
an organisation should understand the cost structure of both types
of development, but more importantly, quantify the business
benefits to be derived from the new system. To develop a reliable
business case, the likely timescales for delivery for both the
bespoke and package options need to be considered.

Typically, most systems development departments have a poor
record of estimating systems delivery costs for bespoke develop-
ment, even though they have more experience at doing this than
estimating package-based systems delivery costs. Systems
development managers must take into account the fundamental
differences between the two types of development when
producing estimates. These differences and their implications for
cost estimating are illustrated in Figure 2.3. While some activities,
such as contract negotiation, will increase the relative cost of using
application packages, the overall impact of the differences should
be that an application package project is delivered more quickly
and at lower cost than a bespoke development. This is because
using an application package effectively changes the nature of
the main-build stage. Instead of developing functionality from
scratch, the facilities available with the package are used to
establish the required functionality.

The differences between
packages and bespoke
development have
implications for

cost estimating

Figure 2.3 The different activities of bespoke and application package development have implications for cost
estimating

The net efiect of the reductions and increases in costs is that the overall cost of using a package will be considerably lower.

Reduced costs resulting from package-

Increased costs resulting from
based development

Activity package-based development

Functional design Reduced functional design costs

Selection costs

Main build Reduced main- Package modification
build costs
Testing Application testing Package testing

System/package sign-off

Service-level agreement

Contract negotiations

System enhancements

Bespoke software modification

Package modification

Support

=

Bespoke software support

Package support

@ Butler Cox plc 1990

15

Chapter 2 The benefits of application packages are quantifiable and

demonstrable

One argument often put forward for not using packages is that
a package will not provide all of the benefits that would be
available from a bespoke development. It is better, so the
argument runs, to wait longer for a bespoke system that can
provide greater benefit. However, using the net present value
(NPV) technique to compare the returns on investment of
delivering a new system will usually lead to the conclusion that
using an application package is a better investment than bespoke
development. Even though the year-on-year benefits of a package
solution are lower than those of a bespoke solution, the package
represents a better investment because the benefits are obtained
earlier.

NPV calculations are based on the fact that future benefit values
are worth less than the same benefit obtained today. The
difference is measured by considering the ‘rate of return’ that an
organisation might expect to achieve by investing the money in
a different way. For example, §£1 million deposited in the bank,
at an annual interest rate of 10 per cent, will grow to §£1.1 million
after one year. Thus, at a rate of return of 10 per cent, &1 million
obtained in one year’s time would be worth &1 million divided
by 1.1, or £909,091 today. One million pounds obtained in two
years’ time would be worth still less today. Thus, a bespoke
development that takes a long time to develop and implement may
have a lower NPV than a package-based solution that can be
implemented within much shorter timescales, even if the
application package does not meet all the detailed user
requirements, and hence, achieves lower year-on-year benefits,

An example of a simplified NPV comparison of undertaking a
project using either an application package or bespoke develop-
ment is shown in Figure 2.4. In this figure, a hypothetical
organisation is faced with a choice between using an application
package and undertaking bespoke development. We have
assumed that total package costs, including any modifications to
the basic product, amount to half of the bespoke development
costs. We have also assumed that the timescale for implementing
the package solution is half that of implementing the bespoke
solution. However, as only the essential business requirements
are met by the modified application package, we have assumed
that the annual benefits of this system would be only three-
quarters of the benefits from the bespoke system. The present
value factor is assumed to be 20 pber cent, which is the rate of
return that many organisations expect from systems projects.

We can see that, given these assumptions, using the application
package would be the best investment. Using the package-based
solution, positive returns are achieved in Year 2, while it is not
until Year 4 that the bespoke system realises a positive return.
After 10 years, the cumulative benefit from using the application
package is just over §1 million, about £100,000 greater than for
the bespoke system. It is notable that under these assumptions,
using an application package will always be a better investment
than undertaking bespoke development. However, the longer the
system is used, the smaller the advantage of the package route
becomes, in terms of cumulative benefits.

Our research shows that different levels of return can be expected
from the introduction of application packages to support the front

16

NPV calculations often show that
a package is a better investment
than bespoke development

© Butler Cox pic 1990

Chapter 2 The benefits of application packages are quantifiable and
demonstrable

Figure 24 The net present value technique can be used to compare the business benefits of application
package and bespoke system development

An organisation has a choice of buying a package which, after some tailoring, will meet most, but not all, of its

reg

0
year)

uirements, or developing a bespoke system from scratch. Total package costs, including purchase and tailoring,

are £200,000, and the new system will be implemented within a year. At present valugs, it will produce benefits

{ £300,000 per year. The bespoke system will take two years to develop and will cost £400,000 (£200,000 in each
. Once implemented, it will produce benefits of £400,000 per year, at present values. The present-value factor

is assumed to be 20 per cent.

Application Package Development Bespoke System Development

Benefit NPV of Cumulative Benefit NPV of Cumulative

PV factor or (cost) benefit or benefit or or (cost) benefit or benefit or

Year (20%) (£) (cost) (£) (cost) (£) (£) (cost) (£) (cost) (£)
1 1.00 (200,000) (200,000) (200,000) (200,000) (200.000) (200,000)
2 0.83 300,000 249,000 49,000 (200,000) (166,000) (366,000)
3 0.69 300,000 207,000 256,000 400,000 276,000 (90,000)
10 0.19 300,000 57,000 1,003,000 400,000 76,000 906,000

Net present values are calculated by multiplying the expected benefit or cost by the present-value factor. The factor for
year n+1 = 1=(1+r)), where r is the expected rate of return on investment. In this example, r is assumed fo be 0.20,

representing a 20 per cent return.

. Cumulative cost/
benefit (£ thousand)

—l

1,200

1,000 |
800 |
600
400
200

0
200 4 7
400 G v

) 4 5 6 7 8 9 10
Year

—— Application package development
—— Bespoke system development

Note that the above example is highly simplified because no account is taken of the fact that costs and payments are
likely 10 be spread throughout the year, rather than accounted for once, at the end of the year. Nor is any variation in
maintenance costs after implementation taken into account, and the example is based on the assumption that subsequent

benefits are net of these costs.

office, from those to support the back office. The benefits profile
that could typically be expected for front- and back-office systems
is shown in Figure 2.5, overleaf. The returns from using
application packages for back-office systems are likely to be
smaller, but subject to less risk; the returns from using application
packages for front-office systems are likely to be high, but are
more difficult to quantify.

17

© Butler Cox plc 1990

Chapter 2 The benefits of application packages are quantifiable and

demonstrable

using

Figure 2.5 Different levels of return can be ex

and back-office systems

Cumulative benefits profile of

application packages to

support back-office applications

rF 3

Overall
cumulative
benefits

F N

Overall
cumulative
costs

Cumulative benefits profile of
using application packages to
support front-office applications

Overall Second front-
cumulative office application
benefits package installed

N\

\Competitlve reaction
reduces annual benefits
First front-office

application package
installed

Time

Overall
cumulative

cosis
4

Time

pected from investment in application packages to provide front-

Investment in application packages for the
back office is worthwhile but the returns are
not spectacular, because the objective of back-
office systems is typically to reduce the cost
of administrative processing. The ‘dips’ in the
benefits profile are caused by the time taken
o gain maximum benefit once a new (or
enhanced) system has been introduced.

Investment here can bring significant benefits,
Initially, introducing new (or enhanced) front-
office systems is likely to result in overall
costs, because of the level of investment and
changes to business patterns. However, as a
competitive advantage is achieved, the benefits
become substantial. Competitors’ reactions will
eventually reduce this.

APPLICATION PACKAGES ARE OFTEN USED

FOR STRATEGIC REASONS

Many organisations have used broad-based business considerations
to justify the use of application packages, rather than specific cost
or benefit comparisons. For example, several organisations have
used packages to support a new business venture. Typically, they
have used packages to provide a new service ahead of com-
petitors, thus enabling them to become established market leaders.
often, the decision to use an application package is made
not on the basis of either the costs or the benefits involved, but
on the basis of business Jjudgement; business pressures mean that

Very

18

© Butk

r Cox pic 1990

Chapter 2 The benefits of application packages are quantifiable and

Packages are sometimes used to
meet tight timescales

For some, the high quality
of package-based appli-
cations is important

© Butler Cox plc 1880

demonstrable

the only way of delivering a system in the required timescale is
to use a package.

Several organisations have used application packages to introduce
new computer applications to meet regulatory changes within
tight timescales — for example, the financial systems of organi-
sations that have been transferred from the public to the private
sector. Again, in these cases, the decision to use application
packages has usually been a broad-based business decision, and
has not been based on a clear understanding of the costs and
benefits involved. Some organisations have made a strategic
decision that all information systems will be based on application
packages, in order to exploit the perceived benefits of packages.
In these organisations, a package will normally be used without
an assessment of its worth in a specific case.

Other organisations have made a strategic decision not to use
application packages, for a variety of reasons. They may have had
poor experience with packages in the past, they may feel that their
requirements are so specific that suitable packages will not be
available, or they may have a systems department that believes
that developing bespoke applications increases its own standing
within the organisation. Such a decision will preclude the use of
packages even where it can be justified in terms of reduced costs
and timescales.

Several PEP members claimed that using packages improved the
quality of the delivered application. While overall, PEP members
reported that a guaranteed level of quality was not a major reason
for using packages, in some cases, this was an important issue.
The fact that the application source code of a package is used by
many organisations should ensure a well tested product, with
consistent quality, and few software bugs.

Having demonstrated that substantial benefits can be gained from

using application packages, we now consider the ways in which
they can be selected.

19

Chapter 3

Established methods are available for selecting

application packages

PEP members employ a wide range of methods for selecting
application packages, from completely informal approaches to
highly formal methods. Those who do not use a formal method
typically select application packages in an ad hoc manner, plan
projects on a ‘one-off’ basis, or do not plan this type of project
at all. Such an informal approach can work, but it leaves the
organisation open to unnecessary risk.

Clearly, many organisations realise that the evaluation and
selection of application packages is already a very important area
of work — during the last two years, three-quarters of PEP
members have assessed a wide range of application packages,
covering several business areas. The evaluation and selection of
application packages will become more important over the next
few years as the use of packages increases. Almost half of PEP
members already use a formal method for the selection of
application packages, although several are revising their standards
in this area. Many of those who currently do not, are considering
introducing one. Proprietary methods for package selection are
also beginning to come onto the market as an alternative to
methods devised by organisations for their own purposes.

Figures 3.1 and 3.2 (on page 22) describe two different approaches
to selecting application packages, one informal (used by a utility
company), and one formal (used by Lombard North Central). Each
organisation considers its approach to have been successful. These
examples demonstrate the importance of using an approach that
is appropriate for the organisation and for the type of package.
It was appropriate for the utility company to take an informal
approach because it did not need the new packages to fit closely
with any specific requirements, and it needed the new systems
quickly. Lombard North Central needed to take a formal approach
because it was selecting a package to provide a competitive-
advantage, front-office system. It had to be certain of its
requirements and had to select the best package so that
competitors could not beat it at its own game by using a better
product.

In general terms, it is usually appropriate to use a detailed, formal
method for selecting a large, mainframe-based package, which will
be expensive to acquire and of strategic importance to an
organisation’s business. Such an approach, however, would not
be appropriate for a small, microcomputer-based package, which
is inexpensive and not strategically important. These types of
smaller application packages can make a valuable business
contribution, but not if the cost of selecting them outweighs the
benefits of using them. Other considerations are also important
in deciding which approach to use for package selection. Business
requirements may demand that a system is operational in a very

The package-selection method
must be appropriate to the
organisation and the type

of package

Formal and informal approaches
both have a role to play

© Butler Cox pic 1930

Chapter 3 Established methods are available for selecting application packages

Figure 3.1 A utility company has adopted an informal approach to the
selection of application packages

When faced with legislation that changed the organisation’s status from a public
utility to a privatised company, this organisation took a strategic decision to
invest in application packages. The organisation’s financial systems were not
suitable for use within the new commercial environment. This meant that the
financial applications, which had been developed in-house during the previous
10 years, all had to be replaced within a year. The organisation decided that
the only way to do this was to use application packages.

The organisation adopted an informal approach to selecting application
packages. It was successful in that the new financial systems were implemented
within the required timescales. The approach involved users and systems staff
working closely as teams at all stages. It can be summarised as follows:

Stage 1: Define requirements. Requirements are defined quickly, and at a high
level. The appropriate application area and the scale of the business is defined,
but no detailed specification of requirements is produced at this stage.

Stage 2: Identify packages with the required functionality. A literature search
is undertaken to identify possible suppliers. These are contacted, and company
representatives attend demonstrations of the functionality of the products. A
high-level specification for the new system is developed and refined by taking
into account the features of the products. The specification is progressively
developed until there is a clear match between the requirements and the
software facilities of a package. This is the preferred choice.

Stage 3: Investigate product and preferred supplier. A list of users of the
preferred product is compiled. These users are contacted and the product’s
and supplier's performance are discussed. An analysis of the preferred supplier
is undertaken, covering the turnover of the company, the number of staff
employed, the future development path for the package, and the installed user
base for the product being investigated. If the results of the supplier analysis are
positive, a decision to contract with the preferred supplier is taken.

Stage 4: Negotiate contract. Contracts are not negotiated to any predefined
standards. The best ‘deal’ is sought in each case.

The organisation has used this informal approach fo select application packages
within very short timescales. This has been a major success for the company,
which believes that if bespoke development had been undertaken, it would
have taken a year to complete the specifications before development could
begin. Two problems have emerged, however. First, difficulties have been
encountered when the company has tried to develop the necessary interfaces
between various packages. Second, the most important package had only
recently been developed to run in the organisation’s hardware environment, and
as a consequence, there have been some ‘testhing problems’.

short timescale, and in such a case, a lengthy, detailed selection
exercise would be inappropriate.

INFORMAL APPROACHES EXPOSE THE ORGANISATION
TO UNNECESSARY RISK

An informal approach to selecting application packages may
simply require users to identify two or three potential suppliers,
attend demonstrations of their products, and buy the package that
they like most. Choosing the most appropriate package with such
an approach is likely to be more by luck than judgement. An
organisation that uses this type of approach is exposed to
considerable risk because many important factors are not taken
into account when the decision is made to acquire a package.
Using an informal approach can leave an organisation vulnerable
to persuasive sales skills and impressive demonstrations. In
particular, the level of expertise available from the supplier after
a sale has been made may not match the level implied at an
impressive sales presentation.

® Butler Cox plc 1990 21

Chapter 3 Established methods are available for selecting application packages

Figure 3.2 A formal package-selection approach has been adopted for a
new business venture at Lombard North Central

Lombard North Central, a large financial services company, has recently
selected an application package to support a new business veniure. The
selection was led by the business manager responsible for establishing the new
venture. Swift entry into the new business area was essential to gain a
competitive advantage, and computer support was required to achieve this.
However, discussions with the systems department revealed that an in-house
solution could not be provided in time. As a consequence, the business
manager used a formal methed to select an application package. The main
stages of work were:

Stage 1: Define requirements. Three types of requirements were defined —
business, operational, and technical. Business requirements were rigorously
defined using data flow diagrams.

Stage 2: Produce invitation to tender. An invitation to tender was produced,
consisting of:

— The requirements for the new system.

— Administrative details for the tender process.

— Format for the response.

— Additional information required — for example, supplier status.

The invitation to tender specified that suppliers should define how well their
basic system met the requirements, and what it would cost to modify the system
to meet the requirements completely.

Stage 3: Define selection criteria. Selection criteria were defined in three
categories — functional, commercial, and technical. Criteria were weighted at
group and individual levels. Functional requirements accounted for 70 per cent
of the weighting overall.

Stage 4: Create a shortlist of suppliers. A long list of suppliers was created
from a literature search and from knowledge of available systems. This was
reduced to a shortlist of four suppliers, by considering:

— The range of functionality supported for the package.
— The ability of the package to process the required volumes of work.
— The stability of the supplier.

Stage 5: Issue invitation to tender. Shortlisted suppliers were informed of the
intention to invite them to tender to supply an application package. The
invitation to tender was issued and a presentation was made to each supplier to
explain the requirements and the tendering process.

Stage 6: Evaluate responses and make recommendation. When responses
were received from the suppliers, the packages were scored on a scale of one
to four according to how well they met the selection criteria. The weighted
scores were used 1o analyse the approach proposed by each supplier and to

identify the suppliers’ strengths and weaknesses. One package was clearly the
preferred solution.

This selection process was successiul, for several reasons. The scope of the
project was clearly defined, and the project was managed by a steering
committee. Regular meetings were held and weekly progress reports were
issued, The analysis of requirements was thorough, and suppliers were
evaluated using a comprehensive set of criteria.

Interestingly, the preferred package does not conform with the company's
technical architecture, which means that the business department may have to
provide operational and technical support for the new system.

Figure 3.3 lists the typical stages in an informal approach.
Although such an approach typically takes less time and effort,
it exposes the organisation to more risk, because user
requirements are not clearly defined, technical and operational
requirements are not taken into consideration, the supplier's
performance is not considered in detail, and the features of the
packages available are not studied in detail. With an informal
approach, the most significant influence on the choice of package

22

Figure 3.3 An informal approach to
package selection might
typically comprise seven
stages

1 A loosely defined working party is
set up to organise the selection
process. Project structure is very
informal.

2 A small number of fundamental

requirements is agreed.

3 Suppliers are researched and

demonstrations are arranged for a
few products.

4 On the basis of the demonstrations,

a preferred product is chosen.

5 Any further issues are discussed in-

formally with the suppliers.

6 A minimum assessment of the

preferred supplier may be
undertaken.

7 Some consideration may be given to

contractual implications.

® Butler Cox plc 1990

Chapter 3 Established methods are available for selecting application packages

With an inif‘ormal approach, is the skill with which suppliers present their products and support
organisations can be over- capabilities during demonstrations. The approach to package
mﬂ"e;‘;feds bJ; (:;‘;p; ei?’ ¥e selection adopted by those PEP members who do not use a specific
P R method tends to be closer to an informal approach than to a formal

method.

A FORMAL METHOD IS USUALLY A BETTER
ALTERNATIVE

Many package suppliers prefer organisations to adopt a formal
method for selecting a package because they realise that this
increases the likelihood of their selling their product to an
organisation for which it is appropriate. If an organisation uses
an informal approach, and makes a poor choice of package, the
chosen supplier will have little to gain in the longer term.

Some package suppliers Several leading package suppliers encourage organisations with
encourage the use of little experience in selecting application packages to engage
consultants at the consultants to assist them. These package suppliers have typically
selection stage instigated consultant-liaison programmes to update consultants

about their products and plans.

A formal approach that PEP members might adopt if they have
no established guidelines for selecting application packages is
discussed below. It is based on ‘best practice’ derived from the
research that we have undertaken. Members who already have
a standard approach to the selection of packages should compare
it with our ‘best practice’ guidelines and amend their approach
if necessary. Organisations that do not have an established
approach to selecting packages, but that do have one for bespoke
system development, should draw on it to complement their
approach to package selection — established techniques for
requirements definition, for example, could usefully be
incorporated into a formal approach, and the same project-
management framework might also be appropriate.

A FORMAL APPROACH HAS SIGNIFICANT ADVANTAGES

The additional time and effort A formal approach typically takes more time and effort than an

required by a formal approach informal approach, but it also has indisputable advantages:
is worthwhile

— It reduces risk. A formal approach will ensure that all
appropriate issues are considered during the' selection
process, and this should ensure that the best product is
selected.

— For those organisations involved in selecting many application
packages, it should reduce the effort and time required,
because staff will follow a standard approach, which will
include standard criteria for evaluating suppliers and
products, contractual features, and so on.

— It should enable a clear business case to be made for any
planned investment, with accurate estimates of benefits and
costs.

— It will ensure that all parties (users, systems staff, and
suppliers) clearly understand what their roles are in the
selection project, and how the project will be progressed.

@© Butler Cox plc 1980 23

e

Chapter 3 Established methods are available for selecting application packages

— By clearly defining requirements and assessment criteria, it
limits the subjective element in the selection process, and
thereby removes possible partiality.

— It provides a record of the selection exercise, outlining what
was done and why the package was chosen. This information
is often useful after implementation, especially if
enhancements are planned.

THE CHOSEN APPROACH MUST BE FLEXIBLE

Any formal approach to the selection of application packages
must, however, still be flexible. PEP members will want to select
different types of application packages and will do so in the face
of different business constraints. To ensure that the approach used
is appropriate to the occasion, the approach must have
appropriate paths that can be followed depending on the type of
package being assessed. For example, a project to select a package
for a small, non-business-critical application should not be
undertaken in the same manner as a project to select a large
system of major importance. Thus, the main accounting system
of a major multinational corporation should be selected with more
care and rigour than a purchase-order system of a small subsidiary.
Some of the methods already used by PEP members have this type
of flexibility. The majority, however, give guidance for one type
of application, which is to be followed for all projects.

A standard approach should also have the flexibility to keep the
organisation’s options open until the best solution is evident. The
options to reconsider other packages or bespoke development
should remain open as the shortlist is narrowed to a preferred
supplier. At any stage during a selection exercise, it may be
appropriate to change direction. This should be accommodated
within the approach.

In Chapter 2, we showed that significant savings and
Improvements in process productivity can be made when the costs
and timescales involved in package selection are minimised. The
approach to package selection should therefore be economical in
terms of effort, and especially time. It should allow the
appropriate balance to be struck between reducing the timescale
(and therefore the thoroughness of the selection process) and
increasing the risk of choosing an inappropriate package.

AN EIGHT-STAGE APPROACH IS RECOMMENDED

The approach we recommend is shown schematically in
Figure 3.4 and has eight stages:

Stage 1: Initiate the project. In many respects, this is the most
critical stage in the selection process. It is important that before
the project gets under way, clear terms of reference and goals
are established, and everyone involved has a clear view about
what is to be achieved. The selection approach to be followed
during the rest of the project is decided upon, taking into account
the size, complexity, importance, likely cost, and required
Implementation timescales of the application. The project team
is set up, and team members’ roles and responsibilities are defined.
At this stage, the management structure for the project is

24

The approach to selecting a
package for a small appli-
cation should be different
from that used for a

major application

The selection approach should
take account of the appli-
cation’s size, complexity,
importance, cost, and
implementation time-

scale

© Butler Cox pic 1990

Chapter 3 Established methods are available for selecting application packages

Initial demonstrations of up to
six packages should
be arranged

© Butler Cox plc 1920

Figure 3.4 The recommended approach to selecting an application
package consists of eight stages

Stage i Initiate the project
}
Stage 2 Agree on the basic
requirements
i
Stage 3 Do initial market
investigation
i
Stage 4 Produce and issue
invitation to tender
T Consider
bespoke
Stage 5 Weight and score development
+ ,
Stage 6 Obtain additional
information
+
Stage 7 Conduct detailed
trial
{
Stage 8 Make decision and
negotiate coniract

also established. Progress is monitored and controlled via regular
reporting and meetings.

Stage 2: Agree on the basic requirements. The fundamental
requirements of the users, and the technical requirements, are
defined and agreed. Fundamental requirements should be kept
to a minimum, but should include the main criteria that any
application package must meet if it is to satisfy the project
objectives. These requirements are likely to include the main
processing requirements of the business area being addressed, and
the need to comply with any constraints imposed by the technical
architecture.

Stage 3: Do initial market investigation. A product search is
undertaken to identify packages that are likely to meet the
fundamental requirements. There are many sources of informa-
tion, such as software guides, magazines, and the experience of
colleagues. Publications specialising in application packages are
now available, and these usually contain a candid review and
comprehensive information about suppliers, package costs and
options, and required hardware and operating system software.
An example of a package-specific publication is Software Guide
Jor Accountants.

Possible suppliers are contacted, and initial demonstrations are
arranged of up to six packages that appear to be capable of
meeting the fundamental requirements. In our experience, having
demonstrations of between three and six packages should give
a fair view of the types of products available. If more packages
are investigated, the additional effort may be excessive in terms

25

Chapter 3 Established methods are available for selecting application packages

of the additional information gathered. It is important that those
involved in selecting a package attend demonstrations early on
in the selection process, so that they have an understanding of
the types of products available before they define. the
requirements in detail. By looking at a selection of the avallablle
products, understanding how they work, and assessing their
strengths and weaknesses, the selection team can decide on a
shortlist of preferred packages and formulate its detailed
requirements better.

There is a danger that supplier demonstrations can be persuasive
and lead the team to consider issues that are not important. The
project teams must keep the fundamental requirements in mind
at this stage and ignore suppliers whose products cannot meet
them. Detailed requirements can then be decided without
pressure from suppliers.

Stage 4: Produce and issue the invitation to tender. Detailed
requirements are defined. Both user and technical requirements
are refined, and categorised as either essential or desirable. It is
important to ensure that requirements classified as essential really
do have to be met if the system is to provide a workable solution.
If features that are only desirable, in that they would be useful
to have, but not necessary, are classified as essential, it is likely
that potentially appropriate packages will not be considered.

The requirements are agreed, and incorporated in an invitation
to tender, which also provides a standard format for responses,
and sets out the administrative arrangements for the tendering
procedure. The invitation to tender is then issued to the preferred
suppliers identified in Stage 3. The typical contents list for an
invitation to tender is set out in Figure 3.5.

Producing a detailed invitation to tender and ensuring that
suppliers respond using the specified format is very useful,
particularly for larger, more complex applications. The effort of
matching product functionality to requirements is borne by the
suppliers, rather than by the package purchaser. Commitments
given in the chosen supplier’s response should be incorporated
into the final contract, to ensure that the supplier has a legal
obligation to meet the claims he has made. The supplier, in turn,
can identify any modifications that may be required to the
package, advise on the most appropriate ways to make these
modifications, and estimate the costs and timescales involved.

Stage 5: Weight and score. The next task is to agree on the
weightings for each desirable requirement. Many organisations
carry out this task before the invitation to tender is prepared. We
believe, however, that it is more efficient to agree on the
weightings while waiting for the suppliers to respond to the
invitation to tender. Requirements should be classified into
different types and each type should also be weighted. For
example, for an accounting system, requirements may be classified
into financial accounting, management accounting, and so on. This
will enable the importance of individual requirements to be
reflected, along with the importance of different types of
requirements.

The advantage of defining weightings for the different
requirements when suppliers are preparing their tenders is that
it saves time, because the invitation to tender can be issued before

[8¥]
(=7]

Packages that do not meet the
fundamental requirements
should be ignored

Figure 3.5 Most invitations to
tender have similar
contents

Tender administration

Request to tender statement

Contact details for tender processing
Confidentiality statement

Completion and submission of proposal
Criteria used to assess responses

Background information

Overview of the company

Overview of the current system

Scope of the proposed system

Essential requirements of the new system
General systems requirements and
constraints

Summary of current systems procedures
Main functions of current system
Responsibilities for performing main
functions

Control procedures

Specific areas of difficulty

Systems requirements
User requirements
Technical requirements
Operational requirements

Required tender content and format
Management summary

Application software

Hardware

Operating systems software

Support

Implementation summary

Contractual terms

© Butler Cox plc 1990

Chapter 3 Established methods are available for selecting application packages

the weightings are agreed. The process of defining the weightings
focuses the project team’s attention on the completeness of the
requirements and helps to identify any missing requirements.

When the tender responses have been received, the first task is
to eliminate any product that cannot meet all the essential
requirements. For the remaining products, each of the weighted
criteria should be scored to produce a total score for each product.
: Each member in the project team should produce his own scores,
ensure that the score given to and these should be discussed, to agree on a score for each
each seleption criterion Is criterion. Close contact with suppliers will be essential during this
accurate s . 5 »

stage to ensure accuracy in the scoring. Figures 3.6 and 3.7
(overleaf) show sample forms for recording the classification and
weighting of requirements and the scores given to each package
being evaluated. Total scores for packages can be compared to

identify the preferred products.

Close contact with suppliers will

Stage 6: Obtain additional information. In this stage, additional
information about the preferred products and their suppliers is
gathered from visits to, and discussions with, the suppliers and
users of the packages, and from company searches, and so on.
This should serve to clarify any issues arising from the tenders,
to confirm the experience of current users of the preferred
products, to verify the financial stability of the supplier, and to
confirm the costs, resources, and timescales required to implement
the packages.

Figure 3.6 Each requirement, and type of requirement, should be weighted
Application package selection checklist
Package name:
Essential
or

Desirable

indicator Weighting Weighted

(E or D) Score applied score Comments
Requirement type 1
— Reguirement 1
— Regquirement 2
— Reguirement 3
— Requirement 4
— Requirement n

Weighting for
Total score for Requirement type 1 Requirement X
type 1
Requirement type 2
— Reguirement 1
— Requirement 2
— Reguirement 3
— Reguirement 4
— Requirement n
Weighting for
Total score for Requirement type 2 Requirement b
type 2
Total score for package =X+Y

© Butler Cox plc 1990 27

e

Chapter 3 Established methods are available for selecting application packages

Figure 3.7 Agreed scores should be applied to the weighted criteria to produce a total score for each product

Weighted scores by requirement and type of requirement

Package 1 Package 2 Package 3 Package 4

Reqguirement type 1

— Reqguirement 1
— Requirement 2
— Requirement 3
— Requirement 4
— Requirement n

Total score for Requirement type 1

Requirement type 2

— Requirement 1
— Requirement 2
— Requirement 3
— Requirement 4
— Requirement n

Total score for Requirement type 2

Total score for package

It is important that the project team has a clear view about what

Is to be achieved by obtaining the additional information.

Checklists or questionnaires should be developed to ensure that

all the appropriate issues are covered. These should be designed

in such a way as to ensure that a fair view is gained about the Checklists shoald be usad for
Issues under investigation. For example, if an organisation is trying obtaining additional
to assess the product support provided by a potential supplier, information

it would be inappropriate to ask “Do you provide comprehensive

support for the package?’’ because the answer is always likely

to be “Yes”. Questions, along the lines of those listed below,

would give an accurate impression of the standard of support

offered:

— What support do you provide for the package?
— Do you provide both user and technical support?

— Do you have a specific department dedicated to supporting
the package?

— How many staff do you have providing support for the
package?

— Do you have guaranteed response times for queries?

If Stage 5 revealed a product that is clearly preferred, Stage 6
should initially be undertaken with reference to that product only.
If several products are closely scored at the end of Stage 3,
emphasis should be placed on assessing those areas that will be
most important in making the selection decision. Usually, it is the
various aspects of implementation — costs, timescales, and
S0 on — that are critical at this stage.

Chapter 3 Established methods are available for selecting application packages

More flexible and complex
packages are often more
difficult to implement

Penalties for poor performance
by the supplier should be
specified in the contract

© Butler Cox plc 1990

While these issues will usually have been considered during earlier
stages, it is only at Stage 6 that both the supplier and the
organisation are likely to have sufficient information to estimate
accurately the costs and timescales of implementing the package.
This information will be obtained in discussions between the
supplier and the organisation, and by subsequent analysis. The
high level of effort and the long timescales involved in
implementing some packages can offset their apparent
advantages. Typically, the more flexible and complex a package
is, the more difficult it is to implement. Thus, while a product may
have a very close fit with an organisation’s requirements, its
implementation may be either too costly, or take too long, to make
selection of this product a viable business solution.

Stage 7: Conduct detailed trial. For complex applications, when
fast implementation is not of fundamental importance, a trial
period is recommended, to gain a detailed understanding of an
application package. This will confirm whether or not the product
will offer a good operational solution. A trial should be undertaken
only if it has a good chance of being successful. Most suppliers

agree to trials, because it should make subsequent implementation
easier.

Stage 8: Make decision and negotiate contract. Following a
successful product trial, or the provision of appropriate additional
information, a decision will be made to acquire the package. At
this stage, enough information will exist to develop a detailed
business case for the investment.

The final stage is to conclude the contractual negotiations.
Statements made in the tender response should be included in the
contract, together with other safeguards to protect the
organisation’s interests. Any important issues that arose during
the selection exercise should be recorded in writing, and written
responses from suppliers should also be included in the contract.
Payment terms should be agreed, including penalties for poor
performance by the supplier.

Repeating some of the stages. Figure 3.4 showed that there are
five points during the process when it may either be appropriate
to go back to a previous stage or to abandon the package-
development option:

— If the basic requirements agreed in Stage 2 are different in
scope from the ideas when the project was initiated, it may
be necessary to revise the project’s terms of reference,
planning, and management procedures.

— If Stage 3 reveals that the products available do not
adequately meet the fundamental requirements, the project
may have to be rethought. Alternatively, if it is not possible
at this stage to find products that are likely to be suitable,
bespoke development could be considered.

— At Stage 5, the weighting and scoring may lead to the
conclusion that no package can meet the essential
requirements. Bespoke development should then be
considered, or the scope of the project could be changed.

29

Chapter 3 Established methods are available for selecting application packages

— At Stage 6, if the additional information reveals that. the
supplier is not financially sound or has other shortcomings,
it may be appropriate to obtain additional information about
the other products (and suppliers) assessed, or to consider
bespoke development.

— If the detailed trial (Stage 7) is unsuccessful, the supplier of
the next-highest-scoring product should be investigated, and
if appropriate, this product should also be subjected to a
detailed trial. The final decision should usually be to contract
for the supply of the application package that has been
successful at trial. If no package is found to be satisfactory
at the trial stage, bespoke development should again be
considered.

A SUBSET OF THE STAGES MAY BE APPROPRIATE
IN SOME CIRCUMSTANCES

The approach we have described so far is the full approach that
we recommend PEP members adopt when selecting packages for
major, complex applications. The approach should, however, be
used pragmatically. It is not necessary, for example, to undertake
a detailed trial of a small, inexpensive product. At the project-
initiation stage, the project manager will take a view on how the
project will be carried out, which stages are necessary,
and what emphasis and level of detail should be undertaken at
each stage. Figure 3.8 illustrates a subset of the approach that
is appropriate for a smaller, less complex application.

For a small, simple application, the project team can decide during
Stage 1 (when the project is initiated) to miss out Stages 4, 5,
and 7. In the example shown in Figure 3.8, the project team has
decided that it is not appropriate to produce an invitation to
tender or to weight and score responses. Nor is it appropriate to
undertake a detailed product trial. Missing out these stages
exposes the project to more risk, but the risk is limited because
of the controlled project framework. The decision about the
preferred supplier will be taken during Stage 3, when the market
investigation is undertaken. This means that this stage will
probably need to be more extensive than in a project to select a

Figure 3.8 The recommended approach may be modified for the
selection of a small, simple application
Stage 1 »| Initiate the project
+
Stage 2 Agree on the basic
reguirements
: Consid
Stage 3 Do initial market onsiGer
» investigation bespoke
- development
Stage 6 Obtain additional
information
]
Stage 8 Make decision and
negotiate contract
30

The recommended selection
approach should be used

pragmatically

Some of the stages can be

omitted for simple
applications

© Butler Cox pic 1990

Chapter 3 Established methods are available for selecting application packages

Three proprietary methods for
selecting application packages

© Butler Cox plc 1990

are available

larger, more complex application. Additional information will still

be gathered to assess the preferred supplier’s performance in
predefined areas.

PROPRIETARY METHODS ARE WORTH CONSIDERING

An alternative to devising a formal method in-house is to acquire
a proprietary method for selecting application packages. While
several of the integrated development methods, such as
Method 1, have sections that can be used for package-based
development, proprietary methods that have been produced
specifically to help with package selection are now becoming
available. We have identified three such methods, each of which
has been used successfully by several large organisations. The
three products are SIIPS (Selection and Implementation of
Integrated Packaged Software), supplied by KPMG Peat Marwick,
Buy/Build, supplied by Hoskyns, and LBMS Package Evaluation,
supplied by Learmonth and Burchett Management Systems.
Summaries of each are given in Figures 3.9, 3.10 (overleaf), and
3.11 (on page 33). The three methods have many similarities:

— A detailed definition of requirements is produced.

— The options are progressively reduced from a long list, to a
short list, to a preferred supplier.

— The supplier’s involvement is extensive.

Figure 3.9 SIIPS, from KPMG Peat Marwick, is a comprehensive method
that covers both the selection and implementation of an
application package

The key aspects of this method are the emphasis placed on a user-driven
project and the use of a detailed invitation to tender, using weightings of
requirements so that different packages can be compared. The work is split into
four phases.

Phase 1: A detailed definition of requirements is undertaken. This focuses on
what is required, rather than how it is to be provided. During this phase, it is
assumed that the ultimate solution may be either package-based or bespoke
development; there is no difference in approach. Major users of the proposed
application must agree on a report outlining the requirements, at this phase.

Phase 2: A conceptual design is developed for the application. This documents
what the new system is to do. Current facilities are then reviewed and a
‘shopping list’ is produced of software components (for example, packages,
fourth-generation languages, and so on) that are reguired to implement the new
systemn. A ‘long list’ of potential suppliers is created and reduced to a short list
by assessing both the suppliers’ standing and product features.

Selection is based on a list of mandatory and desirable features (2 MAD list)
required to support the business-processing, data, and technical requirements.
These requirements are incorporated into an invitation to tender. The responses
from invited suppliers to each item on the MAD list are weighted and scored.
Desk checking of the responses is backed up by visits fo sites where the
product is being used. Generally, the highest-scoring package is chosen.

Phase 3: This phase deals with the implementation of the chosen package. The
SIIPS approach to implementation recognises that individual areas of a package
can be designed, developed, and implemented independently of, and
concurrently with, other areas. Other issues addressed within this phase include
training, documentation, interfaces with other systems, testing, and any other
activities required to get the system ready for live operation.

Phase 4: This phase provides a framework for carrying out a post-
implementation review of the project and for measuring the benefits derived
from the new system.

31

Chapter 3 Established methods are available for selecting application packages

Figure 3.10 The Buy/Build method, from Hoskyns, treats the se!e_ction
and implementation of an application package as a single
project

Buy/Build is an integrated part of the PRISM (Professional Information Systems
Management) development method. It is based on progressive management
decisions being made to identify options, select suppliers, and establlsh the
functionality of interfaces or other facilities that are implemented with the
package. It is comprehensive and flexible, and can be tailored for the type of
package being selected. This process is:comparatively risk-free Abecause
checklists and charts are provided that outline the work and deliverables from
egch task. If tasks are undertaken in a different order, or not included in a
project, it is clear what work and information will be missing. A project will
normally comprise seven phases, each of which culminates in a major review
and decision.

Phase 1: Strictly speaking, this phase of work falls outside the Buy/Build
method; it is part of the Business Study module of PRISM. The business
requirements and problems to be solved by the new system are identified and
initial choices are made about the business and project objectives that the
system should satisfy, and about whether it is to be package or bespoke
development.

Phase 2: In this phase, the feasibility of a package solution is verified. The
following tasks are undertaken:

— A search is initiated to identify potential suppliers.

— A request for information is issued, outlining fundamental requirements and
constraints.

— A shortlist is compiled.

Phase 3: The preferred supplier is selected:

— Detailed user requirements are specified.

— A request for proposal for the new system is produced and issued.

— Evaluation criteria are agreed.

— Demonstrations of products are attended.

— A supplier is selected on the basis of the evaluation criteria.

Phase 4: In this phase, an understanding of the scope of required modifications
to the preferred package is developed. Modifications are planned and

undertaken, using the appropriate PRISM development module, to arrive at an
overall project plan:

— ldentify package scope.
— Identify build scope.

— Develop preliminary installation approach.

Phase 5: The installation of the new system is planned:

— lIdentify the conversion and interim maintenance and support requirements.
— Place contract.

— Review package and acceptance criteria.

— Prepare environment.

— Initiate training.

— Finalise installation preparations.

Phase 6: The new system is installed, tested, and integrated with other systems:
— Test design.

— |Initiate and test package software.

— Integrate package and other software.

Maintenance arrangements are agreed.

Phase 7: Installation is completed with acceptance tests, followed by cut-over to
the new system;

— Conduct acceptance test.
— Cut-over to new system.
— Finalise installation.

32

© Butler Cox plc 1990

Chapter 3 Established methods are available for selecting application packages

Figure 3.11 LBMS Package Evaluation covers the selection of an
application package and planning for its implementation

LBMS Package Evaluation is structured into five activities, with three of the
activities — requirements analysis, package selection, and package
documentation — overlapping. This means that the list of potential packages
can be progressively reduced as the requirements are defined in more detalil.
The method used by LBMS Package Evaluation places initial emphasis on the
development of a technical understanding of the business requirements,
followed by a detailed understanding of the potential packages. The two can
then be matched. The five activities are as follows:

Activity 1: Project initiation

The scope of the project is defined, its cost is estimated, and resources are
assigned. Following this, the market is ‘trawled’ for potential packages. An initial
screening mechanism, called Strategic Requirements Comparison, based on
defined and agreed mandatory requirements, is performed to provide a shortlist
of likely packages. The aim of this activity is to identify those packages that are
suitable for further, more detailed, analysis.

Activity 2: Requirements analysis

This activity is based on standard analysis steps, which allow the current system
to be investigated, requirements for the new system to be defined, and
‘business system options’ to be produced. The details of the required system
form the basis of the work in Activity 3.

Activity 3: Package selection

In this activity, the potential packages are compared, and a shortlist is compiled:

— “Functional comparison’ identifies the packages that are best able to meet
the basic functionality requirements, and cope with volumes or fransactions

and file sizes. A shortlist of up to three packages is compiled and each is
scored.

— ‘Data comparison’ ensures that the shortiisted packages can handle the
organisation’s required data structures, content, and format. Scores are
again allocated to each package.

‘Praocess comparison’ is a more detailed check that the required processing
is present in the potential packages.

All three steps identify, document, and specify the maodifications that will be
required to the packages, and their impact (both technical and organisational).

Activity 4: Package documentation

This optional activity consists of two steps and should be carried out only if the
documentation provided by the supplier is insufficient to complete Activity 3.
The first step, which should be undertaken only if absolutely necessary,
provides a mechanism for deriving the logical data structure to be used by the
package (used in the ‘data comparison’ step of Activity 3). In the second step,
the project team produces its own package documentation for the ‘process
comparison’ step of Activity 3.

Activity 5: Implementation planning

This activity assesses the full implications of procuring and implementing the
package in terms of:

— Hardware and system software needs.

— Customisation requirements.

— Organisational impact.

— Interface and data collection/conversion needs.

— Once-off and continuing costs.

— Implementation timescales and resources.

Collating and reviewing all such information ensures that the final decision to
purchase a particular package can be taken with confidence.

Each method also has its unique features, however. These
differences should be carefully considered by any organisation
wishing to introduce a proprietary method. The main differences
are tabulated in Figure 3.12, overleaf.

® Butler Cox ple 1990 33

Chapter 3 Established methods are available for selecting application packages

Figure 3.12 The three proprietary methods have many distinctive features

Feature

Product

SlIPS

Buy/Build

LBMS Package Evaluation

Level of user involvement

High

High

Low, except at requiremients
definition

Emphasis on
reguirements, user and
technical

Primarily user

Primarily user

Business requirements
defined in technical terms

Method of involving
suppliers

Suppliers provide
information and analysis in
response to invitation to
tender

Suppliers provide
information in reply to
request for information and
request for proposal

Information provided by
suppliers and interpreted by
the project team

Decision-making process

Decision made by scoring
of weighted requirements

Decisions made
progressively as more
information received

Quick move to detailed
investigation of leading
contender

Implementation coverage

Implementation covered in
detall

Implementation integral part
of project

Implementation planned

Links to structured
methods

Can be used with any
structured method, but
based on KPMG's SDLC
method

Links to other parts of
PRISM

Links to LSDM

Consideration of bespoke
development

A choice is made between
bespoke and package
development

Can be considered at end
of each stage, if appropriate

Can be considered at end
of each stage, if appropriate

Flexibility to assess
different types of package

Suitable primarily for large,
complex applications: would
need modification for use
with other types of system

Very flexible method that
enables a project to be
‘tailor made’

Detail of stages can be
modified as necessary:
some guidance given

Each proprietary method is appropriate in certain cases. If a PEP
member needs a very flexible approach, Buy/Build would be the

most appropriate choice. If the intention is to select mainly large,
complex packages, SIIPS would be more appropriate. LBMS
Package Evaluation is most appropriate for organisations that
require a detailed technical understanding of packages and that
have complex interface requirements.

In this chapter, we have looked at the ways in which application
packages should be selected. The benefits of using a chosen
application package can be realised, however, only if any
modifications required are carried out correctly and if it is
successfully implemented. We address these issues in the next two
chapters.

34

Each of the proprietary methods
is appropriate in different
circumstances

© Butler Cox pic 1990

Chapter 4

Modifying application packages may be a viable option

Some organisations have
experienced problems

Others will modify any of their

© Butler Cox plc 1980

with modified
packages

packages

The application package that is selected in the process described
in Chapter 3 should be a good ‘fit” with the requirements of the
business, but it is unlikely to be a perfect fit. In such cases, making
modifications to the basic product may provide a better business
solution. As with a bespoke system, however, modifying a package
is more difficult than developing functionality from scratch. (We
know from the PEP database that projects that involve changing
or enhancing existing systems are typically less productive than
new developments.) The viability of modifying a package will be
determined by three main factors — company policy, the cost

likely to be incurred, and the nature of the modifications that are
required.

COMPANY POLICY MAY PRECLUDE MODIFICATION

Some organisations allow no modification to packages, insisting
that a package will be used only if it has a high degree of ‘fit’ with
the organisation’s requirements; alternatively, the organisation
may be prepared to modify its working practices to accommodate
an application package. These organisations believe that greatest
benefit derives from using packages in the form in which they
are supplied rather than spending time and effort on modifying
them.

Several organisations we spoke to said that they now place less
emphasis on modifying packages than they did in the past. One
large financial services company told us that its previous policy
had been to make all the modifications necessary to application
packages to give the users exactly what they said they wanted.
This policy had recently been changed, because of the extensive
support problems that it had experienced with the modified
products, and in particular, the cost of enhancing modified
packages.

A variation of this policy is to persuade a package supplier to base
his package on the organisation’s specific requirements. Clearly,
this option is not available to all organisations, but by developing
this type of relationship with a package supplier, an organisation
would never incur the costs of modifying a package and would
have its specific requirements met.

At the opposite end of the scale, some organisations have taken
a strategic decision that any of their application packages may
be modified. This policy is typically chosen by organisations that
place the emphasis on providing users with a system that fully
meets their requirements, regardless of cost. Such a policy might
also be adopted in order to provide a standard user interface —
for instance, always amending packages to provide screen layouts
that are consistent with other applications.

35

Chapter 4 Modifying application packages may be a viable option

THE TRUE COST OF MODIFYING A PACKAGE
MUST BE CALCULATED

Assuming that the option of modifying application packages is.not
precluded by company policy, it is essential that the pro‘_]ect
manager has a clear idea of the true cost involved in modification,
because he has to strike a balance between the need for a package
to fit business requirements precisely, and cost. Some
development managers believe that the effort needed to modify
packages so that they can interface with other applications and
can match users’ needs is such that the total cost of the package
and the modifications often makes it more cost-effective to
develop the equivalent bespoke application. Many organisations
that has invested heavily in application packages are incurring
increasing costs and suffering slipping timescales because of the
level of modifications that has to be carried out to deliver the
required systems.

Without doubt, modifying application packages can be both
expensive and time-consuming. Indeed, one PEP member who had
taken a strategic decision to invest in application packages rather
than bespoke system development had experienced so much
difficulty and expense in modifying packages that he was
considering reversing the decision and allowing only bespoke
system development.

It is even more difficult to estimate the costs of modifying an
application package than of developing a bespoke system, because
the systems development department does not usually have a
detailed understanding of the product to be modified, and
consequently, cannot accurately estimate the work involved. The
issue is complicated because the department is typically faced with
the choice of undertaking the modifications using in-house
resources, or getting the package supplier to make the necessary
changes.

Several organisations we spoke to during our research make
decisions about application packages with reference to a rule of
thumb; if 80 per cent of the required functionality can be provided
by the package, it is worth modifying to provide the remaining
20 per cent of requirements. Clearly, this rule does not accurately
reflect the work or the cost involved in modifying a product, but
applied pragmatically, it can be a useful basis on which to decide
whether it is worth acquiring and modifying a package. Depending
on the design of the package, it may be both costly and time-
consuming to make relatively small changes. However, if the fit
of the application to business requirements has to be high, and
if the business procedures cannot be changed to conform with the
package, modification can be a viable option.

MODIFICATIONS TO THE PACKAGE CORE
SHOULD BE DISCOURAGED

The attitude of application package suppliers to modifications
made to the source code of their products is changing, and in
general, seems to have come full circle, as illustrated in
Figure 4.1. This changing attitude is determined by an issue that
is closely linked to package modifications — continuing product
support.

36

Modifications to packages can
result in increased costs and
time slippage

Some organisations use an 80/20
rule of thumb to decide if it is
worth modifying a package

Chapter 4 Modifying application packages may be a viable option

First-generation packages have a
large core component and a
small non-core component

@ Butler Cox plc 1990

Figure 4.1 Suppliers’ attitudes to having their products modified have
come full circle

No changes are made

/ to source code

Source-code changes Source-code changes
are discouraged are increasingly
by suppliers encouraged by suppliers

Source-code changes
are general practice

During the early development of the market for application
packages, suppliers were not prepared to allow their products to
be modified. Some subsequently realised that by either tailoring
their products for particular customers, or allowing customers to
change packages themselves, they could offer a product that
provided a better fit with business requirements, and hence, their
product gained a competitive advantage over those of other
suppliers. To compete, other suppliers followed this trend.
However, when package suppliers enhanced their product range
by adding functionality in new product releases, they found that
support problems increased for users who wanted to upgrade their
non-standard versions of the products. This resulted in suppliers
discouraging or forbidding changes to the source code of the
package core. This trend has now been reversed. As suppliers have
enhanced their products and begun to provide parameterised and
flexible packages with advanced tailoring tools, they have stopped
making specific amendments to their products for individual
customers, and preventing customers from making their own.

The concept of the package core is illustrated in Figure 4.2, over-
leaf. Application packages contain both core and non-core
components, and the more advanced fourth-generation packages
available today have a core that is smaller than the non-core
components. First-generation packages have limited reporting
facilities, with a database structure and processing logic that pro-
vides only the function necessary for the standard applications.
Usually, a small number of parameters is available. Second-
generation packages are similar to basic packages, except that they
have several modules that provide additional functionality in
areas other than the standard application. As with first-generation
packages, a small number of parameters is usually available. Third-
generation packages use parameters extensively to allow areas
of the product that are not part of the standard application to be
tailored to meet an organisation’s specific needs. Fourth-
generation packages allow all the components, other than those
fundamental to the standard application, to be modified to meet
an organisation’s specific needs, using modern development tools.

37

Chapter 4 Modifying application packages may be a viable option

Figure 4.2 The core of a package comprises key elements of the
database and update logic

An application package can be divided into three areas — the update logic, the
database, and the reporting functions. The core of a package is the A
fundamental processing logic and information held in the database that_ is key to
the application. With both third- and fourth-generation packages, there is usually
a substantial amount of information held in the database that is not central to
the application. If this is the case, there will also be processing logic that is not
necessary for the basic application. Reporting functions access information held
in the database and are not generally part of the core of the package.

Update logic Database Reporting functions
Core Core
Non-core
Non-core Non-core
If an organisation’s requirements are likely to change, it is The later the generation of
therefore usually advisable to select a later generation of package, package, the easier it is
which can be changed in line with evolving requirements. to modify

Figure 4.3 illustrates the types of modifications that can be made:

— First-generation, basic packages can have their few
parameters changed. In addition to this, the package core can
be changed by modifying its source code, or an addition can
be made to the package, which may affect either the core
or the non-core components.

— Second-generation, modular packages can have their few
parameters changed in either the main product or the
accompanying modules. The core of both the main product
and the modules can be changed by modifying the source
code, and additions can be made to both the main product
and the modules. With modular packages, it is possible to add
a new module.

— Third-generation, parameterised packages have a relatively
small core. The parameters can be changed and the core can
be modified by amending the source code. Again, an addition
can be made that affects either the core or the non-core
components.

— Fourth-generation, flexible packages provide considerable
scope for amending the non-core components by using
modern development tools. The core can again be changed
by amending the source code, and additions can be created
that affect either the core or the non-core components.

38 © Butler Cox plc 1290

Chapter 4 Modifying application packages may be a viable option

PEP members should avoid
changing the source code
of the package core

It is usually better for in-house
staff to carry out non-source-
code changes

© Butler Cox plc 1990

Figure 4.3 Different modifications can be made depending on the
generation of the application package

Note that the relative size of the core and non-core components varies
according to the generation of package. First-generation packages have
a large core component, whereas fourth-generation packages have

a large non-core component.

Iz fj;;“‘ff : 11&;,»

e

. Additions made to the package, affecting either the core or the non-core
components. For second-generation, modular packages, an addition
could take the form of a completely new module.

Changes made to the source code of the package core.

. Modified non-core parameters, except in the case of fourth-generation
packages, where the non-core parameters can be modified using
modern development tools.

Our research shows that almost 80 per cent of PEP members had
modified the source code of application packages, although such
modifications are carried out infrequently by about 60 per cent
of members (rather than occasionally or generally). We believe,
however, that PEP members should avoid changing the source
code of the core of a package. If the functionality provided by
this fundamental part of an application package is in question,
the organisation has probably chosen the wrong package. If
changes to the core of a package are essential, however, they
should be carried out by the package supplier because they will
alter the very heart of the product. The supplier should always
approve of the proposed modifications and should agree to support
the amended product.

The results of our survey also showed that many PEP members
are willing to make changes that do not involve changing the
source code of a package — that is, by changing parameters and
making additions to packages. About 40 per cent of PEP members
reported that they had made these types of changes. However,
we suspect that this figure is understated because it does not
include those instances where the setting of package parameters
is carried out by users without the knowledge of systems staff.
PEP members reported adopting several policies towards
undertaking non-source-code changes to packages. By far the most
popular was for the organisation’s own staff to carry out this type
of change. This is usually the best option for making additions to
a package, because the organisation can control the development
and is not relying on a third-party supplier.

39

Chapter 4 Modifying application packages may be a viable option

Setting package parameters is usually fairly straightforward.
Parameters usually fall into two types — those that change _the
way the package can be used, and those that affect the technical
environment — file sizes, for example. Users should be encouraged
to set the first type of parameters. However, security procedures
should be established to prevent users accessing the second type
of parameters, which should be controlled by systems staff.

Where possible, additions to a package should be structured as
standalone modules that can access data from the proprietary
product. Where such additions are made, the organisation should
try to obtain a guarantee from the supplier that the data formats
will remain the same. This will make it easier to integrate
organisation-specific modules with new releases of the package.

THE IMPLICATIONS OF MAKING MODIFICATIONS
SHOULD BE UNDERSTOOD

To help PEP members, we make the following recommendations
with regard to amending application packages:

— Always make early estimates of the modifications required Time estimates for package
and build them into the business case for the project. Time modification are more
estimates are more important than basic cost estimates, as fmlfﬂrt&m than cost
the main benefit of using an application package should come estimates
from reduced timescales for delivering an operational
application.

— Get estimates from as many sources as possible, including,
as appropriate, estimates from the package supplier, in-house
estimates, and estimates from any consultants or other third
parties who may be involved. This should provide a more
reliable assessment of the work involved than a single source
of information.

— Do not make source-code changes to the core of the package.
If the core functionality is in question, and the basic way the
product works needs changing, the package may well be
unsuited to the requirements.

— Do not make changes to the source code of the non-core
components unless they are absolutely necessary. If possible,
get the package supplier to carry out any such source-code
modifications, because this will avoid the need to spend time
understanding the package before the changes can be made.
Undertake source-code changes in-house only with the full
knowledge of the supplier and with his commitment to future
support.

— Ensure that additions to packages are designed as individual
modules to provide specific functions. Structure these
modules so that they can use the predefined data structures With a modified package, the sup-

and formats from the basic application. Involve the supplier, plier should give assurances
who should be able to give guidance about how best to design ﬂ'atdbe will not change
these additional modules. Seek assurances that the data the data structures

structures will not be changed in future releases.

— Where possible, encourage users to make additions to
packages. Many packages are now supplied with advanced

40

er Cox plc 1990

Chapter 4 Modifying application packages may be a viable option

tailoring tools, such as package-specific fourth-generation
languages, screen painters, and report writers. As the users
are the customers for the package, they should shape the way
it works and looks. However, some of these tools are complex
and more appropriate for use by systems development staff.

— Make users responsible for setting parameters that affect the
way they use the system. Establish security procedures to
restrict access to any system parameters that will affect the
technical environment in which the package operates — for
example, changing file sizes, and so on. These technical
options should be controlled by systems staff.

Once the modifications have been completed, the task of
implementing the package can begin.

® Butier Cox plc 1990 41

Chapter 5

Application packages must be correctly implemented

An organisation may select the ‘right’ application package, but
if it is implemented in an inappropriate way, the potential
benefits, in terms of reduced timescales and costs, will not be
realised. While about 40 per cent of PEP members have a formal
method for implementing packages, the majority report that they

use identical procedures to those used for implementing bespoke A package-specific imple-
applications. There are, however, significant differences between mentation method
package-based and bespoke developments, which mean that it is 1s required

not usually appropriate to implement them in the same way. Nor
is it appropriate to implement all types of application packages
in the same way. A package-specific implementation method is
required that is flexible enough to be adapted in line with the
particular generation of package that has been selected.

DIFFERENT IMPLEMENTATION APPROACHES ARE
APPROPRIATE FOR PACKAGES AND BESPOKE
DEVELOPMENTS

The differences between an application package project and a
bespoke system development project have significant implications
for the way in which each is implemented. The five areas in which
the two types of project differ significantly are:

— The emphasis of development work.
— Project team roles and responsibilities.
— The type of testing.

— The use of third-party services.

— Systems sign-off.

THE EMPHASIS OF DEVELOPMENT WORK

The work necessary to develop a system with an application
package is considerably different from that involved in developing
a bespoke application. In an application-package-based project,
the emphasis of work is not on developing a system but on
establishing the facilities already contained within the package.

Assuming that no modifications are necessary, the implemen-
tation stage in a package-based project is the equivalent of the

design, development, and implementation stages of a bespoke Implementing a package is

system development. Like the design stage in a bespoke system equivalent to designing,
development, the implementation stage in any application- developing, and imple-
package-based project comes after the requirements have been menting a bespoke

defined. The difference is that, with a package-based project, not system
only have the requirements been defined, but a further stage of
work has been carried out to select the product that will be used.

© Butler Cox

Chapter 5 Application packages must be correctly implemented

The package has to be estab-
lished to provide the

required function-
ality

Packages should be tested

© Butler Cox ple 1930

thoroughly

In both types of project, implementation will normally be followed
by a systems-acceptance stage, and a post-implementation review.

When an application package is used as the basis of a system that
has several functions, it is much easier (compared with bespoke
development) to carry out the design and implementation stages
for each function concurrently. This means that it is possible to
reduce considerably the overall timescale for delivering the full
system. On a large project, it may even be possible for separate
teams to be responsible for providing each of the functions.

One of the main benefits of using an application package is that
expenditure on the main-build stage of development is replaced
by payment of a fixed sum for a known amount of functionality,
which can be delivered within known timescales. The package
will, however, still have to be established in a way that provides
an operational system. Systems management must be aware of
what type of work will be necessary, and make sure that
appropriate staff and other resources are available to undertake
it. The organisation will have to decide how it is going to use the
framework of potential facilities, and put these in place — in other
words, it will have to design the new system. In addition, the
technical environment within which the package will operate
must be established. Examples of work in this area include
establishing the necessary job streams, developing restore-and-
recovery procedures, and configuring teleprocessing monitors.

PROJECT TEAM ROLES AND RESPONSIBILITIES

Users are more likely to want to play a leading role in package
implementation than in a bespoke development, and we believe
that this trend should be encouraged. However, difficulties can
arise because users typically do not understand as thoroughly as
systems staff how to undertake an implementation project. In
addition, our research has shown that there is a marked tendency
for users to under-estimate the commitment that they need to
make while a package is being implemented.

While it is good practice for systems and user staff to work closely
on any project, it is particularly important that a good relationship
is established on application package projects, especially at the
implementation stage. The project can then be effectively
managed, realistically planned, and sensibly controlled.

THE TYPE OF TESTING

Several organisations we spoke to during our research do not test
application packages; they simply assume that they work. The
majority, however, do test packages, but because the package’s
code has been developed by the supplier and is used in other
organisations, testing is often limited just to user testing.

We believe that all application packages should be tested more
thoroughly than this, for the following reasons:

— Suppliers have been known to make mistakes and to deliver
the wrong versions of products.

43

Chapter 5 Application packages must be correctly implemented

— An organisation’s technical architecture may not fully
support a specific application package — for example, some
organisations that use IBM plug-compatible mainframe
computers have had difficulties trying to run leading
packages developed for the IBM marketplace.

— Although packages are typically used in many organisations,
each organisation will use the package in a different way.
With complex products, it is difficult for suppliers to test
every combination of parameters and all ways of working.

While testing simple packages should be a straightforward
operation, the testing of more complex products should be more
extensive. For example, with financial applications, it is not
unusual for the new system and the existing system to be run
concurrently for an extended period, and for full reconciliations
to be undertaken. The implications of this type of testing must
be taken into account when planning the implementation. If two
systems are to be run concurrently, the workload may be such
that additional staffing and machine resources will need to be
made available. Overall, however, the time and effort required
to test an application package should be significantly less than
to test a bespoke system development.

THE USE OF THIRD-PARTY SERVICES

The fact that an application package is supplied by a third party,
who usually developed the system, almost inevitably means that
an organisation will make different arrangements for support,
training, and documentation from those that they would make
for a system developed in-house. The use of these services should
mean that the timescale for systems delivery is shorter than for
a bespoke system development. However, the organisation will
have to decide which services to use, and plan to make the most
efficient use of them. For example, management will have to
decide whether all training will be provided by the supplier, or
whether to get the supplier’s staff to train a small team of the
organisation’s staff, who will then train the remainder. The
requirements for, and timing of, both technical and user training
will be affected by the support arrangements that are agreed.

SYSTEMS SIGN-OFF

Systems sign-off is usually more complex and time-consuming for
an application package. The involvement of a third party typically
makes the process more formal.

Adequate operational performance of the package-based system
will usually have been specified in the contract as a criterion for
final payment for the package and for ratification of the
contractual arrangements. The relationship with a third party
means that all documentation relating to the implementation must
be carefully recorded and filed. If any contentious issues arise
during implementation, final systems sign-off can be a prolonged
process, involving long negotiations between the parties.

Systems management should be aware of these potential problems
and take early action to avoid them. For example, if problems

44

Training and support arrange-
ments for a package are
different from those for

a bespoke system

All implementation information
must be carefully recorded and
filed, in case any contentious

issues arise

S Butler Cox pic 1980

Chapter 5 Application packages must be correctly implemented

occur, tllley should be notified to the supplier immediately so that
appropriate action can be taken. This is preferable to holding back

all the contentious issues until the end of the implementation
stage.

THE TYPE OF PACKAGE SELECTED WILL DICTATE
THE APPROPRIATE IMPLEMENTATION METHOD

The generation of package being used determines the most
appropriate way to implement it. As Figure 5.1 shows, the more
recent the generation of package, the more closely the work
involved in implementation approaches that of implementing a
bespoke system development.

BASIC AND MODULAR PACKAGES

The implementation of both first- and second-generation packages
should be straightforward, following a standard pattern, which
consists of installing and testing the software, developing manual
procedures, training users, loading or converting data, testing the
system, signing off, and live running. The stages of work should
be relatively short and simple because this type of package offers
little scope for tailoring.

Figure 5.1 The more recent the generation of package, the more closely implementation approaches the
development of a bespoke system

Design Development Implementation

First generation — basic package. Simple
product can be easily implemented.

Second generation — modular package.
implementation is fairly straightforward.
Organisation-specific interfaces may need to
be developed between modules, or between
modules and other systems.

Third generation — parameterised package:
Implementation is complex. Small amount of
design is required to decide how package
facilities will be used. These have to be
developed by setting parameters.

Fourth generation — flexible package, the
most complex type to implement. This
generation is so complex that design work
approaches that necessary for a bespoke
system development. The required function is
developed within the package framework
using advanced development tools.

Bespoke system development with full design,
development, and implementation stages.

© Butler Cox ple 1990 45

Chapter 5 Application packages must be correctly implemented

Although basic packages may seem inflexible and outmoded
compared with third- and fourth-generation products, the ease
and speed with which they can be implemented often means that
they can still provide an effective solution to an application need.
If a basic package can meet an organisation’s requirements, the
benefits in terms of reduced costs and timescales for systems
delivery can often be significantly greater than those to be gained
from using a more flexible product. However, as we pointed out
in Chapter 4, it is much more difficult to modify a basic package
than a third- or fourth-generation package.

The implementation of modular packages should follow the same
basic pattern as that of basic packages. In addition, however,
decisions have to be made about which modules of a package to
use. The implementation of the modules can be treated as smaller
implementations of the basic package. Very often, with modular
packages, organisations find it necessary to develop their own
interfaces between modules, or between modules and other
applications.

PARAMETERISED AND FLEXIBLE PACKAGES

The implementation of both parameterised (third-generation) and
flexible (fourth-generation) packages is more complex. One PEP
member had experienced considerable difficulty implementing
flexible packages. He claimed that he could have provided new
systems within shorter timescales and at a lower cost by
undertaking bespoke development. We also know of one supplier
of sophisticated, flexible packages, who admits that customers
find it very difficult to implement his products. We were told that
the current failure rate (that is, the product is abandoned after
a lengthy implementation project) of this supplier’s products is
about 30 per cent. Nevertheless, the supplier considers this to be
acceptable, because two years ago, the failure rate was about
50 per cent.

With both parameterised and flexible packages, time and effort
are needed to design the new system. As packages become more
flexible, more choices are available and the design stage
approaches that of a bespoke system development. Thus, more
emphasis should be placed on systems design during the
implementation of a fourth-generation package.

The main difference between implementing a parameterised and
a flexible package is the work involved in setting up the package
to provide the required functionality. With a parameterised
package, the functionality provided by the package is determined
by setting different combinations of parameters. With a flexible
package, the functionality is established from the package
framework by using modern development tools and setting any
parameters that may be available.

We recommend that to implement either parameterised or flexible
packages, PEP members should break a package implementation
project into several small pieces of work, corresponding with each
of the main functions to be provided by the package. This will
enable the full benefits of using an application package to be
realised. As an application package provides a ready-made systems
framework, it is very much easier for individual areas of the

46

The speed with which a basic
package can be implemented
may make it a better buy
than a more flexible

product

The implementation of complex
flexible packages is sometimes
abandoned

The implementation of a flexible
package should be split into
small pieces of work

€ Butler Cox pic 1990

© Butler Cox plc 1990

Chapter 5 Application packages must be correctly implemented

system to be designed, developed, and implemented inde-
pendently of, and concurrently with, other areas, thereby
reducing the timescale for delivering the completed system.

47

Chapter 6

Getting the best from application packages

Figure 6.1 lists the actions that systems managers should take to
ensure that they get the best from application packages.

Figure 6.1 Action checklist

Selecting a package ‘
Assume that any new systems will be based on an application package, unless
there are clear reasons for not doing so.

Adopt an informal approach where speed is of the essence, where there is no
particular need for the package to fit closely with any existing business
requirements, or where the package is small, microcomputer-based,
inexpensive, and not strategically important.

Adopt a formal approach where the package is to provide a competitive-
advantage, front-office system, where the package is large, mainframe-based,
expensive to acquire, or of strategic importance to an organisation’s business.
Consider the merits of proprietary package-selection methods before devising
one in-house.

If the organisation’s requirements are likely to change markedly, choose a more
recent generation of package, which will be easier to modify.

Modifying a package
Make every effort to estimate the true cost involved in modifying a package.
Do nat make source-code changes to the core of the package.

Where source-code changes to the non-core camponents are essential, get the
supplier to make them, or at least get his commitmeant to support the changed
version.

Make only those modifications that are appropriate for the particular generation
of package being used.

Design additions to packages as individual modules to provide specific
functions.

Encourage users to make the required non-source-code additions to packages.

Make users responsible for setting the parameters that affect the way they use
the system,

Implementing a package
Recognise that a package-based approach to development is quite different

from bespoke development, and choose a package-specific implementation
method.

Do not assume that packages work: test them all: the more complex the
package, the more extensive and more rigorous testing should be.

Do not segregate the design, development, and implementation stages — there
is no need to complete the detailed design of the whole system before starting
work on development tasks in a particular area, nor does development have to
be complete before implementation can begin.

Encourage usérs to become involved in package implementation, but make
sure that they understand the commitment that will be required from them.

Keep all documentation relating to the implementation, for resolving any conflicts
with the supplier before final systems sign-off.

For modular packages, treat the implementation of the modules as smaller
implementations of the basic package.

To implement either parameterised or flexible packages, create several small
implementation projects, one for each main functional area of the package.

Negotiate support arrangements with the supplier.

48

© Butler Cox pic 1990

Chapter 6 Getting the best from application packages

We have discussed in this report the quantifiable and
demonstrable benefits to be derived from the use of application
packages. These will not, however, be achieved unless packages
are selected, modified, and implemented in a systematic manner,
and with reference to the needs of each particular business.

Our research shows that the use of packages will continue to

increase, as more suppliers make more sophisticated packages

The guidelines in this paper will available, and as users realise that many of their traditional
help systems development concerns about packages are unfounded. As packages begin to
managers to get the best represent a significant proportion of organisations’ portfolios of

from packages information systems, it is of paramount importance that the

process of acquiring them and ensuring that they work well in

a particular environment is efficient and comprehensive. The

guidelines provided in this paper should ensure that systems

development managers are in a position to do this with confidence.

© Butler Cox plc 1890 49

__ i

Appendix

Questionnaire analysis

In this appendix, we summarise the responses to the questionnaire
that we circulated to all PEP members about the use of application
packages. Seventy per cent of PEP members responded. We have
followed the format and numbering sequence from the
questionnaire, omitting Question 1, which requested details about
the respondent, and the specific project data supplied in answer
to Question 5.4.

Question _ PEP response

2. Use of application
packages

2.1 Does your organisation 98 per cent responded YES
use application packages?

2.2 What types of appli- The use of applications
cations are packages outlined in the questionnaire
used for? is shown in Figure A.1. In

addition to the applications
listed in the questionnaire,
39 per cent of respondents
reported using industry-
specific application packages.

2.3 For how long has your
organisation used appli-
cation packages?
Percentage of respondents

— Less than two years 6
— Two to five years 24
— Five to ten years 37
— More than ten years 33

2.4 How is the use of appli-
cation packages changing
in your organisation?
Percentage of respondents

— Decreasing quickly 0
— Decreasing slowly 2
— Static 9
— Increasing slowly 64
— Increasing quickly 25

bo
o

Which hardware environ-
ments are application
packages used in?
Percentage of respondents

— Mainframe 90
— Minicomputer 67
— Microcomputer 77

Appendix Questionnaire analysis

Figure A.1 Packaged software is used for a wide variety of applications
Percentage of
respondents
Application Rank using a package
Project management 1 84
Payroll 2 69
General ledger a3 65
Accounts payable 4= 61
Personnel records 4 = 61
Pension records 6 49
Asset accounting i 45
Purchasing S38= 37
Financial planning 8 = 37
Inventory control 10 35
Accounts receivable 11 33
Telephone accounting 12 = 24
Fleet management 12 = 24
Executive information 14 = 20
Sales order processing 14 = 20
Invoicing 14 = 20
Bills of material 17 18
Production control 18 16
Mailing 19 14
Job costing 20 12
Route planning 21 10
Market research 22 8

2.6 What percentage of your
application systems is
package-based?
Percentage of respondents

@ Butler Cox plc 1990

— Less than 25 per cent

65

2.7

— 25-50 per cent
— b0-75 per cent
— 75-100 per cent

What are the main
reasons for using
application packages?
Please score the

following on a scale from

1 (unimportant) to 5
(very important):

— Cost savings

— Time savings

— Guaranteed quality

— Need for user-
controlled project
delivery

— Do not want to
reinvent the wheel

— Risk reduction

Other (please specify)

26
i
2

Average of
respondents’
scores
3.48
4.21
27T

The only other reason

Rank

3
1
A

o7]

Lo
I

quoted more than once was
to overcome staff and skill

shortages.

51

Appendix Questionnaire analysis

2.8 What are the main
reasons for not using
application packages?
Please score the
following on a scale from
1 (unimportant) to 5

(very important): Average of
respondents’
scores Rank

— Difficulty in amending

package 3.33 3
— Lack of control over

future of application 3.19 4
— Non-conformance to

data architecture 2.88 5

— No suitable package

that meets business

requirements 4.27 1
— No suitable package

that will run in the

hardware environment 3.40 2
— Little knowledge of

package market 1.35 6
Other (please specify) Other quoted reasons

included integration prob-
lems and doubts about
continued supplier support,.

2.9 Please tick the box that
best describes your
organisation’s collective
knowledge of the
application package
market:
Percentage of respondents

— Many packages

assessed during the

last two years for a

variety of applications 27

— Several packages
assessed during the
last two years for
more than one appli-
cation il

— No assessment of
packages made during

the last two years 2
2.10 Has the supply of ‘soft’ 37 per cent of respondents
application packages answered YES

changed your organi-
sation’s policy towards
buying application
packages?

® Butler Cox plc 1990

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Appendix Questionnaire analysis

If YES, is your
organisation more likely
to buy an application
package?

Application package
selection

Do you have a formal
method for selecting
application packages?

Do you use external
consultants/resources to
help with selecting
application packages?

Do you have explicit
rules for deciding
between using an
application package and
developing a bespoke
system?

Do you estimate the full
life-cycle cost and time
schedule for a package-
based application and
compare them with the
estimated full life-cycle
cost and time schedule of
the equivalent bespoke
application?

Is the requirements-
definition stage for a
package-based
application carried out as
thoroughly as for a
bespoke application?

Do you undertake a
detailed analysis of
potential package
suppliers?

Do users undertake the
following roles in
application package
projects?

— Initiate
— Control
— Manage

Where YES, would
systems staff normally
take this role in a
bespoke development?

All respondents who
answered YES are more
likely to buy an application
package.

47 per cent of respondents
answered YES

43 per cent of respondents
answered YES

14 per cent of respondents
answered YES

53 per cent of respondents
answered YES

65 per cent of respondents
answered YES

71 per cent of respondents
answered YES

Percentage of respondents
who answered YES

61

39

45

53

Appendix Questionnaire

3.8

4.2

4.3

4.4

— Initiate
— Control
— Manage

When selecting an
application package, do
you explicitly consider its
fit to your organisation’s
technical architecture?

If YES, please tick the
box that best describes
what you do:

— Select only packages
that comply with
the architecture

— Modify packages to
comply with the
architecture

— Extend the
architecture to
include the data-
base, languages,
user interfaces,
and so on, used
by the package

— Extend the archi-
tecture to include
new hardware to
support a package

Package implementation

Do you have a formal
method for implementing
application packages?

Does your approach to
implementing application
packages differ from that
used for implementing
bespoke systems?

Do you use external
consultants/resources to
help with application
package implementation?

Do you compare
times/costs for
application package
implementation with
bespoke developments?

analysis

Percentage of respondents
who answered YES to the
first question

40

63

55

90 per cent of respondents
answered YES

Percentage of respondents
who replied YES to the
initial question (Note:
several respondents adopt
more than one policy.)

36

14

50

25

41 per cent of respondents
answered YES

41 per cent of respondents
answered YES

65 per cent of respondents
answered YES

57 per cent of respondents
answered YES

© Butler Cox plc 1990

© Butler Cox plc 1980

4.5

4.6

Appendix Questionnaire analysis

Has the source code of
your application
packages been
amended/enhanced to
meet requirements?

Have the changes been
made by:

— Your organisation
— Package supplier
— Other (please specify)

Are source code changes
made:

— Generally
— Occasionally
— Infrequently

How much has your
organisation spent on
amending the source
code of application
packages in the last two
years?

What proportion of your
systems development
budget has been used on
amending the source
code of application
packages over the last
two years?

Have your staff, or staff
from the package
supplier, been most
effective in achieving the
following?

— Reducing the risk of
amending a package

— Reducing the cost of
amending a package

— Reducing the
associated support
problems of
amending a package

Do any of the changes
made to your application
packages not involve
changes to source code?

88 per cent of respondents
answered YES

Percentage of respondents
who replied YES to the
initial question (Note:
several respondents adopt
more than one policy.)
54
83
13
(usually consultants or
agreed third parties)

12
30
58

Average 158,000 per
organisation. (Note: the
response rate to this
question was less than 40
per cent, reflecting the
difficulty of obtaining the
information.)

Insufficient data to report
reliable average.

Percentage of respondents

for each category:

Supplier’s
Own staff staff
57 43
37 63
36 64

42 per cent of respondents
answered YES

15}

Appendix Questionnaire analysis

Have these changes been
made by:

— Your organisation

— Package supplier’s
staff

— Other (please specify)

Are these types of
changes made:

— Generally
— Occasionally
— Infrequently

How much has your
organisation spent on
these types of
amendments to
application packages in
the last two years?

What proportion of your
systems development
budget has been used
making these types of
changes in the last two
years?

When making these types
of changes, have your
staff, or staff from the
package supplier, been
most effective in
achieving the following?

— Reducing the risk of
amending a package

— Reducing the cost of
amending a package

— Reducing the
associated support
problems of amending
a package

Has the supply of ‘soft’
application packages
changed your policy
towards
enhancing/amending
packages?

Percentage of respondents
who replied YES to the
initial question (Note:
several respondents adopt
more than one policy.)

90

48
4
(consultants or agreed
third parties)

40
42
18

Average of £69,000 per
organisation.

(Note: the response rate to
this question was less than
40 per cent, reflecting the
difficulty of obtaining the
information.)

Insufficient data to report
reliable average.

Percentage of respondents
for each category:

Supplier’s
Own staff staff
54 46
92 8
79 21

31 per cent of respondents
answered YES

© Butler Cox pic

1990

© Butler Cox plc 1920

5.2

5.3

Appendix Questionnaire analysis

If YES, do you now have
less need to change your
application packages?

Statistics

Please give your estimate
of the cost savings your
organisation has achieved
by using application
packages rather than
bespoke development:

— Less than 10 per cent

— 10-25 per cent

— 25-b0 per cent

— Greater than 50 per
cent

Please give your estimate
of the total cost savings
that your organisation
has achieved during the
last two years by using
application packages.

Please give your estimate
of the time savings that
your organisation has
achieved by using
application package
rather bespoke
development:

— Less than 10 per cent

— 10-25 per cent

— 25-50 per cent

— Greater than 50 per
cent

87 per cent of respondents
who answered YES to the
initial question also
answered YES to this
question.

Percentage of
respondents in each

category Rank
38 1
34 2
19 3
9 4

Average of £536,000

per organisation.

(Note: only 22 per cent of
respondents replied to this
question.)

Percentage of
respondents in each

category Rank
2b 2
34 1
19 4
22 3

57

Butler Cox

Butler Cox is an independent, international con-
sulting company specialising in areas relating to
information technology.

The company offers a unique blend of high-level
commercial perspective and in-depth technical
expertise: a capability which in recent years has
been put to the service of many of the world’s
largest and most successful organisations.

The services provided include:

Consulting for Users

Guiding and giving practical support to organisa-
tions trying to exploit technology effectively and
sensibly.

Consulting for Suppliers
Guiding suppliers towards market opportunities
and their exploitation.

The Butler Cox Foundation
Keeping major organisations abreast of develop-
ments and their implications.

Multiclient Studies
Surveying markets, their driving forces and poten-
tial development.

Education

Through the Cranfield IT Institute (G,
educating systems specialists, IT managers, line
managers, and professionals to understand more
fully how to apply and use today’s technology.

PEP

The Butler Cox Productivity Enhancement Pro-
gramme (PEP) is a participative service whose goal
is to improve productivity in application systems
development.

It provides practical help to systems development
managers and identifies the specific problems that
prevent them from using their development
resources effectively. At the same time, the pro-
gramme keeps these managers abreast of the
latest thinking and experience of experts and
practitioners in the field.

The programme consists of individual guidance for
each subscriber in the form of a productivity
assessment, and also publications and forum
meetings common to all subscribers.

© Butler Cox plc 1990

Productivity Assessment

Each subscribing organisation receives a confiden-
tial management assessment of its systems develop-
ment productivity. The assessment is based on a
comparison of key development data from
selected subscriber projects against a large com-
prehensive database. It is presented in a detailed
report and subscribers are briefed at a meeting
with Butler Cox specialists.

Meetings

Each quarterly PEP forum meeting focuses on the
issues highlighted in the previous PEP Paper. The
meetings give participants the opportunity to
discuss the topic in detail and to exchange views
with managers from other member organisations.

PEP Papers

Four PEP Papers are produced each year. They
concentrate on specific aspects of system develop-
ment productivity and offer practical advice based
on recent research and experience. The topics are
selected to reflect the concerns of the members
while maintaining a balance between management
and technical issues.

Previous PEP Papers

1 Managing User Involvement in Systems
Development

2 Computer-Aided Software Engineering (CASE)

3 Planning and Managing Systems Development

4 Requirements Definition: The Key to System
Development Productivity

5 Managing Productivity in Systems Develop-
ment

6 Managing Contemporary System Development
Methods

7 Influence on Productivity of Staff Personality
and Team Working

8 Managing Software Maintenance

9 Quality Assurance in Systems Development

10 Making Effective Use of Modern Development
Tools

11 Organising the Systems Development Depart-
ment

12 Trends in Systems Development Among PEP
Members

13 Software Testing

14 Software Quality Measurement

15 Application Packages

Forthcoming PEP Paper
Project Estimating and Control

Butler Cox ple
Butler Cox House, 12 Bloomsbury Square,
London WC1A 2LL, England
= (071) 831 0101, Telex 8813717 BUTCOX G
Fax (071) 831 6250

Belgium and the Netherlands
Butler Cox Benelux bv
Prins Hendriklaan 52,
1075 BE Amsterdam, The Netherlands
= (020) 75 51 11, Fax (020) 75 53 31

France
Butler Cox SARL
Tour Akzo, 164 Rue Ambroise Croizat,
93204 St Denis-Cédex 1, France
= (1) 48.20.61.64, Télécopieur (1) 48.20.72.58

Germany (FR), Austria, and Switzerland
Butler Cox GmbH

Richard-Wagner-Str. 13, 8000 Miinchen 2, West Germany

= (089) 5 23 40 01, Fax (089) 5 23 35 15

Australia and New Zealand
Mr J Cooper
Butler Cox Foundation

Level 10, 70 Pitt Street, Sydney, NSW 2000, Australia

= (02) 223 6922, Fax (02) 223 6997

Finland
TT-Innovation Oy
Meritullinkatu 33, SF-00170 Helsinki, Finland
= (90) 135 1533, Fax (90) 135 2985

Ireland
SD Consulting
72 Merrion Square, Dublin 2, Ireland
= (01) 766088/762501, Telex 31077 EI,
Fax (01) 767945

TItaly
RSO Futura Srl
Via Leopardi 1, 20123 Milano, Italy
= (02) 720 00 583, Fax (02) 806 800

Scandinavia
Butler Cox Foundation Scandinavia AB
Jungfrudansen 21, Box 4040, 171 04 Solna, Sweden
= (08) 730 03 00, Fax (08) 730 15 67

Spain and Portugal
T Network SA
Nunez Morgado 3-6°b, 28036 Madrid, Spain
= (91) 733 9866, Fax (91) 733 9910

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63

