
 Ss cent C ea
e

as

 © Butler Cox pic 1990

Paul Green

BE,P
Application Packages
PEP Paper 15, September 1990

by Paul Green

Paul Greenis a consultant in Butler Cox’s Londonoffice, where he
specialises in systems strategy and management. Since joining
Butler Cox, he has been involved in a wide variety of projects,including the formulation of an information systemsstrategy for
a large oil company,the definition of a ‘vision’ for the future of
office systemsfor a major corporation considering relocationofits
head office, and the development of systems development
standardsfor a public-sectorclient. He hasalso carried out several
PEP assessments.
Prior tojoining Butler Cox, Paul Green spentthree years with Peat
Marwick McLintock, where he was involved in a wide range of
consulting assignments in the systems area. During this time, he
gainedsignificant experience of projects that involved application
packages,selecting and implementing packagesfor clients in the
transport, financial services, and manufacturing sectors. His early
career was with Thorn EMI Datasolve’s Consultancy Division, and
with Amersham International.
He has a BSc and an MA,both in economics, and is an associate
memberof the Institute of Management Consultants.

Published by Butler Cox ple
Butler Cox House

12 Bloomsbury Square
London WCIA 2LL

England

Copyright © Butler Cox ple 1990
All rights reserved. No part ofthis publication may be reproduced by any methodwithout the prior consent of Butler Cox.

Printed in Great Britain by Flexiprint Ltd., Lancing, Sussex.

©Butler Cox pic 1990

PE,P
Application Packages
PEP Paper 15, September 1990

by Paul Green

Contents
1 Application packagesare playing an increasingly

importantrole in systems delivery i
Application packages are becoming moresophisticated 3
Application packages will become even moreattractive
in the future 4
Managementconcernsabout application packages can
often be alleviated 5
Purposeand structure of the paper 9
Research sources 10

2 The benefits of application packages are quantifiable
and demonstrable 11
Process productivity is much higher for application
package projects LL
Use of application packages results in time and cost
savings PS:
The businessbenefits of using application packages
can be calculated 15
Application packagesare often used for strategic
reasons 18

3 Established methodsare available for selecting
application packages 20
Informal approaches expose the organisation to
unnecessary risk 2
A formal methodis usually a better alternative 23
Proprietary methods are worth considering 31

4 Modifying application packages may be a viable option 35
Company policy may preclude modification 35
The true cost of modifying a package must be calculated 36
Modifications to the package core should be discouraged 36
The implications of making modifications should be
understood 40

5 Application packages must be correctly implemented 42
Different implementation approachesare appropriate for
packages and bespoke developments 42
The type of package selected will dictate the appropriate
implementation method 45

6 Getting the best from application packages A8

Appendix: Questionnaire analysis 50

Chapter 1

Application packages are playing an increasingly
important role in systems delivery

Application packages have been widely available for the last
25 years, and duringthis time, they have developedsignificantly.
They have moved away from being systemswithlimitedflexibility
that could be used only to meet a very specific application
requirement, to very flexible, ‘soft’ systems, which address wider
business needs by offering fully integrated businesssolutions. This

There are four generations of development has resulted in four identifiable generations of
application packages - application packages, the characteristics of which are shown in

Figure 1.1, overleaf. Each generation of packagestill exists; as
the more modern parameterised andflexible products have come
onto the market, basic packages and modular packages have not
disappeared. This meansthat application packages can now offer
organisations sophisticated and relatively inexpensive ‘off-the-
shelf’ solutions.
Both the number of application packages and the number of
suppliers of packages have continued to grow. Many thousands
of application packages are now available, from simple products
designed for a single user to run on a microcomputer, to
sophisticated applications that can support thousandsof users and
process millions of transactions daily on the most powerful
computers. Application packages range in cost from a few tens
of poundsto over £1 million for modules of some sophisticated,
large-scale products.
While there are several large and well known suppliers of
application packages, such as ComputerAssociates, therearestill
opportunities for new suppliers to grow rapidly if they have a good
product, and new suppliers continue to appear. QSP, a supplier
of accounting packages, for example, has become a major force
in its chosen marketplace over the last five years.
In thelast 10 years, in particular, the use of application packages
has grown dramatically. In 1980, only about one-third of organi-
sations used application packages; today, almostall do. Moresig-
nificantly, however, organisations are using packages for a much
widerrange of applications. In the past, many organisations used
only oneor two application packages. Currently, while packages
still represent less than 25 per cent of applications in two-thirds
of organisations, they represent between 25 and 50 per cent of
applications in a quarter of organisations. The proportion of
organisations’ systems portfolios represented by application
packages is shownin Figure 1.2, on page 3.
Our research showsthat their use will continue to increase. We
spoke to several systems development managers of large

The use of application packages organisations who had decided, as a matter of policy, to make
continues to grow greater use of application packages. Typically, they believe that,

within threeto five years, about 80 per centof their information
systemswill be based on application packages. About 90 per cent

© Butler Cox pie 1990 1

Chapter 1 Application packages are playing an increasingly important role in
systems delivery

Figure 1.1 There are four generations of application packages

 Generation Packageclassification Package characteristics
First Basic package Batch-based product.

Inflexible, with few,if any,
parameters.
Scopefor modification limited.
Designed to process a specific
business application.
Limited reporting facilities.

Second Modular package Mainly batch-based product, with
simple, online userinterface.
Flexibility is improved, with more
parameters and discrete modules
that can addfunctionality in
predefined areas.
Scope for modification is still limited
but is enhanced, as changes can be
made to modules.
Predominantly a standalone
application, but batch input and
Output can transfer information to
and from other systems.Reporting facilities are still limited,but more options are available as
modules provide more data.

Third Parameterised package

|

Basic processingis still provided bya batch system, but a sophisticatedonline userinterface is available.
Flexibility is considerably improved,
with many parameters enablingdifferent areas of the package to beused in several ways.
Modification is now easier through
the setting of parameters and the
use of package-specific tools.Integration with other applications isenhanced.Reporting facilities are more sophisti-cated, with content and format being
controlled by parameters.

 Fourth Flexible package All processing can be online. Batchprocessing is optional.Modern developmenttools are used
to producevery flexible or‘soft’packages, with many parameters.Modification is easy, usingparameters, package-specific tools,and standard modern developmenttools.
The package is now part of a fullyintegrated software range that aimsto provide a complete businesssolution. Sophisticated andflexiblereporting facilities are available.
Reports can bestructured bypackage-specific tools and/or
modern developmenttools.

of PEP members believe that their own use of packages willincrease, and 25 per cent think that this increase will be quitedramatic.
In some quarters, however, there arestill serious concerns aboutthe use of application packages. Significant numbers of systemsmanagers believe that no application package can meet their

© Butler Cox pic 1990

Chapter 1 Application packages are playing an increasingly important role in

Application packages should
always be considered

systems delivery

Figure 1.2 Application packagesplay a significant role in organisations’

portfolios of information systems

Proportion of systems Percentage of organisations reporting penetration
portfolio represented by of application packages
application packages

Less than 25%|

25 to 50%

50 to 75%

75 to 100% (Source: Survey of PEP members)

organisation’s specific requirements, and there are other concerns
relating to the perceived risk of a loss of control over systems,
the inability to gain a competitive advantage if everyone has
access to the same packages, and perceived difficulties with
technical architectures and with systemsintegration.
As we show inthis paper, none of these concernsis,in fact, a
valid reasonfor dismissing application packages. We recommend
that application packages should always be considered when a
request for a newor enhanced computerised information system
is received. The benefits of using application packages in
preference to bespoke developments can be clearly demonstrated
in termsof cost savings, time savings, skill savings, and guaranteed
quality. Standard methods forselecting appropriate packages for
particular applications and a standard approach to implementation
will ensure that these benefits are realised.
For the purposesof this paper, we define an application package
as a commercially available set ofone or more computer programs
that is designed to create a complete business application.
Examples of application packages would therefore include an
accounts payable or personnel package. Some so-called ‘packages’
fall outside our definition because they do not, by themselves,
form a complete application. Thus, spreadsheet programs, word
processing packages, fourth-generation languages, and computer-
aided design systems are not application packages.

APPLICATION PACKAGES ARE BECOMING
MORE SOPHISTICATED
Ourresearch showsthat PEP membersare not only making more
use of application packages,butare using them to provide a wider
range of systems. Traditionally, application packages were used
for back-office administrative tasks — that is, to provide
information systems to support the departments that provide an
internal service to the business, rather than an external service
to the organisation’s customers. A prime example ofthis is the

Chapter 1 Application packages are playing an increasingly importantrole insystems delivery

widespread use of accounting packages, which have beensuccessful because they provide a thorough andrigoroussolutionto processing standard types of information in a clearly definedway.
In recentyears, there has been a moveto use application packagesfor more than these well defined, non-organisation-specificsystems. Our research shows that about 40 per cent oforganisations now use industry-specific application packages toprovide front-office as well as back-office systems. (Front-officebusiness systemsdirectly support the business in its interactionwith customers.) This trend has been promoted by the manysoftware suppliers who havespecialised in producing productsfor a specific industry. This has enabled them to build up a detailedunderstanding of the requirements of the business market thatthey serve, and facilitated the production of application packagesthat can deliver real benefits to the front-office operations inmany organisations. Examples include application packagesdeveloped for the banking and insurance industries and for thehealth-care sector.

APPLICATION PACKAGES WILL BECOME EVENMORE ATTRACTIVE IN THE FUTURE
Both business pressures (to make time and cost savings in a periodof skill shortages), and technical developments will encouragesystems development managers to make greater use of applicationpackages.

BUSINESS PRESSURES WILL ENCOURAGE GREATERUSE OF PACKAGES
Business pressures have continued to intensify, both in the privateand public sectors. This has led to increased time pressures onsystems development departments to introduce new systemsata time when many development managers already face largedevelopment backlogs. To overcome these problems, bothdevelopment managers and users are increasingly turning towardspackages, with the expectation that time and resource savings willbe made.
The cost of undertaking bespoke system development hascontinued to rise sharply as skill shortages have led to salaryinflation for development staff. At the same time, theprice/performance of computer hardware has continued toimprove. One of the traditional reservations that developmentmanagers have had aboutusing application packagesis the impacton machineresourcesof using inefficient code supplied as partof a package. The improved price/performance of hardware hasmeant that, evenif application package code is inefficient, itseffect is less marked.
Governments are also beginning explicitly to encourage the useof application packages. For example, in order to maintain thecompetitiveness of its industry, the Japanese government isencouraging both the development and use of applicationpackages. The use of application packages in Japan is low byinternational standards, and in common with the rest of the

Packages are increasingly beingused for front-office systems

Improved price/performance ofhardware makes packagesmore attractive

© Butler Cox pic 1990

Chapter 1 Application packages are playing an increasingly important role in
systems delivery

Packages are seen as a way of developed world, Japan faces a severe shortage of skilled systems
alleviating staff shortages staff. The government believes that making greater use of

application packageswill help to alleviate this shortage, and will
mean that Japanese corporations will have the information
systems necessary to continue to compete effectively in world
markets. Our research among PEP membersalso suggests that
many Europeanorganisations are turning to application packages
to alleviate staff shortages.

ADVANCED TOOLS WILL FACILITATE THE DEVELOPMENT
OF MORE FLEXIBLE PACKAGES

Butler Cox has been predicting for some time that application
packageswill form an increasingly important part of organisations’
software infrastructures. (The software infrastructure is the
portfolio of basic software that is used to support an organisation's
applications.) We believe that the use of application packages will
become more attractive because suppliers of packages are
increasingly using advanced software developmenttools, such as
CASE, fourth-generation languages, and so on, to develop their
products.

Atfirst sight, this may seem to be counter-intuitive because tools
such as these will increase the effectiveness of in-house
developments, and may therefore be seen as a threat to
application packages. However, suppliers are beginning to use
these tools to develop new types of packagesthat are moreflexible
than their predecessors. The possibility of using these flexible
packages, which can be easily modified to meet requirements

Flexible packages can be easily closely, will mean that this type of application package will be
modified with advanced increasingly importantin the future. An exampleis the Chameleon

developmenttools accounting system, supplied by Tetra. This product has been
designed to offer a sound basic accounting system that can be
easily modified to meet an organisation’s specific needs. Such
products offer what amounts to a bespoke application, at a similar
price to an ‘off-the-shelf’ solution.

In the future, we believe that ‘off-the-shelf’ software components
will play a greater role in applications development. Our recent
research for the Butler Cox Foundation suggests that within the
next five years, information systems will begin to be built in a
new way, based on object-oriented methods. New systems will
be built by combining different ‘objects’ from the software
infrastructure, from in-house development, and from software
objects that are purchased from the type of supplier who today
provides application packages.

MANAGEMENT CONCERNS ABOUT APPLICATION
PACKAGES CAN OFTEN BE ALLEVIATED

During our research, many organisations mentioned concerns they
had about application packages that could militate against their
use, even if there were clear, measurable benefits in using
them.Theseissues can be groupedinto five categories — concerns
that no application package will meet the organisation’s

© Butler Cox pic 1990 5

Chapter 1 Application packages are playing an increasingly important role insystems delivery

particular requirements, concerns that suppliers may not remain
committed to supporting their products, a lack of opportunity to
realise competitive advantage, technical architecturedifficulties,
and systems integration difficulties. Systems management can
take actions to reduce all of these concerns.

APPLICATION PACKAGES CAN MEET A VARIETY
OF REQUIREMENTS

Several systems development managers to whom we spoke duringour research were concernedthat, for at least some applications,there were no packages available that could meet theirorganisation’s specific requirements. One organisation told us thatalthough several packages had been evaluated, none could meetits particular needs, because its business was so different in naturefrom that of other organisations.
Webelieve that such arguments are no longer generally valid. Weshow in Chapter 2 that using an application package that doesnot fully meetall the requirementscanstill provide more benefitsto an organisation than developing a bespoke application thatmeetsall the requirements. Systems managers should seriouslyquestion whether their organisation’s requirements really aredifferent from those of others. In most business areas that lendthemselves to computerisation, the fundamental requirements fornew computersystemswill be similar. The differenceswill usuallybe in the working procedures that have developed within theorganisation over time; these may well be unique to particularorganisations. We know of some that have successfully changedtheirtraditional working proceduresso that they can use packagedsoftware.

THE RISK OF BECOMING VULNERABLE TO SUPPLIERS
CAN BE MINIMISED
Several organisations we spoke to during our research wereconcerned that using application packages exposed them tounnecessary risk because they would no longer have control overthe development oftheir computer applications. This risk occursbecause suppliers of application packages introduce new releasesof their software at regular intervals to maintain the com-petitiveness of their products. Problems can occur for users ofapplication packagesif new versionsof the software do not meettheir evolving requirements. Alternatively, the supplier may takea strategic decision to specialise in product development for aparticular hardware and software infrastructure. If the user ofthe application package does not have the appropriateinfrastructure, he may either have to changehis policy or be facedwith using outmoded software, which suppliers may refuse tosupport. Our research suggests that the risk is greatest fororganisations that do not have one of the more widely usedtechnical architectures — for example, one based on standardproducts from a leading supplier such as IBM or Digital.
To reducethis risk, organisations should include rigorouscriteriain the package-selection process. Thus,if the continued develop-ment and support of the application package for a particular

Mostbusiness areas have funda-
mental requirements that can
be satisfied by a package

Therisk is least for those whouse IBM or Digital hardware

Butler Cox pic 1990

Chapter 1 Application packages are playing an increasingly important role in

Package users should ensure that
they can obtain the package
source code if the supplier

goes out of business

Soft packages can be used to
provide a competitive

© Butler Cox pie 1990

advantage

systems delivery

technical architecture is a criterion, it should be specified,
investigated during selection, and if possible, included in the
contract agreed with the supplier. At the very least, this will
ensure that the user has a written commitment from the supplier
to continue development and support of the product.If possible,
organisations should insist that penalty clauses, for non-
performance by the supplier, are written into their contracts.
At a time when many small suppliers of packages are entering
the market with new products, thereis a risk that they may not
all survive, or that some maybe taken over.If the supplier goes
out of business, or is bought out, the future of the product is
uncertain. Concerns are related to issues such as the future
development and support of the product and the ownership of
the software.
Arrangements should always be madefor the source codeof the
package to be held in escrow so that it is available to the
organisations using the package in the event of the supplier
ceasing to trade. For complex or business-critical applications, the
costs of holding source codein escrow are minimal compared with
the implications of having to redevelop systems from scratch.

APPLICATION PACKAGES CAN BE USED TO GAIN
A COMPETITIVE ADVANTAGE

Many organisations believe that using application packages
prevents them from realising a competitive advantage from their
information systems, because the same capabilities are available
to all users of the package. This issue should be considered
carefully when deciding whether or not to use an application
package to provide a new information system.If the system is to
support front-office operations, and mustbesignificantly different
from competitors’ systems to provide a competitive edge, it may
be appropriate to use bespoke development.
However, with the growing availability of ‘soft’ or very flexible
packages, competitive advantage may be derived from the ways
in which organisations use application packages, and from the
modifications that they make to them. One organisation that has
used an application packagein this wayis a leading international
airline, which has modified an accounting packageto give it online
access to up-to-date financial information for all its worldwide
operations. This has enabled the company to improve its
management of resources and financessignificantly.

The rapid introduction of new front-office systems, based on
application packages, can create an opportunity for achieving a
competitive advantage. However, before an organisation can gain
a competitive advantage in this way, it must usually have both
an underlying technical and business infrastructure to enableit
to take advantage of the application packagefacilities. A large
financial services company, for example, realised that it could
establish a new line of business, and needed to use a package to
do so quickly, before competitors also became aware of the
business opportunities. This organisation used an application
package to establish a competitive advantage, although it could
not have done so without its existing telecommunications

“I

Chapter 1 Application packages are playing an increasingly important role in
systems delivery

infrastructure and branch network, which enabled the new
business to be marketed effectively to customers.

TECHNICAL ARCHITECTURE DIFFICULTIES CAN BE
OVERCOME

Most organisations take their technical architecture into
consideration when selecting application packages. However,
their policies vary widely, as indicated in Figure 1.3. The four
policies shownin Figure 1.3 are not mutually exclusive. Some
organisations combine policies. For example, they may consider
extending both the hardware and the software components of the
architecture. About 36 per cent of organisations consider only
application packages that conform to the technical architecture,
while about 14 per cent modify packages to conform to their Abouthalf of organisations
architecture. About 50 per cent of organisations extend the are prepared toextend
software components of the architecture to accommodate their software infra-
packages; about 25per cent of organisations extend the hardware structure to accom-modate packagescomponents. ALOUD RCKAg!

Figure 1.3 PEP members havedifferent policies for ensuring that
application packages conform with the technical
architecture

Policy Percentage of PEP members
Extend the software 10 20 30 40 50 60
components of the
technical architecture to aeee

aes

accommodate a package

Select only those packages
that conform to the
technical architecture

Extend the hardware
technicalarchitect atechnical architecture to
accommodate a package

Modify packages to
conform to the technical ame
architecture (Source: Survey of PEP members)

Someorganisations we spoke to during our research had selected
their hardware and software infrastructure because of the
availability of packages to runin their chosen environment. Thus,
the choice of packages can play a significant part in shaping
technical architectures.

Management will often be faced with a business decision that
entails striking a balance between the business needs that can be
satisfied by an application package, and the need to keep the
technical architecture as simple as possible. Butler Cox has long
been a champion of the concept of a coordinated organisation-
wide technical architecture because ofall the benefits that this
can bring. Nevertheless, we do not believe that organisations
should restrict themselvesto selecting only application packages

© Butler Cox pic 1990

Chapter 1 Application packagesare playing an increasingly important role in
systems delivery

that conform to the architecture, or modifying packages to
conform with the architecture.
By considering only conforming packages, organisations may
unnecessarily limit their choice, and mayfail to realise the full
potential business benefits. Moreover, modifying application
packages to conform to the technical architecture can be very
costly, can lead to problemswith the support of the package, and

Extending the hardware com- may preventthe easy use of future releases of the software. We
ponents of the technical do not recommend that organisations extend the hardware
architecture to accom- components of their architecture to accommodate a package as
modate a package often this often leads to compatibility problems and prevents

leads to problems information being used across systems as required. However,if
suitable software interfaces exist to overcome this problem,
extensions of the hardware componentsof the architecture may
be appropriate. Extending the software components of the
architecture usually causes fewer interface problems and is
usually more acceptable.
Any extension to the technical architecture to accommodate an
application package must be considered carefully, so as to
minimise complexity and cost, particularly in terms of developing
staff skills in more than one architecture. When extending the
technical architecture, PEP members must seek to minimise the
problems of interfacing different systems, by ensuring that
workable software interfaces are available.

DIFFICULTIES OF INTERFACING PACKAGES
WITH OTHER SYSTEMS CAN BE SOLVED

Several organisations we spoke to reported complex problems
wheninterfacing their application packages with other systems.
Organisations should consider the requirements for interfaces
carefully when deciding whether to use an application package,
and when selecting a specific product. Short-term interface

A commitmentto provide the requirements must be clearly defined, and potential long-term
required interfaces should be requirements must be made explicit. PEP members should then

written into the contract —-..ek commitment from suppliers that both immediate andlonger-
term requirements can be met. Commitment to provide the
working interfaces required when the system is implemented
should be includedin thefinal contract signed with the supplier.
Clauses should be included to penalise suppliers if specified
interfaces are not available or do not work.

PURPOSE AND STRUCTURE OF THE PAPER
Ourresearch has revealed that application packages will play an
increasingly important role within PEP members’ applications
portfolios. The purpose of the paperis to explain the benefits of
using packages, and the best way of selecting and implementing
them. We believe that this paper provides, for the first time,
quantifiable evidence of the productivity benefits of using
application packages. We show PEP members how they can
achieve the best results from using application packages.
In Chapter 2, we describe the benefits of using application
packages, particularly in terms of reduced costs and timescales
for delivering new applications. We report the theoretical

© Butler Cox ple 1990 a

Een

Chapter 1 Application packages are playing an increasingly important role in
systems delivery

productivity improvements of using application packages,
compared with undertaking bespoke system development. We also
explain how the total business case for using an application
package can be assessed.

In Chapter 3, we show howtheselection of an application package
can be successfully undertaken. We recommendthat organisations
use a formal method for selecting application packages, and
describe the main components and characteristics of such a
method. We also review commercially available methods for
selecting application packages.
In Chapter 4, we show that it may be possible to modify a package
so that it provides a better fit with business requirements.
However, many PEP members have experienced problems
modifying packages. We explain how these problems can be
overcome and how different types of modification are best
undertaken.
In Chapter 5, we explain the importance of application package
implementation. Implementation must be successfully undertaken
if the benefits are to be achieved. We describe the main
differences between implementing an application package and a
bespoke system development. In orderto achievethe benefits of
using application packages, we recommendthat organisations use
a method for implementing packages that is specific to packages
and that takes advantage of their unique features.

RESEARCH SOURCES
At the beginning of the research programmeforthis paper, we
circulated a detailed questionnaire to all PEP members. The aim
of this questionnaire wasto identify the main issues surrounding
the selection, implementation, and use of application packages.
There was a responserate of over 70 per cent to the questionnaire,
and we have included a detailed analysis of the results as an
appendix to this paper. We selected several organisations for more
detailed investigation, either through personal or telephone
interviews. Our aim has been to understand fully the benefits and
problems associated with using application packages, and the
selection and implementation procedures that are used.
We supplemented ourresearch by talking to other organisations
that either had extensive experience in the selection, imple-
mentation, and use of application packages, or that had taken a
strategic position with regard to the use of application packages.
We also reviewed other recent research and articles on the
subject, and sought specialist opinion, where appropriate. In
addition to this, we have drawn on the considerable experience
of Butler Cox consultants, who have been involved in many
application-package-related projects.

10

© Butler Cox pic 1990

Chapter 2

The benefits of application packages are quantifiable
and demonstrable

The benefits of using application packages are so great that
organisations should always consider their use. When faced with
a request for a new or enhanced computerised information
system, systems development managers have traditionally
responded by assessing the possibility of building the required

New systems should be based on systems using bespoke development before considering the use
packages unless there are clear of application packages. This should no longer be the case. It

reasons for not doing so should be assumed that any new system will be based on an
application package, unlessthere are clear reasonsthat this cannot
be so. This approachis justified by the scale of benefits that can
be achieved from using application packages, whether such
benefits are measured in terms of improved process productivity,
time and cost savings, the overall benefits to the business, or
better-quality systems.

PROCESS PRODUCTIVITY IS MUCH HIGHER
FOR APPLICATION PACKAGE PROJECTS
In our survey, we asked PEP membersto estimate the time and
cost savings they had gained by using packages, rather than
developing a bespoke system. We sought the same information
in the interviews we held with PEP members. Using this
information as a basis, we have estimated the benefits of using
application packages in terms of the measure of process
productivity, the Productivity Index (PI), and the measure of
ManpowerBuildup (MBI), which will be familiar to PEP members.

The averagePI forall projects in the PEP database is 15, while
the average MBIis 3, indicating a medium pace of manpower
buildup. The savings from using application packages reported by
PEP memberssuggest that the averagePI for application package
projects is about 17. This PI of 17 is the theoretical PI for
application package projects, and is based on the assumption that

Packages seem to improve the the same project processes apply to the selection and
Productivity Index by two implementation of an application packageas those that apply to

points a bespoke system development. Anincrease of two points on the
PI scale represents significant savings in terms of both cost and
time.
During our research, we were also able to obtain reliable data
relating to 29 application package projects in 10 different
organisations. We used the PADS software to calculate the
theoretical PIs and MBIsfor these projects. The average PI of these
projects was 22. Notall application package projects had high PIs,
however; three had PIs below the average, one of which had a
PI of only 9. The average theoretical MBI ofthese projectsis 3,
the same as the overall PEP average,indicating that application
package projects also tend to have a medium rate of manpower
buildup.

© Butler Cox pic 1990 ll

eee

eee

Chapter 2 The benefits of application packages are quantifiable and
demonstrable

The reason for the discrepancy between PEP members’ reported
productivity gains from using application packages and the data
from the 29 application package projects is that many costly and
time-consuming activities, such as selecting and buying a package,
are not included in the information used to calculate the
theoretical PIs for these projects.
Thus, while the use of application packages appears to increase
PEP members’ PIs by about two points, the potential improve-
ments are even greater. Although it is unrealistic for most PEP
members to expect the use of application packages to result in
a seven-point increase in PIs (to an average of 22), greater
improvementscould be obtained by minimising both the cost and
time required to select a package.
Figure 2.1 showsthe scale of benefits that can be expected. Wehave tabulated the elapsed time in months, the effort in man-months, and the likely costs for the main-build stage of projectswith Pls of 15 (the PEP average), 17 (the average achieved byPEP membersusing application packages), and 22 (the theoreticalaverage achievable using application packages). In each case, wehave assumed a medium rate of manpowerbuildup — that is, anMBI of 3 — and

a

typical size of project — about 40,000lines ofcode. We have assumeda cost of £4,000 per man-monthof effort,this being about the average for PEP members. The tableshows that a two-point increase in PI (from 15 to 17), resultingfrom using an application package rather than undertakingbespoke development, would reduce the delivery time for atypical new system by about one-and-a-half months. The

Figure 2.1 Using application packages canresult in substantial savingsof time, effort, and cost

The table showsinformation for a ‘typical’ PEP project with a size of 40,000lines of code and an MBIof 3. Data is shownfor Pls of 15 (the overall PEPaverage), 17 (the PI represented by PEP members’ reported time and costsavings resulting from the use of application packages), and 22 (the averagetheoretical P! for the 29 application packageprojects). The costs of the projectshave been calculated by assuming a cost of £4,000 per man-month of effort(this is close to the PEP average). The benefits of using application packagescan be seen by comparing thecosts, effort, and timescales of a Project with aPI of 17 with those for a project with a Pl of 15. Using an application packagefor a typically sized project would save about £100,000, and the project wouldbe completed one-and-a-half months earlier and would use about half the effort.
When we comparethe PI of 22, representing the theoretical average Pl for the29 application package projects, with the PEP average PI of 15, we can seethat there are large potential savings in time and effort that could be made.

Time taken to
PI complete the

Project Effort required
(months) (man-months) |Cost(£)
 PEP average a5 95 58.0 230,000

PI represented by PEP
members’reported time
and cost savings 17 8.0 31.0 125,000

Averagetheoretical PI for
application package
projects 22 4.5 6.0 24,000

Larger productivity improve-
ments can be obtained by
minimising the cost and
time required to
select a package

Butler Cox

Chapter 2 The benefits of application packages are quantifiable and

Obtaining measuresof the lines
of code and function points
represented by a package

will enable the pro-
ductivity gains to

be calculated

PEP membersbelieve that the
most important benefit is

©Butler Cox ple 1990

time savings

demonstrable

developmentcost for this system would be reducedto nearly half
that of developing a bespoke system. If a PI of 22 could be
achieved, applications would be delivered in about half the time
and at about one-tenth of the cost.
PEP members who wantto estimate accurately the productivity
gains that can be achievedby using an application package should
try to obtain a measure of both the lines of code and function
points that they will receive by buying a package. These measures
should relate to the parts of the package thatwill be used.If only
half the functions of a package will be used, estimates of the
function points and lines of code necessary to provide these
functions should be made. Using this data, it will be possible to
estimate the PI for package-based development and to compare
this with the likely PI for developing a bespoke system.

USE OF APPLICATION PACKAGES RESULTS
IN TIME AND COST SAVINGS
Our calculation of the theoretical PIs achievable by using
application packages suggests that, compared with bespoke
development, reductions in effort, and hence, cost, are
considerably greater than reductions in time. According to the
results of our survey, however, PEP membersbelieve that the
most important reason for using application packagesis time
savings; cost saving is ranked third. As Figure 2.2 illustrates,
significantly more PEP members reported savings of over
50 per cent in time than in cost. Small benefits (savings of under
10 per cent) are more frequently achieved for cost savings than
for time savings.

Figure 2.2 PEP membersreport greater time savings from using

application packages than cost savings

Percentage of PEP membersreporting savings
in each category

Savings less than 10%

Savings of 10 to 25%

Savings of 25 to 50%

Savings greater than 50%

Cost savings
GSE Timesavings
(Source: Survey of PEP members)

This apparently conflicting evidence may be explained by the fact
that the costs used to calculate the theoretical PIs are based on
the man-monthsof effort required for the main-build stage of a
project. These exclude manyofthe cost items that PEP members
will have taken into account whenassessing the savings made by

13

Chapter 2. The benefits of application packages are quantifiable anddemonstrable

using an application package. These items will include the costof the selection exercise, the cost of the package, training costs,and so on.
During our research, we were unable to find any organisation thathad kept complete recordsofall the additional costs associatedwith application package projects. Each of the cost items is,however, potentially high:

14

Package selection. Considerable amounts of time andresources can be used just to select an application package.For large, complex applications, the selection process ofteninvolves a team of between three and six members of staff,working for an elapsed period of about six months.
Cost of the package. Once a product is chosen, it can beexpensive to acquire. The price of widely availableapplication packages ranges from a few tens of pounds to over£1 million per module for the most powerful applicationpackages.
Documentation. Some package suppliers charge significantsums for documentation, and if manycopies are required, thecost of acquiring a full set of documentation can representup to 25 per cent of the cost of the packaged software.
Support and training. Typically, organisations that useapplication packages have support agreements with thesuppliers, and supplier personnel will undertake at least somestaff training. The costs of both training and support can behigh, however. The cost ofinitial training is often in theregion of 10 per cent of the cost of the package. The costsof support will be incurred as long as an organisation usesa package. Typical annual costs are in the region of10 to 15 per cent of the initial package cost. Of course, anorganisation will incur support costs for both in-housebespoke system developments and for using applicationpackages. Support costs for application packages may,in fact,be no morethanfor in-house developments. However, theyare normally morevisible because payments are made toathird party.
Negotiating the contract. Package suppliers will typicallyhave their own standard contracts and terms of business.These are frequently one-sided documents, drawn up for thesupplier’s benefit, and many organisations that use appli-cation packages negotiate contracts. For large projects, thisvery often involves seeking expert legal opinion from eitherinternal or external specialists. Criteria for accepting thepackage should be agreed and included in the contract,covering issues such as numbers of transactions that can beprocessed, and response times. The ways of measuringsupplier performance should also be agreed, along with thepenalties for not meeting the agreed performance levels. Thenegotiations can take several months, and require agreementand commitment from all parties involved.
Modifying the package. Modification costs can be greater thanthe initial cost of the package and are frequently difficult toestimate. This issue is addressed in moredetail in Chapter4.

Package selection and acquisitioninvolves some potentiallyhigh costs

Criteria for accepting the
package should be
included in the
contract

© Butler Cox pic 1990

Chapter 2 The benefits of application packages are quantifiable and
demonstrable

THE BUSINESS BENEFITS OF USING APPLICATION
PACKAGES CAN BE CALCULATED
In order to assess the potential benefits of using an application
packagerather than undertaking bespoke system development,
an organisation should understand the cost structure of both types
of development, but more importantly, quantify the business
benefits to be derived from the new system.To developa reliable
business case, the likely timescales for delivery for both the
bespoke and package options need to be considered.
Typically, most systems development departments have a poor
record of estimating systems delivery costs for bespoke develop-
ment, even though they have more experienceat doing this than
estimating package-based systems delivery costs. Systems

Thedifferences between developinent managers must take into account the fundamental
packages and bespoke differences between the two types of development when

development have producing estimates. These differences and their implications for
implications for cost estimating are illustrated in Figure 2.3. While someactivities,
cost estimating suchas contract negotiation, will increase therelative cost of using

application packages, the overall impact of the differences should
be that an application package project is delivered more quickly
and at lower cost than a bespoke development. This is because
using an application package effectively changes the nature of
the main-build stage. Instead of developing functionality from
scratch, the facilities available with the package are used to
establish the required functionality.

Figure 2.3 The different activities of bespoke and application package development have implications for cost

estimating

The net effect of the reductions and increasesin costsis that the overall cost of using a package will be considerably lower

- Reducedcosts resulting from package- Increased costs resulting from
Activity based development package-based development

Functional design Reducedfunctional design costs Selection costs

Main build Reduced main- : 7 ie - | Package modification
build costs

Testing Application testing 5 F @ Packagetesting

System/package sign-off Service-level agreement = a. Contract negotiations

System enhancements Bespoke software modification i

|

Package modification

Support Bespoke software support as eee Package support

© Butler Cox ple 1990 15

Chapter 2 The benefits of application packages are quantifiable anddemonstrable

One argument often put forward for not using packagesis thata package will not provide all of the benefits that would beavailable from a bespoke development. It is better, so theargument runs, to wait longer for a bespoke system that canprovide greater benefit. However, using the net present value(NPV) technique to compare the returns on investment ofdelivering a newsystem will usually lead to the conclusion thatusing an application packageis a better investment than bespokedevelopment. Even though the year-on-year benefits of a packagesolution are lowerthan those of a bespoke solution, the packagerepresents a better investment because the benefits are obtainedearlier.
NPVcalculations are based on thefact that future benefit valuesare worth less than the same benefit obtained today. Thedifference is measured by considering the ‘rate of return’ that anorganisation might expect to achieve by investing the money ina different way. For example, £1 million deposited in the bank,at an annualinterest rate of 10 per cent, will grow to $1.1 millionafter one year. Thus,at a rate of return of 10 per cent, £1 millionobtained in one year’s time would be worth £1 million dividedby 1.1, or $909,091 today. One million pounds obtained in twoyears’ time would be worthstill less today. Thus, a bespokedevelopmentthat takes a long time to develop and implement mayhave a lower NPV than a package-based solution that can beimplemented within much shorter timescales, even if theapplication package does not meet all the detailed userrequirements, and hence, achieves lower year-on-year benefits.
An example of a simplified NPV comparison of undertaking aproject using either an application package or bespoke develop-ment is shown in Figure 2.4. In this figure, a hypotheticalorganisation is faced with a choice betweenusing an applicationpackage and undertaking bespoke development. We haveassumed that total package costs, including any modifications tothe basic product, amount to half of the bespoke developmentcosts. We havealso assumed that the timescale for implementingthe package solution is half that of implementing the bespokesolution. However, as only the essential business requirementsare met by the modified application package, we have assumedthat the annual benefits of this system would be only three-quarters of the benefits from the bespoke system. The presentvalue factor is assumed to be 20 per cent, which is the rate ofreturn that many organisations expect from systems projects.
Wecan seethat, given these assumptions, using the applicationpackage would be the best investment. Using the package-basedsolution, positive returns are achieved in Year 2, while it is notuntil Year 4 that the bespoke system realises a positive return.After 10 years, the cumulative benefit from using the applicationpackageis just over $1 million, about £100,000 greater than forthe bespoke system.It is notable that under these assumptions,using an application package will always bea better investmentthan undertaking bespoke development. However,the longer thesystem is used, the smaller the advantage of the package routebecomes, in terms of cumulative benefits.
Ourresearch showsthat differentlevels of return can be expectedfrom the introduction of application packages to support the front

16

NPVcalculations often show thata package is a better investmentthan bespoke development

 utler Cox pic 1990

Chapter 2 The benefits of application packages are quantifiable and
demonstrable

2.4 The net present value technique can be used to compare the business benefits of applicationFigure package and bespoke system development

An organisation has a choice of buying a package which, after some tailoring, will meet most, but not all, of its
requirements, or developing a bespoke system from scratch. Total package costs, including purchase and tailoring,
are £200,000, and the new system will be implemented within a year. At present values,it will produce benefits
of £300,000 per year. The bespoke system will take two years to develop and will cost £400,000 (£200,000 in each
year). Once implemented, it will produce benefits of £400,000 per year, at present values. The present-value factor
is assumed to be 20 per cent.

Application Package Development Bespoke System Development
Benefit NPV of Cumulative Benefit NPV of Cumulative

PV factor or (cost) benefit or benefit or or (cost) benefit or benefit or
Year (20%) (2) (cost) (£) (cost) (£) (2) (cost) (£) (cost) (2)
1 1.00 (200,000) (200,000) (200,000) (200,000) (200,000) (200,000)
2 0.83 300,000 249,000 49,000 (200,000) (166,000) (366,000)
3 0.69 300,000 207,000 256,000 400,000 276,000 (90,000)

10 0.19 300,000 57,000 1,003,000 400,000 76,000 906,000
Net present values are calculated by multiplying the expected benefit or cost by the present-value factor. The factor for
year nt1 = 1+(1+r)", where r is the expected rate of return on investment. In this example, r is assumed to be 0.20,
representing a 20 per cent return.

Cumulative cost/
benefit (£ thousand)

1,200
1,000
800
600
400
200

200
400

0 il 2 3 4 5 6 if 8 oi 10
Year

— Application package development
—

—

Bespoke system development

Note that the above example is highly simplified because no account is taken of the fact that costs and payments are
likely to be spread throughout the year, rather than accounted for once, at the end of the year. Nor is any variation in
maintenance costs after implementation taken into account, and the example is based on the assumption that subsequent
benefits are net of these costs.

office, from those to support the back office. The benefits profile
that could typically be expected for front- and back-office systems
is shown in Figure 2.5, overleaf. The returns from using
application packages for back-office systems are likely to be
smaller, but subjectto less risk; the returns from using application
packages for front-office systems are likely to be high, but are
more difficult to quantify.

17

Chapter 2 The benefits of application packages are quantifiable anddemonstrable

 Figure 2.5 Different levels of return can be expected from investment in application packages to provide front-and back-office systems

Cumulative benefits profile ofusing application packages tosupport back-office applications

Overall |cumulative
benefits Investment in application packages for theback office is worthwhile but the returns arenot spectacular, because the objective of back-Office systemsis typically to reduce the costof administrative processing. The ‘dips’ in thebenefits profile are caused by the time takento gain maximum benefit once a new (orenhanced) system has been introduced.

Overall _ Timecumulativecosts

Cumulative benefits profile ofusing application packages tosupport front-office applications

Overall Second front-
cumulative office application ; _ /benefits packageinstalled Investment here can bring significant benefits,

Initially, introducing new (or enhanced) front-office systems is likely to result in overallcosts, because of the level of investment andchanges to business patterns. However, as acompetitive advantage is achieved, the benefitsbecome substantial. Competitors’ reactions. willeventually reduce this.

\
ermal reactionreduces annual benefitsFirst front-officeapplication package

installed

Overall
cumulativecosts

Time

APPLICATION PACKAGES ARE OFTEN USEDFOR STRATEGIC REASONS
Manyorganisations have used broad-based business considerationsto justify the use of application packages, rather than specific costor benefit comparisons. For example, several organisations haveused packages to support a new business venture. Typically, theyhave used packages to provide a new service ahead of com-petitors, thus enabling them to becomeestablished market leaders.Very often, the decision to use an application package is madenot on the basis of either the costs or the benefits involved, buton the basis of businessjudgement; business pressures mean that

18

Chapter 2 The benefits of application packages are quantifiable and

Packages are sometimes used to
meettight timescales

For some, the high quality
of package-based appli-

cations is important

© Butler Cox ple 1990

demonstrable

the only way of delivering a system in the required timescale is
to use a package.

Several organisations have used application packages to introduce
new computer applications to meet regulatory changes within
tight timescales — for example, the financial systems of organi-
sations that have been transferred from the public to the private
sector. Again, in these cases, the decision to use application
packages has usually been a broad-based business decision, and
has not been based on a clear understanding of the costs and
benefits involved. Some organisations have madea strategic
decision thatall information systemswill be based on application
packages,in order to exploit the perceived benefits of packages.
In these organisations, a package will normally be used without
an assessment of its worth in a specific case.

Other organisations have made a strategic decision not to use
application packages, for a variety of reasons. They may have had
poor experience with packagesin the past, they may feel that their
requirements are so specific that suitable packages will not be
available, or they may have a systems department that believes
that developing bespoke applications increasesits own standing
within the organisation. Such a decision will preclude the use of
packages even whereit can be justified in terms of reduced costs
and timescales.

Several PEP membersclaimed that using packages improved the
quality of the delivered application. While overall, PEP members
reported that a guaranteed level of quality was not a major reason
for using packages, in somecases, this was an important issue.
The fact that the application source code of a packageis used by
many organisations should ensure a well tested product, with
consistent quality, and few software bugs.

Having demonstrated that substantial benefits can be gained from
using application packages, we now consider the ways in which
they can beselected.

19

Chapter 3

Established methods are available for selectingapplication packages

PEP members employ a wide range of methods for selectingapplication packages, from completely informal approaches tohighly formal methods. Those who do not use a formal methodtypically select application packages in an ad hoc manner, planprojects on a ‘one-off’ basis, or do not plan this type of projectat all. Such an informal approach can work, but it leaves theorganisation open to unnecessary risk.
Clearly, many organisations realise that the evaluation andselection of application packagesis already a very important areaof work — during the last two years, three-quarters of PEPmembers have assessed a wide range of application packages,covering several business areas. The evaluation and selection ofapplication packages will become more important over the nextfew years as the use of packages increases. Almost half of PEPmembers already use a formal method for the selection ofapplication packages, although several are revising their standardsin this area. Many of those who currently do not, are consideringintroducing one. Proprietary methods for packageselection arealso beginning to come onto the market as an alternative tomethods devised by organisations for their own purposes.
Figures 3.1 and 3.2 (on page 22) describe two different approachesto selecting application packages, one informal (used bya utilitycompany), and one formal (used by Lombard North Central). Eachorganisation considers its approach to have been successful. Theseexamples demonstrate the importance of using an approach thatis appropriate for the organisation and for the type of package.It was appropriate for the utility company to take an informalapproach becauseit did not need the new packagesto fit closelywith any specific requirements, and it needed the new systemsquickly. Lombard North Central needed to take a formal approachbecause it was selecting a package to provide a competitive-advantage, front-office system. It had to be certain of itsrequirements and had to select the best package so thatcompetitors could not beatit at its own gameby using a betterproduct.

In general terms,it is usually appropriate to use a detailed, formalmethod forselecting a large, mainframe-based package, which willbe expensive to acquire and of strategic importance to anorganisation’s business. Such an approach, however, would notbe appropriate for a small, microcomputer-based package, whichis inexpensive and not strategically important. These types ofsmaller application packages can make a valuable businesscontribution, but not if the cost of selecting them outweighs thebenefits of using them. Otherconsiderations are also importantin deciding which approachto use for packageselection. Businessrequirements may demand that a system is operational in a very

The package-selection method
must be appropriate to the
organisation and the type
ofpackage

Formal andinformal approaches
both have a role to play

© Butler Cox pic 1990

Chapter 3 Established methodsare available for selecting application packages

Figure 3.1 A utility company has adopted an informal approach to the

selection of application packages

Whenfaced with legislation that changed the organisation’s status from a public
utility to a privatised company,this organisation took a strategic decision to
invest in application packages. The organisation's financial systems were not
suitable for use within the new commercial environment. This meant that the
financial applications, which had been developed in-house during the previous
10 years, all had to be replaced within a year. The organisation decidedthat
the only wayto do this was to use application packages.
The organisation adopted an informal approachto selecting application
packages.It was successfulin that the new financial systems were implemented
within the required timescales. The approach involved users and systemsstaff
working closely as teamsat all stages. It can be summarised asfollows:
Stage 1: Define requirements. Requirements are defined quickly, and at a high
level. The appropriate application area and the scale of the business is defined,
but no detailed specification of requirements is producedat this stage.
Stage 2: Identify packages with the required functionality. A literature search
is undertakento identify possible suppliers. These are contacted, and company
representatives attend demonstrationsof the functionality of the products. A
high-level specification for the new system is developed andrefined by taking
into accountthe features of the products. The specification is progressively
developed until there is a clear match between the requirements and the
software facilities of a package.This is the preferred choice.
Stage 3: Investigate product and preferred supplier. A list of users of the
preferred productis compiled. These users are contacted and the product's
and supplier's performance are discussed. An analysis of the preferred supplier
is undertaken, covering the turnover of the company, the numberofstaff
employed, the future development path for the package, and theinstalled user
base for the productbeinginvestigated. If the results of the supplier analysis are
positive, a decision to contract with the preferred supplieris taken.
Stage 4: Negotiate contract. Contracts are not negotiated to any predefined
standards. The best ‘deal’ is sought in each case.
The organisation has usedthis informal approachto select application packages
within very short timescales. This has been a major success for the company,
which believes that if bespoke development had been undertaken, it would
have taken a year to complete the specifications before developmentcould
begin. Two problems have emerged, however. First, difficulties have been
encountered when the companyhastried to develop the necessary interfaces
between various packages. Second, the most important package had only
recently been developed to run in the organisation's hardware environment, and
as a consequence, there have been some‘teething problems’.

short timescale, and in such a case, a lengthy, detailed selection
exercise would be inappropriate.

INFORMAL APPROACHES EXPOSE THE ORGANISATION
TO UNNECESSARY RISK
An informal approach to selecting application packages may
simply require users to identify two or three potential suppliers,
attend demonstrationsof their products, and buy the package that
they like most. Choosing the most appropriate package with such
an approachis likely to be more by luck than judgement. An
organisation that uses this type of approach is exposed to
considerable risk because many important factors are not taken
into account when the decision is made to acquire a package.
Using an informal approach canleave an organisation vulnerable
to persuasive sales skills and impressive demonstrations. In
particular, the level of expertise available from the supplier after
a sale has been made may not match the level implied at an
impressive sales presentation.

© Butler Cox ple 1990 21

Chapter 3 Established methodsare available for selecting application packages

Figure 3.2 A formal package-selection approach has been adopted for a
new business venture at Lombard North Central

Lombard North Central, a large financial services company, has recently
selected an application package to support a new business venture. The
selection was led by the business manager responsible for establishing the new
venture. Swift entry into the new business area wasessential to gain a :
competitive advantage, and computer support was required to achievethis.However, discussions with the systems department revealed that an in-house
solution could not be provided in time. As a consequence, the business
manager used a formal method to select an application package. The main
stages of work were:
Stage 1: Define requirements. Three types of requirements were defined —business, operational, and technical. Business requirements were rigorouslydefined using data flow diagrams.
Stage 2: Produceinvitation to tender. An invitation to tender was produced,consisting of:
— Therequirements for the new system.
— Administrative details for the tender process.
— Formatfor the response.
— Additionalinformation required — for example, supplier status.
The invitation to tender specified that suppliers should define how well theirbasic system met the requirements, and whatit would cost to modify the systemto meet the requirements completely.
Stage 3: Define selection criteria. Selection criteria were defined in threecategories — functional, commercial, and technical. Criteria were weighted atgroup andindividual levels. Functional requirements accounted for 70 per centof the weighting overall.
Stage 4: Create a shortlist of suppliers. A long list of suppliers was createdfrom a literature search and from knowledge of available systems. This wasreduced to a shortlist of four suppliers, by considering:
— Therangeof functionality supported for the package.
— Theability of the package to process the required volumes of work.
— Thestability of the supplier.
Stage5: Issue invitation to tender. Shortlisted suppliers were informed of theintention to invite them to tender to supply an application package. Theinvitation to tender was issued and a presentation was madeto each supplier toexplain the requirements and the tendering process.
Stage 6: Evaluate responses and make recommendation. Whenresponseswere received from the suppliers, the packages were scored on a scale of oneto four according to how well they met the selection criteria. The weightedscores were used to analyse the approach proposed by each supplier and toidentify the suppliers’ strengths and weaknesses. One package wasclearly thepreferred solution.
This selection process was successful, for several reasons. The scopeof theproject was clearly defined, and the project was managedbya steeringcommittee. Regular meetings were held and weekly progress reports wereissued, The analysis of requirements was thorough, and suppliers wereevaluated using a comprehensivesetofcriteria.
Interestingly, the preferred package does not conform with the company’stechnical architecture, which means that the business department may have toProvide operational and technical support for the new system.

Figure 3.3 lists the typical stages in an informal approach.Although such an approach typically takesless time andeffort,it exposes the organisation to more risk, because userrequirements are not clearly defined, technical and operationalrequirements are not taken into consideration, the supplier’sperformanceis not considered in detail, and the features of thepackages available are not studied in detail. With an informalapproach, the most significant influence on the choice of package

22

Figure 3.3 An informal approach to

package selection might
typically comprise seven
stages

1 Aloosely defined working party is
set up to organise the selection
process.Project structure is veryinformal.

2 A small number of fundamental
requirements is agreed.

3 Suppliers are researched and
demonstrations are arranged for a
few products.

4 Onthebasis of the demonstrations,
a preferred product is chosen.

5 Anyfurther issues are discussed in-
formally with the suppliers.

6 A minimum assessment of the
Preferred supplier may be
undertaken.

7 Someconsideration may be given to
contractual implications.

© Butler Cox ple 1990

Chapter 3 Established methods are available for selecting application packages

With an informal approach,
organisations can be over-
influenced by impressive

sales presentations

is the skill with which suppliers present their products and support
capabilities during demonstrations. The approach to package
selection adopted by those PEP members whodo not use a specific
methodtends to becloser to an informal approach than to a formal
method.

A FORMAL METHODIS USUALLY A BETTER
ALTERNATIVE
Many package suppliers prefer organisations to adopt a formal
method for selecting a package because they realise that this
increases the likelihood of their selling their product to an
organisation for which it is appropriate. If an organisation uses
an informal approach, and makesa poorchoice of package, the
chosen supplier will have little to gain in the longer term.

Some package suppliers Several leading package suppliers encourage organisations with
encourage the use of little experience in selecting application packages to engage

consultants at the consultants to assist them. These package suppliers have typically
selection stage instigated consultant-liaison programmes to update consultants

about their products and plans.
A formal approach that PEP members might adoptif they have
no established guidelines for selecting application packages is
discussed below.It is based on ‘best practice’ derived from the
research that we have undertaken. Members whoalready have
a standard approachto the selection of packages should compare
it with our ‘best practice’ guidelines and amend their approach
if necessary. Organisations that do not have an established
approachtoselecting packages, but that do have one for bespoke
system development, should draw on it to complement their
approach to package selection — established techniques for
requirements definition, for example, could usefully be
incorporated into a formal approach, and the same project-
management framework might also be appropriate.

A FORMAL APPROACH HAS SIGNIFICANT ADVANTAGES

The additional time and effort A formal approachtypically takes more time and effort than an
required by a formal approach informal approach, but it also has indisputable advantages:

is worthwhile
— It reduces risk. A formal approach will ensure that all

appropriate issues are considered during the selection
process, and this should ensure that the best product is
selected.

— Forthose organisations involved in selecting many application
packages, it should reduce the effort and time required,
because staff will follow a standard approach, which will
include standard criteria for evaluating suppliers and
products, contractual features, and so on.

— It should enable a clear business case to be made for any
planned investment, with accurate estimates of benefits and
costs.

— It will ensure that all parties (users, systems staff, and
suppliers) clearly understand what their roles are in the
selection project, and how the project will be progressed.

utler Cox ple 1990 23,

eee

Chapter 3 Established methodsare available for selecting application packages

— By clearly defining requirements and assessmentcriteria, it
limits the subjective element in the selection process, and
thereby removespossible partiality.

— It provides a record of the selection exercise, outlining what
was done and why the package was chosen.This information
is often useful after implementation, especially if
enhancements are planned.

THE CHOSEN APPROACH MUST BE FLEXIBLE
Any formal approach to the selection of application packagesmust, however,still be flexible. PEP memberswill wantto selectdifferent types of application packages and will doso in the faceof different business constraints. To ensure that the approach usedis appropriate to the occasion, the approach must haveappropriate paths that can be followed depending on the type ofpackage being assessed. For example, a project to select a packagefor a small, non-business-critical application should not beundertaken in the same manneras a project to select a largesystem of major importance. Thus, the main accounting systemof a major multinational corporation should be selected with morecare and rigour than a purchase-order system of a small subsidiary.Someof the methods already used by PEP members havethis typeof flexibility. The majority, however, give guidancefor one typeof application, which is to be followedfor all projects.
A standard approach should also have the flexibility to keep theorganisation’s options open until the best solution is evident. Theoptions to reconsider other packages or bespoke developmentshould remain open as the shortlist is narrowed to a preferredsupplier. At any stage during a selection exercise, it may beappropriate to change direction. This should be accommodatedwithin the approach.
In Chapter 2, we showed that significant savings andimprovementsin process productivity can be made whenthecostsandtimescales involved in packageselection are minimised. Theapproach to package selection should therefore be economicalinterms of effort, and especially time. It should allow theappropriate balanceto be struck between reducing the timescale(and therefore the thoroughnessof the selection process) andincreasing the risk of choosing an inappropriate package.
AN EIGHT-STAGE APPROACHIS RECOMMENDED
The approach we recommend is shown schematically inFigure 3.4 and haseight stages:
Stage 1: Initiate the project. In many respects, this is the mostcritical stage in the selection process. It is important that beforethe project gets under way, clear terms of reference and goalsare established, and everyone involved has a clear view aboutwhatis to be achieved. Theselection approach to be followedduringtherest of the project is decided upon,taking into accountthe size, complexity, importance, likely cost, and requiredimplementation timescales of the application. The project teamis set up, and team members’ roles and responsibilities are defined.At this stage, the management structure for the project is

24

The approach to selecting apackagefor a small appli-cation should be different
from that used for a
Major application

The selection approach should
take account of the appli-
cation’s size, complexity,
importance, cost, and
implementation time-
scale

© Butler Cox pic 1990

Chapter 3 Established methodsare available for selecting application packages

Figure 3.4 The recommended approach to selecting an application
package consists of eight stages

Stage 1 Initiate the project
‘aae ea

Stage 2 Agree on the basicrequirements
nas|: ae

Stage 3 Doinitial marketinvestigation i________
Stage 4 Produce and issueinvitation to tender

T Considerbespoke
Stage 5 Weight and score development

Stage 6 Obtain additionalinformation
v

Stage 7 Conduct detailedtriala
Stage 8 Make decision and

negotiate contract

also established. Progress is monitored and controlled via regular
reporting and meetings.
Stage 2: Agree on the basic requirements. The fundamental
requirements of the users, and the technical requirements, are
defined and agreed. Fundamental requirements should be kept
to a minimum, but should include the main criteria that any
application package must meetif it is to satisfy the project
objectives. These requirements are likely to include the main
processing requirements of the business area being addressed, and
the need to comply with any constraints imposedby the technical
architecture.
Stage 3: Doinitial market investigation. A product searchis
undertaken to identify packages that are likely to meet the
fundamental requirements. There are many sources of informa-
tion, such as software guides, magazines, and the experience of
colleagues. Publications specialising in application packagesare
now available, and these usually contain a candid review and
comprehensive information about suppliers, package costs and
options, and required hardware and operating system software.
An example of a package-specific publication is Software Guide
for Accountants.
Possible suppliers are contacted, and initial demonstrations are
arranged of up to six packages that appear to be capable of

Initial demonstrations of up to meeting the fundamental requirements. In our experience, having
six packages should demonstrations of between three and six packages should give

a fair view of the types of products available. If more packages
are investigated, the additional effort may be excessive in terms

be arranged

Chapter 3 Established methods are available for selecting application packages

of the additional information gathered.It is important that those
involvedin selecting a package attend demonstrations early on
in the selection process, so that they have an understanding of
the types of products available before they define the
requirements in detail. By looking at a selection of the available
products, understanding how they work, and assessing their
strengths and weaknesses, the selection team can decide on ashortlist of preferred packages and formulate its detailed
requirementsbetter.
Thereis a danger that supplier demonstrations can be persuasiveand lead the team to consider issues that are not important. Theproject teams must keep the fundamental requirements in mind
at this stage and ignore suppliers whose products cannot meetthem. Detailed requirements can then be decided withoutpressure from suppliers.
Stage 4: Produce andissue the invitation to tender. Detailedrequirements are defined. Both user and technical requirementsare refined, and categorised as either essential or desirable. It isimportant to ensure that requirementsclassified as essential reallydo have to be metif the system is to provide a workablesolution.If features that are only desirable, in that they would be usefulto have, but not necessary,are classified as essential, it is likelythat potentially appropriate packages will not be considered.
The requirements are agreed, and incorporatedin an invitationto tender, which also provides a standard format for responses,and sets out the administrative arrangements for the tenderingprocedure. The invitation to tenderis then issued to the preferredsuppliers identified in Stage 3. The typical contents list for aninvitation to tenderis set out in Figure 3.5.
Producing a detailed invitation to tender and ensuring thatsuppliers respond using the specified format is very useful,particularly for larger, more complex applications. The effort ofmatching product functionality to requirements is borne by thesuppliers, rather than by the package purchaser. Commitmentsgiven in the chosen supplier’s response should be incorporatedinto the final contract, to ensure that the supplier has a legalobligation to meet the claims he has made. The supplier, in turn,can identify any modifications that may be required to thepackage, advise on the most. appropriate ways to make thesemodifications, and estimate the costs and timescales involved.
Stage 5: Weight and score. The next task is to agree on theweightings for each desirable requirement. Many organisationscarry out this task before the invitation to tenderis prepared. Webelieve, however, that it is more efficient to agree on theweightings while waiting for the suppliers to respond to theinvitation to tender. Requirements should be classified intodifferent types and each type should also be weighted. Forexample, for an accounting system, requirements maybeclassifiedinto financial accounting, management accounting, and so on. Thiswill enable the importance of individual requirements to bereflected, along with the importance of different types ofrequirements.
The advantage of defining weightings for the differentrequirements when suppliers are preparing their tendersis thatit saves time, becausetheinvitation to tender can be issued before

Packages that do not meet thefundamental requirements
should be ignored

Figure 3.5 Mostinvitations totender have similar
contents

Tender administration
Request to tender statement
Contact details for tender processing
Confidentiality statement
Completion and submission of proposal
Criteria used to assess responses
Backgroundinformation
Overview of the company
Overview of the current system
Scope of the proposed system
Essential requirements of the new system
General systems requirements and
constraints
Summary ofcurrent systems procedures
Main functions of current system
Responsibilities for performing main
functions
Control procedures
Specific areasofdifficulty
Systems requirements
User requirements
Technical requirements
Operational requirements
Required tender content and format
Management summary
Application software
Hardware
Operating systems software
Support
Implementation summary Contractual terms

© Butler Cox ple 1990

Chapter 3 Established methods are available for selecting application packages

the weightings are agreed. The processof defining the weightings
focuses the project team’s attention on the completeness of the
requirements and helps to identify any missing requirements.
Whenthe tender responses have been received, the first task is
to eliminate any product that cannot meet all the essential
requirements. For the remaining products, each of the weighted
criteria should be scored to producea total score for each product.

i Each memberin the project team should producehis ownscores,
ensure that thescoregiven to and these should be discussed, to agree on a score for each

each selection criterion is yiterion. Close contact with suppliers will be essential duringthisaccurate z 2 zstage to ensure accuracy in the scoring. Figures 3.6 and 3.7
(overleaf) show sample formsfor recordingtheclassification and
weighting of requirements and the scores given to each package
being evaluated. Total scores for packages can be compared to
identify the preferred products.

Close contact with suppliers will

Stage 6: Obtain additional information.In this stage, additional
information about the preferred products and their suppliers is
gathered from visits to, and discussions with, the suppliers and
users of the packages, and from company searches, and so on.
This should serve to clarify any issues arising from the tenders,
to confirm the experience of current users of the preferred
products, to verify the financialstability of the supplier, and to
confirm the costs, resources, and timescales required to implement
the packages.

Figure 3.6 Each requirement, and type of requirement, should be weighted

 Application package selection checklist
Package name:

Essentialor
Desirable
indicator Weighting Weighted i
(EorD) | Score applied score | Comments

Requirement type 1
— Requirement 1
— Requirement 2
— Requirement 3
— Requirement 4
— Requirement n-

Requirement type 2
— Requirement 1
— Requirement 2
— Requirement 3
— Requirement 4
— Requirement n

Total score for package =X+Y

© Butler Cox pic 1990 2k

ae

Chapter 3 Established methodsare available for selecting application packages

Figure 3.7 Agreed scores should be applied to the weightedcriteria to produce

a

total score for each product

Weightedscores by requirementand type ofrequirement ;

Package 1 Package2
Requirement type 1
— Requirement1— Requirement2— Requirement 3
— Requirement 4
— Requirement n

Requirement type 2
— Requirement 1
— Requirement 2
— Requirement 3
— Requirement4
— Requirement n

“Package3

Package4

It is importantthat the project team has a clear view about whatis to be achieved by obtaining the additional information.Checklists or questionnaires should be developed to ensure thatall the appropriate issues are covered. These should be designedin such a wayas to ensure that a fair view is gained about theissues underinvestigation. For example,if an organisationis tryingto assess the product support provided by a potential supplier,it would be inappropriate to ask ‘‘Do you provide comprehensivesupport for the package?’ because the answeris alwayslikelyto be “‘Yes’’. Questions, along the lines of those listed below,would give an accurate impression of the standard of supportoffered:
— What support do you provide for the package?
— Do you provide both user and technical support?
— Do-you havea specific department dedicated to supportingthe package?
— How manystaff do you have providing support for thepackage?
— Do you have guaranteed response times for queries?
If Stage 5 revealed a product thatis clearly preferred, Stage 6shouldinitially be undertaken with reference to that product only.If several products are closely scored at the end of Stage 5,emphasis should be placed on assessing those areas that will bemost important in makingthe selection decision. Usually,it is thevarious aspects of implementation — costs, timescales, andso on — that arecritical at this stage.

28

' Checklists should be used forobtaining additional
information

Butier Cox pic 1990

Chapter 3 Established methods are available for selecting application packages

Moreflexible and complex
packages are often more

difficult to implement

Penalties for poor performance
by the supplier should be
specified in the contract

While these issues will usually have been considered during earlier
stages, it is only at Stage 6 that both the supplier and the
organisation are likely to have sufficient information to estimate
accurately the costs and timescales of implementing the package.
This information will be obtained in discussions between the
supplier and the organisation, and by subsequent analysis. The
high level of effort and the long timescales involved in
implementing some packages can offset their apparent
advantages. Typically, the more flexible and complex a package
is, the moredifficult it is to implement. Thus, while a product may
have a very close fit with an organisation’s requirements, its
implementation maybeeithertoo costly, or take too long, to make
selection of this product a viable business solution.

Stage 7: Conduct detailed trial. For complex applications, when
fast implementation is not of fundamental importance,a trial
period is recommended, to gain a detailed understanding of an
application package. This will confirm whetheror not the product
will offer a good operational solution. A trial should be undertaken
only if it has a good chance of being successful. Most suppliers
agree to trials, becauseit should make subsequent implementation
easier.

Stage 8: Make decision and negotiate contract. Following a
successful producttrial, or the provision of appropriate additional
information, a decision will be made to acquire the package. At
this stage, enough information will exist to develop a detailed
business case for the investment.

The final stage is to conclude the contractual negotiations.
Statements madein the tender response should be includedin the
contract, together with other safeguards to protect the
organisation’s interests. Any important issues that arose during
the selection exercise should be recorded in writing, and written
responses from suppliers should also be includedin the contract.
Payment terms should be agreed, including penalties for poor
performance by the supplier.

Repeating someofthe stages. Figure 3.4 showedthat there are
five points during the process whenit may either be appropriate
to go back to a previous stage or to abandon the package-
development option:

— Ifthe basic requirements agreed in Stage 2 are different in
scope from the ideas whenthe project wasinitiated, it may
be necessary to revise the project’s terms of reference,
planning, and management procedures.

— If Stage 3 reveals that the products available do not
adequately meet the fundamental requirements, the project
may haveto be rethought. Alternatively,if it is not possible
at this stage to find products that are likely to be suitable,
bespoke development could be considered.

— At Stage 5, the weighting and scoring may lead to the
conclusion that no package can meet the essential
requirements. Bespoke development should then be
considered, or the scope of the project could be changed.

29

Chapter 3 Established methodsare available for selecting application packages

— At Stage 6, if the additional information reveals that the
supplier is not financially sound or has other shortcomings,
it may be appropriate to obtain additional information about
the other products (and suppliers) assessed, or to consider
bespoke development.

— If the detailed trial (Stage 7) is unsuccessful, the supplier of
the next-highest-scoring product should be investigated, and
if appropriate, this product should also be subjected to a
detailed trial. The final decision should usually be to contract
for the supply of the application package that has been
successful at trial. If no package is found to be satisfactory
at the trial stage, bespoke development should again be
considered.

A SUBSET OF THE STAGES MAY BE APPROPRIATE
IN SOME CIRCUMSTANCES
The approach wehavedescribedso far is the full approach thatwe recommend PEP members adopt whenselecting packages formajor, complex applications. The approach should, however, beused pragmatically. It is not necessary, for example, to undertake The recommendedselectiona detailed trial of a small, inexpensive product. At the project- approach should be usedinitiation stage, the project manager will take a view on how the pragmaticallyproject will be carried out, which stages are necessary,and what emphasis and level of detail should be undertaken ateach stage. Figure 3.8 illustrates a subset of the approach thatis appropriate for a smaller, less complex application.
For asmall, simple application,the project team can decide duringStage 1 (whenthe project is initiated) to miss out Stages 4, 5,and 7. In the example shownin Figure 3.8, the project team hasdecided that it is not appropriate to produce an invitation totender or to weight and score responses. Norisit appropriate to Someofthe stages can beundertake a detailed producttrial. Missing out these stages omitted for simpleexposes the project to more risk, but the risk is limited because applicationsof the controlled project framework. The decision about thepreferred supplier will be taken during Stage 3, when the marketinvestigation is undertaken. This means that this stage willprobably need to be more extensive than in a project to select a

Figure 3.8 The recommended approach may be modified for theselection of a small, simple application

Stage 1 Initiate the project
eS

Stage 2 Agree on the basic
requirements

eeae
Stage 3 Doinitial market Considerinvestigation bespoket development
Stage 6 Obtain additionalinformation

t
Stage 8 Make decision andnegotiate contract

30

Chapter 3 Established methods are available for selecting application packages

larger, more complex application. Additional information will still
be gathered to assess the preferred supplier’s performance in
predefined areas.

PROPRIETARY METHODS ARE WORTH CONSIDERING
An alternative to devising a formal methodin-houseis to acquire
a proprietary methodfor selecting application packages. While
several of the integrated development methods, such as
Method 1, have sections that can be used for package-based
development, proprietary methods that have been produced

Three proprietary methods for specifically to help with package selection are now becoming
selecting application packages available. We haveidentified three such methods, each of which

are available has been used successfully by several large organisations. The
three products are SIIPS (Selection and Implementation of
Integrated Packaged Software), supplied by KPMG Peat Marwick,
Buy/Build, supplied by Hoskyns, and LBMSPackage Evaluation,
supplied by Learmonth and Burchett Management Systems.
Summaries of each are given in Figures 3.9, 3.10 (overleaf), and
3.11 (on page 33). The three methods have manysimilarities:
— A detailed definition of requirements is produced.
— Theoptionsare progressively reduced from longlist, to a

short list, to a preferred supplier.
— Thesupplier’s involvementis extensive.

Figure 3.9 SIIPS, from KPMG Peat Marwick,is a comprehensive method

that covers both the selection and implementation of an
application package

The key aspects of this method are the emphasis placed on a user-driven
project and the use of a detailed invitation to tender, using weightings of
requirements so that different packages can be compared. The work is split into
four phases.
Phase 1: A detailed definition of requirements is undertaken. This focuses on
what is required, rather than howit is to be provided. During this phase,it is
assumedthat the ultimate solution may be either package-based or bespoke
development;there is no difference in approach. Major users of the proposed
application must agree on a report outlining the requirements, at this phase.
Phase 2: A conceptual design is developed for the application. This documents
what the new system is to do. Currentfacilities are then reviewed and a
‘shoppinglist’ is produced of software components (for example, packages,
fourth-generation languages, and so on)that are required to implement the new
system.A ‘longlist’ of potential suppliers is created and reducedto a shortlist
by assessing both the suppliers’ standing and product features.
Selection is based on

a

list of mandatory and desirable features (a MADlist)
required to support the business-processing, data, and technical requirements.
These requiremenis are incorporated into an invitation to tender. The responses
from invited suppliers to each item on the MADlist are weighted and scored.
Desk checking of the responsesis backed upby visits to sites where the
productis being used. Generally, the highest-scoring package is chosen.
Phase 3: This phase deals with the implementation of the chosen package. The
SIIPS approachto implementation recognisesthat individual areas of a package
can be designed, developed, and implemented independently of, and
concurrently with, other areas. Other issues addressed within this phase include
training, documentation,interfaces with other systems,testing, and any other
activities required to get the system readyfor live operation.
Phase 4: This phase provides a framework for carrying out a post-
implementation review of the project and for measuring the benefits derived
from the new system

©Butler Cox pic 1990 31

Chapter 3 Established methodsare available for selecting application packages

Figure 3.10 The Buy/Build method, from Hoskyns, treats the selection
and implementation of an application package as a single
project

Buy/Build is an integrated part of the PRISM (Professional Information Systems
Management) development method. It is based on progressive managementdecisions being madeto identify options, select suppliers, and establish thefunctionality of interfaces or otherfacilities that are implemented with the
package. It is comprehensive and flexible, and canbetailored for the type ofpackage being selected. This process is comparatively risk-free becausechecklists and charts are provided that outline the work and deliverables fromeachtask. If tasks are undertakenin a different order, or not included in aproject,it is clear what work and information will be missing. A projectwillnormally comprise seven phases, each of which culminates in a major reviewand decision.
Phase1:Strictly speaking, this phase of work falls outside the Buy/Buildmethod;it is part of the Business Study module of PRISM. The businessrequirements and problemsto be solved by the new system are identified andinitial choices are made about the business and project objectives that thesystem should satisfy, and about whetherit is to be package or bespokedevelopment.
Phase 2:In this phase, the feasibility of a package solution is verified. Thefollowing tasks are undertaken:
— A searchisinitiated to identify potential suppliers.
— A request for information is issued, outlining fundamental requirements andconstraints.
— Ashortlist is compiled.
Phase 3: Thepreferred supplier is selected:
— Detailed user requirements are specified.
— A requestfor proposal for the new system is produced and issued.
— Evaluation criteria are agreed.
— Demonstrations of products are attended.
— A supplier is selected on the basis of the evaluation criteria.
Phase 4: In this phase, an understanding of the scope of required modificationsto the preferred package is developed. Modifications are planned andundertaken, using the appropriate PRISM development module, to arrive at anoverall project plan:
— Identify package scope.
— Identify build scope.
— Develop preliminary installation approach.
Phase5:Theinstallation of the new system is planned:
— Identify the conversion andinterim maintenance and support requirements.
— Place contract.
— Review package and acceptancecriteria.
— Prepare environment.
— Initiate training.
— Finalise installation preparations.
Phase 6: The new systemis installed, tested, and integrated with other systems:
— Test design.
— Initiate and test packagesoftware.
— Integrate package andothersoftware.
Maintenance arrangements are agreed.
Phase7: Installation is completed with acceptance tests, followed by cut-over tothe new system:
— Conduct acceptancetest.
— Cutover to new system.
— Finalise installation.

32
©

Chapter 3 Established methods are available for selecting application packages

© Butler Cox ple 1990

 Figure 3.11 LBMS Package Evaluation covers the selection of an
application package and planning for its implementation

LBMSPackage Evaluation is structured into five activities, with three of the
activities — requirements analysis, package selection, and package
documentation — overlapping. This meansthat thelist of potential packages
can be progressively reduced as the requirements are defined in more detail.
The method used by LBMS Package Evaluation placesinitial emphasis on the
developmentof a technical understanding of the business requirements,
followed by a detailed understanding of the potential packages. The two can
then be matched. Thefive activities are as follows:
Activity 1: Projectinitiation
The scopeof the project is defined, its cost is estimated, and resources are
assigned. Following this, the marketis ‘trawled’ for potential packages.Aninitial
screening mechanism, called Strategic Requirements Comparison, based on
defined and agreed mandatory requirements, is performed to provide a shortlist
of likely packages. The aim ofthis activity is to identify those packages that are
suitable for further, more detailed, analysis.
Activity 2: Requirements analysis
This activity is based on standard analysis steps, which allow the current system
to be investigated, requirements for the new system to be defined, and
‘business system options’ to be produced. Thedetails of the required system
form the basis of the workin Activity 3.
Activity 3: Package selection
In this activity, the potential packages are compared, and a shortlist is compiled:

‘Functional comparison’ identifies the packagesthat are best able to meet
the basic functionality requirements, and cope with volumes ortransactions
andfile sizes. A shortlist of up to three packages is compiled and eachis
scored.

— ‘Data comparison’ ensures that the shortlisted packages can handle the
organisation’s required data structures, content, and format. Scores are
again allocated to each package.

— ‘Process comparison’ is a more detailed checkthat the required processing
is present in the potential packages.

All three stepsidentify, document, and specify the modifications that will be
required to the packages, and their impact (both technical and organisational).

Activity 4: Package documentation
This optional activity consists of two steps and should be carried out onlyif the
documentation provided by the supplieris insufficient to complete Activity 3.
Thefirst step, which should be undertaken only if absolutely necessary,
provides a mechanism for deriving the logical data structure to be used by the
package (usedin the ‘data comparison’ step of Activity 3). In the second step,
the project team producesits own package documentation for the ‘process
comparison’ step of Activity 3.
Activity 5: Implementation planning
This activity assessesthefull implications of procuring and implementing the
packagein terms of:
— Hardware and system software needs.
— Customisation requirements.
— Organisational impact.
— Interface and data collection/conversion needs.
— Once-off and continuing costs.
— Implementation timescales and resources.
Collating and reviewing all such information ensures thatthefinal decision to
purchase a particular package can be taken with confidence.

Each method also has its unique features, however. These
differences should be carefully considered by any organisation
wishing to introduce a proprietary method. The main differences
are tabulated in Figure 3.12, overleaf.

33,

Chapter 3 Established methodsare available for selecting application packages

Figure 3.12 The three proprietary methods have manydistinctive features

Feature
Product

SIIPS Buy/Build LBMS Package Evaluation
 Level of user involvement High High Low, except at requirements

definition
 Emphasis on
requirements, user and
technical

Primarily user Primarily user Business requirements
defined in technical terms
 Method ofinvolving
suppliers

Suppliers provide
information and analysis in
responseto invitation to
tender

Suppliers provide
information in reply to
request for information and
request for proposal

Information provided by
suppliers and interpreted bythe project team
 Decision-making process Decision made by scoring

of weighted requirements Decisions made
progressively as more
information received

Quick moveto detailed
investigation of leading
contender
 Implementation coverage Implementation covered in

detail Implementation integral part
of project Implementation planned
 Links to structured
methods Can be used with any

structured method, but
based on KPMG’s SDLC
method

Links to other parts of
PRISM Links to LSDM

 Consideration of bespoke
development A choice is made between

bespoke and package
development

Can be considered at end
of each stage,if appropriate Can beconsidered at end

of eachstage,if appropriate
 Flexibility to assess
different types of package Suitable primarily for large,

complex applications; would
need modification for use
with other types of system Very flexible method that

enables a project to be
‘tailor made’ Detail of stages can be

modified as necessary;
some guidance given

Each proprietary methodis appropriatein certain cases. If a PEPmember needs a very flexible approach, Buy/Build would be themost appropriate choice. If the intentionis to select mainly large,complex packages, SIIPS would be more appropriate. LBMSPackage Evaluation is most appropriate for organisations thatrequire a detailed technical understanding of packages and thathave complex interface requirements.
In this chapter, we have looked at the waysin which applicationpackages should be selected. The benefits of using a chosenapplication package can be realised, however, only if anymodifications required are carried out correctly and if it issuccessfully implemented. We addresstheseissues in the next twochapters.

34

Each ofthe proprietary methodsis appropriate in different
circumstances

© Butler Cox pic 1990

Chapter 4

Modifying application packages may be a viable option

Some organisations have
experienced problems

with modified
packages

Others will modify any of their
packages

© Butler Cox ple 1990

The application package thatis selected in the process described
in Chapter 3 should be a good‘fit’ with the requirements of the
business, but it is unlikely to be a perfect fit. In such cases, making
modifications to the basic product may provide a better business
solution. As with a bespoke system, however, modifying a package
is more difficult than developing functionality from scratch. (We
know from the PEP database that projects that involve changing
or enhancing existing systemsare typically less productive than
new developments.) Theviability of modifying a package will be
determined by three main factors — company policy, the cost
likely to be incurred, and the nature of the modifications that are
required.

COMPANY POLICY MAY PRECLUDE MODIFICATION

Someorganisations allow no modification to packages, insisting
that a package will be used onlyif it has a high degreeof‘fit’ with
the organisation’s requirements; alternatively, the organisation
may be prepared to modify its working practices to accommodate
an application package. These organisationsbelieve that greatest
benefit derives from using packages in the form in which they
are supplied rather than spending time and effort on modifying
them.
Several organisations we spoketo said that they now placeless
emphasis on modifying packages than they did in the past. One
large financial services company told us that its previous policy
had been to makeall the modifications necessary to application
packages to give the users exactly what they said they wanted.
This policy had recently been changed,because of the extensive
support problems that it had experienced with the modified
products, and in particular, the cost of enhancing modified
packages.
A variation of this policy is to persuade a package supplier to base
his package on the organisation’s specific requirements. Clearly,
this option is not availableto all organisations, but by developing
this type of relationship with a package supplier, an organisation
would neverincur the costs of modifying a package and would
have its specific requirements met.
At the opposite endof the scale, some organisations have taken
a strategic decision that any of their application packages may
be modified. This policy is typically chosen by organisations that
place the emphasis on providing users with a system that fully
meets their requirements, regardless of cost. Such a policy might
also be adoptedin order to provide a standard user interface —
for instance, always amending packages to provide screen layouts
that are consistent with other applications.

35

Chapter 4 Modifying application packages may be a viable option

THE TRUE COST OF MODIFYING A PACKAGE
MUST BE CALCULATED
Assuming that the option of modifying application packages is not
precluded by company policy, it is essential that the project
managerhasa clearideaof the true cost involved in modification,
because hehas to strike a balance betweenthe need for a package
to fit business requirements precisely, and cost. Somedevelopment managersbelieve that the effort needed to modify
packages so that they can interface with other applications andcan match users’ needsis such that the total cost of the packageand the modifications often makes it more cost-effective todevelop the equivalent bespoke application. Many organisationsthat has invested heavily in application packages are incurringincreasing costs and suffering slipping timescales because of thelevel of modifications that has to be carried out to deliver therequired systems.
Without doubt, modifying application packages can be bothexpensive and time-consuming. Indeed, one PEP member who hadtaken a strategic decisionto invest in application packagesratherthan bespoke system development had experienced so muchdifficulty and expense in modifying packages that he wasconsidering reversing the decision and allowing only bespokesystem development.
It is even more difficult to estimate the costs of modifying anapplication package than of developing a bespoke system, becausethe systems development department does not usually have adetailed understanding of the product to be modified, andconsequently, cannot accurately estimate the work involved. Theissue is complicated because the departmentis typically faced withthe choice of undertaking the modifications using in-houseresources,or getting the package supplier to make the necessarychanges.
Several organisations we spoke to during our research makedecisions about application packages with reference to a rule ofthumb; if 80 per cent of the required functionality can be providedby the package,it is worth modifying to provide the remaining20 percent of requirements. Clearly, this rule does not accuratelyreflect the work or the cost involved in modifying a product, butapplied pragmatically, it can be a useful basis on which to decidewhetherit is worth acquiring and modifying a package. Dependingon the design of the package, it may be both costly and time-consuming to make relatively small changes. However,if the fitof the application to business requirements has to be high, andif the business procedures cannot be changed to conform with thepackage, modification can be a viable option.

MODIFICATIONS TO THE PACKAGE CORESHOULD BE DISCOURAGED
The attitude of application package suppliers to modificationsmadeto the source code of their products is changing, and ingeneral, seems to have come full circle, as illustrated inFigure 4.1. This changing attitude is determined by an issue thatis closely linked to package modifications — continuing productsupport.

36

Modifications to packages canresult in increased costs andtime slippage

Some organisations use an 80/20
rule of thumb to decideifit is
worth modifying a package

Chapter 4 Modifying application packages may be a viable option

First-generation packages have a
large core component and a
small non-core component

© Butler Cox ple 1990

 Figure 4.1 Suppliers’ attitudes to having their products modified have
comefull circle

No changes are madeto source code

Source-code changes Source-code changes
are discouraged are increasingly
by suppliers encouraged by suppliers

Source-code changesare general practice

During the early development of the market for application
packages, suppliers were not preparedto allow their productsto
be modified. Some subsequently realised that by either tailoring
their productsfor particular customers, or allowing customersto
change packages themselves, they could offer a product that
provided a betterfit with business requirements, and hence, their
product gained a competitive advantage over those of other
suppliers. To compete, other suppliers followed this trend.
However, when package suppliers enhancedtheir product range
by adding functionality in new productreleases, they found that
support problemsincreased for users who wantedto upgrade their
non-standard versions of the products. This resulted in suppliers
discouraging or forbidding changes to the source code of the
packagecore. This trend has now beenreversed. As suppliers have
enhancedtheir products and begun to provide parameterised and
flexible packages with advancedtailoring tools, they have stopped
making specific amendments to their products for individual
customers, and preventing customers from making their own.
The concept of the packagecoreisillustrated in Figure 4.2, over-
leaf. Application packages contain both core and non-core
components,and the more advanced fourth-generation packages
available today have a core that is smaller than the non-core
components. First-generation packages have limited reporting
facilities, with a database structure and processing logic that pro-
vides only the function necessary for the standard applications.
Usually, a small number of parameters is available. Second-
generation packagesare similar to basic packages, except that they
have several modules that provide additional functionality in
areas other than the standard application. As withfirst-generation
packages, a small numberof parametersis usually available. Third-
generation packages use parameters extensively to allow areas
of the productthat are not part of the standard application to be
tailored to meet an organisation’s specific needs. Fourth-
generation packagesallow all the components, other than those
fundamentalto the standard application, to be modified to meet
an organisation’s specific needs, using modern development tools.

37

Chapter 4 Modifying application packages may be a viable option

Figure 4.2 The core of a package comprises key elements of the

database and updatelogic

An application package can be divided into three areas — theupdate logic, the
database, and the reporting functions. The core of a packageis the ;
fundamental processing logic and information held in the database thatis key to
the application. With both third- and fourth-generation packages,there is usually
a substantial amountof information held in the database that is not central to
the application.If this is the case, there will also be processing logic that is not
necessary for the basic application. Reporting functions access information held
in the database and are not generally part of the core of the package.

Update logic Database Reporting functionsaii -

‘Non-core

 ~ Non-core Non-core

If an organisation’s requirements are likely to change, it is The later the generation oftherefore usually advisableto select a later generation of package, package, the easierit iswhich can be changedin line with evolving requirements. to modify
Figure 4.3 illustrates the types of modifications that can be made:
— First-generation, basic packages can have their fewparameters changed.In addition to this, the package core canbe changed by modifying its source code, or an addition canbe made to the package, which may affect either the coreor the non-core components.
— Second-generation, modular packages can have their fewparameters changed in either the main product or theaccompanying modules. The core of both the main productand the modules can be changed by modifying the sourcecode, and additions can be made to both the main productand the modules. With modular packages,it is possible to addanew module.

— Third-generation, parameterised packageshavea relativelysmall core. The parameters can be changed and the core canbe modified by amending the source code. Again, an additioncan be made that affects either the core or the non-corecomponents.

— Fourth-generation, flexible packages provide considerablescope for amending the non-core components by usingmodern development tools. The core can again be changedby amendingthe source code, and additions can be createdthat affect either the core or the non-core components.

38 © Butler Cox pic 1990

Chapter 4 Modifying application packages may be a viable option

PEP members should avoid
changing the source code

of the package core

It is usually better for in-house
staff to carry out non-source-

code changes

© Butler Cox ple 1990

 Figure 4.3 Different modifications can be made depending on the
generation of the application package

Note that the relative size of the core and non-core components varies
according to the generation of package.First-generation packages have
a large core component, whereas fourth-generation packages have
a large non-core component

Additions made to the package, affecting either the core or the non-core
components. For second-generation, modular packages, an addition
could take the form of a completely new module.

Changes made to the source code of the package core.

z Modified non-core parameters, except in the case of fourth-generation
packages, where the non-core parameters can be modified using
modern developmenttools.

Ourresearch showsthat almost 90 per cent of PEP members had
modified the source code of application packages, although such
modifications are carried out infrequently by about 60 per cent
of members(rather than occasionally or generally). We believe,
however, that PEP members should avoid changing the source
code of the core of a package.If the functionality provided by
this fundamental part of an application package is in question,
the organisation has probably chosen the wrong package. If
changes to the core of a package are essential, however, they
should be carried out by the package supplier because they will
alter the very heart of the product. The supplier should always
approveof the proposed modifications and should agree to support
the amended product.

The results of our survey also showed that many PEP members
are willing to make changes that do not involve changing the
source code of a package — that is, by changing parameters and
making additions to packages. About 40 per cent of PEP members
reported that they had madethese types of changes. However,
we suspect that this figure is understated because it does not
include those instances wherethe setting of package parameters
is carried out by users without the knowledge of systemsstaff.
PEP members reported adopting several policies towards
undertaking non-source-code changes to packages. By far the most
popularwasfor the organisation’s ownstaff to carry outthis type
of change. This is usually the best option for making additionsto
a package, because the organisation can control the development
andis not relying on a third-party supplier.

39

Chapter 4 Modifying application packages may be a viable option

Setting package parameters is usually fairly straightforward.
Parameters usually fall into two types — those that change the
way the package can be used, and thosethat affect the technical
environment — file sizes, for example. Users should be encouraged
to set the first type of parameters. However, security procedures
should be established to prevent users accessing the second type
of parameters, which should be controlled by systemsstaff.
Wherepossible, additions to a package should be structured as
standalone modules that can access data from the proprietary
product. Where such additions are made,the organisation should
try to obtain a guarantee from the supplier that the data formats
will remain the same. This will make it easier to integrate
organisation-specific modules with new releases of the package.

THE IMPLICATIONS OF MAKING MODIFICATIONS
SHOULD BE UNDERSTOOD
To help PEP members, we makethe following recommendations
with regard to amending application packages:
— Always makeearly estimates of the modifications required Time estimates for packageand build them into the business case for the project. Time modification are moreestimates are more important than basic cost estimates, as importantthan costthe main benefit of using an application package should come estimatesfrom reduced timescales for delivering an operationalapplication.
— Get estimates from as many sources as possible, including,as appropriate, estimates from the package supplier, in-houseestimates, and estimates from any consultants or otherthirdparties who may be involved. This should provide a morereliable assessmentof the work involved than a single sourceof information.
— Do not make source-code changesto the core of the package.If the core functionality is in question, and the basic way theproduct works needs changing, the package may well beunsuited to the requirements.
— Do not make changes to the source code of the non-corecomponents unless they are absolutely necessary.If possible,get the package supplier to carry out any such source-codemodifications, because this will avoid the need to spend timeunderstanding the package before the changes can be made.Undertake source-code changes in-house only with the fullknowledgeof the supplier and with his commitment to futuresupport.
— Ensurethat additions to packages are designed asindividualmodules to provide specific functions. Structure thesemodules so that they can use the predefined data structures With a modified package, the sup-and formats from thebasic application. Involve the supplier, plier should give assuranceswhoshould be able to give guidance about how best to design eee will not changethese additional modules. Seek assurances that the data Carestructures will not be changedin future releases.
— Where possible, encourage users to make additions topackages. Many packages are now supplied with advanced

 40 Butler Cox pic 1990

Chapter 4 Modifying application packages may be a viable option

tailoring tools, such as package-specific fourth-generation
languages, screen painters, and report writers. As the users
are the customers for the package, they should shape the way
it works and looks. However, someof these tools are complex
and more appropriate for use by systems developmentstaff.

— Make users responsible for setting parameters that affect the
way they use the system. Establish security procedures to
restrict access to any system parameters that will affect the
technical environment in which the package operates — for
example, changing file sizes, and so on. These technical
options should be controlled by systemsstaff.

Once the modifications have been completed, the task of
implementing the package can begin.

 © Butler Cox pic 1990
41

Chapter 5

Application packages must be correctly implemented

An organisation may select the ‘right’ application package, but
if it is implemented in an inappropriate way, the potential
benefits, in terms of reduced timescales and costs, will not be
realised. While about 40 per cent of PEP members have a formal
methodfor implementing packages, the majority report that theyuse identical proceduresto those used for implementing bespoke A package-specific imple-applications. There are, however,significant differences between mentation methodpackage-based and bespoke developments, which meanthatit is is requirednot usually appropriate to implement them in the same way. Noris it appropriate to implementall types of application packagesin the same way. A package-specific implementation methodisrequired that is flexible enough to be adapted in line with theparticular generation of package that has been selected.

DIFFERENT IMPLEMENTATION APPROACHES AREAPPROPRIATE FOR PACKAGES AND BESPOKEDEVELOPMENTS
The differences between an application package project and abespoke system developmentproject have significant implicationsfor the wayin which eachis implemented.The five areas in whichthe two types of project differ significantly are:
— The emphasis of development work.
— Project team roles and responsibilities.
— The type oftesting.
— The useof third-party services.
— Systemssign-off.

THE EMPHASIS OF DEVELOPMENT WORK
The work necessary to develop a system with an applicationpackageis considerably different from that involved in developinga bespoke application. In an application-package-based project,the emphasis of work is not on developing a system but onestablishing the facilities already contained within the package.
Assuming that no modifications are necessary, the implemen-tation stage in a package-based project is the equivalent of thedesign, development, and implementation stages of a bespoke Implementing a package issystem development. Like the design stage in a bespoke system equivalent to designing,development, the implementation stage in any application- developing, and imple-package-based project comes after the requirements have been menting a bespokedefined. Thedifferenceis that, with a package-based project, not systemonly have the requirements been defined, but a furtherstage ofworkhas beencarried outto select the productthat will be used.

 © Butler Cox pic 1990

Chapter 5 Application packages must be correctly implemented

The package has to be estab-
lished to provide the

required function-
ality

Packages should be tested

Cox ple 1990

thoroughly

In both typesof project, implementation will normally be followed
by a systems-acceptance stage, and a post-implementation review.

Whenanapplication package is used as the basis of a system that
has several functions, it is much easier (compared with bespoke
development) to carry out the design and implementation stages
for each function concurrently. This meansthat it is possible to
reduce considerably the overall timescale for delivering the full
system. On a large project, it may even bepossible for separate
teamsto be responsible for providing each of the functions.
One of the main benefits of using an application packageis that
expenditure on the main-build stage of developmentis replaced
by paymentof a fixed sum for a known amountof functionality,
which can be delivered within known timescales. The package
will, however, still have to be established in a way that provides
an operational system. Systems management must be aware of
what type of work will be necessary, and make sure that
appropriate staff and other resources are available to undertake
it. The organisation will have to decide howit is going to use the
framework of potential facilities, and put these in place — in other
words, it will have to design the new system. In addition, the
technical environment within which the package will operate
must be established. Examples of work in this area include
establishing the necessary job streams, developing restore-and-
recovery procedures, and configuring teleprocessing monitors.

PROJECT TEAM ROLES AND RESPONSIBILITIES

Users are more likely to want to play a leading role in package
implementation than in a bespoke development, and webelieve
that this trend should be encouraged. However, difficulties can
arise because users typically do not understand as thoroughly as
systems staff how to undertake an implementation project. In
addition, our research has shownthatthere is a marked tendency
for users to under-estimate the commitment that they need to
make while a package is being implemented.
While it is good practice for systems and user staff to work closely
on any project, it is particularly importantthat a goodrelationship
is established on application package projects, especially at the
implementation stage. The project can then be effectively
managed,realistically planned, and sensibly controlled.

THE TYPE OF TESTING

Several organisations we spoketo during our research do nottest
application packages; they simply assume that they work. The
majority, however, do test packages, but because the package’s
code has been developed by the supplier and is used in other
organisations, testing is often limited just to user testing.
Webelieve that all application packages should be tested more
thoroughly than this, for the following reasons:
— Suppliers have been known to make mistakes and to deliver

the wrong versions of products.

43

Chapter 5 Application packages must be correctly implemented

— An organisation’s technical architecture may not fully
support a specific application package — for example, some
organisations that use IBM plug-compatible mainframe
computers have had difficulties trying to run leading
packages developed for the IBM marketplace.

— Although packagesare typically used in many organisations,
each organisation will use the package in a different way.
With complex products, it is difficult for suppliers to test
every combination of parameters and all ways of working.

While testing simple packages should be a straightforward
operation, the testing of more complex products should be more
extensive. For example, with financial applications, it is not
unusual for the new system and the existing system to be run
concurrently for an extendedperiod, andfor full reconciliations
to be undertaken. The implications of this type of testing must
be taken into account when planning the implementation. If twosystems are to be run concurrently, the workload may be suchthat additional staffing and machine resources will need to bemadeavailable. Overall, however, the time and effort requiredto test an application package should besignificantly less than
to test a bespoke system development.

THE USE OF THIRD-PARTY SERVICES

Thefact that an application packageis supplied by a third party,whousually developed the system, almost inevitably meansthatan organisation will make different arrangements for support,training, and documentation from those that they would makefor a system developed in-house. The use of these services shouldmeanthat the timescale for systems delivery is shorter than for ments for a package area bespoke system development. However, the organisation will different from those forhaveto decide whichservices to use, and plan to make the most a bespoke systemefficient use of them. For example, management will have todecide whetherall training will be provided by the supplier, orwhetherto get the supplier’s staff to train a small team of theorganisation’s staff, who will then train the remainder. Therequirementsfor, and timing of, both technical and user trainingwill be affected by the support arrangements that are agreed.

Training and support arrange-

SYSTEMS SIGN-OFF

Systemssign-off is usually more complex and time-consuming foran application package. The involvementof a third party typicallymakes the process more formal.
Adequate operational performanceof the package-based systemwill usually have been specified in the contract as a criterion forfinal payment for the package and for ratification of the All implementation informationcontractual arrangements. The relationship with a third party must be carefully recorded andmeansthatall documentationrelating to the implementation must

_

filed, in case any contentiousbe carefully recorded andfiled. If any contentious issues arise

_

#SSues ariseduring implementation,final systems sign-off can be a prolongedprocess, involving long negotiations between the parties.
Systems management should be awareof these potential problemsand take early action to avoid them. For example, if problems

44 © Butler Cox pic 1990

Chapter 5 Application packages must be correctly implemented

occur, they should be notified to the supplier immediately so that
appropriate action can be taken. This is preferable to holding back
all the contentious issues until the end of the implementation
stage.

THE TYPE OF PACKAGE SELECTED WILL DICTATE
THE APPROPRIATE IMPLEMENTATION METHOD

The generation of package being used determines the most
appropriate way to implementit. As Figure 5.1 shows, the more
recent the generation of package, the more closely the work
involved in implementation approaches that of implementing a
bespoke system development.

BASIC AND MODULAR PACKAGES

The implementation of both first- and second-generation packages
should be straightforward, following a standard pattern, which
consists of installing and testing the software, developing manual
procedures,training users, loading or converting data, testing the
system, signing off, and live running. The stages of work should
be relatively short and simple becausethis type of package offers
little scope for tailoring.

Figure 5.1 The more recent the generation of package, the more closely implementation approaches the

development of a bespoke system

Design Development Implementation

First generation — basic package. Simple
product can be easily implemented.

Second generation — modular package.
Implementationis fairly straightforward.
Organisation-specific interfaces may need to
be developed between modules, or between
modules and other systems.

Third generation — parameterised package.
Implementation is complex. Small amountof
designis required to decide how package
facilities will be used. These have to be
developed bysetting parameters.

Fourth generation — flexible package, the
most complex type to implement. This
generation is so complex that design work
approachesthat necessary for a bespoke
system development. The required functionis
developedwithin the package framework
using advanced developmenttools.

Bespoke system developmentwith full design,
development, and implementation stages.

© Butler Cox ple 1990 45

Chapter 5 Application packages must be correctly implemented

Although basic packages may seem inflexible and outmoded
comparedwith third- and fourth-generation products, the ease
and speed with which they can be implemented often meansthat
they canstill provide an effective solution to an application need.
If a basic package can meetan organisation’s requirements, the
benefits in terms of reduced costs and timescales for systems
delivery can often be significantly greater than those to be gained
from using a moreflexible product. However, as we pointed out
in Chapter4,it is much moredifficult to modify a basic package
than a third- or fourth-generation package.
The implementation of modular packages should follow the same
basic pattern as that of basic packages. In addition, however,
decisions have to be made about which modules of a package to
use. The implementation of the modules can be treated as smaller
implementations of the basic package. Very often, with modular
packages, organisations find it necessary to develop their own
interfaces between modules, or between modules and other
applications.

PARAMETERISED AND FLEXIBLE PACKAGES

The implementation of both parameterised (third-generation) and
flexible (fourth-generation) packages is more complex. One PEP
member had experienced considerable difficulty implementing
flexible packages. He claimed that he could have provided new
systems within shorter timescales and at a lower cost by
undertaking bespoke development. Wealso know of one supplier
of sophisticated, flexible packages, who admits that customers
find it very difficult to implementhis products. We weretold that
the current failure rate (that is, the product is abandoned after
a lengthy implementation project) of this supplier’s productsis
about 30 per cent. Nevertheless, the supplier considersthis to beacceptable, because two years ago, the failure rate was about
50 per cent.
With both parameterised and flexible packages, time and effortare neededto design the new system. As packages become moreflexible, more choices are available and the design stageapproachesthat of a bespoke system development. Thus, moreemphasis should be placed on systems design during theimplementation of a fourth-generation package.
The main difference between implementing a parameterised anda flexible package is the work involved in setting up the packageto provide the required functionality. With a parameterisedpackage, the functionality provided by the package is determinedby setting different combinations of parameters. With a flexiblepackage, the functionality is established from the packageframework by using modern development tools and setting any
parameters that may beavailable.
We recommendthat to implementeither parameterisedor flexiblepackages, PEP members should break a package implementationproject into several small pieces of work, corresponding with eachof the main functions to be provided by the package. This willenable the full benefits of using an application package to berealised. As an application package provides a ready-made systemsframework,it is very much easier for individual areas of the

46

The speed with which a basic
package can be implemented
may makeit a better buy
than a more flexible
product

The implementation of complex
flexible packages is sometimes
abandoned

The implementation of a flexible
package should besplit into
small pieces of work

 Butler Cox ple 1990

Chapter 5 Application packages must be correctly implemented

system to be designed, developed, and implemented inde-
pendently of, and concurrently with, other areas, thereby
reducing the timescale for delivering the completed system.

47

Chapter 6

Getting the best from application packages

Figure 6.1 lists the actions that systems managers should take to
ensure that they get the best from application packages.

Figure 6.1 Action checklist

Selecting a package ;
Assumethat any new systemswill be based on an application package, unlessthere are clear reasons for not doing so.
Adopt an informal approach where speedis of the essence, wherethere is noparticular need for the packagetofit closely with any existing businessrequirements, or where the package is small, microcomputer-based,
inexpensive, and notstrategically important.
Adopta formal approach wherethe package is to provide a competitive-advantage, front-office system, where the packageislarge, mainframe-based,expensive to acquire, or of strategic importance to an organisation’s business.
Consider the merits of proprietary package-selection methods before devisingone in-house.
If the organisation's requirements are likely to change markedly, choose a morerecent generation of package, whichwill be easier to modify.

Modifying a package
Makeevery effort to estimate the true cost involved in modifying a package.
Do not make source-code changesto the core of the package.
Where source-code changes to the non-core components are essential, get thesupplier to make them, or at least get his commitmentto support the changedversion.
Makeonly those modifications that are appropriate for the particular generationof package being used.
Design additions to packagesas individual modules to provide specificfunctions.
Encourage users to make the required non-source-code additions to packages.Makeusers responsible for setting the parameters that affect the way they usethe system.

Implementing a package
Recognise that a package-based approach to developmentis quite differentfrom bespoke development, and choose a package-specific implementationmethod.
Do not assume that packages work:test them all; the more complex thepackage, the more extensive and more rigorous testing should be.
Do not segregate the design, development, and implementation stages — there's no need to complete the detailed design of the whole system before startingwork on developmenttasks in a particular area, nor does development have tobe complete before implementation can begin.
Encourage users to become involved in Package implementation, but makesure that they understand the commitmentthat will be required from them.
Keepall documentation relating to the implementation, for resolving any conflictswith the supplier beforefinal systems sign-off.
For modular packages,treat the implementation of the modules as smallerimplementations of the basic package.
To implementeither parameterised orflexible packages, create several smallimplementation projects, one for each main functional area of the package.
Negotiate support arrangements with the supplier.

48 © Butler Cox pic 1990

Chapter 6 Getting the best from application packages

We have discussed in this report the quantifiable and
demonstrable benefits to be derived from the use of application
packages. These will not, however, be achieved unless packages
are selected, modified, and implemented in a systematic manner,
and with reference to the needs of each particular business.
Our research showsthat the use of packages will continue to
increase, as more suppliers make moresophisticated packages

The guidelines in this paper will available, and as users realise that many of their traditional
help systems development concerns about packages are unfounded. As packages begin to
managers to get the best represent a significant proportion of organisations’ portfolios of

frompackages information systems, it is of paramount importance that the
process of acquiring them and ensuring that they work well in
a particular environmentis efficient and comprehensive. The
guidelines provided in this paper should ensure that systems
development managersare in a position to do this with confidence.

 Butler Cox pic 1990 49

= -

Appendix

Questionnaire analysis

In this appendix, we summarise the responsesto the questionnaire
that we circulated to all PEP members aboutthe use of application
packages. Seventy per cent of PEP members responded. We have
followed the format and numbering sequence from the
questionnaire, omitting Question 1, which requested details about
the respondent, and the specific project data supplied in answer
to Question 5.4.
Question PEP response
2. Use of application

packages
2.1 Does your organisation 98 per cent responded YESuse application packages?
2.2 What types of appli- The use of applications

cations are packages outlined in the questionnaire
used for? is shown in Figure A.1. In

addition to the applications
listed in the questionnaire,
39 per cent of respondents
reported using industry-
specific application packages.

2.3 For how long has your
organisation used appli-
cation packages?

Percentage of respondents— Less than two years 6— Twoto five years 24— Five to ten years ot— More than ten years 33
2.4 How is the use of appli-

cation packages changing
in yourorganisation?

Percentage of respondents
— Decreasing quickly 0— Decreasing slowly 2— Static 9— Increasing slowly 64— Increasing quickly 25

i) oO Which hardware environ-
ments are application
packages used in?

Percentage of respondents
— Mainframe 90— Minicomputer 67— Microcomputer (a

Appendix Questionnaire analysis

Figure A.1 Packaged software is used for a wide variety of applications

Percentage of
respondents

Application Rank using a package
Project management 1 84
Payroll 2 69
General ledger 3 65
Accounts payable 4= 61
Personnel records 4 = 61
Pension records 6 49
Asset accounting ie 45
Purchasing BS 37
Financial planning 8 = 3h
Inventory control 10 35
Accounts receivable 11 33
Telephone accounting 12 = 24
Fleet management 12 = 24
Executive information 14 = 20
Sales order processing 14 = 20
Invoicing 14 = 20
Bills of material diz 18
Production control 18 16
Mailing 19 14
Job costing 20 12
Route planning 2 10
Market research 22 8

2.6 What percentage of your
application systemsis
package-based?

Percentage of respondents
— Less than 25 per cent 65
— 25-50 per cent 26
— 50-75 per cent {6
— 75-100 per cent 2

2.7 What are the main
reasons for using
application packages?
Please score the
following on a scale from
1 (unimportant) to 5
(very important): Average of

respondents’
scores Rank

— Cost savings 3.48 3
— Timesavings 4.21 1
— Guaranteed quality 2.07 4=
— Need for user-

controlled project
delivery 1.88 6

— Do not want to
reinvent the wheel 3.54 2

— Risk reduction 250T 4=

Other(please specify) The only other reason
quoted more than once was
to overcomestaff and skill
shortages.

©Butler Cox pic 1990 51

Appendix Questionnaire analysis

2.8

2.9

2.10

ol bo

What are the main
reasons for not using
application packages?
Please score the
following on a scale from
1 (unimportant) to 5
(very important):

Difficulty in amending
package

— Lack of control over
future of application

— Non-conformance to
data architecture

— Nosuitable package
that meets business
requirements

— Nosuitable package
that will run in the
hardware environment

— Little knowledge of
package market

Other(please specify)

Please tick the box that
best describes your
organisation’s collective
knowledge of the
application package
market:

— Many packages
assessed during the
last two years for a
variety of applications

— Several packages
assessed during the
last two years for
more than oneappli-
cation

— No assessment of
packages made during
the last two years

Has the supply of‘soft’
application packages
changed your organi-
sation’s policy towards
buying application
packages?

Average of
respondents’

scores Rank

3.33 3
3.19 4
2.88 5

4.27 1

3.40 2
1.35 6

Other quoted reasons
included integration prob-
lems and doubts about
continued supplier support.

Percentage of respondents

27

reall

2
37 per cent of respondents
answered YES

©Butler Cox pic 1990

3.1

3.2

3.4

3.5

3.6

3.7

Appendix Questionnaire analysis

If YES, is your
organisation more likely
to buy an application
package?

Application package
selection
Do you have a formal
method for selecting
application packages?
Do you use external
consultants/resources to
help with selecting
application packages?
Do you have explicit
rules for deciding
between using an
application package and
developing a bespoke
system?
Do you estimate the full
life-cycle cost and time
schedule for a package-
based application and
compare them with the
estimated full life-cycle
cost and time schedule of
the equivalent bespoke
application?
Is the requirements-
definition stage for a
package-based
application carried out as
thoroughly as for a
bespoke application?
Do you undertake a
detailed analysis of
potential package
suppliers?
Do users undertake the
followingroles in
application package
projects?

— Initiate
— Control
— Manage
Where YES, would
systems staff normally
take this role in a
bespoke development?

All respondents who
answered YES are more
likely to buy an application
package.

47 per cent of respondents
answered YES

43 per cent of respondents
answered YES

14 per cent of respondents
answered YES

53 per cent of respondents
answered YES

65 per cent of respondents
answered YES

71 per cent of respondents
answered YES

Percentage of respondents
who answered YES

61
39
AB

53

Appendix Questionnaire analysis

3.8

4.2

4.3

4.4

— Initiate
— Control
— Manage
Whenselecting an
application package, do
you explicitly considerits
fit to your organisation’s
technical architecture?
If YES, please tick the
box that best describes
what you do:

— Select only packages
that comply with
the architecture

— Modify packages to
comply with the
architecture

— Extend the
architecture to
include the data-
base, languages,
user interfaces,
and so on, used
by the package

— Extend the archi-
tecture to include
new hardware to
support a package

Package implementation
Do you have a formal
method for implementing
application packages?
Does your approach to
implementing application
packages differ from that
used for implementing
bespoke systems?
Do you use external
consultants/resources to
help with application
package implementation?
Do you compare
times/costs for
application package
implementation with
bespoke developments?

Percentage of respondents
who answered YESto the
first question

40
63
55

90 per cent of respondents
answered YES

Percentage of respondents
who replied YES to the
initial question (Note:
several respondents adopt
more than onepolicy.)

36

14

50

25

41 per cent of respondents
answered YES

41 per cent of respondents
answered YES

65 per cent of respondents
answered YES

57 per cent of respondents
answered YES

© Butler Cox pic 1990

© Butler Cox ple 1990

4.5

4.6

Appendix Questionnaire analysis

Has the source code of
your application
packages been
amended/enhanced to
meet requirements?
Have the changes been
made by:

— Your organisation
— Package supplier
— Other(please specify)

Are source code changes
made:
— Generally
— Occasionally
— Infrequently
How much has your
organisation spent on
amending the source
code of application
packages in the last two
years?

What proportion of your
systems development
budget has been used on
amending the source
code of application
packagesoverthe last
two years?
Have yourstaff, or staff
from the package
supplier, been most
effective in achieving the
following?
— Reducing the risk of

amending a package
— Reducing the cost of

amending a package
— Reducing the

associated support
problemsof
amending a package

Do any of the changes
made to your application
packages not involve
changes to source code?

88 per cent of respondents
answered YES

Percentage of respondents
whoreplied YES to the
initial question (Note:
several respondents adopt
more than one policy.)

54
83
13

(usually consultants or
agreed third parties)

12
30
58

Average £158,000 per
organisation. (Note: the
responserate to this
question was less than 40
per cent, reflecting the
difficulty of obtaining the
information.)
Insufficient data to report
reliable average.

Percentage of respondents
for each category:

Supplier’s
Ownstaff staff

57 43
37 63

36 64
42 per cent of respondents
answered YES

55

Appendix Questionnaire analysis

Have these changes been
made by:

— Yourorganisation
— Package supplier’s

staff
— Other (please specify)

Are these types of
changes made:
— Generally
— Occasionally
— Infrequently
How much has your
organisation spent on
these types of
amendments to
application packages in
the last two years?

What proportion of your
systems development
budget has been used
making these types of
changesin the last two
years?

When making these types
of changes, have your
staff, or staff from the
package supplier, been
most effective in
achieving the following?
— Reducingtherisk of

amending a package
— Reducing the cost of

amending a package
— Reducing the

associated support
problems of amending
a package

Has the supply of‘soft’
application packages
changed yourpolicy
towards
enhancing/amending
packages?

Percentage of respondents
whoreplied YES to the
initial question (Note:
several respondents adopt
more than onepolicy.)

90
48
4

(consultants or agreed
third parties)

40
42
18

Average of £69,000 per
organisation.
(Note: the response rate to
this question was less than
40 per cent, reflecting the
difficulty of obtaining the
information.)

Insufficient data to report
reliable average.

Percentage of respondents
for each category:

Supplier’s
Ownstaff staff

54 46
92 8

@ 2
31 per cent of respondents
answered YES

© Butler Cox pie 1990

 Butler Cox ple 1990

5.2

5.3

Appendix Questionnaire analysis

If YES, do you now have
less need to change your
application packages?

Statistics
Please give your estimate
of the cost savings your
organisation has achieved
by using application
packages rather than
bespoke development:

— Less than 10 per cent
— 10-25 per cent
— 25-50 per cent
— Greater than 50 per

cent
Please give your estimate
of the total cost savings
that your organisation
has achieved during the
last two years by using
application packages.
Please give your estimate
of the time savings that
your organisation has
achieved by using
application package
rather bespoke
development:

— Less than 10 per cent
— 10-25 per cent
— 25-50 per cent
— Greater than 50 per

cent

87 per cent of respondents
who answered YESto the
initial question also
answered YEStothis
question.

Percentage of
respondents in each

category Rank
38 1
34 2
19 3
9 4

Average of £536,000
per organisation.
(Note: only 22 per cent of
respondents replied to this
question.)

Percentage of
respondents in each

category Rank
25 2
34 1
19 4
22 3

57

Butler Cox
Butler Cox is an independent, international con-
sulting companyspecialising in areas relating to
information technology.
The company offers a unique blend of high-level
commercial perspective and in-depth technical
expertise: a capability which in recent years has
been put to the service of many of the world’s
largest and most successful organisations.
The services provided include:
Consulting for Users
Guiding and giving practical support to organisa-
tions trying to exploit technology effectively and
sensibly.
Consulting for Suppliers
Guiding suppliers towards market opportunities
and their exploitation.
The Butler Cox Foundation
Keeping major organisations abreast of develop-
ments and their implications.
Multiclient Studies
Surveying markets, their driving forces and poten-
tial development.
Education
Through the Cranfield IT Institute (CITD,
educating systems specialists, IT managers, line
managers, and professionals to understand more
fully how to apply and use today’s technology.

PEP
The Butler Cox Productivity Enhancement Pro-
gramme(PEP)is a participative service whose goal
is to improve productivity in application systems
development.
It provides practical help to systems development
managers andidentifies the specific problems that
prevent them from using their development
resources effectively. At the same time, the pro-
gramme keeps these managers abreast of the
latest thinking and experience of experts and
practitioners in the field.
The programmeconsists of individual guidance for
each subscriber in the form of a productivity
assessment, and also publications and forum
meetings commontoall subscribers.

© Butler Cox pie 1990

Productivity Assessment
Each subscribing organisation receives a confiden-
tial managementassessmentof its systems develop-
ment productivity. The assessment is based on a
comparison of key development data from
selected subscriber projects against a large com-
prehensive database. It is presented in a detailed
report and subscribers are briefed at a meeting
with Butler Cox specialists.
Meetings
Each quarterly PEP forum meeting focuses on the
issues highlighted in the previous PEP Paper. The
meetings give participants the opportunity to
discuss the topic in detail and to exchange views
with managers from other memberorganisations.
PEP Papers
Four PEP Papers are produced each year. They
concentrate on specific aspects of system develop-
ment productivity and offer practical advice based
on recent research and experience. The topics are
selected to reflect the concerns of the members
while maintaining a balance between management
and technical issues.
Previous PEP Papers
1 Managing User Involvement in Systems

Development
2 Computer-Aided Software Engineering (CASE)
3 Planning and Managing Systems Development
4 Requirements Definition: The Key to System

Development Productivity
5 Managing Productivity in Systems Develop-

ment
6 Managing Contemporary System Development

Methods
7 Influence on Productivity of Staff Personality

and Team Working
8 Managing Software Maintenance
9 Quality Assurance in Systems Development
10 Making Effective Use of Modern Development

Tools
11 Organising the Systems Development Depart-

ment
12 Trends in Systems Development Among PEP

Members
13 Software Testing
14 Software Quality Measurement
15 Application Packages
Forthcoming PEP Paper
Project Estimating and Control

 Butler Cox ple

Butler Cox House, 12 Bloomsbury Square,
London WC1A 2LL, England

® (071) 831 0101, Telex 8813717 BUTCOX G
Fax (071) 831 6250

Belgium and the Netherlands
Butler Cox Benelux bv
Prins Hendriklaan 52,

1075 BE Amsterdam, The Netherlands
@ (020) 75 51 11, Fax (020) 75 53 31

France
Butler Cox SARL

Tour Akzo, 164 Rue Ambroise Croizat,
93204 St Denis-Cédex 1, France

@ (1) 48.20.61.64, Télécopieur (1) 48.20.72.58
Germany (FR), Austria, and Switzerland

Butler Cox GmbH
Richard-Wagner-Str. 13, 8000 Miinchen 2, West Germany

® (089) 5 23 40 01, Fax (089) 5 23 35 15
Australia and New Zealand

Mr J Cooper
Butler Cox Foundation

Level 10, 70 Pitt Street, Sydney, NSW 2000, Australia
@ (02) 223 6922, Fax (02) 223 6997

Finland
TT-Innovation Oy

Meritullinkatu 33, SF-00170 Helsinki, Finland
@ (90) 135 1533, Fax (90) 135 2985

Ireland
SD Consulting

72 Merrion Square, Dublin 2, Ireland
®@ (01) 766088/762501, Telex 31077 EI,

Fax (01) 767945
Italy

RSO Futura Srl
Via Leopardi 1, 20123 Milano,Italy
® (02) 720 00 583, Fax (02) 806 800

Scandinavia
Butler Cox Foundation Scandinavia AB

Jungfrudansen 21, Box 4040, 171 04 Solna, Sweden
@ (08) 730 03 00, Fax (08) 730 15 67

Spain and Portugal
T Network SA

Nunez Morgado 3-6°b, 28036 Madrid, Spain
®@ (91) 733 9866, Fax (91) 733 9910

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63

