

Rob Moreton

®© Butler Cox & Partners Limited 1988

Managing Software Maintenance

PEP Paper 8, November 1988
by Rob Moreton

Rob Moreton is an associate consultant with Butler Cox, where he
specialises in systems development methods and project
management. In the past eight years, he has worked on both
consultancy and research projects for the company. He has
contributed to Butler Cox Foundation Reports on cost-effective
systems development and maintenance, expert systems, and trends
in information technology. He was also responsible for a study of
the market for system-building tools in Europe. A common theme
of his work has been tracking and evaluating developments in

information technology and forecasting the potential impact of
these developments.

In addition to his work for Butler Cox, Rob Moreton is a principal
lecturer at the City of Birmingham Polytechnic. As Director of
Studies within the Department of Computing, he is responsible for
the academic quality of arange of professional and degree courses
in computing and information technology.

He has amasters degree in computer science from Brunel University
and is a member of the British Computer Society.

Published by Butler Cox & Partners Limited
Butler Cox House
12 Bloomsbury Square
London WC1A 2LL
England

Copyright © Butler Cox & Partners Limited 1988

All rights reserved. No part of this publication may be reproduced by any method
without the prior consent of Butler Cox.

Printed in Great Britain by Flexiprint Ltd., Lancing, Sussex.

© Butler Cox & Partners Limited 1988

Managing Software Maintenance

PEP Paper 8, November 1988

by Rob Moreton
Contents
The problem of software maintenance 1
Software maintenance in perspective 1
Purpose and structure of the paper 2
Research sources 3
Allocating resources to the maintenance function 4
Formalise the maintain-or-replace decision 4
Remove uncertainty by introducing a maintenance-
rating process 6
Define the share of resources to be allocated to
maintenance 8
Organising and staffing maintenance work 10
Consider establishing a separate maintenance
organisation 10
Motivate, train, and manage maintenance staff 11
Consider arranging for outside maintenance 14
Controlling the maintenance process 16
Formalise the maintenance process 17
Coordinate the steps in the maintenance process 20
Using methods and tools 22
Develop new systems with maintenance in mind 22
Plan to exploit contemporary tools designed to help
with maintenance 23
Develop systems that can be maintained by users 28
Reaping the benefits of improved software
maintenance 29

Chapter 1

The problem of software maintenance

Software maintenance accounts for a significant proportion of
most companies’ systems development efforts. The more effort
that goes on maintenance, the less is available for developing new
systems. Yet, despite the obvious importance of maintenance,
both in its own right and in the context of productivity enhance-
ment, the attitude of many systems managers to the subject is
strangely ambivalent.

SOFTWARE MAINTENANCE IN PERSPECTIVE

As any manager in a systems development department knows,
software maintenance is a huge consumer of resources, account-
ing for about the same amount of time and effort as developing
new systems in the first place. A major survey of software
maintenance conducted amongst businesses in the United States
Software maintenance is a huge in 1981 showed maintenance accounting for 50 per cent of all pro-
consumer of resources gramming and analysis effort. A survey in the United Kingdom,
conducted in 1987 by K3 Software Services, put the maintenance
proportion as high as 65 per cent. The growing investment by
businesses in computer systems and the labour-intensive nature
of maintenance work mean that maintenance is becoming increas-
ingly expensive.

Software maintenance is much more than merely correcting errors
in coding. It embraces all of the programming and analysis
activities required to keep a system operational and effective after
it has been accepted and placed in production. The purpose of
maintenance is to protect a company’s investment in systems by
prolonging their useful life and improving the contribution that

they make.

There are, in fact, three broad categories of maintenance, which
Fiqure 1.1 ‘Thres broad categories are summarised in Figure 1.1. The first is corrective maintenance,
of maisnance which is concerned with resolving errors. Corrective maintenance
is a reactive process, usually requiring rapid action. The second
Category Concern is adaptive maintenance, which is about enhancing and extend-
Chrothive Resolving ing systems to incorporate the evolving needs of users. The third
maintenance errors is perfective maintenance (sometimes called preventive
Adaptive Enhancing and maintenance), which consists of changes to the structure of soft-

maintenance extending ware to improve its performance and maintainability.

systems

Botachve lmpyroving There is widespread disagreement over whether adap_tive main-
maintenance performance tenance should be considered as part of software maintenance,
or as part of new systems development. This is important, because

adaptive maintenance is by far the largest maintenance activity.
Some companies adopt a clear definition, one way or the other.
For others, it depends on scale — if the effort exceeds six man-
months, for instance, the work is considered to be new systems
development. It is for this reason that reports of maintenance as
a proportion of overall systems development work vary widely.

© Butler Cox & Partners Limited 1988 1

Chapter 1 The problem of software maintenance

In the survey that we undertook for this paper (described on
page 3), the proportion ranged from as low as 5 per cent to as high
as 90 per cent, with an average of about 40 per cent.

Maintenance is often, by nature, more difficult and demanding
than new systems development. Maintenance staff do not start
with a clean sheet of paper. Often, they have to work to short
timescales, particularly for corrective maintenance. Testing can
be more demanding when the system being maintained has to fit,
as is often the case, into the tight constraints of surrounding hard-
ware and software, and when the methods and tools available to
help with maintenance are not as well developed.

The ambivalence of many managers towards maintenance is a
further complication. Management attitudes to maintenance are
not determined by maintenance levels. Five times as many
managers in our survey reported that new systems development
is more demanding of their time than maintenance, than vice
versa. This is out of proportion with the division of effort, and
points to a need for managers to pay greater attention to the
maintenance function.

PURPOSE AND STRUCTURE OF THE PAPER

Software maintenance is an expensive and complicated business
that every PEP sponsor is having to deal with. This paper is
intended particularly for systems managers who have a responsi-
bility for operational systems, and for their maintenance and
enhancement. It will also be of interest to managers responsible
for allocating systems development resources and budgets.

It is clear from our research that software maintenance is
generally undermanaged. Because it is undermanaged, staff are
not usually allocated in an optimum way, staff motivation is often
a problem, system changes are not always properly controlled,
and there is insufficient recognition of the benefits to be derived
from the newer methods and tools. The purpose of this paper is
to describe these deficiencies, and to suggest how they might be
rectified.

Management has traditionally given little thought to the alloca-
tion of appropriate resources to the maintenance function. Soft-
ware-maintenance requirements are often omitted from systems
design criteria, and maintenance is perceived as requiring little
skill and enjoying little prestige. As software costs increase, this
situation is set to change, and, in Chapter 2, we discuss the grow-
ing need for managers to turn their attention to the resource-
allocation question. As systems get older, they become harder to
maintain (and to operate) and their replacement becomes more
pressing. Whether to continue maintaining a system or to replace
it is a question that should be kept under continual review. The
procedure for making the decision should be the same as that for
evaluating new applications — that is, existing systems should be
evaluated as part of an organisation’s applications portfolio and
assessed in terms of their contribution to the business and their
level of maintainability. In this way, maintenance will be
guaranteed its rightful share of the budget. A maintenance-rating
process can be a great help in establishing costs and setting
priorities.

bo

Maintenance is often more
demanding than new systems
development

Software maintenance is
generally undermanaged

@ Butler Cox & Partners Limited 1988

@ Butler Cox & Partners Limited 1988

Chapter 1 The problem of software maintenance

Our survey indicated that the nature and efficiency of main-
tenance work is independent of the way maintenance is organised.
There was, however, some evidence that staff morale improves
when maintenance is organised as a separate function, rather than
undertaken within project teams. Despite the prevailing view to
the contrary, we believe that maintenance work is intrinsically
highly motivating. To reap the potential, though, staff need to
be carefully selected and trained, and management commitment
is essential. The broad question of organisation and staffing of the
maintenance function is discussed in Chapter 3.

The maintenance process consists of a series of steps, the first of
which, change management, formalises the relationship between
maintenance staff and the user. Most PEP sponsors claim to have
some form of change management in place but few have fully for-
malised or implemented the remaining steps. We believe this to
be an area requiring attention and discuss the implications of it
in Chapter 4.

Chapter b5 is about the new methods and tools that are aimed at
the maintenance process and are now reaching the market.
Enforcing standards and using modern development methods are
both ways of improving the quality of new systems, so that
maintenance becomes easier when the systems are operational.
Other contemporary tools are designed to be directly beneficial
to the maintenance process. Their growing availability is open-
ing up possibilities for more users to maintain systems for
themselves in future.

Our suggested improvements to the maintenance environment are
summarised, in the form of a checklist, in Chapter 6. The pro-
cedures set out in that list are the foundation of a management
approach that is applicable to a broad range of companies,
irrespective of particular implementation issues.

RESEARCH SOURCES

We have drawn on the research material for PEP Paper 7, for
which Butler Cox conducted a survey of more than 600 staff in
seven PEP sponsoring organisations, during the spring of 1988.
Specifically for this paper, we conducted a further questionnaire
survey of PEP sponsors. Twenty-four organisations, forming a
representative sample of PEP sponsors, responded, although not
all respondents answered every question. The number of pro-
grammers and analysts in the systems development departments
that we surveyed ranged between 20 and 300, 15 departments
having fewer than 99 programmers and analysts, and the remain-
ing nine departments having 100 or more. The total headcount
in the departments ranged between 50 and 550, with 11 having
200 or more. Annual departmental budgets ranged up to
$50 million, nine of them exceeding $10 million. In addition to
the questionnaire, we reviewed published research material and
interviewed selected specialists, both within and outside the PEP
sponsorship.

Chapter 2

Allocating resources to the maintenance function

Because operational systems deteriorate with age, they need to
be audited to determine whether and when to replace them. The
auditing procedure should be formalised, and it should be aligned
with the procedure for evaluating systems for new applications.
The tasks of defining costs and setting priorities will be much
easier if there is some routine maintenance-rating process estab-
lished within the company so that systems development depart-
ments allocate a proportion of their capacity exclusively to
maintenance.

FORMALISE THE MAINTAIN-OR-REPLACE DECISION

Whether to continue maintaining a system or to replace it with
a new one is a critical management decision. Choosing the moment
to initiate replacement is best done by subjecting every operating
system to a formal and regular review.

After a new system has become operational, there is a continuing
need to maintain it. A system that takes perhaps a year to develop
may have an operational life of five years or more, and more
effort is likely to go into its maintenance than into its original
development. Most maintenance effort is adaptive. In our survey,
adaptive maintenance accounted for 62 per cent of maintenance
effort compared with 20 per cent for corrective maintenance
and 18 per cent for perfective maintenance (see Figure 2.1).

Figure 2.1 Adaptive maintenance is the main activity

Percentage of maintenance activity

10 20 30 40 50 60 70
Adaptive maintenance

Corrective maintenance

Perfective maintenance

(Source: Butler Cox survey of PEP sponsors)

Adaptive maintenance results in significant changes to a system
in terms of both structure and coding. An indication of the nature
and extent of these changes is given in Figure 2.2 which
categorises the goals of our respondents in their adaptive
maintenance efforts. Many of these changes are enhancements
in the sense of adding new facilities, providing new

After a new system has become
operational, there is a continuing
need to maintain it

© Butler Cox & Pariners Limited 1988

© Butler Cox & Pariners Limited 1988

Chapter 2 Allocating resources to the maintenance function

Adding new facilities

Providing new reports

Adding data to reports

Reformatting reports

Redefining interfaces

Consolidating data

Consolidating reports

Figure 2.2 Most adaptive maintenance is to add new features

Percentage of adaptive
maintenance effort

T

10

(Source: Butler Cox survey of PEP sponsors)

20 30 40

reports, and adding data to reports, and, as such, they extend
what went before. It is therefore no surprise that systems get
larger as a result of maintenance. This growth is illustrated in
Figure 2.3. It compares five features of a system as they were at
the time of our survey, and as they were two years earlier. All
five features have grown in the period; the number of source
statements has increased by 9 per cent, for instance, and the
number of programs by 8 per cent.

Measure of system size

Database storage (megabytes)

Number of source statements
(thousands)

Number of programs

Number of files

Number of user reports

Size

2 years
ago

24

418

421

45

249

Now

2.7

456

454

47

259

(Source: Butler Cox survey of PEP sponsors)

Figure 2.3 Maintained systems grow in size over time

Percentage growth in size

T T 1

5 10 15

Chapter 2 Allocating resources to the maintenance function

Continuous modification can leave a system in a less stable state
than before. Each time the system is modified, it becomes poten-
tially more difficult to modify it again next time. Ultimately, this
process leads to a situation where maintenance becomes too
expensive or too complex and operating response times are
severely degraded. Too many systems reach this point without
anyone being aware of what has happened. The deteriorating
condition of the system can, and should, be monitored and con-
trolled through a process of formal review.

Today, virtually every company has a formal procedure for justi-
fying the development of new systems applications, yet few have
a regular, formal procedure for auditing their operational systems.
Reviews of this sort are essential. They help managers both to
identify operational systems that are approaching the point when
they should be redeveloped, and to re-evaluate the contribution
of operational systems to the business. Conducted annually, they
present an opportunity to re-assess the costs of a system as well
as its benefits. While this concept is not new, it elevates main-
tenance to its appropriate place as a significant management con-
sideration.

The review should follow much the same process as the review
for new applications. Indeed, we believe that cost/benefit analyses
should be undertaken for existing operational systems and for new
applications at the same time, using the same evaluation process.
If the information required to justify (or rejustify) existing systems
in this way is not readily available, it indicates a need for better
control and monitoring.

A good illustration of this process in operation is provided by a
manufacturing company whose systems development department
has a development staff of about 60. The department has been
through a two-year period of strategy formulation and review,
while new systems development work has remained frozen. Now,
the company is beginning to see the benefits of a change in
direction. All user requests to the systems department that exceed
one week of effort have first to be authorised by a steering com-
mittee. Requests for maintenance work and new applications are
examined on exactly the same basis, and resources are allocated
in the same way, on the basis of priorities and costs. As a result,
systems development resources are being made available to work
on replacement systems.

REMOVE UNCERTAINTY BY INTRODUCING A
MAINTENANCE-RATING PROCESS

A decision on whether to continue maintaining an operational
system or to replace it must be based on a comparison of costs
— the projected cost of continuing maintenance on the one hand,
and the cost of replacing it on the other. To predict continuing
maintenance costs, a simple rating system, based on system
characteristics, is a useful aid: it may provide either a comparative
rating of operational systems (as a basis for setting priorities, for
instance) or assessments on an absolute scale.

COMPARATIVE MAINTENANCE RATINé

A comparative rating might be produced on the basis of a
‘maintenance profile’' of the software, developed from a set of

Few organisations have formal
procedures for auditing their
operational systems

Operational systems should be
reviewed in the same way as new
applications

A rating system is a useful aid
to predicting maintenance costs

© Butler Cox & Partners Limited 1988

Chapter 2 Allocating resources to the maintenance function

criteria relating to such features as system age (maintenance gets
harder as systems get older), system size (the larger the system,
the more costly it is to maintain), and complexity. A fuller list of
such features, and of the criteria relating to them, is shown in
Figure 2.4. The maintenance rating of a system can be assessed
by allocating, for each of these features, a score of, say, between
one and four. Because the relative importance of each feature
will vary depending on an organisation’s circumstances, it makes

sense to weight each one (again using scores of one to four, for
instance).

Figure 2.4 Characteristics to consider when preparing a maintenance

rating
Characteristic Comments
System age Maintenance usually gets harder as a system ages.
System size Can be measured in effective lines of code (ELOC) or
number of function points.
Complexity Can be derived by dividing ELOC by the number of

programs or, more accurately, by counting the
number of function points or using a code analyser.

Development language | Maintenance is usually easier with higher-level

languages.
Development methods Systerns developed using structured methods are
and tools more stable, less error-prone, and easier to maintain.
System quality Can be assessed in terms of the number of errors

reported over time and the number of change
requests submitted (although this measure can be
misleading).

Type of change Whether imposed from outside the business (such as
a change in regulations) or from within the business.

Change controls Systems lacking adequate controls are higher-risk, so
harder to maintain.

Operational environment | Operational demands exert time pressures that make
maintenance harder (and increase the likelihood of
conirol procedures being circumvented).

Staffing Includes technical expertise and specific knowledge
of the system.

ABSOLUTE MAINTENANCE RATING

The absolute maintenance rating is a slightly more sophisticated
version of the simple comparative rating described above. In the
United Kingdom, the Central Computer and Telecommunications
Agency (CCTA), which supplies information and advice to central
government departments on the planning and use of information
technology, has developed a ‘system maintenance profile’ which
is a good example. Criteria are grouped under three headings:
adequacy to user, which assesses the extent to which the system
currently meets user requirements; risk to the business, which
assesses the risk and impact of system failure; support effort,
which assesses the resources required to maintain the system
adequately. Altogether, there are nine criteria in the CCTA’s
system maintenance profile, and a total of 16 measures (between
one and three measures for each criterion), as shown in

® Butler Cox & Partners Limited 1988 i

Chapter 2 Allocating resources to the maintenance function

Figure 2.5. Each measure delivers a score. The scores are totalled.
Systems scoring 100 or more are candidates for renewal.

Figure 2.5 The CCTA’s ‘system maintenance profile’

Category Criteria Measures

Adequacy to user | Desirable changes — (Man-days per annum on
desirable changes/thousand
lines of code) +1.

— Degree to which desirable
changes are being blocked
(1 =notatall, 5=completely).

Changes backlog — (Estimated man-days to clear
backlog of changes/ thousand
lines of code) + 1.

— Degree to which system is
failing to meet requirements
(1 =Tully, 5=marginally).

Risk to business Staffing — Degree to which staffing is a
problem (1 =none, 5 =major).
— Quality of documentation
(1 =excellent, 5=non-existent).
Change control — Change control procedures
(1=good, 5=non-existent).
— Testing procedures
(1=good, 5=non-existent).

Errors — (Errors per annum/thousand
linesof code) +1.

Impact of errors — Rating of effect of errors on the
business (1 =nil, 5 = significant).

State of code — System age (1=1to 7 years,

2=810 14 years, 3=>14).
— Structure (1 =good, 5=bad).

— Program size (thousand lines of
code/number of programs),

Support effort Staffing — (Maintenance effort per annum/
thousand lines of code) + 1.
Mandatory changes | — (Annual effort on mandatory
changes/thousand lines of
code) +1.

— Reduction in mandatory
changes if system redesigned
(1 =nil, 5=substantial).

(Source: Managing Software Maintenance, CCTA, October 1987)

DEFINE THE SHARE OF RESOURCES TO BE
ALLOCATED TO MAINTENANCE

Maintenance-rating procedures of the kind described above help to
establish the costs of and priorities for redeveloping existing
operational systems. Prolonging a system’s life means bearing
heavier maintenance costs but, at the same time, reducing the
workload of the systems development function, thereby freeing
more capacity for developing new applications.

Thisraises the question of whether the systems department should
allocate a fixed proportion of its development resources to main-
tenance and, if so, how much. We believe that allocating a fixed
share of capacity to maintenance is a sensible approach. The

© Butler Cox & Partners Limited 1988

Chapter 2 Allocating resources to the maintenance function

Maintenance work should
not be allowed to displace
new development work

@ Butler Cox & Partners Limited 1988

proportion should be kept under review, however, and it will need
to be changed from time to time.

Limiting maintenance capacity as a matter of policy is, in fact,
commonplace among PEP sponsors. The purpose is usually to
avoid maintenance work continually displacing new development
work. This limit is sometimes expressed as a proportion of the
budget, and sometimes in terms of the type of maintenance work
that is accepted. The former usually works better, particularly
when the procedure for assessing maintenance is built into that
for assessing new applications, along the lines discussed above.

An example of how this policy can work in practice is the
experience of one of the United Kingdom’s public utilities. Two
years ago, it limited the proportion of the systems department’s
budget to be devoted to maintenance work to 40 per cent. This
limit was introduced to help overcome conflicting demands for
new applications. The policy worked well, but the limit has
recently had to be increased to 50 per cent, and resolving con-
flicting demands for maintenance is now a more serious problem
than it is for new applications.

This example confirms that formal monitoring of the maintenance
environment is required to implement such a policy successfully,
because the pressure of competing demands for the limited
resources will increase. Restrictions on maintenance, however
rational, will often be seen by users as leading to the provision
of an inadequate service. However, if the limit is imposed as part
of an overall strategy to manage the applications portfolio, a pro-
per justification can be made in terms of contribution to the
business.

Chapter 3

Organising and staffing maintenance work

The organisation of maintenance work in project teams or in a
separate function appears to have little bearing on either the
demand for, or the performance of, that work. Morale, however,
does seem to be better amongst staff who work in a separate
maintenance function.

Improving staff motivation is a critical issue. Contrary to con-
ventional wisdom, maintenance is intrinsically motivating (as we
reported in PEP Paper 7), regardless of how it is organised.
Effective maintenance does, however, require careful staff
selection and training and, what is most important, management
recognition. The alternative of arranging for some or all of the
maintenance workload to be undertaken outside the systems
development department also has some merit and is an increas-
ingly feasible option.

CONSIDER ESTABLISHING A SEPARATE
MAINTENANCE ORGANISATION

The relative merits of different ways of organising maintenance
within a systems department have been debated for years, but
a survey of maintenance organisation in 130 businesses in the
United States, undertaken in 1987, identified some common
characteristics. The businesses in which maintenance was organised
in project teams were smaller than the sample average. In these
businesses, although the maintenance backlog was shorter than
average, the software was more difficult to maintain, the problem
of managing maintenance seemed more severe, and the main-
tenance staff were less positive than average about their work.
In contrast, where maintenance was undertaken as a separate
activity, the businesses were larger than the sample average, the
maintenance backlog was longer than average, and the software
under maintenance was older, but management and staff prob-
lems seemed less severe than average.

No similar characteristics were evident in our own, much smaller
survey. Of the organisations we surveyed, maintenance was
undertaken by project-team staff in 15, and by a separate main-
tenance function in eight. We detected no significant differences
between the two forms of organisation in terms of staff
experience, the pressure of conflicting demands for staff time,
staff turnover, communications with users, or documentation prob-
lems. The amount of corrective maintenance as a proportion of
the whole was about the same in both forms of organisation. Size
was not a factor as it was in the US survey. We found no evidence
to support the view that separate maintenance functions are more
likely to be the norm in larger businesses. In fact, our evidence
suggested that higher levels of maintenance (above 40 per cent
of the total development effort) are associated with project teams.

10

Effective maintenance requires
careful staff selection and
training, and management
commitment

© Butler Cox & Partners Limited 1988

Chapter 3 Organising and staffing maintenance work

Our survey showed that, from the managers’ standpoint, the most
significant problem was competing demands for maintenance staff
time, and the least significant was a lack of user interest (see
Figure 3.1). There was no evidence to suggest that the way in
which maintenance was organised made any difference to these
perceptions. On the other hand, both staff morale and motivation
were higher when maintenance was organised in a separate
function rather than in project teams.

Figure 3.1 Competing demands for maintenance staff time is the most
significant problem

Problems from the manager's Managers’ rating of significance
standpoint Least Most
1

T T T T

1 3
Most serious problems 2 - =

Competing demands for
maintenance staff time

User demands for extensions
and enhancements

Meeting scheduled
commitments

Least serious problems

Adhering to programming
standards

Unreliable system software
and hardware

Lack of user interest

(Source: Butler Cox survey of PEP sponsors)

MOTIVATE, TRAIN, AND MANAGE
MAINTENANCE STAFF

The common perception is that maintenance work is less
motivating than new systems development. We believe this to be
Maintenance can be more a misconception. Maintenance can be intrinsically more, not less,
motivating than new systems motivating. To change perceptions demands careful staff selection
Mensleiimens and training — and, most important of all, a change in manage-

ment attitudes.

THE QUESTION OF MOTIVATION

Software maintenance has long been considered less important
than new systems development. It is often an afterthought in
system design, and is perceived as demanding limited skill and
enjoying little prestige and attention. As a result, programmers
have tended to avoid maintenance work, preferring instead to
work on new systems development assignments. This perception
was confirmed by our own survey, which showed that managers
attach more importance to systems development work than they
do to maintenance (see Figure 3.2 overleaf). Seventy per cent of
managers rated systems development as being more demanding

© Butler Cox & Partners Limited 1988 11

Chapter 3 Organising and staffing maintenance work

Figure 3.2 Seventy per cent of managers rated systems development
as being more demanding of their time than maintenance

Use of time Number of managers

T ——,

5 10

Development mostly

Development somewhat

Equal

Maintenance somewhat

Maintenance mostly

(Source: Butler Cox survey of PEP sponsors)

of their time than maintenance; only 14 per cent rated main-
tenance as more demanding. These ratings bore no relation to the
current level of maintenance in the organisations. Nor did they
correlate with changes in the levels of maintenance over the past
two years.

Attitudes like these have a damaging effect on staff motivation.
This subject was explored in some detail in PEP Paper 7, dis-
tributed to sponsors in September 1988. In that paper, we
examined how the proportion of maintenance work involved in
a job affects the motivation of the person doing that job. This is
illustrated in Figure 3.3, which compares jobs on a scale called
the Job Motivating Score (JMS) scale. The pattern is one of falling
Jjob motivation as the proportion of maintenance work increases,
except for those staff who are involved full-time, or almost full-
time, in maintenance.

High levels of job satisfaction can, however, be obtained from »

working in a maintenance environment. Software maintenance Software maintenance work can
work is intrinsically highly motivating because it is challenging, Is’;;‘;}:ig;ib ferels at:mb

it offers great variety, and the results are highly visible. :

This applies to all three categories of maintenance described on
page 1 — corrective, adaptive, and perfective. Corrective main-
tenance is often extremely complex and demanding, because of
the absence of complete documentation and the difficulties of re-
creating error conditions. Often, it has to be completed in a matter
of hours. Adaptive maintenance is similar to new development
in terms of its phases, but the emphasis is different. Analysis is
the dominant phase in adaptive maintenance. The remaining
phases of design, implementation, testing, and system release/
integration are no less important, but they are proportionally
smaller. Adaptive maintenance provides frequent opportunities
for maintenance staff to communicate with users as the changes
are implemented. Perfective maintenance combines some of the

© Butler Cox & Partners Limited 1988

Staff who are best at
maintenance are different from
those who are best at developing
new systems

© Butler Cox & Partners Limited 1988

Chapter 3 Organising and staffing maintenance work

Figure 3.3 Job Motivation Scores (JMSs) vary according to the amount
of maintenance work performed

JMS

T T T T T T 1

10 20 30 40 50 60 70 80 90

81-100
61-80

Maintenance 41-60
as percentage
of job content

21-40

1-20

(Source: Butler Cox survey of PEP sponsors)

main characteristics of the other two categories. Each category
demands technical skill, combined with an ability to communicate
rapidly and unambiguously. Compared with new systems
development, maintenance offers a broader variety of work, and
is equally demanding in other respects.

STAFF SELECTION AND TRAINING

The requirements of maintenance place heavy demands on staff
selection and training. The main staff attributes in maintenance
are sound technical ability, an understanding of past as well as
present development practices, and an ability to communicate and
to work under pressure. The shorter the timescales involved, the
greater the need for good-quality maintenance staff. Compared
with new systems development, maintenance work is probably
less demanding in terms of conceptualising skills (imagination and
creativity) but more demanding in terms of affiliation skills
(patience, adaptability, and willingness to lend support). Main-
tenance staff should be selected with these characteristics in
mind.

In practice, maintenance is often allocated to staff with less
experience than average. There is no harm in this, as long as the
staff meet the criteria outlined above and as long as timescales
are not critical. It does provide an opportunity for less experienced
staff to learn about the problems of application changes at first
hand — experience that they can put to good use in development
projects by encouraging designers to think about the implications
for maintenance.

In contrast to conventional wisdom, maintenance demands more
staff training than does new system development, particularly
when the maintenance staff are relatively inexperienced. In terms
of technical and problem-solving skills and training, there is little

13

Chapter 3 Organising and staffing maintenance work

difference between the requirements of maintenance and new
development, but two further considerations point to a difference
in training requirements. The first is the need for maintenance
staff to understand past practices and development methods, in
addition to current best practice. The second consideration is that
of communication, which is even more important for maintenance
staff than for their development counterparts.

Periodic job rotation between maintenance and new development
should be a component of any training programme. Maintenance
staff will thereby get an opportunity to influence the develop-
ment process and to learn about applications that will need to be
maintained in subsequent years. New development staff will get
an insight into current issues of maintenance, and learn to under-
stand the importance of designing systems that can be easily main-
tained.

MANAGEMENT ATTITUDES

Improving the motivation of maintenance staff and, hence, their

performance will require a change in management attitudes. Five

times as many managers pay more attention to new development Managers must see maintenance
work than to maintenance, than vice versa (see Figure 3.2). Until as an important strategic issue
managers see maintenance as an important strategic issue,

problems of low staff morale are certain to persist.

CONSIDER ARRANGING FOR OUTSIDE MAINTENANCE

An alternative to maintaining systems within the systems develop-
ment department is to arrange for some or all of the work to be
undertaken outside the department, either by the system users
themselves, or by a third-party contractor.

MAINTENANCE BY USERS

Advances in fourth-generation languages are making user-

maintenance an increasingly practical proposition. It is now com-

monplace for businesses to provide users with query languages

through which they can derive data and generate their own Maintenance by users is an
reports. It is a small step beyond this to provide tools sufficiently increasingly practical proposition
powerful to enable users to add functionality to a system — in

other words, to undertake their own adaptive maintenance. This

is discussed further in Chapter 5.

MAINTENANCE BY THIRD PARTIES

Contracting maintenance work to a third party offers three

benefits: it releases systems development department resources] :
for other work; it overcomes the ‘technology gap’ problem, when Third-party maintenance is a
the system being maintained is based on technology that is no feasible option

longer current; it introduces a formal contractual relationship bet-

ween users and maintainers.

The FI Group, a major systems and software house, is a good
example of a contractor who undertakes third-party software
maintenance work. One assignment involved a leading building
society that was obliged to modify its mortgage-administration
system and contracted the work out so that it could, itself, con-
centrate on new development work. In the four-year period to
April 1988, the project team assigned to the work had made 600

14

© Butler Cox & Partners Limited 1988

Chapter 3 Organising and staffing maintenance work

separate changes. The team, which was drawn from a larger pool
of staff, all of whom were familiar with this kind of work, varied
in size between three and five according to the nature and priority
of the work. Another assignment was for an Inner London
borough council that contracted to maintain its payroll system
because the IBM CICS and Assembler skills demanded by the work
were not available within the council’s own information systems
department. A third client, a major life assurance company, con-
tracted to maintain its existing unit-linked and non-unit-linked
systems over a two- to three-year period, while the information

systems department concentrates on developing replacement
systems.

While the possibility of contracting out at least some part of an
organisation’s maintenance work is becoming more feasible and
can, clearly, be a highly successful alternative, most organisations
will continue to do a lot of their own maintenance work in-house

Management must provide an for the foreseeable future. Management must therefore turn its
environment that supports attention seriously to the question of how to attract and retain
maintenance staff good maintenance staff. In short, the answer is to provide an

environment that actively supports them. This may be achieved,
in part, by providing methods, tools, and training programmes,
but changing the technology alone is not enough. An organisa-
tion must create an environment in which maintenance is per-
ceived to be as important to the operation of the business as any
other function.

@ Butler Cox & Partners Limited 1988 15

Chapter 4

Controlling the maintenance process

For maintenance work to be effective, it is vital to control the
input to the process — the procedure by which change requests
are notified and managed in the first place. This procedure of
change management is the first of several steps in the main-
tenance process. Change management is followed by impact
analysis, system release planning, change design, implementation,
testing, and system release/integration. These steps, which occur
sequentially, are supported by a further activity that continues
concurrently — progress monitoring. The whole process is
illustrated in Figure 4.1.

Most PEP sponsors claim to have a clearly defined procedure in
place that corresponds to the first step, change management. Cer-
tainly, every respondent in our survey records all user requests
and operational problems, but our respondents admitted to some
failings as well. Periodic formal audits, for instance, are in place
in fewer than half of our survey respondents’ businesses (see
Figure 4.2). In order to achieve improvements in the maintenance
environment, the steps in the process need to be carefully co-
ordinated, not simply monitored individually.

Figure 4.1 The formalised maintenance process
Software configuration management
AL
) Data Source Load
Documentation dictionary code modules
A A ¢ A A A A A
Y Y / Y |
Change Impact System Change _ ! System
i : =P release 2 5 Implementatio P Testing release/
management analysis planning design , integration
T A A A A) A
v
Progress monitoring
' :
Project Quality
management assurance
=P Sequence of steps in the process
—» Links between elements involved in the process
(Source: Butler Cox)

16 © Butler Cox & Pariners Limited 1988

Chapter 4 Controlling the maintenance process

Figure 4.2 Most PEP sponsors have formal control procedures in place

Control procedures Percentage of organisations
in place

10 20 30 40 50 60 70 80 90 100
User requests logged

Operational problems logged

Program changes logged

Formal retest procedures
in place

User requests cost-justified
Personnel costs charged back
Equipment costs charged back
Periodic implementation

Periodic formal audits

(Source: Butler Cox survey of PEP sponsors)

FORMALISE THE MAINTENANCE PROCESS

To appreciate the importance of formalising the steps in the
maintenance process, it helps to understand more precisely what
they are.

CHANGE MANAGEMENT

Change management is the critical first step in the maintenance
process. A formal procedure for change management is essential for
two reasons: it provides a common communication channel between
maintenance staff, users, project managers, and operations staff,
and it provides a directory of changes to the system, for status
reporting, project management, auditing, and quality control. The
basic tool of the change-management procedure is a formal change-
request document that forms the basis of a contract between the
user and the maintainer.

A formal procedure for change
management is essential

An important element of change management is version control (or
software configuration control). It means tracking different
versions of programs, releases of software, and generations of
hardware, and it plays a major role in ensuring the quality of
delivered systems. Version control also ensures that software isnot
degraded by uncontrolled or unapproved changes, and provides an
essential audit facility.

er Cox & Partners Limited 1988 17

Chapter 4 Controlling the maintenance process

IMPACT ANALYSIS

The purpose of impact analysis is to determine the scope of change
requests as a basis for accurate resource planning and schedul-
ing, and to confirm the cost/benefit justification. Impact analysis
can be broken down into four stages. The first stage is determin-
ing the scope of the change request, by verifying the information
contained within it, converting it into a systems requirement, and
tracing the impact (via documented records) of the change on
related systems and programs. In the second stage, resourcing
estimates are developed, based on considerations such as system
size (in estimated lines of code) and software complexity. Code
analysers that measure the quality of existing code can be helpful
at this stage. (The role of code analysers is discussed in
Chapter 5.) The third stage is analysing the costs and benefits of
the change request, in the same way as for a new application.
In the fourth stage, the maintenance project manager advises the
users of the implications of the change request, in business rather
than in technical terms, for them to decide whether to authorise
proceeding with the changes.

There are three benefits of impact analysis: improved accuracy
of resourcing estimates and, hence, better scheduling; a reduc-
tion in the amount of corrective maintenance, because of fewer
introduced errors; improved software quality.

SYSTEM RELEASE PLANNING

In this step, the system release schedule is planned. Although well
established amongst software suppliers, system release planning
is not widely practised by PEP sponsors, reflecting a difference
in the extent to which formal maintenance contracting is
established.

A system release batches together a succession of change requests
into a smaller number of discrete revisions. System releases can
take place according to a timetable that is planned in advance.
The timetable planning gives users the chance to set priorities for
their change requests, and makes testing activities easier to
schedule. The problem with system releases comes, of course,
when corrective maintenance is required urgently.

Software is available to help monitor system releases. The soft-
ware records the changes incorporated in, and the date of, each
release, and provides information for project control, auditing,
and management.

CHANGE DESIGN AND IMPLEMENTATION

The common thread in the work in these two steps is that they
are undertaken to satisfy an often short-term user requirement.

Corrective maintenance, in particular, will be undertaken in a
limited time and will be concerned primarily with fault repair
(with little regard for careful design-and integration of changes).
Emergency repairs must subsequently be linked to the formal
software-maintenance process and be treated as a new change
request. This will ensure that the repairs are correctly imple-
mented and that the design documentation is updated.

18

System release planning is not
widely practised

© Butler Cox & Partners Limited 1988

Maintenance test cases should be
created as a result of the first
stage in the impact analysis

® Butler Cox & Partners Limited 1988

Chapter 4 Controlling the maintenance process

Adaptive maintenance will functionally enhance an existing
system. The design and implementation process is similar but more
restricted than the design and implementation of new application
systems. The major difference is that the design implications of
enhancements must be taken into account in the subsequent pro-
gram and module implementation. Failure to design the change
at each level can result in an increasingly complex, unreliable,
and unmaintainable system. This leads to higher maintenance
costs and reduces the life of the system.

Perfective maintenance is concerned with improving the quality
of existing systems. The effort is applied to software that is the
most expensive to operate and to maintain. The design tasks
undertaken will range from complete redesign and rewrite to par-
tial restructuring. The process combines the characteristics of the
other two types of maintenance.

TESTING

The purpose of maintenance testing is to ensure that the software
complies with both the change request and the original require-
ment specification. It forms a major part of a successful quality-
assurance plan. In principle, maintenance testing is much like
development testing except that, because the scope of main-
tenance testing is potentially narrower, fewer test cases have to
be prepared, validated, and filed in the test-case library.

The maintenance test cases should be created as a direct result
of the first stage in the impact analysis. They should be sequenced
according to the principle of incremental testing, so that defects
in the change-request specification and design can be identified
early on. Walk-throughs and inspections should be implemented
routinely as a formal element in the process.

The test-case library itself builds up over time. At first, it con-
tains only the test cases prepared for and validated during original
development. It grows as test cases for successive maintenance
tests are added to it. A file of this sort is called a regression testing
file. A few tools are available from suppliers (such as IBM and
Digital) to help with regression testing. Although limited in what
they can do (in terms of features such as automatic revalidation,
for instance), they are able to provide administrative support.

SYSTEM RELEASE/INTEGRATION

This step consists of releasing the revised programs into live opera-
tion. The implications for maintenance staff are significant
because it is their responsibility to ensure that any revised versions
are completely integrated with other parts of the system, which
may never have been revised or which may have been revised
at different times.

PROGRESS MONITORING

Progress monitoring takes place concurrently with the other seven
steps in the maintenance process. The sort of data that should
be collected during progress monitoring includes the time taken
per step, the effort involved, and the scope of the change. Collect-
ing and filing data of this sort so that performance can be
monitored, both over time and between systems, is consistent with
the general PEP philosophy. Improving software maintenance

19

Chapter 4 Controlling the maintenance process

productivity is difficult if there is no record of where problems
and successes have occurred in the past.

COORDINATE THE STEPS IN THE
MAINTENANCE PROCESS

There is no panacea for solving the problems of maintenance. It
is essential, however, to consider not only how each individual
step in the process works, but also how the various steps fit
together.

Peterborough Software (UK) Ltd, a software house based in the
United Kingdom, provides an example of how companies can suc-
cessfully coordinate the steps in the software maintenance pro-
cess. The problems that it faces are unusually demanding. The
company maintains a range of payroll software packages. The
packages run on a variety of computers, under the control of dif-
ferent operating systems, both within the United Kingdom and
overseas. Altogether, Peterborough Software has 250 customers.
The software coding differs from country to country, to take
account of local statutory regulations, such as taxation. Thus,
several releases of the same package are current at a time, and
all have to be supported in the field. The regulations change
frequently and without much warning, and maintenance changes
therefore have to be implemented swiftly and accurately. The
difficulties faced by Peterborough Software are further com-
pounded when customers create nonstandard versions of the soft-
ware by failing to apply maintenance modifications that are issued
to them, or applying them in the wrong sequence.

How does Peterborough Software arrange its maintenance pro-
cedures against this background of complexity? The answer lies
in disciplined adherence to procedural steps similar to the ones
we have described here, and in the use of a computer-based pro-

gram monitoring system known as the Problem Monitoring System
(PMS).

The maintenance procedure is carried out by two divisions within
Peterborough Software. One is the Customer Support Division,
which effectively looks after change management, impact
analysis, and system release planning. The other is the Develop-
ment Division, which is responsible for coding, testing, and quality
assurance,

Change requests received by the Customer Support Division come
from three sources. The first is customers, whose requests take
the form of enhancements (called facility requests), queries, and
error reports. The second source is impending legislative changes.
The third is the market. To survive, Peterborough Software has
to compete by offering products that are constantly being
improved. Maintenance arising from customers is both adaptive
and corrective in nature; from the other two sources, it is mostly
adaptive and perfective.

Customers are the most important source:of change requests —
the Customer Support Division receives up to 400 telephone
enquiries a day, for instance. Enquities are routed to application-
support groups organised by software product and by the kind
of equipment it runs on. Within the application-support groups,
consultants familiar with the way the software can be used, and

It is important to consider how
the steps in the process fit

together

€ Butler Cox & Parinars Limited 1988

A coordinated programme will
become more critical as the
complexity of systems increases

© Butler Cox & Partners Limited 1988

Chapter 4 Controlling the maintenance process

with the way it works, form the first line of response. They are
able to resolve most of the enquiries on the spot, but 20 per cent
have to be passed to the Development Division for resolution. It
is here that the PMS comes into its own. It logs problem reports
at every stage of response and resolution, using customer
references and event codes. When a coding change is made, for
instance, the programmer records the details on the PMS. These
are immediately available to others, so duplication is avoided. The
PMS helps to coordinate adaptive and corrective maintenance

work. It monitors maintenance progress, and produces manage-
ment statistics.

The Development Division is organised into groups that specialise
in analysis, coding, and quality assurance. Tested software is
batched for release. Different forms of release reflect the level
of support that Peterborough Software provides. For instance,
versions for release which are necessitated by government legisla-
tion get full support. Any earlier versions still left in the field
beyond a certain date no longer enjoy full support.

The Peterborough Software example is a model for the
maintenance of any large application system, but particularly for
multisite, multiversion implementation with large numbers of
users. The principal lessons are as follows:

— Recognition of the cost and of the importance of the post-
release phases of the system life cycle, and the consequent
planning (for example, replacement, migration, and technical
design) for the maintenance effort.

— The rigour applied to pre-release testing and post-release
version identification and control.

— The formal contractual basis that clearly specifies the re-
sponsibilities of supplier and customer.

— Recognition of the relative importance of problems that occur
in practice at the operational level (including those deriving
from imperfect documentation or training), and at the code
maintenance level, and of the need to provide adequate sup-
port staff at both levels.

A coordinated programme, effective across the whole main-
tenance process, and designed to control changes to the system,
will become more and more critical as the complexity of systems
increases. Formal procedures are essential to ensure that software
is not degraded and to provide an audit facility. The experience
of Peterborough Software may serve as a model. At the same time,
there are several automated change- and configuration-control
packages currently being introduced to the market that could help
PEP sponsors to reduce administrative overheads and increase
their control over system changes.

21

Chapter 5

Using methods and tools

The right methods and tools can help to reduce the maintenance
workload significantly. Enforcing standards and using modern
development methods are both ways of improving the quality of
new systems, so that maintenance becomes easier when the
systems are operational. Standards and methods encourage the
development of new systems with maintenance in mind. Other
contemporary tools are designed to be directly beneficial to the
maintenance process. They include management tools, testing
tools, and maintenance-support tools. The growing availability of
modern development methods opens up yet another avenue for
reducing the maintenance workload on the systems department
— developing systems to be maintained, at least in part, by the
users themselves.

DEVELOP NEW SYSTEMS WITH MAINTENANCE
IN MIND

PEP sponsors are well aware of the need to develop new systems
with maintenance in mind. They are doing this in three ways. The
first is by involving staff who have already worked on system
maintenance and who are therefore able to bring the benefit of
their experience to bear. (We touched on this on page 13.) The
second is by enforcing development standards, and the third is
by using modern development methods.

ENFORCE DEVELOPMENT STANDARDS

Ease of maintenance is a feature of systems quality. No system
can be described as high-quality if it is hard to maintain. Ease of
maintenance must be built in at the design stage; it cannot be
ensured by the functional specification. Enforcing design
standards encourages the development of high-quality systems.

Designing for maintainability requires an understanding of the
problems caused by system complexity and structure. Computer
systems are inherently complex, but improving their maintain-
ability means making them as simple as possible. This can be
achieved in three ways: by partitioning the system into a small
number of identifiable modules, each meeting a specific purpose;
by arranging for the modules to be as independent as possible (in
other words, minimising their interdependence); by intercon-
necting the modules through a single command-and-control
structure.

Partitioning and interconnection are essentially aids to com-
prehension; module independence is the key to flexibility, A
system consisting of simple, well-defined modules that intercon-
nect loosely with each other is relatively easy to change by
decoupling from the structure the modules that will remain the
same, adjusting the structure itself, and replacing other modules
with new or modified versions that are as simple as those that

Ease of maintenance must be
built in at the design stage

S Butier Cox & Partners Limited 1988

Four development methods and
techniques are particularly
significant in reducing
maintenance costs

@ Butler Cox & Partners Limited 1988

Chapter 5 Using methods and tools

went before. Distinguishing the modules from the structure has

the advantage of localising any program errors that may come to
light.

USE MODERN DEVELOPMENT METHODS AND TECHNIQUES

Using modern methods and techniques to develop new systems
is widely acknowledged as beneficial to maintenance, because of
the improvement in quality that results. This general recognition
was confirmed by those of our interviewees who had first-hand

experience of using modern methods and techniques over a period
of several years.

Of the wide spectrum of development methods and techniques,
four are particularly significant in reducing maintenance costs:
prototyping, to define and test requirements; data dictionaries and
data analysis techniques; methods for structured design and
programming; re-usable modules, a technique that consists of
skeletons of proven logic, which minimise the amount of new code
to be maintained. Because they improve the development pro-
cess, all four help to make maintenance easier, but those most
widely used by the respondents in our survey are methods for
structured design and programming. Nearly 80 per cent of
respondents claimed to have used structured programming, and
57 per cent to have used structured-design methods. Data dic-
tionaries and data analysis techniques were used by 55 per cent
of respondents, and prototyping by 10 per cent. No significant use
of re-usable modules was reported.

All four of the development methods and techniques recom-
mended above should be supported by contemporary software
tools. Computer-aided software engineering (CASE) tools and
fourth-generation languages support the first three methods to
deliver systems that are more robust, more stable and of higher
quality. Software-configuration management tools help to control
reusable modules that can be used not only in development but
in maintenance as well.

The experience of the systems development department within
a public sector organisation in the United Kingdom illustrates the
benefit to maintenance of using a fourth-generation language.
Cobol has been displaced as the principal language for new
systems development by Gener/ol, a fourth-generation language.
As a result, the demand for experienced staff in systems develop-
ment is much reduced, to provide the same level of maintenance
as before, and it has therefore been possible to raise the propor-
tion of effort devoted to new systems. In addition, further reduc-
tions in the need for maintenance are expected in future, because
of the improved quality of new systems developed using Gener/ol.

PLAN TO EXPLOIT CONTEMPORARY TOOLS
DESIGNED TO HELP WITH MAINTENANCE

Although software tools of the sort we have just mentioned help
to simplify maintenance by improving the development process,
these tools have yet to make much impact on maintenance. Most
systems that are currently being maintained were developed using
Cobol, as Figure 5.1 overleaf shows. Nine respondents stated that
over 90 per cent of their maintained code was written in Cobol

23

Chapter 5 Using methods and tools

Figure 5.1 Development language of systems in maintenance

Proportion of Number of respondents maintaining code in:*
maintained code
written in a Cobol PL/1 Assembler | Other
particular language
90-100% S 2 0 3
20-89% 8 1 1 10
Under 20% 1 0 T 5

*The entries in the table record the number of respondents who have that proportion
of code written in the designated language.

(Source: Butler Cox survey of PEP sponsors)

and another six reported that at least 70 per cent of their
maintained code was in Cobol.

Languages other than Cobol are becoming more common in
maintenance work, however, and are already more widespread
than either PL/1 or Assembler. These other languages comprise
various fourth-generation languages — for example, Mapper and
Application Master.

In addition to contemporary tools for generating quality software
in new systems development, a range of tools is emerging designed
to provide direct assistance in maintenance. These tools fall into
three categories: management tools, testing tools, and main-
tenance-support tools.

USE MANAGEMENT TOOLS TO ENHANCE PLANNING AND CONTROL

Management tools help to improve the planning and control of
maintenance. Tools in this category come in two types. One type
aims to help with the job of estimating (which should take place
during impact analysis). The other type helps to control how
successive versions of software are progressively introduced.
Estimating tools tend to be linked to proprietary systems
development methods, which limits their use in a maintenance
environment. Whatever the tool, the ability to calibrate estimating
models to the characteristics of the maintenance environment is
essential.

A range of configuration and change-management tools is
available to control the change process in maintenance work.
These tools ensure that successive versions of software are
progressively introduced into a production environment under
controlled conditions. They also have the ability to generate
management and audit reports. Several of them can also be
applied to the development environment and can then be used
to progress software into the production and maintenance phases.

USE TESTING TOOLS

A variety of testing tools are available which provide source and
file-comparison facilities, cross-reference analysis, data standardi-
sation, and code analysis. The use of such tools provides enhanced
status reporting, auditing, and quality assurance. With an

24

Three categories of tool provide
direct assistance in maintenance

€ Butler Cox & Partners:Li

Maintenance-support tools are
having the biggest impact on the
maintenance process

@ Butler Cox & Partners Limited 1988

Chapter 5 Using methods and tools

automated testing environment, test data and information is easier
to maintain and the testing process is simpler to administer.

The use of knowledge-based techniques is likely to have an impact
on testing tools — for instance, by using rules to define additional
test cases. Some interesting tools are also being developed which
incorporate the use of hypertext, which acts as a navigational aid
for searching through program structures. (Hypertext allows
‘chunks’ of text to be related to each other so that the user can
decide which relationships to pursue and when to pursue them.)

USE MAINTENANCE-SUPPORT TOOLS

This third category of tool, designed to help the maintenance pro-
cess, is having the biggest impact on the maintenance process.
Maintenance tools are aimed at the impact analysis and design
steps of maintenance. They provide a powerful means of analysis
and design, and are valuable where large amounts of existing code
have to be examined or modified, especially where the code itself
has been subject to previous modification. Although expensive,
maintenance tools can cost less than renewing the system. They
can be justified where the maintained system is likely to continue
in operation for several years. Three kinds of maintenance sup-
port tool are currently available: code analysers, restructuring
tools, and re-engineering tools. Some of the better-known
examples are identified in Figure 5.2, along with a selection of
software-configuration management products.

Figure 5.2 Maintenance tools

rCatet_:;nry Tool Supplier

Code analysis | Pathvu Peat Marwick McLintock
Cobol/SF IBM Corp
Recoder Language Technology
Software Testbed | LDRA Lid
Flowtec Maintec SA
Via/lnsight Viasoft Inc

Restructuring Structured Retrofit| Peat Marwick McLintock
Cobal/SF IBM Corp
Recoder Language Technology
Superstructure Group Operations Inc
Astec Maintec SA
PM/SS Adpac Corp

Re-engineering | PSL/PSA

Meta Systems Lid (Keith London Associates)
Bachman

Bachman Associates

Change control | Change Man Optima Software Inc

CCC Softool Corp (K3 Software Services Ltd)
PVCS Polytron Corp
- | ADRILibrari ADR |
| ibrarian nc J

Code analysers

Code analysers report on the degree to which programs (in the
main, Cobol) are syntactically correct, and they indicate the com-
plexity of the existing code. So-called static code analysers report,
in addition, on departures from programming standards. Dynamic
code analysers report on the results of a test run; they may, for
instance, report the number of untested lines of code.

25

Chapter 5 Using methods and tools

The experience of the systems development department of a
Belgian utility highlights the risk of failing to exploit the benefits
of code-analysing tools. To meet one of its application re-
quirements, the department selected a packaged software pro-
duct. At first sight, it seemed to fit the need closely — it was
designed to a similar specification — but experience showed that
this first impression was false. The package has had to be exten-
sively modified to cope with increased data-storage and trans-
action volumes, which has led to significant changes to its internal
structure. During the space of just one year, the maintenance
effort has reached half of the original estimate of developing the
complete system from scratch. Code-analysis tools could have
helped to clarify the suitability of the design in the first place,
and to estimate overall life-cycle costs and resourcing re-
quirements more accurately.

The aspirations of a large agricultural merchant provide a further
illustration of the potential of code analysers. The systems depart-
ment has had to face a problem that is not uncommon — that of
losing many experienced staff in a short space of time, following
an organisational change. Having no alternative but to assign staff
to maintenance who had little or no direct knowledge of the
systems, the department turned to a code analyser (in this case,
Via/Insight). Although it is still too early to assess the impact of
this code analyser, the department is expecting to obtain three
important benefits: transfer of knowledge to the maintenance
staff about the application of the systems, at the code level;
improved code reliability; reduced maintenance turnaround time
as a result of better productivity.

Restructuring tools .
Restructuring tools transform unstructured code into new, func-
tionally equivalent code that is restructured in accordance with
top-down principles, and is fully documented. The steps in the
restructuring process are the following: analysis (in much the same
way as with a code analyser), code reorganisation and redesign
(done manually with all but the most sophisticated restructuring
tools), code generation from the revised program design, and
verification.

The experience of a major oil company illustrates the use of a
restructuring tool. All of the commercial systems (over 1,200 pro-
grams) were written in a programming language no longer in com-
mon use. The level of expertise needed to use the language was
substantial and required very skilled maintenance staff. This
language was very difficult to use and required an extensive
amount of training. New programmers would serve an appren-
ticeship with the senior staff to learn the language and it could
be as long as two years before programmers would be allowed to
work unsupervised with the language.

In 1985, the company planned to rewrite all of the applications
written in this language. It estimated that this would cost about
six dollars per line and that it would take 10 calendar years to
complete all the work, at a total cost in excess of $15 million.
Management approval to proceed was granted. However, before
going ahead, the company evaluated the possibility of restructur-
ing its systems as an alternative to the high-risk, high-cost rewrite
strategy, using a restructuring tool. It chose Recoder as the tool

26

© Butler Cox & Partners Limited 1988

Systems departments should
adopt only a limited number of
new methods and tools

@& Butler Cox & Pariners Limited 1988

Chapter 5 Using methods and tools

and submitted a new plan, which indicated that all the code could

be restructured and the existing systems re-engineered in two
years.

These tasks were, in fact, completed in less than two years; after
14 months, 850 programs had been restructured. A billing system
of over 500 programs was completed at an average of one to two
hours per program, and the total cost was eight cents per line.
On another system, one of the company’s restructuring goals was
to improve its run-time performance. With the improvements
implemented, the daily run-time was cut by three to four hours,
and the annual production cost savings were $170,000.

Restructuring tools are expensive, however. Prices range from
$60,000 for Adpac’s PM/SS product, to more than $100,000 for
IBM’s Cobol/SF. Despite the suppliers’ claims of productivity gzins
as high as 60 per cent in subsequent maintenance activities,
restructuring tools are often hard to justify.

Re-engineering tools

Re-engineering tools go one step beyond restructuring tools. They
have the ability to form an entirely new design from existing code.
They work first by translating existing Cobol code back to a design-
level representation (this is a process known as reverse engineer-
ing), then by working forward from that point to create entirely
new, restructured code. Currently, there are only two re-
engineering products of significance. One is Bachman Associates’
reverse-engineering tool, which is available only in the United
States. The other is Meta Systems’ PSL/PSA, which is marketed
in Europe through Keith London Associates of the United
Kingdom.

These products are at the trial stage and provide facilities in a
limited software environment. Nevertheless, they are pointers for
the way in which CASE tools for maintenance environments will
develop.

LIMIT THE RANGE OF METHODS AND TOOLS USED
DURING DEVELOPMENT

For most systems development departments, contemporary
methods and tools represent a significant departure from what
has gone before. They carry with them an overhead burden in
terms of learning, standards, and previous practice. It is for this
reason that the average systems development department should
be careful to limit the number of new methods and tools that it
adopts. By taking on more than a few, a department risks so
diluting its expertise in any one of them that productivity becomes
lower, not higher, than before.

The experience of a leading multinational oil company illustrates
the point. Systems development and support is devolved to
business-unit level. A central systems group provides highly
specialised skills, and recommends methods and standards to be
adopted by the business units. The central systems department
has no authority, however, to impose its recommendations. Not
surprisingly, the business units, being driven by expediency, have
tended to go their own way. Now, the group finds that a growing
number of languages and methods are in place, constraining the

27

Chapter 5 Using methods and tools

opportunities to benefit from exchanging resources and expertise
across the business units.

DEVELOP SYSTEMS THAT CAN BE MAINTAINED
BY USERS

Recent advances in fourth-generation languages now make it
possible for users to become directly involved in maintaining their
own systems. It is common for organisations to provide users with
query languages through which they can derive data and generate
reports. It is a small logical step from this to the provision of
languages, such as Mapper and Gener/ol, that are powerful enough
to allow users to add functionality to systems. A systems develop-
ment department based in the Netherlands has begun to do this
with considerable success. It began some four years ago by intro-
ducing the idea of direct user-maintenance on an internal invoic-
ing system common to several independent business units within
the parent group. Because it was recognised at the outset that
the system specification would differ between the business units,
the core of the system was designed in such a way that business-
specific enhancements and changes could be generated by the
users themselves.

Code-generating software was written by the systems department
(using Natural and Adabas), enabling users to specify their own
data requirements and functions without recourse to the systems
staff themselves. The software was designed to take account of
the fact that users have no specialist systems knowledge or skills.

The result has been to reduce the amount of maintenance car-
ried out by the systems department, from an estimated five to
six man-years each year, to a quarter of this. Encouraged by its
success, the department is now planning to adopt the principle
of user-maintained systems as a central element of its future
policy. It has taken the decision to produce a number of general-
purpose modules that will allow users to specify some of the
interfaces between different application areas.

Advances in maintenance-support tools have lagged behind
advances in development tools. This situation is set to change in
the immediate future. We predict that the current generation of
maintenance-support tools will provide significant benefits for
those organisations that have to maintain existing Cobol programs.

Users can become directly
involved in maintaining their
own systems

© Butler Cox & Partners: Limited 1

Chapter 6

Reaping the benefits of improved
software maintenance

Software maintenance consumes significant systems development
resources, and improvements to maintenance will result in
increased productivity and value for money for PEP sponsors. We
have made suggestions for improvements in a number of areas,
summarised in Figure 6.1.

Figure 6.1 Action checklist

Formalise the maintain-or-replace decision
Conduct annual reviews to re-assess the costs and benefits of maintained systems.
Remove uncertainty by instituting a maintenance-rating process.

Define the share of resources to be allocated to maintenance as part of the overall
strategy to manage the applications portfolio.

Motivate, train, and manage maintenance staff
Organise staff to optimise job satisfaction, perhaps by establishing a separate
maintenance organisation.

Select maintenance staff with suitable personal characteristics (patience,
adaptability, and willingness to lend support).

Train staff in the technical and communication aspects of the work. Make job
rotation a component of any training programme.

Utilise third-party services to provide specialist skills and to relieve internal staff
for new developments.

Formalise the maintenance process

Introduce a consolidated programme of action, ranging through change
management, impact analysis, system release planning, change design and
implementation, testing, and system release/integration.

Adopt a formal procedure for change management, followed by impact analysis,
to evaluate maintenance requirements.

Improve the development environment

Develop new systems with maintenance in mind. Involve staff with maintenance
experience in the development process, adopt firm standards, and use modern
development tools.

Draw on the four most useful methods and techniques — prototyping, data
dictionaries and data analysis, structured design, and re-usable models — all of
which are supported by contemporary software tools.

Limit the range of development tools to constrain maintenance skill requirements.
Develop systems that can be maintained by users.
Exploit contemporary tools designed to help with maintenance:

— Use management tools such as configuration and change control software
to improve planning and control of maintenance.

_ Use testing tools to reduce the complex administrative tasks associated with
test monitoring, auditing, and quality assurance.

_ Use maintenance-support tools to help with the maintenance-rating process,
and to prolong the life of existing systems.

These improvements will be achieved, however, only if the role
of maintenance is properly understood. The purpose of main-
tenance is to ensure that software continues to serve business
goals, and it must be managed accordingly. Maintenance is a

© Butler Cox & Partners Limited 1988 29

Chapter 6 Reaping the benefits of improved software maintenance

process with its own rules and techniques; there are well-
established maintenance procedures, underpinned by automated
tools, designed to reduce the complexity of the maintenance task,
but they will provide the promised benefits only if they are
integrated with control procedures and used to support a clearly
defined approach to maintenance that is based on a clear view
of the maintainability of a system and of the options available for
maintaining it.

Choosing an approach to the management of maintenance is not
an easy task. Some systems will be quite stable while others will
be complex and volatile. There is no one way of dealing with
maintenance that will suit all organisations, but the procedures
described here are the foundation of a management approach that
is widely applicable, irrespective of specific implementation
issues.

30

& Butler Cox & Pariners Limited

1988

Butler Cox

Butler Cox is an independent international con-
sulting group specialising in the application of
information technology within commerce, in-
dustry and government.

The company offers a unique blend of high-level
commercial perspective and in-depth technical
expertise: a capability which in recent years has
been put to the service of many of the world’s
largest and most successful organisations.

The services provided include:

Consulting for Users

Guiding and giving practical support to organisa-
tions trying to exploit technology effectively and
sensibly.

Consulting for Suppliers
Guiding suppliers towards market opportunities
and their exploitation.

The Butler Cox Foundation
Keeping major organisations abreast of develop-
ments and their implications.

Multiclient Studies
Surveying markets, their driving forces and poten-
tial future.

Public Reports
Analysing trends and experience in specific areas
of widespread concern.

PEP

The Butler Cox Productivity Enhancement Pro-
gramme (PEP) is a participative service whose goal
is to improve productivity in application system
development.

It provides practical help to system development
managers and identifies the specific problems that
prevent them from using their development
resources effectively. At the same time, the pro-
gramme keeps these managers abreast of the
latest thinking and experience of experts and
practitioners in the field.

© Butler Cox & Partners Limited 1988

The programme consists of individual guidance for
each subscriber in the form of a productivity
assessment, and also publications and forum
meetings common to all subscribers.

Productivity Assessment

Each subscribing organisation receives a confiden-
tial management assessment of its system develop-
ment productivity. The assessment is based on a
comparison of key development data from
selected subscriber projects against a large com-
prehensive database. It is presented in a detailed
report and subscribers are briefed at a meeting
with Butler Cox specialists.

PEP Papers

Four PEP papers are produced each year. They
focus on specific aspects of system development
productivity and offer practical advice based on
recent research and experience.

Meetings

Each quarterly PEP forum meeting and annual
symposium focuses on the issues highlighted in the
PEP papers, and permits deep consideration of the
topics. They enable participants to exchange ex-
perience and views with managers from other
subscriber organisations.

Topics in 1988

Each year PEP will focus on four topics directly
relating to improving systems development and
productivity. The topics will be selected to reflect
the concerns of the subscribers while maintaining
a balance between management and technical
issues.

The topics to be covered in 1988 are:

— Managing Productivity in Systems Develop-
ment.

— Managing Contemporary System Development
Methods.

— Influence on Productivity of Staff Personality
and Team Working.

— Managing Software Maintenance.

Butler Cox & Partners Limited
Butler Cox House, 12 Bloomsbury Square,
London WC1A 2LL, England
=(01)8310101, Telex 8813717 BUTCOX G
Fax(01) 831 6250

Belgium and the Netherlands
Butler Cox BV
Burg Hogguerstraat 791¢,
1064 EB Amsterdam
2 (020) 139955, Fax (020) 131157

France
Butler Cox SARL
Tour Akzo, 164 Rue Ambroise Croizat,
93204 St Denis-Cédex 1, France
‘@ (1)48.20.61.64, Télécopieur (1)48.20.72.58

Germany (FR)
Butler Cox GmbH
Richard-Wagner-Str. 13,
8000 Miinchen 2
= (089)5234001, Fax(089)52335 15

United States of America
Butler Cox Inc.
150 East 58th Street, New York, NY 10155, USA
=(212)8918188

Australia and New Zealand
Mr.J Cooper
Butler Cox Foundation
3rd Floor, 275 George Street, Sydney 2000, Australia
=(02)236 6161, Fax (02)236 6199

Ireland
SD Consulting
72 Merrion Square, Dublin 2, Ireland
‘@ (01) 766088/762501, Telex 31077 EI,
Fax(01) 767945

Ttaly
SISDG
20123 Milano, Via Caradosso 7, Italy
= (02)498 4651, Telex 350309, Fax (02) 481 8842

The Nordic Region
Statskonsult AB
Stora Varvsgatan 1, 21120 Malmo, Sweden
= (040) 1030 40, Telex 12754 SINTABS

Spain
Associated Management Consultants Spain SA
Rosalia de Castro, 84-2°D, 28035 Madrid, Spain
= (91)723 0995

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36

