
reese nS: COW ae.
eeeUittee745i peONO em e)yc4 Oyentn) inD

Wevesecoer-tace Pawson _
Beers)ce

BUTLER COX FOUNDATION
© Butler Coxpic 1991

FOUNDATION
Object Orientation

A Paper by Richard Pawson
September 1991

Richard Pawsonis a senior consultant with Butler Cox,specialising
in the tracking of emerging technologies and their potential
application within large organisations. He has 14 years’ experience
in the development, launch, marketing and management of
technology innovation. Since joining Butler Cox in 1989, he has
carried out several consulting assignments in this area. He was
joint author of Foundation Report 77, Electronic Marketplaces.
Hei orientation is one of the hot topics in the IT industry today.
Its proponentsclaim thatit will revolutionise the way application
systemsare developed. Systems development managers have heard
similar claims for other technologies, and are not yet convinced.
In this paper, Richard Pawson explains what object orientation is
in terms that are relevant to commercial systems developers and
recommendsa cautious but deliberate approach to adopting the
technology.

Published by Butler Cox ple
Butler Cox House

12 Bloomsbury Square
London WC1A 2LL

England

Copyright © Butler Cox ple 1991
All rights reserved. No part of this publication may be reproduced by any method without the

prior consent of Butler Cox ple.

Availability of reports
Membersofthe Butler Cox Foundation receive copies of each report upon publication; additional

copies andcopies of earlier publications may be obtained by members from Butler Cox.

Photoset and printed in Great Britain by Flexiprint Ltd., Lancing, Sussex.

BUTLER COX FOUNDATION
© Butler Cox pic 1991

 FOUNDATION
Object Orientation

A Paper by Richard Pawson
September 1991

Contents
Object orientation is being considered because

traditional developmentis failing
Object orientation is defined by four core concepts
Object orientation shares common features with other

approaches, but remainsdistinct
The benefits of object orientation can be substantial
The costs of object orientation are large and often

hidden
Object orientationis still immature, but the range of

tools is growing
Object orientation will change the nature of systems

development, notjust its efficiency
There is one right way and several wrong ways to

approach object orientation

eh
9

10

12

14

Object orientation will eventually
bring substantial benefits, but

there are large hidden costs

BUTLER COX FOUNDATION
© Butler Cox pic 1991

Object Orientation

Something radical is happening in systems development.It is
called object orientation. Proponents of object orientation argue
that it will be the Copernican Revolution of the systems world:
Copernicus wasthefirst to suggest that the world moved around
the sun instead of vice versa, and his new model ultimately
resulted in a new calendar, the dawn ofthe Age ofEnlightenment,
and the undoing of the authority of the Roman Church. Object
orientation, they say, will result in a new age of information
systems in which applications can be developed rapidly, and in
which the systems departmenthas a much reducedrole. In at least
onerespect, the analogy is undeniable:the object-orientation issue
is being addressed with almost religious fervour, both for and
against.

Most systems professionals are underwhelmed. They have heard
it all before. Relational database techniques, fourth-generation
languages and CASE wereall supposed to be revolutionary. Each
has enjoyed success, but none has changed the fundamental way
in which things are done. Some arguethat object orientation is just
anew namefor techniquessuchas entity modelling and structured
programming, which enlightened organisations have been using
for years.

Whatis the truth aboutobject orientation? Will it change the world
of systems development,orwill it fizzle out like a damp squib? Is
it really new? Does it bring real benefits? At what cost? Most
important, does the systems departmentneedto do anything about
it, or is the best strategy simply to wait and see?

Webelieve that object orientation is a real issue. We believe that
within 10 years, systems development will look more like
the object-oriented approach than like today’s developmentapproaches. Webelieve that object orientation could bring sub-
stantial benefits to most organisations, but that the costs of the
changeoverare large, andlargely hidden. Webelieve that systems
departments muststart to address the issue now, and that there
is a right and a wrong wayto go aboutit. ts
In this paper, we attemptto clarify the issues surroundingobject
orientation. It wouldbeniceto verify the claims by reference to
user experience, but as yet, there is insufficient hard data avail-
able. That is changing, however. Within the next year, several
large organisations will have completed medium- to large-scale
object-oriented projects for commercial applications. It is therefore
our intention to publish a full research report on this topic at a
future date.

Object Orientation

Object orientation is not new.Its roots lie in the programming
language, Simula, developed in Norway in the 1960s for simu-
lating complex systemssuch as manufacturingplants. In the early
1970s, researchers at Xerox Parc (Palo Alto Research Center)
employed the same conceptsto develop software that could be used
by children. This work resulted in the programming language,
SmallTalk, that is still one of the keystones of the object-oriented
world.
For the next few years, object orientation remained little more
than curiosity, with just a handful of enthusiasts using it for real
software development.In the mid-1980s,its popularity increased,
particularly for computer-aided design (CAD), for developing
graphical user interfaces, and for embedded applications such as
control systems andavionics. Then, suddenly,in the last couple of
years, the profile of object orientation has risen. Several respected
software vendorsare stating that it is the way forward, and some
large user organisations are seriously assessingits suitability for
their mainstream commercial systems development. What has
caused this change?
Partly, the change has been driven by technology. Developments
in high-performance workstations, in image and graphics tech-
nology, andin client-server architectures have all workedin favour
of object orientation,for reasons that we shall examinelater. A far
more important driving force, however, is the growing dissatis-
faction with conventional systems development.

Object orientation is being considered
because traditional development
is failing
The malaise has several symptoms. Software development
accounts for an increasing proportion of total systems cost. Most
systems departments have hadto get used to a long applications
backlog — one survey suggests that 60 per cent have a backlog of
at least 12 monthsand 30 per cent of more than 24 months. Most
worryingis the growing proportion of systems developmenteffort
that hasto be devotedto software maintenance,reflecting the rela-
tively poor productivity achieved in modifying existing systems.
Peter Keen, director of the Washington-based International
Center for Information Technology, has suggested that every
dollar invested in software development commits four dollars to
subsequent support and maintenance.
In addition, improvement in systems development has not kept
pace with improvementin hardware. Processing powerper dollar
has been doubling every two years, and with the emergence of
parallel architectures, that rate could increase. The same applies
to memory andstorage, and to a lesser extent, to display resolution
and communications bandwidth. Although new languages and
support tools and wider use of off-the-shelf packages have
improved programmerproductivity, this has not been at the rate
needed to keep up with growing user demands and system
complexity.
One cause of this is the fundamental mismatch between the
internal structureofa piece of software andthe ‘natural’ structure

Object orientation is not new, but
it is now gaining more attention

BUTLER COX FOUNDATION
© Butier Coxpic 1994

Object Orientation

The problem arises because the ofthe application that it is addressing. When processing power and
internal structure ofa systemis memory were very restricted, it was important to represent soft-

different from the natural ware in the form most convenientfor the computer. Theprocessofstructure ofan converting the natural application structureinto this form evolved
application into the processes that we now know as systemsanalysis, program

design and coding. These processes require considerable time and
effort. Moreover, a subsequent changeto the application require-
ments — either because there has been a change to the business,
or because there are new user requirements from the system —
often means many small changesto the structure of the software.
For those organisations that are deploying networks of work-
stations and PCs, processing power andstorage are in most cases
nolonger critical resource — they represent a decreasing propor-
tion of the total cost of any new system.It is no longer necessary
to distort the natural structure of an application purely to comply
with the constraints on processing power andstorage. A radical
approach to systems developmentis overdue.
Object prientation attempts to address these problemsby aligning
the internal structureof a piece of software more closely with the
natural structure of the application. In technical terms, object

Object orientation attempts to align the internal structure of a piece ofsoftware moreclosely to the natural structure of the application.

1. The natural structure of an appli- 4. The difference between thecation may be madeof entities such approaches emerges whentheas seats, passengers and aeroplanes, application requirements change
with actions upon them

2. In conventional systems, the 5. In the conventionalimple-
structure hasto be translated intoaset |mentation, many parts of the codeof functions and a data structure and data must be altered

3. An object-oriented system attempts 6. In the object-oriented imple-to preserve the natural structure inside mentation, the scale of alterations is
the computer muchcloserto the requirementschange

Jee rs
= ae” (el

BUTLER COX FOUNDATION
© Butler Cox pic 1991 a

Object Orientation

orientation achievesthis by allowing a higherlevel of data abstrac-
tion. In plain English, if your business world consists of aero-
planes, suitcases, passengers, pilots and routes, you should be
able to peer inside a developed application and see those sameenti-
ties — not merely arrays, pointers, integers, strings and subrou-
tines. Object orientation is not the first attempt at this idea, but
it is the most thorough. We therefore now needto take a look at
whatobject orientation actually is, and at whatit is not.

Object orientation is defined
by four core concepts
Object orientation is a distinct technology; it is not just an alter-
native namefor ideas such as modular programming andentity
modelling. Object orientation is defined by four core concepts:
encapsulation, classification, inheritance and polymorphism.
Around these four core concepts, several peripheral ideas have
grown, such as multimedia data formats, but those peripheral
ideas do not constitute object orientation. If a system does not
explicitly support the four core concepts,it is not object-oriented.
An object-oriented piece of software is made up from objects. An
object comprises some data in the form of simple variables,
together with all the processes that can access that data. In object
terminology, processes are called methods. Data is thus said to be
encapsulated with its methods. In an airline reservation system,
a seat object will hold data correspondingto a particularflight, the
position of the seat in the plane, its fare class, and whetherit is
assignedor not. The object will also contain methodsfor assigning
the seat, re-assigning the fare class, and simply for inspecting or
reading the other data.

The methodsare activated by sending messagesto the object. The
message might be ‘Assign to Mr Smith’ or ‘Change class to
Economy’. The coding of the methodsinside the object may look

An object comprises somedata, togetherwith all the methods (processes)that can act uponthat data. Objects communicate by sending messages —
they cannot access remotedata directly.

An object

Methods
Messages b etnod Method 4 ees.from other == ————-
objects ——— =——Methoa 2 Method 5ad = ———_—. eZ= =—[[

aepeesandmessagesto otherData objects
(instancevariables)

IK i

< FOUNDATION

Bi utler Cox pic 1991

Eachobject is an instance
of a class

Objects inherit the char
 of their super-clas

2 COX FOUNDATION

© Butler Coxpic 1991

Object Orientation

similar to the coding of a conventional programming language,
although some object-oriented languages have quite different
syntaxes and capabilities.
The benefit of encapsulationis that it offers total protection of the
data. Because the only way that the data can be accessed is
through the methods in the sameobject, it cannot be accessed or
updated in a non-standard way. Provided that the message inter-
face is preserved, internalalterations to an object cannot generate
side effects.
The second core conceptis classification. This simply means that
each object is an instance of a class. The reservation system will
have a class called ‘Aircraft’, with one instance for every aircraft
in thefleet, and a class called ‘Captain’, with instances for Captain
Schmidt, Captain Jones and so forth. A class can therefore be
thought of as a template that defines both the data (instance vari-
ables) held within objects of that class, and the methods that can
operate on them. Like the record definition in a record-based
database, it saves time and space by minimising unnecessary
duplication.

Every object is an instance of a class, which can be thoughtof as a templatethat specifies the instance variables and the methods.

Seat Aircraft

 Captain Route

Instances

The starting point for an object-oriented development will be to
define the classes needed for the application. In line with the
concept of ‘data abstraction’, these classes can be as specific as
necessary — there can be a class for ‘Marketing Campaign’, for
‘Employee’ and for ‘Country’. Classes can also be low-level and
general-purpose, such as ‘Number’, ‘Date’ and ‘Character’. They
can be complex, holding the namesof other objects in the form of
a ‘Sorted List’, a ‘Dictionary’ or a ‘Document’. An object-oriented
language may come with a large numberof predefined general-
purpose classes, which can substantially reduce the effort needed
to create a new application.
Thethird core conceptis inheritance. Classes are arranged into a
hierarchy, so that a class can have several sub-classes, and each
ofthese can haveits own sub-classes, andso on. Inheritance means
that a class will automatically inherit the characteristics of its

_ super-class (the class immediately aboveit in the hierarchy). The
characteristicsit inherits are the definitions of the data (instance

Object Orientation

variables) and all the methods. Having inherited them,a sub-class
can modify them or add to them.
In the airline reservation system, there may bea class called
‘Ticket’, which will have instance variables corresponding to the
route to be flown,andthetotalcost. It will have methodsto specify
the route segments, and to calculate the total fare. The ‘Ticket’
class may have sub-classes for First, Business and Economy, and
the Economyclass will have sub-classes for Apex, Super Apex and
so on. In addition to the data and methods inherited from above,
the Apex class will hold data and methodsrelating to minimum
booking period, andrestrictions on subsequent changes.

Classes are arrangedinto a hierarchy. Sub-classesinherit the instance variables and methods from above, but may modifyor add to them. A sub-class is created when a specialised version of an existing object is needed. A typical system will
comprise general-purpose classes (such as Number) and user-defined classes (such asTicket).

Object

Ticket Magnitude Collection

First Business Economy Character Number Array zoried

Super palteApex ‘Apex RTW Fraction Real Integer
A sub-class is therefore a specialised case of its super-class. This
is the most powerful feature of object orientation, because it
mimics the way that humanstackle problems — starting with a
general-purpose solution and addingspecialised cases and excep-
tions. If a situation arises in an object-oriented system that does
not quite fit the object specification, it is very simple to create a
sub-class. The sub-classesare tightly managedin a hierarchy, and
any subsequent changesto the super-class will still be inherited.
The fourth core concept is polymorphism. This simply means that Polymorphism means that different
different sub-classes can interpret the same message in different sub-classes interpret the same
ways. The class ‘Employee’ may have sub-classes for ‘Director’, message in different ways
‘Manager’ and ‘Cabin Staff. Each can accept the message ‘Pay
Expenses’. The coding of the method to implement that message
will be different for each sub-class, however, reflecting the
different auditing and tax requirements for each category.
Polymorphism is attractive because it reduces the amount that a
programmer needs to know and rememberaboutthe different

BUTLER COX FOUNDATION
© Butler Cox pic 1991

Bl
©

Inheritance has no direct equiv

 JTLER COX FOUNDATION

© Butler Cox pic 1991

Object Orientation

Polymorphism meansthat different sub-classes can implement the samemessagein different ways. The method that acts upon the message ‘PayExpenses’will be different for ‘Director’ and ‘Manager’, reflecting thedifferent auditing and tax requirements.

Employee
Payexpenses

Payexpenses

 Director
characteristics of variousclasses. This is particularly apparent in
a multimedia environment: the coding to print a text object, a
graphical object and a bit-map-imageobjectare all very different.
All the programmerneeds to know is that each responds to the
‘Print’ message in an appropriate way.

Object orientation shares common
features with other approaches,
but remainsdistinct
Objectorientation clearly has some commonfeatures with more
established software development tools and approaches. Struc-
tured programming, for example, attempts to achieve encapsu-
lation throughthe conceptof‘information hiding’. Most structured
programming languages, however, are not able to enforce this
discipline rigidly. (One exception is the military language, Ada.)
Whereit is not enforced, programmers will always be tempted to
bypass the message interface and access the underlying data
directly, often in non-standard ways.
Programming languagesthat allow the programmerto specifynew
data types may be said to have someform ofclassification, but
these new data types cannot usually be used with the sameflexi-
bility as the standard data types that come with the language. In
an object-oriented language, by contrast, there is no distinction
between predefined general-purpose classes and user-generated
classes. —
Inheritance has no direct equivalent in other modular program-
ming languages and methods. In modular programming,the inten-
tion is to write general-purpose subroutines with encapsulated
data structures. The problem is that when a situation does not

Object Orientation

quite fit, a new version of the subroutine has to be created, and
these multiple versions rapidly become unmanageable.
Several concepts have becomeclosely associated with object orien-
tation. Wecall these ‘peripheral concepts’. For example, object
orientation is well suited to handling multimedia data formats,
primarily because ofpolymorphism. Another exampleis graph-
ical development environments. SmallTalk, which was devel-
oped to enable children to work with computers, wasthefirst
language to use a very graphical approach to program design.
A third peripheral concept is event-driven programming.
Existing development technologies, including fourth-generation
languages and CASEtools, are adopting these peripheral concepts
to enhance their power and usability. In the longer term, some of
these existing development technologies may also embodythe core
concepts. For the moment, they cannot be considered object-
oriented.

Several‘peripheral’ concepts, such as multimedia data formats, havebecomeassociated with object orientation. Established technologies suchas CASEandrelational database technologyare adopting these peripheralconcepts, but not the core concepts of object orientation.

 & e°°urth-generation tangue?
Confusion is also being fostered by vendors whose products are
threatened by object orientation — one example being relational
database systems. Their arguments are beguiling. “Mathemat-
ically, there is a great deal of similarity between objects and rela-
tional structures.” “We are in the process of migrating towards
object orientation. We’ve already built in the multimedia capa-
bility.” “If you stay with us, you don’t need to worry about object
orientation, because we'll get you there slowly and painlessly.”
These claims are reminiscent of the reaction of the hierarchical-
and network-database vendors to the emergenceof relational
technology.

BUTLER COX FOUNDATION
© Butler Cox pic 1991

The transition fromrelational to
object-oriented technology will be

painful and expensive

The re-usable nature ofobjects can
reduce systems development time,

and subsequent maintenance

BUTLER COX FOUNDATION
© Butler Cox pic 1991

Object Orientation

Wedo not believe that relational database technology is dead —
10 years from now, systems developmentwill still owe a good deal
to the relational model. We do not believe, however, that you
can migrate slowly and painlessly from relational database tech-
nology towards object orientation, as some of the relational
vendors are suggesting. Even if the vendors successfully migrate
their products, existing applications will not necessarily migrate
with them. At some point, a painful and expensive transition will
be needed.

The benefits of object orientation
can be substantial
Adopting a truly object-oriented approach to systems development
can bring substantial benefits. Most of these benefits derive from
the re-usability of objects. The idea is that once an organisation
has built a comprehensivelibrary ofobjects (including both generic
objects supplied with the language and objects specific to its
needs), it should be possible to build most of a new application from
existing objects. Modular programming had the same objective;
object orientation provides the tools for making it work. Encapsu-
lation guarantees that no-one is accessing shared data in a non-
standard way. Inheritance makesit possible to create specialised
versions of existing objects and to keep them within a tightly
managed framework.
Thus, once an object library has been established, object orien-
tation can dramatically reduce both the cost and the timescale of
new systems development. Theeffect on software maintenance is
likely to be even more marked. Objects and the messages that pass
between them moreclosely reflect the natural structure of the
organisation, so when the requirements change,it is easier to iden-
tify the changes needed to the software. Moreover, while changes
to a conventional data structure can imply many changes to the
routines that access it (or vice versa), changes inside an object
cannot generatesideeffects.
A third benefit is portability. Using an object-oriented language
and development environment, it is genuinely possible to write
applications with advanced graphicaluser interfaces and run them
on other platforms. This means that an application can be devel-
oped on, say, a PC running Windows, and be run on a Macintosh,
or on a Unix workstation running Motif. The disciplines of object
orientation can also improve software quality, especially for
complex systems. This is one reason that object orientation has
proved popular for developing embedded systems,such as control
systems for machinery.

The costs of object orientation are large
and often hidden
Weighed against these substantial benefits are some substantial
costs and disadvantages. The external investment required is
actually minimal — object-oriented languages and development
environmentsstart from a few hundreddollars and will run on any
reasonably high-performance PC.Thereal costs ofmoving over to
object orientation are not initially apparent.

Object Orientation

The first hidden cost is re-education. Learning object-oriented
development is not simply like learning a new programming
language. It requires the analysts and programmersto learn to
look at an application and ‘see’ objects, rather than functions and
data structures. Experience to date suggests that notall develop-
mentstaff will be able to makethetransition effectively.
Second,thereis the costof establishinganinitial class hierarchy.
Getting the higher levels of the class hierarchyrightis crucial to
achieving the full set of benefits, yet the process of identifying
these classes is far from intuitive, and so far, there are few well
tested tools and formal analysis methodsavailable.
Third, object-oriented systems may not run asefficiently as
conventionalcode, but thisis increasingly offset by thefalling cost
of processing power. Someapplications, however,especially those
with a complex structure, can actually run faster with object orien-
tation.
Although object-oriented code is easy to write, initial debugging
can be hard work, because there are no real barriers between the
application being developed, the language and the development
environment. Initiating a trace will reveal all the messages
passing between internal objects as well as those that the
programmerhasactively invoked. This situation will doubtless
improveas better tools and techniquesevolve. This is therefore an
appropriate point at which to examinethecurrentstate of object-
oriented technology.

Object orientationis still immature,
but the rangeof tools is growing
Although object orientation has been practised since the early
1970s, the rangeof softwaretools to supportitis still limited. The
range offormal analysis and design methodsis morelimitedstill.
Renewedinterest in object orientation means that the range of
tools and techniqueswill grow very rapidly in the next few years.
Quality will inevitably be mixed.
The most important software tool in object orientation is the
language. Strictly speaking, the function of the language is to
specify the instance variables and methodsofeachobjectclass, and
then, at run-time, to managethe flow of messages between them.
In practice, most object-oriented languages also incorporate a
sophisticated development environment that allows the pro-
grammer, amongotherthings, to browse andinspect the classhier-
archies.
SmallTalk wasthefirst comprehensive object-oriented language,
and in manyrespects, is still the purest. Several ‘commercial
versions are available. SmallTalk is a powerful language, and
notwithstanding the difficulties of learning the object-oriented
approach,is relatively easy to use. Although conceivedfor research
purposes, SmallTalk is very suitable for developing technical
applications, and is now being promotedasa viable language for
commercial systems development.
The most popularobject-oriented language is C++, whichis a set
of object-oriented extensions to the C language. C++ is a hybrid

10

Designing the initial class
hierarchyis a major
hidden cost

Debugging object-oriented systems
is currently more difficult than
debugging conventional
systems

Object-oriented programming
languages allowinstance
variables and methods
for objects to be
specified

BUTLER COX FOUNDATION
© Butler Cox pic 1991

Object Orientation

from Digitalk.
SmallTalk — still the purest of the object-oriented languages — includes a graphical development environment for browsing
throughobjectclasses. This screen display showsa few of the standard classes that comewith the SmallTalk/V system

Magnitude
Association
Character
Date
Number

Integer
LargeNegat ivelnteger
LargePositivelnteger
Coie

aNumber

@ File Edit Smalltalk Classes Methods Window

"Answer the result of dividing the receiver by aNumber."

*~ (numerator * aNumber denominator) /
(denominator * aNumber numerator)

Class Hierarchy Browser

Object-oriented databases provide
better supportfor multi-user
development and operation

BUTLER COX FOUNDATION
© Butler Cox pic 1991

language that allows conventional programmingto be mixed with
objects. This suggests the possibility of a gradual migration from
conventional coding (assuming the conventionalcode is written in
C)to object orientation. With hybrid systemslike this, there is a
greaterrisk of incurringthecostsof object orientation without the
benefits. However, many large software vendors have chosen the
C++ route, so we can expect to see the range oftools supporting
this language to increase.

Object-oriented languagesprovidelittle support for the sharingof
objects between several users, either during developmentor at
run-time. This is where object-oriented databases come in. (Dele-
gates visited two object-oriented database vendors on the 1990
Foundation Study Tourandoneon the 1991 tour.) Object-oriented
databases provide the same kind of locking, mirroring and secur-
ity features for objects that conventional databasesdo for data. It
is not necessary to purchase such a database to write object-
oriented applications, butit is desirableifthe application is large,
or if it services severalusers.

11

Object Orientation

Several vendors now market graphical development environments
that use the object-oriented approachtobuild applications starting
from the user interface. The most sophisticated of these is
NeXTStep, which comes as standard with the NeXT workstation,
and has beenlicensed to IBM to run on its RS 6000series.

An increasing numberofapplication packagesare being developed
in an object-oriented fashion. This may have benefited the vendor,
but in most cases, it makes no differenceto the user, whoseesonly
a compiled version of the original code. In somecases, however,
the objects are preserved in the user version, which facilitates
customisation. One example is the ViewStar document manage-
ment system presented during the Foundation’s 1991 Technical
Study Tour, where the object structure of the package makesit
easyfor the userto specify document workflows.

Object orientation will change the nature
of systems development, not just its
efficiency
Thetechnology has a long wayto go yet, and will doubtless evolve
in form. In the long term, however, object orientation will become
the norm for developing new systems.This holds implications not
just for the efficiency and effectiveness of systems development,
butalso for the way systems development is managed.
In conventional development, applications have a discrete
identity — they are specified, analysed, designed and then coded.
They exist as discrete chunksofcode, even though they may share
data with other applications through a database.
In

a

fully object-oriented system, discrete applications give way to
the notion of ‘enterprise modelling’. In its purest form, this means
building a complete simulation of the way that the business enter-
prise functions, using objects. (Remember that object orientation
has its roots in simulation.) Monolithic applications are replaced
by user-interface objects that pass messagesto this simulation,to
read and write information, and where appropriate, to change the
operation of the simulation. (Object orientation is well suited to
providing the IT support for redesigned business processes, which
wediscussed in Report 79, The Role ofInformation Technology in
Transforming the Business.) The investmentin building and main-
taining this enterprise model may bevery large, but the cost and
time needed:to build ‘applications’ from this model are very small.

Manyorganisationswill not build a complete and comprehensive
enterprise model, but their systems developmentwill polarise into
building core objects and application interfaces. Core-object
programmerswill need to be bothfirst-rate conceptual thinkers
and creative coders, which implies a high level of investment in
education and training. Some organisationswill buy in this func-
tion.
Application interfaces, however, will increasingly be built either
by users or by a new breed of analyst/programmers working very
closely with users, and more often working individually than in
teams. The primary skill needed by the analyst/programmerwill
bethe ability to understand andarticulate the needsof the user.

12

An increasing numberof appli-
cation packages are developed
using object orientation, and
this canfacilitate
customisation

Object-based ‘enterprise model-
ling’ will replace conventional
applications development

BUTLER COX FOUNDATION
© Butler Cox pic 1991

Object-oriented development is a
good match with a client-server

architecture

Re-use must be actively

BUTLER COX FOUNDATION
© Butler Coxpic 1991

encouraged

Object Orientation

Unlike today’s arrangement, though, where the systems analyst
passes on the requirementto anotherspecialist for systems design,
in the object-oriented world, he will build the system. Rapid proto-
typing will become the norm — one analyst/programmer working
on-site with users for a few days, building a user interface to the
model and alteringit until it does whatthe users require.In other
words, the big payback from the investmentin building the right
core objects is a substantial reduction in thecost of building indi-
vidual applications.
This polarisation between the enterprise model, or core objects,
and the applications that interface to them suggests a good match
between object-oriented development and client-server architec-
ture. We expect to see a stronger relationship develop between
these two new technologies — something that wefirst identified in
our Position Paper, New Directions in Client-Server Systems: Find-
ings from the 1991 Study Tour.

Re-use must become a central tenet of systems development.
Development staff will need to be encouraged to re-use existing
objects in preferenceto creating new ones. Whennewobject classes
or sub-classes are required, programmers must be rewarded for
designing them to be as widely applicableas possible. Commercial
libraries of objects are already appearing, usually dedicated to
particular application areas such as engineering, and this will
increase. Organisationswill need to ensure that they are making
full use of such libraries, where appropriate. Internally developed
object libraries will hold considerable value and should be carefully
guarded,or licensed to gain a new source of revenue.

Systems developmentwill be polarised. A dedicated team will develop andmaintain the core objects, possibly in the form of a complete enterprisemodel.Individual applicationswill tap into this modelandrequirelittleadditional code development. Thoseapplications will be developed eitherby end users,or by users workingin partnership with an analyst/programmer.
Application Application

A

a

 Application A Systemsprofessional ay User

13

Object Orientation

Thereis one right way and several wrong
ways to approach object orientation
In theory, there are several strategies with regard to object orien-
tation. The first is to do nothing — continue with the traditional
approachoffunctional decomposition at the analysis/design stage,
and a translation of this design into program code. The second
option is cradle-to-grave object orientation — analyse the appli-
cation into an object structure andcode it with an object-oriented
language. Thisis the purist approach.
Theotheroptionsareall hybrid. In theory,it is possible to under-
take the analysis/design using an object approach, and to imple-
mentthe objects using any conventional language such as Cobol.
It is also possible to build an application that is partly conventional
andpartly object-based — perhapswith oneofthe hybrid languages
such as C++, and others that are imminent.
Some vendorsare even suggesting that organisations can continue
to undertake analysis/design in a conventional manner, and that
their software packages will somehow transform this into object-
oriented form. Wedonotbelieveit.
In its current state of maturity, it is not realistic to suggest that
systems departments should drop what they are doing now and
move across to object orientation, lock, stock and barrel. Even if
an organisation wantedto build a complete object-oriented enter-
prise model, it would probably not be able to find appropriate tools,
methods, or even professional guidance.

The cradle-to-grave approachto objectorientation is the best.

World model Analysis and design Implementation

In conventional development,analysis/design and implementationuse functional decomposition
It is theoretically possible to designusing objects, then implementin a
conventional language

Many commercial systemswill 2
combine object orientation with
conventional code
Tools that can convert a functional
design into an object imple-mentation are mythical

BUTLER COX FOUNDATION
© Butler Cox pic 199114

BUTLER COX FOUNDATION

e Butler Cox pic 1991

Object Orientation

Theright approachis to start using object orientation, preferably
on acradle-to-gravebasis,for a few carefully selected applications.
Choose new applications that are small and relatively self-
contained, but that can interface to conventional applications and
databases. The more complex the structureof the application, the
more the benefits of object orientation will show. Aboveall, pick
applications wherethereis a strong likelihood that user require-
mentswill change.
Bytesting object orientation on a small-scale, but real, application,
you will be able to evaluatethe costs, benefits and implications in
the context ofyour own organisation. You will be better placed for
a full-scale move into object orientation when the tools and
approaches aresufficiently mature. You will not get to this posi-
tion ifyou confine object orientation to the IT research department.
Werecommendthis purist approachfor initial forays into object
orientation, because in our view, that is the only way that the
implications for the organisation will becomeclear. It is not real-
istic, however, to suggest rewriting existing large-scale commercial
systems using pure object-oriented techniques. Most organis-
ations will have to compromise, and compromise is a difficult
strategy to get right.
Accordingly, the Butler Cox Foundation has commissioned a
research project into the practical aspects of object orientation for
commercial systems development. Weshall be studying organis-
ations that have undertaken substantial object-oriented projects
to ascertain the degree to which the technology has and has not
lived upto its promises. We shall be examining someofthe tools,
together with the design and analysis methods. From that infor-
mation, we shall be drawing up somepractical guidelines for
adopting object orientation, and for combining it with existing
systems. These findings will be published in a future Foundation
Research Report.
In the meantime, senior managers must gain an understanding of
whatthe real issues are. Object orientation is here to stay.

15

The Butler Cox Foundation
The Butler Cox Foundationis a service for senior
managersresponsible for information management
in major enterprises. It provides insight and
guidance to help them to manage information
systems and technology moreeffectively for the
benefit of their organisations.
The Foundation carries out a programme of
syndicated research that focuses on the business
implications of information systems, and on the
managementof the information systems function,
rather than onthe technology itself. It distributes
a rangeofpublicationsto its membersthat includes
research reports, management summaries,directors’
briefings and position papers. It also arranges
events at which members can meet and exchange
views, such as conferences, managementbriefings,
research reviews,study tours and specialist forums.

Membership ofthe Foundation
The Foundation is the world’s leading programme
of its type. The majority of subscribers are large
organisations seekingto exploit to the full the most
recent developments in information technology. The
membership is international, with more than
450 organisations from over 20 countries, drawn
from all sectors ofcommerce, industry and govern-
ment. This gives the Foundation a unique capability
to identify and communicate ‘best practice’ between
industry sectors, between countries, and between
information technology suppliers and users.

Benefits ofmembership
Thelist of membersestablishes the Foundation as
the largest and most prestigious‘club’ for systems
managers anywherein the world. Members have
commentedon the following benefits:
— Thepublicationsare terse, thought-provoking,

informative and easyto read. Theydelivera lot
of messages in a minimum ofprecious reading
time.

— Theevents combine accessto the world’s leading
thinkers andpractitioners with the opportunity
to meet and exchange views with professional
counterparts from different industries and
countries.

— The Foundation represents a network of
systemspractitioners, with the power to connect
‘individuals with commonconcerns.

Combined with the manager’s owncreativity and
business knowledge, membership ofthe Foundation
contributes to managerial success.

FOUNDATION
1991

 FOUNDATION
Recent research reports
61 Competitive-Edge Applications: Myths and

Reality
62 Communications Infrastructure for Buildings
63 The Future of the Personal Workstation
64 Managing the Evolution ofCorporate Databases
65 Network Management
66 Marketing the Systems Department
67 Computer-Aided Software Engineering (CASE)
68 Mobile Communications
69 Software Strategy
70 Electronic Document Management
71 Staffing the Systems Function
72 Managing Multivendor Environments
73 Emerging Technologies: Annual Review for

Managers
74 The Future of System Development Tools
75 Getting Value from Information Technology
76 Systems Security
77 Electronic Marketplaces
78 New Telecommunications Services
79 The Role of Information Technology in Trans-

forming the Business
80 Workstation Networks: A Technology Review for

Managers
81 Managing the Devolution of Systems Responsi-

bilities
82 The Future of Electronic Mail
Recentposition papers anddirectors’briefings
The Changing Information Industry: An Investment

Banker’s View
A Progress Report on New Technologies
Hypertext
1992: An Avoidable Crisis
Managing Information Systems in a Decentralised

Business
Pan-European Communications:

Threats and Opportunities
Information Centres in the 1990s
Open Systems
Computer Support for Cooperative Work
Outsourcing Information Systems Services
IT in a Cold Climate
Object Orientation
Forthcoming research reportsTechnical Architecture
Downsizing—An Escapefrom Yesterday’s Systems
Visual Information Technology
Strategic Alignment
Butler Cox
The Butler Cox Foundation is one of the services
provided by CSC Index. CSC Index is an
international consulting group specialising in
information technology, organisational develop-
ment and business reengineering. Its services
include managementconsulting, applied research
and education.

Butler Cox ple
Butler Cox House, 12 Bloomsbury Square,

London WC1A 2LL, England
@ (071) 831 0101, Telex 8813717 BUTCOX G

Fax (071) 831 6250
Belgium andthe Netherlands

Butler Cox Benelux bv
PrinsHendriklaan 52

1075 BE Amsterdam, The Netherlands
@ (020) 6 75 51 11, Fax (020) 6 75 53 31

DiweniTee
Butler Cox SARL

Tour Akzo, 164 Rue Ambroise Croizat,
93204 St Denis-Cédex 1, France

@ (1) 48.20.61.64, Télécopieur (1) 48.20.72.58
Germany, Austria and Switzerland

Butler Cox GmbH
Richard-Wagner-Str. 13, 8000 Miinchen 2, Germany

@ (089) 5 23 40 01, Fax (089) 5 23 35 15
Australia, New Zealand and South-east Asia

MrJ Cooper
Butler Cox Foundation

Level 10, 70 Pitt Street, Sydney, NSW 2000,Australia
@ (02) 223 6922, Fax (02) 223 6997

Finland
TT-Innovation Oy

Sinikalliontie 5, 02630 Espoo, Finland
@ (90) 358 0502 731, Fax (90) 358 05022 682

Ireland
RSID @ryetciedinverted

8 Clanwilliam Square, Dublin 2, Ireland
B (01) 764701, Fax (01) 767945

iret AY
RSO SpA

Via Leopardi 1, 20123 Milano,Italy
@ (02) 720 00 583, Fax (02) 86 45 07 20

Scandinavia
Butler Cox Foundation Scandinavia AB

Jungfrudansen 21, Box4040, 171 04 Solna, Sweden
@ (08) 705 83 60, Fax (08) 730 15 67

Spainand Portugal
BBNnou.aey.8

Nunez Morgado 3-6°b, 28036 Madrid, Spain
@ (91) 733 9866, Fax (91) 733 9910

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21

