3
E.

. Object Orientation - BUTLRE

O T L1

" A Paper by Richard Pawson
~ September 1991 |

BUTLER COX FOUNDATION

© Butler Cox plc 1991

Object Orientation

A Paper by Richard Pawson
September 1991

Richard Pawson is a senior consultant with Butler Cox, specialising
in the tracking of emerging technologies and their potential
application within large organisations. He has 14 years’ experience
in the development, launch, marketing and management of
technology innovation. Since joining Butler Cox in 1989, he has
carried out several consulting assignments in this area. He was
joint author of Foundation Report 77, Electronic Marketplaces.

Object orientation is one of the hot topics in the IT industry today.
Its proponents claim that it will revolutionise the way application
systems are developed. Systems development managers have heard
similar claims for other technologies, and are not yet convinced.
In this paper, Richard Pawson explains what object orientation is
in terms that are relevant to commercial systems developers and
recommends a cautious but deliberate approach to adopting the
technology.

Published by Butler Cox plc
Butler Cox House
12 Bloomsbury Square
London WC1A 2LL
England

Copyright © Butler Cox ple 1991
All rights reserved. No part of this publication may be reproduced by any method without the

prior consent of Butler Cox plec.

Availability of reports
Members of the Butler Cox Foundation receive copies of each report upon publication; additional
copies and copies of earlier publications may be obtained by members from Butler Cox.

Photoset and printed in Great Britain by Flexiprint Ltd., Lancing, Sussex.

BUTLER COX FOUNDATION

© Butler Cox plc 1991

FGUNDATION

Object Orientation

A Paper by Richard Pawson
September 1991

Contents

Object orientation is being considered because
traditional development is failing

Object orientation is defined by four core concepts 4
Object orientation shares common features with other
approaches, but remains distinet : 7
The benefits of object orientation can be substantial 9
The costs of object orientation are large and often
hidden 9
Object orientation is still immature, but the range of
tools is growing 10
Object orientation will change the nature of systems
development, not just its efficiency 12
There is one right way and several wrong ways to
approach object orientation 14

Object orientation will eventually
bring substantial benefits, buf
there are large hidden costs

BUTLER COX FOUNDATION

© Butler Cox plc 1991

Object Orientation

Something radical is happening in systems development. It is
called object orientation. Proponents of object orientation argue
that it will be the Copernican Revolution of the systems world:
Copernicus was the first to suggest that the world moved around
the sun instead of vice verse, and his new model ultimately
resulted in a new calendar, the dawn of the Age of Enlightenment,
and the undoing of the authority of the Roman Church. Object
orientation, they say, will result in a new age of information
systems in which applications can be developed rapidly, and in
which the systems department has a much reduced role. In at least
one respect, the analogy is undeniable: the object-orientation issue
is being addressed with almost religious fervour, both for and
against.

Most systems professionals are underwhelmed. They have heard
it all before. Relational database techniques, fourth-generation
languages and CASE were all supposed to be revolutionary. Each
has enjoyed success, but none has changed the fundamental way
in which things are done. Some argue that object orientation is just
anew name for techniques such as entity modelling and structured
programming, which enlightened organisations have been using
for years.

What is the truth about object orientation? Will it change the world
of systems development, or will it fizzle out like a damp squib? Is
it really new? Does it bring real benefits? At what cost? Most
important, does the systems department need to do anything about
it, or is the best strategy simply to wait and see?

We believe that object orientation is a real issue. We believe that
within 10 years, systems development will look more like
the object-oriented approach than like today’s development
approaches. We believe that object orientation could bring sub-
stantial benefits to most organisations, but that the costs of the
changeover are large, and largely hidden. We believe that systems
departments must start to address the issue now, and that there
is a right and a wrong way to go about it. L

In this paper, we attempt to clarify the issues surrounding object
orientation. It would be nice to verify the claims by reference to
user experience, but as yet, there is insufficient hard data avail-
able. That is changing, however. Within the next year, several
large organisations will have completed medium- to large-scale
object-oriented projects for commercial applications. It is therefore
our intention to publish a full research report on this topic at a
future date.

Object Orientation

Object orientation is not new. Its roots lie in the programming
language, Simula, developed in Norway in the 1960s for simu-
lating complex systems such as manufacturing plants. In the early
1970s, researchers at Xerox Parc (Palo Alto Research Center)
employed the same concepts to develop software that could be used
by children. This work resulted in the programming language,
SmallTalk, that is still one of the keystones of the object-oriented
world.

For the next few years, object orientation remained little more
than a curiosity, with just a handful of enthusiasts using it for real
software development. In the mid-1980s, its popularity increased,
particularly for computer-aided design (CAD), for developing
graphical user interfaces, and for embedded applications such as
control systems and avionics. Then, suddenly, in the last couple of
years, the profile of object orientation has risen. Several respected
software vendors are stating that it is the way forward, and some
large user organisations are seriously assessing its suitability for
their mainstream commercial systems development. What has
caused this change?

Partly, the change has been driven by technology. Developments
in high-performance workstations, in image and graphics tech-
nology, and in client-server architectures have all worked in favour
of object orientation, for reasons that we shall examine later. A far
more important driving force, however, is the growing dissatis-
faction with conventional systems development.

Object orientation is being considered
because traditional development
is failing

The malaise has several symptoms. Software development
accounts for an increasing proportion of total systems cost. Most
systems departments have had to get used to a long applications
backlog — one survey suggests that 60 per cent have a backlog of
at least 12 months and 30 per cent of more than 24 months. Most
worrying is the growing proportion of systems development effort
that has to be devoted to software maintenance, reflecting the rela-
tively poor productivity achieved in modifying existing systems.
Peter Keen, director of the Washington-based International
Center for Information Technology, has suggested that every
dollar invested in software development commits four dollars to
subsequent support and maintenance.

In addition, improvement in systems development has not kept
pace with improvement in hardware. Processing power per dollar
has been doubling every two years, and with the emergence of
parallel architectures, that rate could increase. The same applies
to memory and storage, and to a lesser extent, to display resolution
and communications bandwidth. Although new languages and
support tools and wider use of off-the-shelf packages have
improved programmer productivity, this has not been at the rate
needed to keep up with growing user demands and system
complexity.

One cause of this is the fundamental mismatch between the
internal structure of a piece of software and the ‘natural’ structure

Object orientation is not new, but i
it is now gaining more attention

BUTLER COX FOUNDATION

© Butier Cox pic 1991

The problem arises because the
internal structure of a system is
different from the natural
structure of an

i application

BUTLER COX FOUNDATION

© Butler Cox plc 1991

Object Orientation

of the application that it is addressing. When processing power and
memory were very restricted, it was important to represent soft-
ware in the form most convenient for the computer. The process of
converting the natural application structure into this form evolved
into the processes that we now know as systems analysis, program
design and coding. These processes require considerable time and
effort. Moreover, a subsequent change to the application require-
ments — either because there has been a change to the business,
or because there are new user requirements from the system —
often means many small changes to the structure of the software.

For those organisations that are deploying networks of work-
stations and PCs, processing power and storage are in most cases
no longer a critical resource — they represent a decreasing propor-
tion of the total cost of any new system. It is no longer necessary
to distort the natural structure of an application purely to comply
with the constraints on processing power and storage. A radical
approach to systems development is overdue.

Object prientation attempts to address these problems by aligning
the internal structure of a piece of software more closely with the
natural structure of the application. In technical terms, object

Object orientation attempts to align the internal structure of a piece of
software more closely to the natural structure of the application.

1. The natural structure of an appli- 4. The difference between the
cation may be made of entities such approaches emerges when the
as seats, passengers and aeroplanes, application requirements change

with actions upon them

~ 2.In conventional systems, the 5. In the conventional imple-
structure has to be translated intoaset ~ mentation, many parts of the code
of functions and a data structure and data must be altered

3. An object-oriented system attempts 6. In the object-oriented imple-
to preserve the natural structure inside mentation, the scale of alterations is
the computer much closer to the requirements

change
g llem

vy

=]

Object Orientation

orientation achieves this by allowing a higher level of data abstrac-
tion. In plain English, if your business world consists of aero-
planes, suitcases, passengers, pilots and routes, you should be
able to peer inside a developed application and see those same enti-
ties — not merely arrays, pointers, integers, strings and subrou-
tines. Object orientation is not the first attempt at this idea, but
it is the most thorough. We therefore now need to take a look at
what object orientation actually is, and at what it is not.

Object orientation is defined
by four core concepts

Object orientation is a distinct technology; it is not just an alter-
native name for ideas such as modular programming and entity
modelling. Object orientation is defined by four core concepts:
encapsulation, classification, inheritance and polymorphism.
Around these four core concepts, several peripheral ideas have
grown, such as multimedia data formats, but those peripheral
ideas do not constitute object orientation. If a system does not
explicitly support the four core concepts, it is not object-oriented.

An object-oriented piece of software is made up from objects. An
object comprises some data in the form of simple variables,
together with all the processes that can access that data. In object
terminology, processes are called methods. Data is thus said to be
encapsulated with its methods. In an airline reservation system,
a seat object will hold data corresponding to a particular flight, the
position of the seat in the plane, its fare class, and whether it is
assigned or not. The object will also contain methods for assigning
the seat, re-assigning the fare class, and simply for inspecting or
reading the other data.

The methods are activated by sending messages to the object. The
message might be ‘Assign to Mr Smith’ or ‘Change class to
Economy’. The coding of the methods inside the object may look

An object comprises some data, together with all the methods (processes)
that can act upon that data. Objects communicate by sending messages —
they cannot access remote data directly.

An object
Methods
Messages Mothod 1 Method 4 /
from other e —_————
objects ——— —
——
Method 2 Method 5 /
S m— e ———
Method 3 Method & /
—_— = Replies
—— and
=T messages
to pther
Data objects
(instance variables)
& { FOUNDATION

© Butler Cox plc 1991

B shiont 1e 13
nacn opjeet i i

BUTLER COX FOUNDATION

© Butler Cox plc 1981

Object Orientation

similar to the coding of a conventional programming language,
although some object-oriented languages have quite different
syntaxes and capabilities.

The benefit of encapsulation is that it offers total protection of the
data. Because the only way that the data can be accessed is
through the methods in the same object, it cannot be accessed or
updated in a non-standard way. Provided that the message inter-
face is preserved, internal alterations to an object cannot generate
side effects.

The second core concept is classification. This simply means that
each object is an instance of a class. The reservation system will
have a class called ‘Aircraft’, with one instance for every aircraft
in the fleet, and a class called ‘Captain’, with instances for Captain
Schmidt, Captain Jones and so forth. A class can therefore be
thought of as a template that defines both the data (instance vari-
ables) held within objects of that class, and the methods that can
operate on them. Like the record definition in a record-based
database, it saves time and space by minimising unnecessary
duplication.

Every object is an instance of a class, which can be thought of as a template
that specifies the instance variables and the methods.

Seat Aircraft

Class

e
Al

i

Captain Route

T —= |
Instances

The starting point for an object-oriented development will be to
define the classes needed for the application. In line with the
concept of ‘data abstraction’, these classes can be as specific as
necessary — there can be a class for ‘Marketing Campaign’, for
‘Employee’ and for ‘Country’. Classes can also be low-level and
general-purpose, such as ‘Number’, ‘Date’ and ‘Character’. They
can be complex, holding the names of other objects in the form of
a ‘Sorted List’, a ‘Dictionary’ or a ‘Document’. An object-oriented
language may come with a large number of predefined general-
purpose classes, which can substantially reduce the effort needed
to create a new application.

The third core concept is inheritance. Classes are arranged into a
hierarchy, so that a class can have several sub-classes, and each
of these can have its own sub-classes, and so on. Inheritance means
that a class will automatically inherit the characteristics of its

_ super-class (the class immediately above it in the hierarchy). The

characteristics it inherits are the definitions of the data (instance

Object Orientation

variables) and all the methods. Having inherited them, a sub-class
can modify them or add to them.

In the airline reservation system, there may be a class called
‘Ticket’, which will have instance variables corresponding to the
route to be flown, and the total cost. It will have methods to specify
the route segments, and to calculate the total fare. The Ticket’
class may have sub-classes for First, Business and Economy, and
the Economy class will have sub-classes for Apex, Super Apex and
so on. In addition to the data and methods inherited from above,
the Apex class will hold data and methods relating to minimum
booking period, and restrictions on subsequent changes.

Object

Classes are arranged into a hierarchy. Sub-classes inherit the instance variables and methods from above, but may modify
or add to them. A sub-class is created when a specialised version of an existing object is needed. A typical system will
comprise general-purpose classes (such as Number) and user-defined classes (such as Ticket).

|

Ticket Magnitude Collection
First Business Economy Character Number Array S?igfd
Super e
Apex Apex RTW Fraction Real Integer

A sub-class is therefore a specialised case of its super-class. This
is the most powerful feature of object orientation, because it
mimics the way that humans tackle problems — starting with a
general-purpose solution and adding specialised cases and excep-
tions. If a situation arises in an object-oriented system that does
not quite fit the object specification, it is very simple to create a
sub-class. The sub-classes are tightly managed in a hierarchy, and
any subsequent changes to the super-class will still be inherited.

The fourth core concept is polymorphism. This simply means that
different sub-classes can interpret the same message in different
ways. The class ‘Employee’ may have sub-classes for ‘Director’,
‘Manager’ and ‘Cabin Staff. Each can accept the message ‘Pay
Expenses’. The coding of the method to implement that message
will be different for each sub-class, however, reflecting the
different auditing and tax requirements for each category.

Polymorphism is attractive because it reduces the amount that a
programmer needs to know and remember about the different

Polymorphism means that different
sub-classes interpret the same
message in different ways

ER COX FOUNDATION

© Butler Cox plc 1991

“0X FOUNDATION

ic 1991

Object Orientation

Polymorphism means that different sub-classes can implement the same
message in different ways. The method that acts upon the message ‘Pay
Expenses’ will be different for ‘Director’ and ‘Manager’, reflecting the
different auditing and tax requirements.

Pay
expenses

Pay Pay = = |
expenses 7 expenses = = |
‘ ' ’ = =

Director Manafger =

characteristics of various classes. This is particularly apparent in
a multimedia environment: the coding to print a text object, a
graphical object and a bit-map-image object are all very different.
All the programmer needs to know is that each responds to the
‘Print’ message in an appropriate way.

Object orientation shares common
features with other approaches,
but remains distinct

Object orientation clearly has some common features with more
established software development tools and approaches. Struc-
tured programming, for example, attempts to achieve encapsu-
lation through the concept of ‘information hiding’. Most structured
programming languages, however, are not able to enforce this
discipline rigidly. (One exception is the military language, Ada.)
Where it is not enforced, programmers will always be tempted to
bypass the message interface and access the underlying data
directly, often in non-standard ways.

Programming languages that allow the programmer to specify new
data types may be said to have some form of classification, but
these new data types cannot usually be used with the same flexi-
bility as the standard data types that come with the language. In
an object-oriented language, by contrast, there is no distinction
between predefined general-purpose classes and user-generated
classes.

Inheritance has no direct equivalent in other modular program-
ming languages and methods. In modular programming, the inten-
tion is to write general-purpose subroutines with encapsulated
data structures. The problem is that when a situation does not

Object Orientation

' quite fit, a new version of the subroutine has to be created, and
these multiple versions rapidly become unmanageable.

Several concepts have become closely associated with object orien-
tation. We call these ‘peripheral concepts’. For example, object
orientation is well suited to handling multimedia data formats,
primarily because of polymorphism. Another example is graph-
ical development environments. SmallTalk, which was devel-
oped to enable children to work with computers, was the first
language to use a very graphical approach to program design.
A third peripheral concept is event-driven programming.

Existing development technologies, including fourth-generation
languages and CASE tools, are adopting these peripheral concepts
to enhance their power and usability. In the longer term, some of
these existing development technologies may also embody the core
concepts. For the moment, they cannot be considered object-
oriented.

Several ‘peripheral’ concepts, such as multimedia data formats, have
become associated with object orientation. Established technologies such
as CASE and relational database technology are adopting these peripheral
concepts, but not the core concepts of object orientation.

(o)

=
Ourfh‘generatior\ \a“guag

Confusion is also being fostered by vendors whose products are
threatened by object orientation — one example being relational
database systems. Their arguments are beguiling. “Mathemat-
ically, there is a great deal of similarity between objects and rela-
tional structures.” “We are in the process of migrating towards
object orientation. We've already built in the multimedia capa-
bility.” “If you stay with us, you don’t need to worry about object
orientation, because we’ll get you there slowly and painlessly.”
These claims are reminiscent of the reaction of the hierarchical-
and network-database vendors to the emergence of relational
technology.

BUTLER COX FOUNDATION

© Butler Cox plc 1991

The transition from relational fo
object-oriented technology will be
painful and expensive

The re-usable nature of objecis can
reduce systems development time,
and subsequent maintenance

BUTLER COX FOUNDATION

© Butler Cox plc 1991

Object Orientation

We do not believe that relational database technology is dead —
10 years from now, systems development will still owe a good deal
to the relational model. We do not believe, however, that you
can migrate slowly and painlessly from relational database tech-
nology towards object orientation, as some of the relational
vendors are suggesting. Even if the vendors successfully migrate
their products, existing applications will not necessarily migrate
with them. At some point, a painful and expensive transition will
be needed.

The benefits of object orientation
can be substantial

Adopting a truly object-oriented approach to systems development
can bring substantial benefits. Most of these benefits derive from
the re-usability of objects. The idea is that once an organisation
has built a comprehensive library of objects (including both generic
objects supplied with the language and objects specific to its
needs), it should be possible to build most of a new application from
existing objects. Modular programming had the same objective;
object orientation provides the tools for making it work. Encapsu-
lation guarantees that no-one is accessing shared data in a non-
standard way. Inheritance makes it possible to create specialised
versions of existing objects and to keep them within a tightly
managed framework.

Thus, once an object library has been established, object orien-
tation can dramatically reduce both the cost and the timescale of
new systems development. The effect on software maintenance is
likely to be even more marked. Objects and the messages that pass
between them more closely reflect the natural structure of the
organisation, so when the requirements change, it is easier to iden-
tify the changes needed to the software. Moreover, while changes
to a conventional data structure can imply many changes to the
routines that access it (or vice versa), changes inside an object
cannot generate side effects.

A third benefit is portability. Using an object-oriented language
and development environment, it is genuinely possible to write
applications with advanced graphical user interfaces and run them
on other platforms. This means that an application can be devel-
oped on, say, a PC running Windows, and be run on a Macintosh,
or on a Unix workstation running Motif. The disciplines of object
orientation can also improve software quality, especially for
complex systems. This is one reason that object orientation has
proved popular for developing embedded systems, such as control
systems for machinery.

The costs of object orientation are large_
and often hidden

Weighed against these substantial benefits are some substantial
costs and disadvantages. The external investment required is
actually minimal — object-oriented languages and development
environments start from a few hundred dollars and will run on any
reasonably high-performance PC. The real costs of moving over to
object orientation are not initially apparent.

Object Orientation

The first hidden cost is re-education. Learning object-oriented
development is not simply like learning a new programming
language. It requires the analysts and programmers to learn to
look at an application and ‘see’ objects, rather than functions and
data structures. Experience to date suggests that not all develop-
ment staff will be able to make the transition effectively.

Second, there is the cost of establishing an initial class hierarchy.
Getting the higher levels of the class hierarchy right is crucial to
achieving the full set of benefits, yet the process of identifying
these classes is far from intuitive, and so far, there are few well
tested tools and formal analysis methods available.

Third, object-oriented systems may not run as efficiently as
conventional code, but this is increasingly offset by the falling cost
of processing power. Some applications, however, especially those
with a complex structure, can actually run faster with object orien-
tation.

Although object-oriented code is easy to write, initial debugging
can be hard work, because there are no real barriers between the
application being developed, the language and the development
environment. Initiating a trace will reveal all the messages
passing between internal objects as well as those that the
programmer has actively invoked. This situation will doubtless
improve as better tools and techniques evolve. This is therefore an
appropriate point at which to examine the current state of object-
oriented technology.

Object orientation is still immature,
but the range of tools is growing

Although object orientation has been practised since the early
1970s, the range of software tools to support it is still limited. The
range of formal analysis and design methods is more limited still.
Renewed interest in object orientation means that the range of
tools and techniques will grow very rapidly in the next few years.
Quality will inevitably be mixed.

The most important software tool in object orientation is the
language. Strictly speaking, the function of the language is to
specify the instance variables and methods of each object class, and
then, at run-time, to manage the flow of messages between them.
In practice, most object-oriented languages also incorporate a
sophisticated development environment that allows the pro-
grammer, among other things, to browse and inspect the class hier-
archies.

SmallTalk was the first comprehensive object-oriented language,
and in many respects, is still the purest. Several ‘commercial
versions are available. SmallTalk is a powerful language, and
notwithstanding the difficulties of learning the object-oriented
approach, is relatively easy to use. Although conceived for research
purposes, SmallTalk is very suitable for developing technical
applications, and is now being promoted as a viable language for
commercial systems development.

The most popular object-oriented language is C++, which is a set
of object-oriented extensions to the C language. C++ is a hybrid

10

Designing the initial class
hierarchy is a major
hidden cost

Débugging object-oriented systems
is currently more difficult than
debugging conventional

systems

Object-oriented programming
languages allow instance
variables and methods

for objecis to be

specified

BUTLER COX FOUNDATION

© Butier Cox pic 1981

Object Orientation

SmallTalk — still the purest of the object-oriented languages — includes a graphical development environment for browsing
through Ob];ﬁct classes. This screen display shows a few of the standard classes that come with the SmallTalk/V system
from Digitalk.

11:47am

S
ser

Magnitude

Association

Character

Date

Number

Float

| Eroction i
Integer

LargeNegat ivelnteger
LargePositivelnteger

C_o 11 - - = .

| |/ aNumber _
"Answer the result of dividing the receiver by aNumber.”

~ (numerator * aNumber denominator) /
(denominator * aNumber numerator)

language that allows conventional programming to be mixed with
objects. This suggests the possibility of a gradual migration from
conventional coding (assuming the conventional code is written in
C) to object orientation. With hybrid systems like this, there is a
greater risk of incurring the costs of object orientation without the
benefits. However, many large software vendors have chosen the
C++ route, so we can expect to see the range of tools supporting
this language to increase.

Object-oriented databases provide Object-oriented languages provide little support for the sharing of
better support for multi-user objects between several users, either during development or at
development and operation yun-time. This is where object-oriented databases come in. (Dele-
gates visited two object-oriented database vendors on the 1990
Foundation Study Tour and one on the 1991 tour.) Object-oriented
databases provide the same kind of locking, mirroring and secur-
ity features for objects that conventional databases do for data. It
is not necessary to purchase such a database to write object-
oriented applications, but it is desirable if the application is large,
or if it services several users.

R COX FOUNDATION

utler Cox pic 1991

11

Object Orientation

Several vendors now market graphical development environments
that use the object-oriented approach to build applications starting
from the user interface. The most sophisticated of these is
NeXTStep, which comes as standard with the NeXT workstation,
and has been licensed to IBM to run on its RS 6000 series.

An increasing number of application packages are being developed
in an object-oriented fashion. This may have benefited the vendor,
but in most cases, it makes no difference to the user, who sees only
a compiled version of the original code. In some cases, however,
the objects are preserved in the user version, which facilitates
customisation. One example is the ViewStar document manage-
ment system presented during the Foundation’s 1991 Technical
Study Tour, where the object structure of the package makes it
easy for the user to specify document workflows.

Object orientation will change the nature
of systems development, not just its
efficiency

The technology has a long way to go yet, and will doubtless evolve
in form. In the long term, however, object orientation will become
the norm for developing new systems. This holds implications not
just for the efficiency and effectiveness of systems development,
but also for the way systems development is managed.

In conventional development, applications have a discrete
identity — they are specified, analysed, designed and then coded.
They exist as discrete chunks of code, even though they may share
data with other applications through a database.

In a fully object-oriented system, discrete applications give way to
the notion of ‘enterprise modelling’. In its purest form, this means
building a complete simulation of the way that the business enter-
prise functions, using objects. (Remember that object orientation
has its roots in simulation.) Monolithic applications are replaced
by user-interface objects that pass messages to this simulation, to
read and write information, and where appropriate, to change the
operation of the simulation. (Object orientation is well suited to
providing the IT support for redesigned business processes, which
we discussed in Report 79, The Role of Information Technology in
Transforming the Business.) The investment in building and main-
taining this enterprise model may be very large, but the cost and
time needed to build ‘applications’ from this model are very small.

Many organisations will not build a complete and comprehensive
enterprise model, but their systems development will polarise into
building core objects and application interfaces. Core-object
programmers will need to be both first-rate conceptual thinkers
and creative coders, which implies a high level of investment in
education and training. Some organisations will buy in this func-
tion.

Application interfaces, however, will increasingly be built either
by users or by a new breed of analyst/programmers working very
closely with users, and more often working individually than in
teams. The primary skill needed by the analyst/programmer will
be the ability to understand and articulate the needs of the user.

12

An increasing number of appli-
cation packages are developed
using object orientation, and
this can facilitate
customisation

Object-based ‘enterprise model-
ling’ will replace conventional
applications developmeni

BUTLER COX FOUNDATION

© Butler Cox plc 1921

Object-oriented development is
good maitch with a clieni-server
archite

Re-use must be actively
encouraged

BUTLER COX FOUNDATION

® Butler Cox plc 1991

Object Orientation

Unlike today’s arrangement, though, where the systems analyst
passes on the requirement to another specialist for systems design,
in the object-oriented world, he will build the system. Rapid proto-
typing will become the norm — one analyst/programmer working
on-site with users for a few days, building a user interface to the
model and altering it until it does what the users require. In other
words, the big payback from the investment in building the right
core objects is a substantial reduction in the cost of building indi-
vidual applications.

This polarisation between the enterprise model, or core objects,
and the applications that interface to them suggests a good match
between object-oriented development and a client-server architec-
ture. We expect to see a stronger relationship develop between
these two new technologies — something that we first identified in
our Position Paper, New Directions in Client-Server Systems: Find-
ings from the 1991 Study Tour.

Re-use must become a central tenet of systems development.
Development staff will need to be encouraged to re-use existing
objects in preference to creating new ones. When new object classes
or sub-classes are required, programmers must be rewarded for
designing them to be as widely applicable as possible. Commercial
libraries of objects are already appearing, usually dedicated to
particular application areas such as engineering, and this will
increase. Organisations will need to ensure that they are making
full use of such libraries, where appropriate. Internally developed
object libraries will hold considerable value and should be carefully
guarded, or licensed to gain a new source of revenue.

Systems development will be polarised. A dedicated team will develop and
maintain the core objects, possibly in the form of a complete enterprise
model. Individual applications will tap into this model and require little
additional code development. Those applications will be developed either
by end users, or by users working in partnership with an analyst/
programmer.

Application Application

A

Do

A

Application

‘ Systems professional & User

DePede P

13

Object Orientation

There is one right way and several wrong
ways to approach object orientation

In theory, there are several strategies with regard to object orien-
tation. The first is to do nothing — continue with the traditional
approach of functional decomposition at the analysis/design stage,
and a translation of this design into program code. The second
option is cradle-to-grave object orientation — analyse the appli-
cation into an object structure and code it with an object-oriented
language. This is the purist approach.

The other options are all hybrid. In theory, it is possible to under-
take the analysis/design using an object approach, and to imple-
ment the objects using any conventional language such as Cobol.
It is also possible to build an application that is partly conventional
and partly object-based — perhaps with one of the hybrid languages
such as C++, and others that are imminent.

Some vendors are even suggesting that organisations can continue
to undertake analysis/design in a conventional manner, and that
their software packages will somehow transform this into object-
oriented form. We do not believe it.

In its current state of maturity, it is not realistic to suggest that
systems departments should drop what they are doing now and
move across to object orientation, lock, stock and barrel. Even if
an organisation wanted to build a complete object-oriented enter-
prise model, it would probably not be able to find appropriate tools,
methods, or even professional guidance.

The cradle-to-grave approach to object orientation is the best.

World model Analysis and design Implementation

i

i

In conventional development,
analysis/design and implementation
use functional decomposition

it is theoretically possible to design
using objects, then implement in &
conventional language

Many commercial systems will
combine object orientation with
conventional code

Tools that can convert a functional
design into an object imple-
mentation are mythical

BUTLER COX FOUNDATION

© Butler Cox pic 1991

14

Object Orientation

The right approach is to start using object orientation, preferably
on a cradle-to-grave basis, for a few carefully selected applications.
Choose new applications that are small and relatively self-
contained, but that can interface to conventional applications and
databases. The more complex the structure of the application, the
more the benefits of object orientation will show. Above all, pick
applications where there is a strong likelihood that user require-
ments will change.

By testing object orientation on a small-scale, but real, application,
you will be able to evaluate the costs, benefits and implications in
the context of your own organisation. You will be better placed for
a full-scale move into object orientation when the tools and
approaches are sufficiently mature. You will not get to this posi-
tion if you confine object orientation to the IT research department.

We recommend this purist approach for initial forays into object
orientation, because in our view, that is the only way that the
implications for the organisation will become clear. It is not real-
istic, however, to suggest rewriting existing large-scale commercial
systems using pure object-oriented techniques. Most organis-
ations will have to compromise, and compromise is a difficult
strategy to get right.

Accordingly, the Butler Cox Foundation has commissioned a
research project into the practical aspects of object orientation for
commercial systems development. We shall be studying organis-
ations that have undertaken substantial object-oriented projects
to ascertain the degree to which the technology has and has not
lived up to its promises. We shall be examining some of the tools,
together with the design and analysis methods. From that infor-
mation, we shall be drawing up some practical guidelines for
adopting object orientation, and for combining it with existing
systems. These findings will be published in a future Foundation
Research Report.

In the meantime, senior managers must gain an understanding of
what the real issues are. Object orientation is here to stay.

15

The Butler Cox Foundation

The Butler Cox Foundation is a service for senior
managers responsible for information management
in major enterprises. It provides insight and
guidance to help them to manage information
systems and technology more effectively for the
benefit of their organisations.

The Foundation carries out a programme of
syndicated research that focuses on the business
implications of information systems, and on the
management of the information systems function,
rather than on the technology itself. It distributes
a range of publications to its members that includes
research reports, management summaries, directors’
briefings and position papers. It also arranges
events at which members can meet and exchange
views, such as conferences, management briefings,
research reviews, study tours and specialist forums.

Membership of the Foundation

The Foundation is the world’s leading programme
of its type. The majority of subscribers are large
organisations seeking to exploit to the full the most
recent developments in information technology. The
membership is international, with more than
450 organisations from over 20 countries, drawn
from all sectors of commerce, industry and govern-
ment. This gives the Foundation a unique capability
to identify and communicate ‘best practice’ between
industry sectors, between countries, and between
information technology suppliers and users.

Benefits of membership

The list of members establishes the Foundatlon as
the largest and most prestigious ‘club’ for systems
managers anywhere in the world. Members have
commented on the following benefits:

— The publications are terse, thought-provoking,
informative and easy to read. They deliver a lot
of messages in a minimum of precious reading
time.

— The events combine access to the world’s leading
thinkers and practitioners with the opportunity
to meet and exchange views with professional
counterparts from different industries and
countries.

— The Foundation represents a network of
systems practitioners, with the power to connect
individuals with common concerns.

Combined with the manager’s own creativity and
business knowledge, membership of the Foundation
contributes to managerial success.

X FOUNDATION

FOUNDATION

Recent research reports

61 Competitive-Edge Applications: Myths and
Reality

62 Communications Infrastructure for Buildings

63 The Future of the Personal Workstation

64 Managing the Evolution of Corporate Databases

65 Network Management

66 Marketing the Systems Department

67 Computer-Aided Software Engineering (CASE)

68 Mobile Communications

69 Software Strategy

70 Electronic Document Management

71 Staffing the Systems Function

72 Managing Multivendor Environments

73 Emerging Technologies: Annual Review for
Managers

74 The Future of System Development Tools

75 Getting Value from Information Technology

76 Systems Security

77 Electronic Marketplaces

78 New Telecommunications Services

79 The Role of Information Technology in Trans-
forming the Business

80 Workstation Networks: A Technology Review for
Managers

81 Managing the Devolution of Systems Responsi-
bilities

82 The Future of Electronic Mail

Recent position papers and directors’ briefings
The Changing Information Industry: An Investment

Banker’s View
A Progress Report on New Technologies
Hypertext
1992: An Avoidable Crisis
Managing Information Systems in a Decentralised
Business
Pan-European Communications:
Threats and Opportunities
Information Centres in the 1990s
Open Systems
Computer Support for Cooperative Work
Outsourcing Information Systems Services
IT in a Cold Climate
Object Orientation

Forthcoming research reports

Technical Architecture
Downsizing— An Escape from Yesterday’s Systems
Visual Information Technology
Strategic Alignment

Butler Cox

The Butler Cox Foundation is one of the services
provided by CSC Index. CSC Index is an
international consulting group specialising in
information technology, organisational develop-
ment and business reengineering. Its services
include management consulting, applied research
and education.

Butler Cox ple
Butler Cox House, 12 Bloomsbury Square,
London WC1A 2LL, England
= (071) 831 0101, Telex 8813717 BUTCOX G
Fax (071) 831 6250

Belgium and the Netherlands
Butler Cox Benelux bv
Prins Hendriklaan 52
1075 BE Amsterdam, The Netherlands
= (020) 6 75 51 11, Fax (020) 6 75 53 31

France
Butler Cox SARL
Tour Akzo, 164 Rue Ambroise Croizat,
93204 St Denis-Cédex 1, France
o (1) 48.20.61.64, Télécopieur (1) 48.20.72.58

Germany, Austria and Switzerland
Butler Cox GmbH
Richard-Wagner-Str. 13, 8000 Miinchen 2, Germany
= (089)5 23 4001, Fax (089) 5 23 35 15

Australia, New Zealand and South-east Asia
Mr J Cooper
Butler Cox Foundation
Level 10, 70 Pitt Street, Sydney, NSW 2000, Australia
= (02) 223 6922, Fax (02) 223 6997

Finland
TT-Innovation Oy
Sinikalliontie 5, 02630 Espoo, Finland
o (90) 358 0502 731, Fax (90) 358 05022 682

Ireland
SD Consulting
8 Clanwilliam Square, Dublin 2, Ireland
o (01) 764701, Fax (01) 767945

Italy
RSO SpA
Via Leopardi 1, 20123 Milano, Italy
o (02) 720 00 583, Fax (02) 86 45 07 20

Scandinavia
Butler Cox Foundation Scandinavia AB
Jungfrudansen 21, Box 4040, 171 04 Solna, Sweden
= (08) 705 83 60, Fax (08) 730 15 67

Spain and Portugal
T Network SA
Nunez Morgado 3-6°b, 28036 Madrid, Spain
= (91) 733 9866, Fax (91) 733 9910

S

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21

