

Research Report 74, March 1990

The Future of System
Development Tools.

 FOUNDATION

 FOUNDATION |
The Future of System Development Tools

Research Report 74, March 1990

Butler Cox plc
LONDON

AMSTERDAM MUNICH PARIS

Published by Butler Cox pleButler Cox House12 Bloomsbury SquareLondon WC1A 2LLEngland

Copyright © Butler Cox ple 1990
All rights reserved. No part of this publication may be reproduced by any methodwithout the prior consentof Butler Coxple.

Availability of reportslation receive three copies of each report upon publication;lier reports may be purchased by members from Butler Cox.
Membersof the Butler Cox Found:additional copies and copiesof ear!

Photoset and printedin Great Britain by Flexiprint Ltd., Lancing, Sussex.

FOUNDATION
The Future of System Development Tools

Research Report 74, March 1990

Contents

1 Treat the promises made for new system development tools with caution i
There have been continuing advancesin tools 2
These advances haveled to increased costs 4
Thereis still much uncertainty about the future of development tools 6
Purpose andstructure of the report i

2 Pian for the future with L-CASE in mind 9
The potential benefits of I-CASE are considerable 10
Suppliers are beginning to commit to LCASE 12
Standards are being formulated for I-CASE 16
The levels of cost, risk, and commitment associated with I-CASE are high 19
It would be wise to migrate slowly towards I-CASE De

3 Continue to exploit existing tools 2
Continue to use well proven fourth-generation languages 28
Use re-engineering tools to help manage old applications 30
Evaluate the potential of application packages 35

4 Use emerging tools to develop more advancedapplications 38
Object-orientation will be an effective development approach by 1994 38
Rule-based technology will emerge in several forms 44
Other advancesin tool technology will be valuable in particular areas AT

5 Encourage and expand end-user computing 51
End-user tools have met with varied success in the past 51
Appropriate tools are now making end-user computing a valid option 52
It is critical to provide appropriate guidance and support 54

Report conclusion 58

A ManagementSummaryofthis report has beenpublished separately and distributed
to allFoundation members. Additional copiesoftheManagementSummary are available
from Butler Cox.

'OUNDATION
) Butler Cox pic 1990

Report synopsis

This report considers the new types of system developmenttools that are beginningto appear. These include I-CASE, reverse-engineering, rule-based, and object-orientedtools, all of which will, inthe long term, make the development department’s task mucheasier. Manyofthesearestill at an early stage of development, and the claims madefor them should be treated with caution. However,benefits can be gainedifthey areadoptedselectively and with regardfor the future. In summary, our advice is: continueto exploit fourth-generation languages; always consider packagesolutions; plan tomigrate to I-CASE, without yet making

a

fullcommitment to it; use re-engineering toolsto maintain existing applications and as a means of preparing them for an LCASEenvironment; adopt rule-based tools as they mature in the 1990s; and monitordevelopments in other new types of tools as they emerge, particularly tools forexploiting object management, parallel computers, multimedia tools, and tools fordeveloping advanceduserinterfaces.

Chapter 1
Treat the promises made for new system

development tools with caution

All businesses are increasingly dependent on
computer applications. As a consequence, sys-
tems departments are under growing pressure
to produce more efficient applications that con-
tain more functionality, that are morereliable
and more flexible, and that provide access to
greater amounts of information. Furthermore,
development managers are expected to achieve
this with fewer resources and reduced time-
scales. To keep pace with these growing
demands, systems departments rely heavily on
the use of development tools, the capabilities
of which have continually advanced in response
to business demands. These advances, however,
have created somesignificant problemsfor the
development department. Not only are someof
the tools that are currently being used to
develop applications out of date (because they
have reachedthe limits of their capability but
are retained to maintain old applications), but
there is little compatibility between different
types of tools.
Suppliers of development tools are responding
by promising improved tools for use both by
professional systems developmentstaff and by
business users whowill use the tools to develop
their own applications. The suppliers claim that
the new tools will solve many of the problems
currently faced by the development department
in providinga service that is both reliable and
flexible, and in building applications that have
greater functionality. The improvedtools, claim
the suppliers, will be easier to use, which means
that many business users will find it easier to
use the tools to develop their own applications.
Indeed, manyofthe tools will be positioned as
end-usertools. In the development community,
however,there is great uncertainty about the
form that these future tools might take, about
their impact on the development process, and
about the most appropriate timing for their
introduction.

FOUNDATION
© Butler Cox ple 1990

These concerns are not unfounded. As
Figure 1.1 shows, the situation is already
complex, and will become more so in the

Figure 1.1 Over the next five years, existing types
of development tools will combine to
form new ones

Type of tool
Third-generation
languages

1990 1991 1992 1993 1994

Objectoriented third- jue bigenerationlanguages
Object-oriented pro-
gramming systems

| Fifth-generatio
toolkits

Expert systems

Expert system fourth-
generation languages

Data dictionaries

Integratedproject j
| supportenvironments &

Combination of types of tools

widespread use
Tools available and in widespread use

ESS
| Tools becoming available, but not yet in

Tools still available, but no longer in
widespread use

Chapter 1 Treat the promises made for new system development tools withcaution

mid-1990s, with various types of development
tools combining to form enhanced tools and newtypes of tools emerging. Thetools available in
the mid-1990s will be more integrated with each
other and will provide more powerful facilities,
thereby increasing productivity and quality andpermitting the development of more complexapplications.
In the past, the introduction of a new type ofdevelopmenttool was accompanied by promisesaboutthe benefits it would bring. Rarely, how-ever, have these promises been realised. Third-generation languages, for instance, were sup-posed to facilitate ‘programming in English’(Cobol), and ‘automatic programming’ (Fortran).Some fourth-generation languages were sup-posed to remove the need for programmers.Foundation members are concerned that theclaims now being madefor the new tools will,similarly, fail to materialise. They are alsoconcerned about the durability of the new tools,especially in view ofthelevels of investmentand commitment that are required to exploitthem fully and thelevelofrisk involved. In thisreport, we examine the trends, describe thedifferent types of developmenttools likely tobe available in the next five years, and assessthe validity of the claims being made for them.
Weuse the term ‘system development tool’ asa generic term for all the computer-baseddevelopment tools that contribute directly tothe developmentof an application, regardlessof whetherthe user ofthetool is a professionaldeveloper or a business user, This definitiontherefore includesall the different generationsof programming tools, CASE tools, expert-system development tools, and end-usertools.From now onin this report, we use the word‘tool’ in place of the cumbersome ‘systemdevelopment tool’ wherever this definition isintended.
Figure 1.2 showsthe various typesof tools thatare covered by the above definition and incommonuse today, and gives examples of eachtype of tool. In this report, we concentrate onthose tools (both general-purpose and niche)that will have the greatest impact on thedevelopment of applications in the next fiveyears (up to 1995). To keep the scope of theresearch manageable, we have looked at typesoftools, rather thanat individual tools, of whichthere are hundreds available today.

bo

Project-management, planning, and estimatingtools are mostly excluded from the scope ofthisreport because they are management toolsrather than developmenttools. An exceptionismadein Chapter2, however, because manage-menttools are an integral part of the futureintegrated development environment. Whereadvancesin particular tools, like CASE tools,dependon advances elsewhere — for instance,in methodsor standards — we have commentedon these other advances, where appropriate.
There have been continuingadvancesin tools
Because of the increasing demands placed onthe development department by the business,and because of the increasingly serious shortageof skilled systems development staff, toolsuppliers have concentrated much of theireffort on the area in which the greatest gainsare likely to be made — the main-build (orprogramming) stage of the developmentprocess.This is the stage at which the greatest amountof development time and effort is currentlyspent. (The maintenance stage of the appli-cationslife cycle may take up to 60 per cent ofthe time and effort, but this stage can beconsideredto be iterations of the earlier stages,of which the programming stage is one.) As aresult, advances in programming tools haveresulted in significant productivity improve-ments at the main-build stage.

There has not, however, been a smooth tran-sition from one major advance to the next. AsFigure 1.3 on page 4 illustrates, when a newgeneration oftoolis first introduced, the overalllevel of benefit initially falls, until developmentstaff become familiar with the new tool, andprocedures and methods are established. Thelevel of benefit thereafter increases to a pointabovethelevel achieved with the previoustool.As experience is gained with the new type oftool, its limitations are recognised and theincrease in benefit levels off. Eventually, thetype of tool reachesthe limits ofits capability,and a new, more advanced generation isintroduced. This pattern can be clearly tracedin the progress of programmingtools since thelate 1940s:
— Initially, there was no choice other than touse first-generation languages. They were,however, extremely difficult to use because

FOUNDATION
ic 1990

Chapter 1 Treat the promises made for new system development tools with

of the cryptic codes that represented
instructions and storage locations. As the
benefits of using computer systems were
realised, programmers recognised that
developing large applications with first-
generation languages was not only complex,
but also very costly.

— Second-generation languages provided a
more productive meansof developing larger
and more complex applications, with
mnemonic symbols replacing the cryptic
codes, and a widerrangeoffacilities. Second-
generation languages werelater extended by
adding labour-savingfacilities such as macro
functions, code libraries, and subroutine
structures. As the number of computers
within an organisation increased, however,
it becameclear that the applications written _
in a second-generation language for one type
of computer could not be transferred to

caution

another type, and could not satisfy the
growing needsof the business.

— Third-generation languages provided code
that was, in theory, independent of the type
of computer being used. To make their
products more attractive, however, suppliers
of third-generation languages added non-
standard functions to their own products.
These negated the benefit of using a standard
language and meant that many of the
applications could not easily be transferred
to another computer. As the demandsof the
business increased, the limitations of third-
generation languages (the difficulties of
understanding and maintaining the code, and
their limited productivity compared with
fourth-generation languages) were realised.
Fourth-generation languages improved the
productivity of developmentstaff, enabling
applications to be developed more quickly.

 Figure 1.2 The term system developmenttools includesall generations of programming tools, CASE tools, expert-
system developmenttools, and end-usertools

Type of tool Description
First-generation Programmingtoolthat uses a binary format to expressthe application in the
languages form of basic processorinstructions (machine code).
Seco! d-generation Programming toolthat uses slanguages

 mbols and

Third-generation
languages the computeris to implementthe solution.

Fourth-generation
languages

divided intooe ind end:

application in the form of processorinstructions (assembl
Programmingtool that uses a subset of natural language to describe how

term fourth-generationne

Examples
ICL 1900 machine code
Motorola 6800 machine code

ylanguage).
Cobol
PL/1

Computer-aided Tools that automate the techniques on which systems development methods

Oracle*CASE
software engin- are based. Thesetools typically provide somelevelof support for at least IEF
neering tools one stage of development. These tools include analyst workbenches, FOUNDATION
(CASE) application ees and system generators. IEW

Re-engineering ions to be improved by providing facilities — Recoder 2
tools ioredocument, analyse, cture, and/or regenerateapplicati ons|ina Via/Insight

: a standard and consistent manner. 2 ee
Expert-system Include a wide rangeoftools all based on the sdatiniques associated with CRYSTAL
tools knowledge engineering. Thesetools permit the developmentof applications LEVELS

based on the knowledge or know-how of experts, specialists, or technicians. NEXPERT
Comparedwith mostof the tools mentioned above, they are used to express
the problem, notthe solution.

End-user tools Include.awide variety oftools, ranging from simple spreadsheets and«data- Excel
ting tools to development and modelling tools. There dBase

is an increasing overlap”between Sel tools and some of the other
categories mentioned above. : :

FOUNDATION
ic 1990 3

Chapter 1 Treat the promises made for new system development tools withcaution

 Figure 1.3 Programming tools haveall followed acharacteristic life cycle

Level of benefit

 Fourth-
generation

 Third-
generation

Second-generation
b

First-
generation

 1940 1960 1970 1980 19901950

a Initial problems
6 Higher productivity gains
c Limitations realised

Once again, however, fourth-generationlanguages were often specific to a particularhardware architecture, which meant thatitwasstill difficult to transfer applicationsfrom one type of computer to another.Although most fourth-generation-languagesuppliers are working to overcome thisdifficulty, some systems departmentsarestillrecovering from the uncontrolled use of avariety of fourth-generation languages.
Today, the term fourth-generation languagecovers many types of tool, from Telon, apowerful screen-based development toolused by professional developmentstaff, toFOCUS, a development tool and databasemanagement system that can be used equallywell by professional developers and by users,and Mapper, which has been used verysuccessfully by many users, some of whomhave used it to develop very largeapplications. All that these tools have incommonis that they can be used to produceapplications more concisely and rapidly thantraditional third-generation languages, andprovide a better support environment thanthird-generation languages.

As one generation of tools has followed another,other advances have been madein associateddevelopment aids such as compilers, editors,

debuggers, database management systems, andcodelibraries. The netresult is that develop-ment departments now have a wide range oftools and aids to choose from. Most organisationsare currently using both third- and fourth-generation languages (see Figure 1.4). Some arealso using second-generation languages inspecialised areas, such as realtime systems,whereoperational efficiency is critical or wherethere is a need for special hardware.
These advances haveled toincreased costs
The benefits deriving from each generation oftool have not been achieved without actual andpotential costs being incurred by systemsdepartments. The actual costs arise from theincreasingcosts of adopting a new generationof tool and from the resulting increasedcomplexity. The potential costs arise from therisks associated with adopting any newtoolswhenbusiness success dependsso heavily onthe applications developed with them.
Increasing costs
Althoughthecost of any single type oftool hasincreased overtime, the cost of adopting thelatest generation of tools has increaseddramatically, from hundreds of dollars in 1960for a Cobol development environment(editor,compiler, and linker) to hundreds of thousandsof dollars in 1990 for a CASE developmentenvironment. Evenif inflation is taken intoaccount, the cost of adopting a new generationof tools today has increased 100-fold since the1960s. Furthermore, each new generation oftools has typically required an increasingamount of additional hardware,training, andconsultancy. The cost of these has also increasedsubstantially.
Managing increased complexity
Although each new generation of toolsduplicates most of the functions providedbyitspredecessor, it is usually incompatible with itspredecessor. The newertools are therefore firstused to develop new applications, while theolder tools continue to be used to maintainexisting applications. Most organisations, forexample, will maintain Cobol code for at leasttwoyears (and possibly 10 or more years) afterthey stop using it as the main development

FOUNDATION
© Butler Cox pic 1990

\

Chapter 1 Treat the promises made for new system development tools with
caution

1940s 1950s

Expert systems

EB Emerging
fi Available/in use

|| Passed peak usage
& Still in use in specialist areas
Figure 1.4 Today, development departments have a multitude of tools to choose from

Onetype oftool Two typesof tool

At least three
LaySood ole

1980s

1960s 1970s

language. Because of this, many organi-
sations now use a mixture of third-generation
languages, fourth-generation languages, some
elementary CASE tools (being used as main-line
development tools), and a few other develop-
ment tools, such as assembler languages and
expert-system shells, which are used for
specialised applications.
This complex situation was confirmed by the
results of a recent survey of membersof Butler
Cox’s Productivity Enhancement Programme
(PEP). Thirty-eight PEP members used over 60
different fourth-generation languages and
application generators (tools that generate
applications, typically in Cobol, from a series of
definitions and screen-based forms), 36 of which
were used by only one organisation. The most
popular tool — FOCUS, from Information
Builders Inc — was being used by only seven
organisations. In most cases, using a wide
variety of old and newtoolsis the only way the
systems department can meet the demandsof
the business for new applications, but con-
trolling such a development environmentplaces
a heavy burden on systems management.

. FOUNDATION
© Butler Cox pic 1990

The managementtask is further complicated by
the lack of standardsfor linking either the tools
or the applications produced with them, and by
the overlap or gapsin the functionality provided
by different tools. The problems caused by the
lack of standards are particularly acute for
applications written in fourth-generation
languages. Although there are many fourth-
generation languages available for a particular
development environment, there are often very
limited facilities for linking the applications
written in each language. The gaps in the
functionality provided by different tools means
that it is not possible to use a set of tools that
covers the complete applicationslife cycle.

It is the responsibility of the systems department
to ensure that the tools available within the
development departmentare carefully selected
to minimise the gaps and overlap, and that they
are usedto best effect. Advice on these aspects
of systems management has been provided in
previous Foundation Reports and PEP Papers
— notably Report 47, The Effective use ofSystem
Building Tools, Report 67, Computer-Aided
Software Engineering (CASE), Report 69,

Chapter 1 Treat the promises made for new system development tools withcaution

Software Strategy, and PEP Paper10, Making
Effective Use of Modern Development Tools.
Accepting business risks
As a result of the dramatic increase in the useof computersin all areas of business in the pastdecade, organisations have become betterinformed and moreefficient, but they have alsobecome more dependent on certain criticalapplications, and hence, on the tools that wereused to develop those applications. The riskassociated with adopting newtools is thereforeconsiderable. The marketplace for developmenttools is highly volatile, with many suppliersmerging, going out of business, or failing tosupport or improve their products.
Therisk is increased becausethe time taken toachieve someof the potential benefits has alsoincreased with each new generation. WithCobol, benefits could be achieved within monthsof the programmers being trained, because thebenefits derived directly from using thelanguage; with CASE tools, some benefits, suchas the ability to re-use code and designs, dependon the availability of a library of code modules,and it may take several years to accumulatesuch a library. Thereis therefore a risk that anew (andbetter) tool will emerge before the costof the existing one has been fully recovered.
Thereis still much uncertaintyabout the future ofdevelopment tools
As in the past, the new generation of tools nowcomingonto the marketis promising to resolvecurrent problems. The difference is that severaltypes are emerging,all promising to address amuch wider range of specific problem areas.Somesuppliers are starting to integrate theirtools both with their existing products, and withthose from other suppliers, to create anintegrated development environment, whichhas the added advantage of eliminating the needfor an organisation to depend ona single toolsupplier. Other suppliers are working onproducts that are not part of an integrateddevelopment environment, but that promise toprovidefacilities for developing applications toexploit emerging technologies, such as parallelcomputing. At the same time, increasinglypowerful end-usertools are emerging. Thesewill

provide easy-to-use facilities that will allowusers to develop a wider range of applications,and that will therefore encourage the growthof end-user computing.
Integrating the development environment
In an integrated development environment,tools provide support over the whole appli-cationslife cycle, and use a database to storeall the various forms of developmentinfor-mation and data. This type of environmentiscommonly knownas integrated computer-aidedsoftware engineering (LCASE). There is cur-rently a lot of uncertainty about the futuredevelopment of I-CASE and about the claimsmadefor I-CASEtools. This is not surprising asmany suppliers are promising that the samebenefits will be available from differenttools,and the standards committees cannot agree ona single standardforthe interface between thevarioustools and a developmentdatabase. Manysystems departments are also unsure about howto migrate from their existing tool set andapplications portfolio to an LCASE developmentenvironment.

Providing new types of developmentfacilities
Outside the LCASE development environment,many other advancesin tools are promisingfacilities to meet current needs for sophisticateddecision-support systems, powerful user-friendly interfaces, and easily maintainableapplications. One advance that has recentlyreceived considerable attention is the object-oriented approach to development and theassociated tools and application developmentmethods. It promises not only to increaseproductivity by makingit easier to re-use code,but also to reduce the effort involved inmaintaining applications (because the ‘objects’represent things in the real world). The object-oriented approach to developmentrequiresstaffwhoare skilled in identifying objects and therelationships between them.Its applicability tobusiness-computing applications is still to beproven, however.

Enhancing the capabilities of end-usercomputing
Advancesin end-user tools have been hastenedby the introduction of fourth-generation

FOUNDATION

© Butler Cox pic 1990

Chapter 1 Treat the promises made for new system development tools with

languages aimed specifically at business users,
and an increased willingness by users to develop
their own applications. Most organisations
already findit difficult enough to strike the right
balance between mandating what users do for
themselves and providing them with complete
freedom on the applications that they develop.
If the right balance is not struck, organisations
will find themselves either having to deal with
the consequences of poorly developed and
incompatible systems,or failing to gain the full
benefits of a valuable resource because users
refuse to become involved in development.If
implemented and supported correctly, the new
tools will result in very effective and productive
use of the end-user resource.

Purpose and structure of the report
Allof these developments will have a significant
impact on the development environment. What
is unclear is when they will occur, what form
they will take, and what development
departments should be doing now to prepare for
them. The fact that more than 180 Foundation
members responded to the questionnaire sent
out at the beginningof the research, the biggest
response everreceived,is an indication of the

caution

level of concern and interest that members have
in this area. Without doubt, the scale of change
in the types of tools available in the next five
years, and in the benefits achievable, will be
greater than ever before. To manage this change
successfully, most development departments
will have to address two critical questions:
— Migration: How does the development

department migrate from its existing set of
tools and applications to the emerging tools?

— Exploitation: How does the development
department ensurethatit is in a position to
exploit the emerging tools as soon asit is
advantageous to do so?

The purpose of this report is to help systems
directors to answer these questions, and to
provide advice on when and which typesof tool
to adopt to serve the business to best effect.
In researching this report and predicting the
trends in the market, we sought the viewsof
those suppliers of the tools whoarelikely to be
the market leaders by the mid-1990s and of
several experts in the field of systems
development. (The research team and the scope
of the research are described in Figure 1.5.)

Figure 1.5 Research team and scope of the research

The researchfor this report was led by Kevan Jones, a
consultant with Butler Cox in London, who specialises in
systems development and has experience in the use of
modern developmenttools. The work for this report
included a worldwide research programme, which
spanned the period from April to December 1989. Kevan
Jones wasassisted, in particular, by:
— Simon Forge,a principal consultant in Butler Cox’s

Paris office, with considerable experiencein the field
of systems development.

— Rob Moreton, an associate of Butler Cox, who is a
principal lecturer at the City of Birmingham
Polytechnic, and who specialises in systems
developmentissues.

— Lothar Schmidt, a senior consultant in Butler Cox's
Munichoffice, with extensive knowledge of the
European software market.

Further research was carried out by John Cooper
(Australia), Antonio Morawetz (Italy), and Per Hansen
(Sweden), all associates or consultants with Butler Cox,
and John: Schmidt, a senior manager from Ernst & Young
in the United States.

We conducted an extensive review of the published
literature and carried out detailed interviews with tool
suppliers in Europe and the United States. More than 180
Foundation members replied to the questionnaire sent out
at the beginning of the research, and we subsequently
held a series of workshops in the United Kingdom and
France to gather more detailed information on particular
aspects of advances in the development-tool market.
In addition, we conducted interviews with various experts
in the field in France, Germany, Austria, Italy, Sweden,
Australia, and the United Kingdom. We should like to offer
our special thanks to Russell Jones, editor of the Systems
Development Monitor, David Gradwell, founder of Data
Dictionary Systems Limited and Rapporteurfor the
International Standards Organisation Committee for
Information Resource Dictionary Standards, and Dr Gilles
Kahn, a Research Director at INRIA, France, who
specialises in developmentaids.
We also drew on the experience of experts within Butler
Cox, on our consultancy work in the systems development
area, and on the Butler Cox Productivity Enhancement
Programme (PEP) database, which is now the most
comprehensive source of information in Europe about the
characteristics of systems developmentprojects.

FOUNDATION
4990 _

Chapter 1 Treat the promises made for new system development tools withcaution

From our research,it is clear that one of the
most important of the advances is the LCASE
development environment. This promises toprovide a stable and flexible development
environment that will allow systems depart-ments to mix and match tools from differentsuppliers. The adoption and implementation ofan I-CASE development environmentwill havea major impact on the development department
and will provide many benefits. It will not,however, be the solution to all developmentproblems. Currently, it is not clear what forman L-CASE development environmentwill take,who the major suppliers will be, or to whatstandards they will conform. In Chapter 2, welook at the major suppliers and players in thedeveloping I-CASE market and provide guidanceon the gradual adoption of I-CASE products.
For most development departments, an I-CASEdevelopment environment will provide aneffective means of developing many of theapplications required, but such an environmentwill not be fully available for several years. InChapter 3, we look at the steps thatorganisations can take in the meantime, withoutcreating barriers to the subsequent smooth

migration towards an LCASE developmentenvironment.
Significant advancesin tools are also occurringoutside the I-CASE development environment,and these should not be ignored because they,too, will provide benefits. In Chapter 4, wedescribe these advances and identify the toolsthat should be exploited.
Manyof the advances occurringin thefield ofdevelopmenttools will mean that the tools willbe easier to use, both by professional developersand by businessusers. Chapter 5 is concernedwith the very important area of developmenttools that can be used by business users. Thepotential growth in end-user computing, and thebenefits that can be gained from it, areenormous. End-user computing is already wellestablished in some organisations. In others,however,thereare often barriers preventingitfrom being fully exploited. In this chapter, weshow how advancesintools that can be usedby business users can overcome these barriersand encourage the growth of productive end-user computing, provided that the tools areproperly introduced and supported.

FOUNDATION

» Butler Cox pic 1990

Chapter 2
Plan for the future with I-CASE in mind

Most development departments are currently
operating in a far-from-idealsituation. They are
under increasing pressure from the business to
provide more sophisticated applications, with
improved development productivity, but the
tools that they have available do not providefull
coverage of the applicationslife cycle, nor are
the different tools usually either compatible or
integrated with each other (see Figure 2.1,
overleaf). The lack of an integrated set of tools
meansthat applications may be of uncertain or
poor quality and that considerable effort may
be needed to provide automated support for the
whole of the applications life cycle. LCASE
(integrated computer-aided software engineer-
ing), a development environment that supports
a set of integrated tools, promises to provide a
solution to these problems.
Indeed, there is convincing evidence that
LCASE development environments, while still
in the very early stages of development and
unlikely to reach maturity before the beginning
of 1992, will eventually be widely adopted.
Early users of semi-integrated CASE tools are
already demonstrating their undoubted poten-
tial, suppliers are beginning to bring IL-CASE
products to the market, and standardsare being
formulated to ensure that there is order in the
market as it develops. It should, however, be
acknowledged that the adoption of a complete
LCASE development environmentis expensive,
and risky while the market is still in an
embryonic stage of development. Furthermore,
it requires a high level of commitment if the
potential benefits are to be realised. Until
LCASE matures and becomes more firmly
established, it is therefore prudent to plan for
migration towards it, not making a full
commitmentto it yet, but leaving the path clear
for its eventual adoption.
The term LCASEis used to describe

a

setof tools
that provides an integrated and semi-automated

 © Butler Cox ple 1990

support environment for the full applications
life cycle. This consists of the definition of
business requirements, the analysis and design
stages, the automatic generation of the
application, testing, and the maintenance of
operational systems. Each of these stages will
be supported by a range of integrated tools.
Suchtools will, for example, help to ensure the
completeness of design, analysis, documenta-
tion, and testing, and will automatically
generate code, databases, and test data. As a
result, they will help to improve productivity
and quality. An I-CASE development environ-
ment will also provide a means of analysing,
supporting, and maintaining applications that
were originally developed outside that
environment.
There are three basic elements to an IL-CASE
development environment, as the bottom half
of Figure 2.1 shows. The functional boundaries
between these basic elements vary from
supplier to supplier, but the elements may
generally be defined as follows:
— The LCASE systems development tool set

will provide the tools that are required at
each stage of the applications life cycle.
These will consist mainly of modified
versions of the tools in use today — such
as fourth-generation languages and CASE
tools — that interface to the CASE data
dictionary and fit into the I-CASE
framework (see below).

— The LCASEframeworkwill provide both a
standard interface to which all the tools
must conform, and a means of supporting
the project team at every stage of
developmentvia a commonuserinterface.
The framework can beeither a standard
data dictionary interface, or a layer of
software that provides the interface
betweenthetools and the data dictionary.

Chapter 2 Plan for the future with I-CASE in mind

 Figure 2.1 There is a considerable difference between today’s tools and I-CASE

The current situation: Fragmented, incompatible tool set

Systems developer

 {
Common user interface

 Analysis
Documentation

The future: Integrated CASE (I-CASE)

Systems developer

 Common user interface

system development tool setB Data dictionary

O Too! framework
The framework is sometimes also known as The potential benefits of IL-CASEthe integrated project-support environment are considerable(IPSE).

— The L-CASEdata dictionary will be the store Although there are no complete I-CASEfor all development information, for all development environments available today, thestages of the applicationslife cycle. It will potential benefits are considerable. I-CASEtherefore support the flow of information promises to improve the quality of applications,between the various life-cycle stages. The to increase productivity and usability, and todata dictionary is also known as the re- reduce dependence on individualtool suppliers.pository, encyclopaedia, or information Experience of using CASEtools, which will formresource dictionary system (IRDS). part of the LCASE development environment,

FOUNDATION10
© Butler Coxple 1990

Chapter 2

shows that they are already improving the
quality of applications, and hence, their
reliability. Such increases in quality will result
in improvements in productivity, particularly in
the maintenance stage of thelife cycle.

Improved quality
The data dictionary lies at the heart of L-CASE
and serves as the meansof passing information
automatically from one tool to another. By using
the dictionary in this way, the errors often
introduced when an analyst or programmer
changes from onetool to another, or uses a tool
to implement a paper-based specification, are
eliminated.
An LCASE development environment also
provides an effective means of communication
between development staff and users. This is
particularly so at the analysis and design stages,
where systems developers and users can work
together to develop the specification, using the
interactive screen-based analysis and design
tools. This will result in problems being resolved
at the design stage, not at the programming
stage. In turn, this will result in applications that
are a better fit with the users’ needs.
The use of the LCASE data dictionary as the
central store of all developmentinformation also
means that commondefinitions and routines can
be used by different applications, thus improv-
ing quality (and productivity) becauseit will be
easier to re-use existing code, and ensuring
greater compatibility between different appli-
cations.

Increased productivity
Increased productivity in the maintenance of
applications will result from improved quality,
becauseless time will be spent removing errors
introduced at the main-build stage. Productivity
at the main-build stage will also increase
because it will not be necessary to respecify
information already stored in the dictionary,
thereby reducing the opportunities for intro-
ducing newerrors. Once information has been
stored in the dictionary by one of the I-CASE
tools, developers can be certain that that
information can be used without modification
by anyofthe othertools. Increased productivity
in the analysis, design, and development of
applications will result from increased

Plan for the future with LCASE in mind

automation and greater re-use of design
information.
The I-CASE data dictionary will also increase
productivity by providing developmentstaff
with access to all past applications. If this
informationis well organised, developers should
easily be able to locate designs or code that are
similar to those required for a new application.
Re-use of designs or code in this way will
obviously improve productivity.

Some automated code and application
generators have been available for several
years. During thefirst two years of the 1990s,
more will be introduced and they will become
more sophisticated, making it possible to
generate applications and test data auto-
matically from the output of the analysis and
design process. They will be used to construct
applications, reports, and screen layouts, largely
removing the needfor traditional programming.

Report-generator and screen-paintingtools will
makeit possible for a developer, or a business
user with knowledgeof the application, to con-
struct complex screen layouts with icons,
buttons, and pull-down menus, in a matter of
minutes. These report generators will form part
of the tool set in the I-CASE development
environment, dramatically improving the pro-
ductivity of constructing applications. Figure 2.2,
overleaf, showsthe stages in the construction
of ascreen layout, using Fourth Dimension from
Analyses Conseils Informations (ACI), which
took three minutes to construct. Fourth
Dimension also allows screen layouts and
reports based on various standard formats and
data definitions to be generated automatically.
Standard-format screens can be generated in
seconds with this option.

Greater ease of use

While the use of tools in the I-CASE develop-
ment environment will automate many of the
more mundaneorrepetitive tasks involved in
development, the developer will still have to
make complex decisions concerning the use of
the development methods and the appropriate
tools. The I-CASE development environment
will provide appropriate guidance to the
developer and easy-to-use interfaces to the
various tools that support the wholelife cycie.

11

Chapter 2 Plan for the future with LCASE in mind

Figure 2.2 Powerful |-CASE automationtools will

improve productivity

These layouts were created using the screen-painting facilityprovided by the application generator, Fourth Dimension, fromACI.
 “_€ file Edit Environment Design font style Layout Colors

Layout: Client input
‘Client Informat]

cept) ©Cancer)

 The control buttonsareinitially positioned on the screen andthe text title is added.
 "_@ file Cait Environment. Design font Style Layout Colors

ayout: Cent Inputoe]ae = aeChent Information
act ERE]

Chent mens

 Namber (EE
‘Company DivisionSite

Cancel)Creer) Ct Each data field can then be defined on the screen, usingPop-up windows,and the appropriate text is then added.
 “_& file Edit Environment Design font Style Layout ColorsSSSlayout: ent ot —————————

De
el

 Client Information

Clene Yawemal Contact [FER] [,,Numter [EE] saws GET] |‘Company: fDivision 10SiteCountry 150Name EPhonePosition 200cm | 35050 eo ise 30 eo Soo, 0 ot oyIe Thefinishing touches can be added by highlighting the fieldsand options that are important.

Expert systems embedded in the LCASEdevelopment environment will provide accessto a knowledge base about the developmentprocess and will provide guidance or advice,when required. These ‘smart’ L-CASE develop-ment environmentswill also have the ability toadd to, or modify, their knowledge base, with

the assistance of the user, to reflect the latestmethods or procedures. Using such anenvironment to automate a development taskwill reduce the number of human errorsintroducedinto an application and thus improvethe quality of the delivered application. SmartLCASE tools will also help to improve theoperational performance of applications byproviding developers with advice about themost efficient data structures and coding.
The I-CASE development environment will alsoprovide a consistent user interface fordevelopment staff, probably based onwindowing techniques, whichis independentofthe tool being used. This will reduce the timeit takes to becomefamiliar with new tools, andthus increase development productivity. It isimportant to remember, however, that theseadvantages are not restricted to an I-CASEdevelopment environment.
Reduced dependence on tool suppliers
In the future, an LCASE data dictionary willstore all data relating to past, current, andfuture projects in a standard manner (andindependentof mostofthe tools used), whichmeansthat organisations will be less dependenton a particular tool supplier. In effect, it willbe possible to plug tools into the LCASE toolframework, or indeed, unplug them, as andwhen required, with little impact on theapplication base. The exception is where thetool stores proprietary informationin the datadictionary, such as non-standard code. Toachieve true independence, however, willrequireall tool suppliers to conform with thesame standard forstoring information in a datadictionary.

Suppliers are beginning to committo I-CASE
While a fully functional LCASE developmentenvironmentis unlikely to be available beforethe beginning of 1992, many tool suppliers arealready offering semi-integrated CASE tools(a set of CASE tools that provide coverageover a large portion of the applications lifecycle). These include Information EngineeringFacility (IEF) from Texas Instruments and JamesMartin Associates, FOUNDATION IntegratedEnvironment for Software Engineering from

FOUNDATION
Butler Cox pic 1990

Chapter 2

Andersen Consulting, IEW from Ernst &Young
and Knowledgeware Inc, and CASE* from
Oracle Corporation. As products like these
mature, they will form the basis of LCASE
development environments. Someorganisations
are already using these tools andarestarting to
reap the benefits. EBES, a Belgian utility
company, implemented the IEF tool set in 1988.
Its experience is described in Figure 2.3.
Suppliers are, however, taking different
approaches to developing the basic components
of LCASE, and currently fall into one of three
groups. The first group comprises hardware and
software suppliers who are cooperating to
produce software for an I-CASE development
environment. The second group comprises
independent software suppliers, and the third
group comprises suppliers of development
methods, who are working to provide the
improved versions of their products that are
essential for the effective use of I-CASE.

Plan for the future with IL-CASE in mind

Cooperating hardware and software
suppliers

Several of the major hardware suppliers have
realised the importance of an I-CASE
development environment (in particular, its
potential to sell additional hardware), and have
announcedtheir commitmentto it. Rather than
compete with the established CASE suppliers,
they have promised to provide a data dictionary
and a ‘standard’ framework in which to
integrate the CASEtools and othertools that are
available today.

IBM
In September 1989, IBM announcedits I-CASE
development environment, called AD/Cycle,
which provides a standard development
environment that complies with IBM's Systems
Application Architecture (SAA). Within this
developmentenvironment, there will be a DB2

EBES
EBESis a privately owned company that produces
electricity and distributes electricity, gas, water, and cable
TV to the northern part of Belgium. It has a systems
development department with a total of 100staff. Of
these, 40 are primarily involved in developing applications
(financial, personnel, materials handling, and customer
information systems) and are organised by business area.
The other 60 provide support to the users of the 2,000
terminals in an IBM mainframe environment.In the past,
EBESsuffered from the same problems as most
development departments; it had a large maintenance
load and an applications backlog that was continually
growing.
A company-wide strategic-planning study drew attention to
the need for more rigorous information planning, and
recommendedthe introduction of a computer-aided tool to
improve the applications-development process. In March
4988, after evaluating various products, EBES decided to
adopt the information Engineering Facility (IEF) tools set
and its associated Information Engineering Method (IEM),
from Texas Instruments/James Martin Associates.
After some success with a limited pilot project, EBES
realised the full implications of adopting sucha toolset.
To achieve the potential benefits in quality and
productivity, the systems department would have to
change its development methods, the development
approach, hardware, and the organisation structure itself.
EBES therefore carried out a further study to define an
environmentin which the methodology andits associated
I-CASE tools could be effectively and efficiently used. It
resulted in the developmentof a model of the company,

OUNDATION

Figure 2.3 Users of integrated CASEtools are reporting early successes

which grouped the business areas into 14 natural
‘clusters’. These are the basis on which the long-term
architectures of the company’s information systems,its
hardware strategy, and the organisational implications of
such changes, are assessed.
One year after completing the pilot-testing phase, the
company has developed three applications with the IEF
tool set and methods. They have taken about the same
amountof time and effort as applications using traditional
developmenttools and methods. EBES believes, however,
that the learning phase is now complete, and that future
developments using the newtoo! set will take much less
time and effort. Furthermore, the applications developed
with IEF are of high quality because the developers were
able to concentrate on the business aimsof the appli-
cations, rather than on their technical features. Several
complete areas of the business have been analysed in
preparation for using IEF to develop further applications,
and ambitious plans have been made in manyareas.
Although EBES spent only a matter of months learning
how to usethetoolset, it took a further year to
understandthefull implications of introducing such a
fundamentally new approach to development. EBES has
shownthat, if correctly planned and managed, the
introduction of such toolsets will result in immediate
benefits in terms of quality, and in productivity benefits
within six to 12 months. The tool set will not, however,
provide all the benefits on its own; changes also have to
be made in development methods and the development
approach, andin various aspects of the organisation
structure.

13

Chapter 2 Plan for the future with LCASE in mind

repository (data dictionary), a tool framework
(the Repository Manager), and numeroustools
supplied by IBM and other software suppliers.
Thirty-five suppliers have so far committed to
providing tools that will be compatible with
AD/Cycle. The three suppliers providing themajor elements of the tool set are Knowledge-ware, Index Technologies, and Bachman
Information Systems Inc.
Although the repository is far from complete,IBM has very ambitious plans to have a workingversion of AD/Cycle available by July 1990.Expertsin the field, however, do not expect tosee AD/Cycle appear until well into 1991, andthey expectthe initial version to be a very basicproduct.
Digital
Digital has an -CASE strategy similar in somerespects to that of IBM. Several of the basicproducts are already available and integratedwith Digital’s data dictionary, Common DataDictionary Plus (CDD/Plus), which wasreleasedat the end of 1988. Digital’s main thrust,however,is with its object-oriented interfacebetweenthetools and the data dictionary. Thisinterface, known as ‘a tools integrationstandard’, is expected to be available inmid-1990 and will provide an integrated project-support environment. Currently, DECdesign, afront-end analysis and design tool, can be usedto load high-level design information into thedata dictionary, but it is still necessary for aprogrammertotranslate the design informationinto detailed implementation logic for Digital’sVax Cobol generator. There are plans, however,to improvethelevel of integration in the nearfuture. As with IBM, there is considerablecollaboration with other tool suppliers — Digitalcurrently has agreements with 20 different toolsuppliers.
ICL
Although ICL is not a major internationalhardware supplier, its products in the LCASEarea are very advanced. ICL has an establishedset of integrated tools in the form of QuickBuild,a set of cooperating products for themanagement of information and the rapiddevelopment of applications. The basic pro-duct consists of Data Dictionary System (DDS),a fourth-generation language (ApplicationMaster), an application and database generatorsuitable for use in the early stages of

14

development (Automatic System Generator), aquery language (Query Master), a reportinglanguage (Report Master), various otherdevelopmentaids, anda development method.DDSis the most technically advanced data-dictionary product available on the market.
Overthe next few years, ICL plans to enhancethe QuickBuild set of productsso that it includesa three-tier data-dictionary structure, as shownin Figure 2.4. This structure includes theAdvanced Development Dictionary (ADD), fromthe-Sema Group, which complements ICL’s ownDDS, providing a distributed data-dictionarysystem across both ICL and Unix hardware. Oneof the benefits of such a configuration is thathigh-performance transaction-processing appli-cations can exploit the IDMSX database onamainframe, and management informationsystems ordistributed applications can be basedon either a mainframe or minicomputersexploit-ing Ingres. ICL expects the basic facility of theADD,acting as a local dictionary supporting theDDScorporately, to be available in the middleof 1990. In addition, ICL is currently talking toseveral independenttool suppliers with a viewto integrating various tools with its LCASEdevelopment environment.

Independent software suppliers
Independent software suppliers are alsodeveloping tools that will ‘fit into’ an LCASEdevelopment environmentor than can evolveinto full -CASE products. Manyofthe suppliersof existing CASE tools or semi-integrated CASEtools are already well established, with theirproducts being used by many organisations.Some of the most prominent are OracleCorporation, Computer Associates, Cincom,Software AG, Cortex, Ernst & Young, and TexasInstruments and James Martin Associates.Figure 2.5, lists some of these, with details oftheir products, the hardware on which they run,and the coverage they provide over theapplicationslife cycle.

Oracle Corporation offers an ‘open’ type ofsemi-integrated CASE product, called CASE*.This can be used on a wide range of hardware,from IBM 370-type mainframes down.The datadictionary, CASE*Dictionary, is based on anOracle database and can be accessed via avariety-of predefined routines or by using IBM’sSQL, the industry-standard database-accesslanguage. Thereis also a variety of tools, such

 FOUNDATION
© Butler Cox pic 1990

Chapter 2 Plan for the future with I-CASE in mind

Figure 2.4 ICL is aiming to provide a hierarchy of data dictionaries

Corporate computer/data dictionary
ICL VME mainframe
IDMSX/Ingres
Data Dictionary System (DDS)

t y

Strategic planning
Project management Unix
Analysis and
development work-
benches Ingres

Departmental computer/data dictionary

Advanced Development Dictionary (ADD) i
 Analysis workbench v

Local computers/data dictionary/databases
Personal computers/powerful workstations

IngresDevelopment data dictionary/production database

7
Oracle CASE* Many mainframes

Corporation and PCs
ore De " CorVision M :

Ernst & Young IEW IBM mainframes
and PCs

TexasInstrumenis/
James Martin
Associates — Figure 2.5 Established suppliers are already offering semi-integrated CASE products

Feasibility
study

Coverage of the applicationslife cycle

 Analysis/
design build

Project
Maintenance management

as CASE*Designer and CASE*Generator, that
provide the developer with a flexible and
powerful development environment,and inter-
faces to a wide range of third- and fourth-

FOUNDATION
20 Butler Cox ple

generation languages. The Oracle CASE*
product set supports various structured
development methods including CASE*Method
and IEF.

15

Chapter 2 Plan for the future with LCASE in mind

Methods suppliers
There are many applications-development
methodson the market today, each used almostexclusively within national boundaries. In theUnited States, the Yourdon method fromYourdon Incis the most popular. In the UnitedKingdom, SSADM,a derivative of Learmonth &Burchett Management Systems’ LBMS SystemDesign Methodology (LSDM), is the most popularbecauseof its mandatory use in the governmentand public sectors. Merise occupies a similarposition in France. In West Germany, mostmethods are developed in-house. In theNetherlands, the Niam method, and inItaly, the Daphne method, are growing inpopularity.
The fragmentation of the marketis compoundedby the differencesin the relationships betweenthe methods and tools (CASE,third- and fourth-generation languages, and so on). Some methodsare embedded in a tool — such as IEF fromTexas Instruments/James Martin Associates.Others — such as SSADM — are quiteindependentof the tools. Two programmesarecurrently underway that promise to helpimprove the situation for organisations thatoperate internationally and to increase thecoverage of the life cycle provided by thevarious methods:
— The 12 countries in the European Com-munity are discussing the possibility ofproducing a Euro-method. It wouldprobably be a combination of SSADM andMerise, with elements of Niam. Althoughthis is unlikely to appear for severalyears,it will be of crucial importance to pan-European organisations, and of increasinginterest to all organisations as 1992approaches.
— The SSADM Research Centre in the UnitedKingdom has set up a scheme wherebytoolsuppliers can assess the complianceof theirproducts with SSADM.Theresults of thecompliance tests will be published. If thisschemeis a success,it will provide potentialbuyers with guidance on which toolscomply with the method, and it mayencourage suppliers of other methods to dolikewise.
Early in 1990, LBMS acquired Michael JacksonSystems Ltd. LBMS is now working towardsmerging its method, LSDM, with Jackson

Structured Programming. This will enable therealtime version of LSDM to be brought to themarket 12 months earlier than originallyplanned. LBMSis planning, subsequently, toinclude the Prompt project-managementmethod in the merged method.

Standards are being formulatedfor I-CASE
Although many suppliers are producing thebasic components of an LCASE developmentenvironment, progress towards integratedproducts has been slow, partly because of thelack of commonly agreed standards. Animmense amountof work is now being carriedout worldwideto define the various standardsrequired for an I-CASE development environ-ment, in an attempt to ensure that thecomponents of I-CASE will fit together withminimaleffort. It is too early to predict whichstandard, or standards, will prevail. Over thenext two years, as manyas four may emerge —those defined by the International StandardsOrganisation (ISO), those defined by theAmerican National StandardsInstitute (ANSD,the de facto IBM standard, and the de factoDigital standard. By the mid-1990s, some ofthese will merge to form standards incorporatingthe best features of each.

Most potential LCASE suppliers are alreadyreleasing statements of intent of future com-pliance with standards, but some data dictionaryproducts and CASEtools are being introducedthat do not comply with any of the standards.If a full LCASE development environmentis toemerge, suppliers and users must back thestandards committees by contributing to thedevelopment of the standards, and adoptingthem whentheyare defined. Failure to do socould result in the creation of several LCASEdevelopment environments, based on pro-prietary standards controlled by the suppliersof the software or hardware. Developmenttoolswill thenbe restricted to a particular proprietaryI-CASE environment, thus limiting the potentialbenefits to be derived from LCASE.
Standards need to be created inthree areas
Standardisation is needed in three areas beforean ‘open’ CASE development environment canbe achieved:

FOUNDATION

© Butler Cox pic 1990

Chapter 2 Plan for the future with I-CASE in mind

— Thelogical form of the information held in
the data dictionary, and the means of
accessing and manipulating it, so that
different tools can use and share the
information.

— The means of passing information between
dictionaries, some of which may have been
created to optimise performance, and some
to divide information logically.

— The interface between the I-CASE frame-
workandthe tools, so that the different tools
can easily be ‘plugged in’ to the LCASE
development environment.

The logical form of information in the data
dictionary and theinterface to it
Workis being done by the standards committees
in both the United States and Europe to define
the logical form of the information in the
data dictionary and the interfaces to it.
ANSI has released its X3.137-1988 standard,
known as the Information Resource Dic-
tionary System (IRDS) Command Interface
and Panel Interface. This standard is more
concerned with the interface than with the
form of information that will be required within
the data dictionary.

A second standardin this areais currently being
defined by the ISO. Also knownas IRDS,it is
concerned with an overall set of standards for
the interface to the data dictionary, as well as
standardsfor the forms of information that will
be held within it. A working draft of this
standard is due for release in 1991/92.

The means of passing information
between dictionaries
Through its IRDS Export/Import project, the ISO
is also developing standards that will makeit
possible to move the contents of one data
dictionary, andits definitions, to another. These
standards will overcome the difficulties
associated with multiple data dictionaries, and
make it possible to use a hierarchy of
dictionaries, in the form illustrated earlier in
Figure 2.4. Workis also being donein this area
by the Electronic Design Interchange Format
(EDIF)/CASE group in the United States. To
date, the EDIF/CASE group has provided only
an outline of the functions that such a standard
would require.

FOUNDATION
© Butler Cox ple 1990

The interface between the I-CASE framework
and the tools
Manyresearch projects in Europe, the United
States, and Japan are attempting to define a
standard for the I-CASE framework:

— The European Community’s Esprit pro-
gramme(EuropeanStrategic Programmefor
Research and Development of Information
Technology) has concentrated on the
development of a Unix-based software-
engineering standard, knownas the Portable
Common Tool Environment (PCTE). This
standard is now complete, and, in essence,
forms a layer between the tools and the
operating system. More than 500 man-years
have beeninvested in developing the PCTE
standard, in producing various imple-
mentations of PCTE, and in promoting it
as a European (and possibly worldwide)
standard.

— The PCTEstandardis also being used by the
Atmosphere (Advanced Techniques and
Methods of System Production in a Hetero-
geneous, Extensible, and Rigorous Environ-
ment) project within the Esprit II work
programme for Advanced Systems Engi-
neering Environments. This project aims
to develop a standard framework within
which existing methods and tools can be
integrated, and is expected to take aboutfive
years to complete. It currently involves 38
contractors from 13 nations. The main
partners are listed in Figure 2.6.

— The Alvey programmewasset up in 1983 by
three UK government departments, British
industry, and academia, in response to
increasing overseas competition, and in

Figure 2.6 There are seven main partners in the
Esprit Atmosphere project aimed at
producing a standard development
framework

Organisation Country_
ASSOC CAP SESA INNOVATION “France
Bull SA
GEC
Nixdorf Computer AG
Philips Gloeilampenfabrieken NV
Société Francaise de Génie Logiciel

(SFGL)
Siemens AG

1

Chapter 2 Plan for the future with LCASE in mind

18

particular, to the Japanese Fifth-Genera-tion Computer Project. The programme had
the objective of stimulating British IT
research through collaborative projects. InJanuary 1988, the Alvey Directorate wassubsumed into the new Information
Engineering Directorate of the Department
of Trade and Industry. Many Alvey projectsare now complete, and several arestillunderway. Between 1983 and 1987, $33million ($52.8 million) was committed toresearch and development into variousaspects of software engineering, par-ticularly integrated project support environ-ments (IPSEs). Several commerciallyavailable products have been developed asa result of early work on two IPSE projects,Aspect and Eclipse. The IPSE 2.5 Projectis dueto finish in early 1990. Someof theresearch from this and other projects willbe carried forward and exploited by theEuropean Software Factory project as partof the Eureka programme, whichencourages industry-led projects withEuropean Community and other Europeanpartners.

A project in the United States, sponsoredby the US Department of Defense, hasdeveloped the Common APSE (AdaProgramming Support Environment)Interface Standard (CAIS). CAIS wasfirstdeveloped in 1982 to resolve the in-compatibility between Ada developmentenvironments in the American Army andNavy. Although CAIS has some very highlyregarded features,it isjudged by the PCTEcommunity to be three years behind thework being done in Europe.
In Japan, the Sigma (software industrialisedgenerator and maintenance aids) projectwas established in the mid-1980s andinvolves more than 190 software com-panies. Its aim is to develop a commonsupport environmentfor developers all overJapan, thereby improving productivity andquality and increasing the sharing ofinformation among developmentstaff. Theproject is due to finish in the middle of1990. Sigma has twodistinct elements: astandard software development environ-ment and a networked system forinformation exchange. In the context of

I-CASE, the former is of greaterimportance, although it is not as com-prehensive as other developments in theUnited States and Europe. The develop-ment environment is based on a Unixworkstation running a standard set of 50integrated tools. The Sigma products maybe available in Europe before the end of1990. (Delegates on the Foundation’s StudyTour of Japan in 1986 met with ProfessorOhno, Chairman of the Sigma system_ development committee and one of thefounders of the project. Details of hispresentation can be foundin the 1986 StudyTour Presentation Summaries.)
Both PCTE and CAIS havetheir origins in thetechnical computingfield and were developedfor Unix environments. So far, they have hadlittle impactin the commercial computingfield,but this will change as Unix becomes morepopular in the commercial field and as moresuppliers and organisations see the benefits ofthese standards. Currently, the PCTE and CAIScommunities are assessing the possibility ofmerging the two standards to form one commonstandard, taking the best features from each.
Most suppliers intend to comply withthe standards
Hardwaresuppliers are issuing statements ofintent of future compliance with the variousI-CASE standards, and software suppliers arepromising to conform with those hardwaresuppliers’ products. We were, however, unableto identify any group or organisation responsiblefor verifying the extent to which suppliers are,in fact, conforming to these standards.
IBM,Digital, and ICL (the three major hardwaresuppliers who have developed, or are in theprocess of developing, LCASE products) havealready committed to conforming to somedegree to either the ANSI and/or the ISO IRDSstandard:
— IBM has acknowledgedthatits RepositoryManager/MVS (the AD/Cycle data dic-tionary) does not fully conform to the ANSIIRDSstandard.It does, however, providemost of the services and capabilitiesrequired for compliance with the standard.In fact, the functions provided by the

FOUNDATION

© Butler Cox pic 1990

Chapter 2

entity-relationship model exceed those
required by the ANSI standard.

— To try to ensure the ‘openness’ of its
product, Digital has submitted its tools
integration standard to the various
standards organisations as a proposed
standard for all I-CASE development
environments. The term ‘open’ meansthat
the Digital LCASE environment will support
other tools and the development of
applications for other hardware and
software environments.

— ICL’s Data Dictionary System alreadyfulfils
the general requirements of the ANSI TIRDS
standard andhasfacilities in areas covered
by the first draft of the ISO IRDS
framework.

Most independent software suppliers are
releasing statements of intent to conform to at
least one of the hardware suppliers’ data-
dictionary or CASE framework standards.
Oracle, for instance, will conform to whichever
standards lead the market (which may result in
its products complying with more than one
standard), and IEF will conform to the IBM
standards for AD/Cycle.

The levels of cost, risk, and com-
mitment associated with I-CASE
are high
Although the potential benefits of a complete
LCASE development environment are con-
siderable, the levels of investment required are
significant, and as with any area of IT in the
early stages of its growth,the risks are high. In
addition, to exploit the full potential of I-CASE,
organisations need to make a substantial
commitment of time and effort, both to cope
with the changes required to incorporate LCASE
into the development environment, and to
manage the complex environmentthat will be
created by having to use LCASE as well as
traditional development methods and tools.

I-CASE will be costly and will require
additional hardware
Although no complete CASE development
environment yet exists, the cost of imple-
menting currently available CASE tools
indicates the level of investmentthatis likely

* FOUNDATION
©Butler, Cox ple 1990

Plan for the future with LCASE in mind

to be required. In Report 67, Computer-Aided
Software Engineering (CASE), we quoted the
experience of one organisation that had spent
$1.34 million installing and implementing an
analysis and design CASE tool for 30
development staff. The total cost of creating an
I-CASE development environment for the same
number of staff will be higher than this,
probably $2 million or more, excluding the cost
of additional hardware and thecost of loading
details of existing applications into the data
dictionary.
Most potential I-CASE suppliers agree that the
typical hardware configuration used for
developing applications today is insufficient
for an I-CASE development environment.
Figure 2.7, overleaf, showsthe typical hardware
configuration thatis likely to be required by a
large organisation for an I-CASE development
environment and for running the applications
once they have been developed. (Note,
however, that additional hardwareis required
only for developing applications in an I-CASE
environment, not for running them as well.)
For a smaller organisation, or an organisation
with a smaller requirement for bespoke
applications, a simpler hardware configuration
would be adequate, with PC-based CASE tools
and standalone workstations. This type of
configuration will usually cost less than
mainframe-based CASE tools, but will provide
limited facilities for the developmentof large
or distributed applications. A more complex
configuration that allows the dictionary (or
dictionaries) to be distributed will enable larger
organisations to maximise the usage of their
various computers and reduce some of the
pressures on the main development machine
and dictionary.
The introduction of I-CASE will hasten the trend
towards powerful networked workstations.
Today, CASE-tool suppliers perceive the
personal computer, rather than the dumb
terminal, as the device that will increasingly be
used by development staff, but the basic PC
available today cannot provide the facilities that
will be required for a full I-CASE development
environment. A typical developer using an
LCASEtool will require a large, high-resolution
colour screen, access to fast, high-resolution
printers and plotters, sufficient processing
power and memory(at least 4 megabytes) to

19

Chapter 2 Plan for the future with LCASE in mind

Local production systems|

5 Local database

 =
=I Powerful work-

hl station/PC for
production

Figure 2.7 The ILCASE development environment requires a complex hardware configuration for developing andrunning applications
 Local development systems

=

fa Local |-CASE data dictionary

Local production systems=
Powerful workstation/PCI =a

Li

al for production

Fal Local database

Local development systems
=]!

Powerful workstation/PCfor development

 Powerful work-
station/PC for
development

Local |-CASE data
dictionary

drive these devices, and probably at least 100megabytesof disc storage. The workstations willalso need to be networked so they can accessa centrally controlled dictionary and so thatdevelopers can intercommunicate with eachother. This type of workstation is availabletoday (the PS2/70, for instance), but costsseveral times as much as a basic PC.
In practice, most organisationsare likely to use

20

powerful networked workstations for theL-CASE development environment and PCs forother non-I-CASE development tools. PCs,rather than powerful workstations, will also beused as the user interface for most of theoperational systems developed in the LCASEenvironment, because the processing power,storage, and screen resolution available withPCs will be perfectly adequate for mostapplications.

FOUNDATION
©Butler Cox ple 1990

Chapter 2

An immature I-CASE marketplace
leads to high risks

Adopting I-CASE todayis risky becausethe cost
of the products (and of implementing them)is
high, the products are unproven, and standards
are not, as yet, well defined. Until the standards
issues are resolved, organisations have two
options. Those who purchase hardware from a
single major supplier whohas issued a statement
of intent to conform to a particular standard can
select tools that conform to the same standard.
For others, choosing the ‘open’ CASE tools and
other non-CASEtools that are emerging will be
the least risky approach, because these will not
commit them to a particular LCASE develop-
ment environment.
Most of the semi-integrated CASE products
available today, which could evolve to become
ECASE products, have at least one of the
technical shortcomings discussed below. While
these are not necessarily equally important to
every organisation, the shortcomings of today’s
products will need to be overcome before
ILCASE can become established as a really
effective development environment.

Lack offull life-cycle support: Thefull benefits
of LCASE cannot be achieved unless the tools
provide full support over the wholelife cycle.
If full coverage is not available, it will be
necessary either to transfer information to and
from tools outside the I-CASE environment, or
to use non-automated methodstofill in the gaps.
Therearestill, for instance, very few methods
or tools for automatically converting logical
designs into physical designs, few tools with -
powerfultesting facilities, and few with flexible
reporting facilities based on windowing
techniques and graphical displays. In each case,
it will not be possible to use the data dictionary
to ensure consistency and accuracy, thereby
increasing the probability of introducingerrors.
Difficulty of a distributed development
environment with a centralised data
dictionary: In any I-CASE development
environment, several developers will need to
interact with the data dictionary at the same
time, and the hardware and software must
allow this to happen with reasonable response
times. Problems may arise if the dictionary is
held centrally on one computer, and many
believe that a distributed data dictionary is the

Plan for the future with I-CASE in mind

only way of overcoming these problems. The
precise way in which the dictionary is
distributed will depend on the individual
organisation. Thecritical issue, however, is how
the dictionary is updated and how information
is controlled asit is passed from onepart of the
distributed dictionary to another.
Lack ofcontrolfacilitiesfor a distributed data
dictionary: With a multi-user distributed data
dictionary, there must be control facilities to
prevent the same information being updated
simultaneously, by several users, and to provide
adequate recovery, integrity, and file-locking
features. These issues are being addressed by
the IRDS Export/Importfacilities and the work
of the EDIF/CASE group, but the techniques
will need to be improved to facilitate the use
of multiple versions of multiple dictionaries
stored in a variety of hardware and software
environments. Existing CASE tools provide only
a limited level of version control, if any, for
distributed data dictionaries.
Lack ofsupportfor different computer systems:
Most organisations will need to run applications
on different computer hardware and/or in
different software environments. Even if an
organisation currently has a single hardware
supplier, it should consider ‘open’ CASEtools,
so that the choice of tools does not preclude the
use of other hardware in the future. None of
the promised I-CASE environmentswill provide
complete ‘openness’. Even some of the ‘open’
tools available today provide only a very limited
choice of hardware with which they can be
used.
Lack ofsupportfor group working: Most CASE
tools available today provide very good support
for individual developers. The real benefits of
CASEand LCASE, however,will arise from large
projects involving teamsof developers. The tools
must therefore provide good support for groups
of people, in particular to facilitate inter-
communication between membersof a develop-
ment team.
LCASE will require a high level of
commitment
Adopting and implementing an L-CASE develop-
ment environmentwill havea significant impact
on the development department because the
LCASE tools provide automated support for,

21

vy
Chapter 2 Plan for the future with LCASE in mind

and thus have an impact on, the whole
applications life cycle. Adopting an LCASE
developmentenvironmentwill probably resultin changesnot only to the set of tools used, butalso to the level of management required, to theorganisational structure of the developmentdepartment, and to the development approach,methods, and standards used within thedevelopment department, as these are allinextricably linked. A decision to adopt an L-CASE development environment shouldtherefore not be made without recognising thehigh level of commitmentthat will be requiredto make these changes.
Most experts expect that an LCASE develop-ment environmentwill makeit easier to developcore corporate and departmental applicationsbecause such applications have large areas ofcommonality. The process of managing thewhole development environment will, however,become more complicated because it will stillbe necessary to support, manage, and controlthe tools and applications that cannot beincluded in the LCASE environment. In general,it will be necessary to establish differentprocedures for the LCASE and non LCASEenvironments.
One of the major differences of an I-CASEdevelopment environment will be in the lifecycle of an application. Figure 2.8 shows thedifference between the typical life cycle usedtoday and that required by an LCASE develop-ment environment. Thetraditionallife cycle issupported by various methods and

_

tools.However, the information thatis passed fromonestage to the nextis typically in the form ofa documentthat has to be manually loadedintoany tools that support later stages. Also, withthe traditionallife cycle, small enhancementsand the maintenance of applications tend to betreated as different activities, not necessarilyfollowing all the stages of thelife cycle.
The changesin thelife cycle that will be broughtabout by an LCASE development environmentare significant. The data dictionary will act asthe medium for passing information from onetool orstage to the next, and maintenance andsmall enhancements will have to follow thesame life-cycle stages as the original designand build. This will have the effect of changingthe traditional development life cycle fromthe ‘waterfall’ model (shownin the top half of

Figure 2.8) to the cyclic process shown in thebottom half of the figure.
The changein thelife cycle required by L-CASEwill have an impact both on the developmentapproach and on the methods used. We havealready seen how the methods suppliers areenhancing their existing products so they canprovide full coverage of the applicationslifecycle, and we can expect this process tocontinueas I-CASE development environmentsbecomeestablished.
The changesto thelife cycle brought about byL-CASEwill also result in better control of themaintenance process, which in turn, will resultin the development of more manageableapplications. With the traditional life cycle,development departments may have goodintentions to keep the documentation of thevarious applications upto date. However, otherpressures usually result in changes made toprogram code not being reflected in the analysisand design documentation. Moreover, thechangesare often not fully tested. This not onlymakesthe application more difficult to maintainin the future, because the documentationis outof date, but it can create a need for furthermaintenance, because the broader implicationsof the change — those that can be determinedonly by assessing the original analysis and designdocumentation — can be missed.

In the I-CASElife cycle, all work, whetherit isnew development, enhancement, or main-tenance,will follow the analysis, design, build,and test cycle, and will be enforced by thedevelopment approach. The documentation willbe updated automatically at each stage,resulting in more manageable applications.
It would be wise to migrateslowly towards I-CASE
We have seen that while an LCASE develop-ment environment promises considerablebenefits, the costs, risks, and level of com-mitment required are also very significant,because I-CASEisstill in the very early stagesof its development. Since no complete I-CASEdevelopment environmentwill be available until1992 at the earliest, we recommend thatorganisations begin to migrate towards L-CASE,taking care not to create barriers to itssubsequentadoption, but not yet making a full

: FOUNDATION
© Butler Cox pic 1990

Chapter 2 Plan for the future with ILCASE in mind

Traditional
life cycle

New application or majoriL amendment

 Analysis E

|-CASE life cycle
2

Documentation eo

s=
Documentation

Documentation
and code

Figure 2.8 The developmentlife cycle in an I-CASE environment differs markedly from the life cycle that iscommon today

Test d

ae
Ss

Documentationand code

New developments and all amendments

 Analysis

Minoramendment

Maintain

Documentationand code

© Butler Coxpic 1990

FOUNDATION 23

Chapter 2 Plan for the future with IL-CASE in mind

commitment to it. In migrating towards an
LCASE development environment, organisa-
tions should identify where I-CASE will be most
beneficial, selectively adopttools to fit into the
environment, and define the data models that
will need to be loaded into the CASE data
dictionary.

Identify where I-CASE will be most
beneficial
An LCASE development environment will notcompletely replace the need for other tools,particularly those that are very technicallyadvanced andthose that are required for specialor one-off applications. (Developments in suchtools are described in Chapter 4.) LCASE toolswill be particularly suitable for the largercorporate or departmental applications, whichwill tend to share commonfeatures with pastapplications, and wherethe facilities of theLCASE data dictionary can therefore beexploited. A US surveyof over 650 CASE users,carried out in December 1988, confirmed thetrend towards using CASE tools for largerapplications. Figure 2.9 summarises the resultsof this survey. However, our research foundseveral organisations that were experiencingdifficulties with using CASEtools for verylargeprojects. Care must therefore be taken inmatching the capabilities of the tools with thesize of the project.

Figure 2.9 Growth in the use of CASE tools will bemost marked in the developmentof largecorporate or departmentalapplications,where the powerof the data dictionarycan be exploited

Typeof application

Corporate =

Departmental a
Small pilot =

100 200 300
Numberof organisations

mes 1988
Mmmm

=

Predicted 1990
(Source: Sentry Market Research, Westborough,Massachusetts)

Selectively adopt tools to fit into theI-CASE environment
Organisations will migrate towards an I-CASEdevelopment environment by selectivelyadopting various tools such as applicationgenerators, analyst workbenches, and so on. Inselecting these tools, systems departmentsshould be careful not to make a prematurecommitmentto any single LCASE developmentenvironment, nor to commit to several in-compatible tools that will restrict subsequentmigration towards L-CASE. In Report 67, Com-puter-Aided Software Engineering (CASE), weprovided guidelines for the selection of CASEtools. These guidelines, which are summarisedin Figure 2.10, can also be used for selecting andadopting the tools that will allow a smoothmigration towards an ‘open’ I-CASE develop-ment environment. The main steps in theselection and adoption process are:
— Identify the needs: Assess and analyse thebusiness needs for maintaining existing

Figure 2.10 CASEtools should be selected accordingto agreedcriteria so that they maysubsequently beintegrated intothe I-CASE environment

Product criteria Supplier criteria
General
Provenreliability
Easeofinstallation
Complete technical anduser documentation

The company
Financial strength
Commercialstability
Reasonable market share
Goodrelationships with__ other CASE-tool suppliers
Broad customer base andgeographic coverage

| todevelopthe prod
Environment
Support of acceptable
hardware bases
Ability to work within
acceptable software

Support
Acceptable level of
Manpowerdevoted to
customer support
Provision oftraining environments Provision of customisingAppropriate multi-user supportsupport Good response toAbility to interface with other Problems and queriesenvironments

24

FOUNDATION

© Butler Cox pic 1990

Chapter 2 Plan for the future with LCASE in mind

applications and developing new applica-
tions. This will identify critical business
areas where an I-CASE environment could
be exploited. Also assess the effectiveness
and efficiency of the existing development
environment. This will identify areas
(development methods, analysis tools, and
so on) where improvements are required
and can be provided by an I-CASE environ-
ment. Do not adopt LCASEfor its own sake;
there must be an identifiable business need
and suitable applications.

— Obtain commitment: Gain the commitment
of senior management (who will have to
agree to the funding required), of develop-
mentstaff (who will haveto use the tools),
and of the user community (who will be
involved in adopting an I-CASE develop-
ment environment). Maintain this com-
mitment by ensuring all those involved in
the process are aware of the plans and
timescales.

— Phase the adoption of I-CASE: Identify the
embryonic L-CASE environmentthat is most
likely to meet current and future needs, and
most likely to match the organisation’s
hardware environment. Select the tools
that will meet the business and application
needs andwill allow a smooth migration to
the chosen L-CASE environment. Selecting
tools that either use a common database
management system as the repository, or
conform to data dictionary standards, will
allow the data stored by a tool to be
transferred to, or accessed by, othertools.
To start with, however,it may be necessary
to develop in-house software to overcome
a lack of compatibility between the
different tools.

— Implement andassess the tools: Tools should
first be used on a pilot project to develop
an important andrealistic application (but
not onethatis critical to the success of the
business). The pilot should be of relatively
short duration — certainly less than one
year. The pilot-application team (develop-
mentstaff and users) should be welltrained
and skilled in the use of the tools, and
committed to the concepts of I-CASE. The
results of the pilot should be assessed so
that ways of improvingthe useof the tools
can be identified, and the future use of the

FOUNDATION
Butler Cox pic 1990

tools be encouraged. When implementing
the tools,it is also important to assess them
carefully by identifying the measures that
can be used to determine if the tools are
performing as expected.

Identify the data model(s) that will need
to be loaded into the I-CASE dictionary
An I-CASE development environment will be
ideally suited to the developmentof large, core
applications. Many such applications will,
however,already have been developed, and the
main concern will be howto transfer them to
the I-CASE development environment so that
they can be maintained and enhanced. Re-
engineering tools are promising to help in this
area although,at present, none of them take the
code and data descriptions of an existing
application and create the system design
information that will need to be loaded into the
I-CASE data dictionary.
Over the next two years,a full set of tools for
re-engineering existing data descriptions and
program code will probably be introduced. (A
detailed description of re-engineering tools is
given in Chapter 3.) These tools will makeit
possible to extract the high-level analysis and
design information from existing applications
and automatically load it into the I-CASE data
dictionary. The I-CASE development environ-
ment can then be used to recreate the appli-
cation. Thus, the tools will soon be available to
enable existing applications, developed using
traditional tools and techniques, to be converted
to the LCASE environment.
The most time-consuming and complex part of
the re-engineering processwill be building the
data model(s) for the existing databases. The
data model(s) give the standard definition for
eachpiece of information that will be stored in
the data dictionary. Correctly defining the data
model(s) will ensure that each piece of
informationis held only once, and thus,that it
is gathered andstored in a consistent manner.
Without the assistance of re-engineeringtools,
the task of defining the data mode\(s) forall the
various (and often fragmented) databases
associated with an organisation’s existing core
applications will be exceedingly difficult. In the
meantime, however, organisations should begin
to identify the applications that will need to be

25

Chapter 2 Plan for the future with LCASE in mind

transferred to the CASE development en-
vironment, should start to define the high-leveldata model(s) that will need to be stored in thedata dictionary, and should work to achieve
some conformity between the variousdatabases. The task of defining the high-level
data model(s) is very time-consuming, however.By starting now, organisations will develop agood understanding of the various datamodel(s), and once the LCASE developmentenvironmenthas beenfully implemented, theeffort of loading the data model(s) into theI-CASE dictionary will be minimised.

Organisations should prepare for the intro-duction of I-CASE now by following the advicegivenin this chapter. Nevertheless, they shouldrecognise that LCASE will not, by itself, provideall the benefits and increases in productivityrequired to satisfy business needs in the nexttwo to three years. In the meantime, mostorganisations will therefore need to continuetoexploit their existing tools, make effective useof the more advanced tools now becomingavailable, and encourage and make effective useof énd-user computing. These areas are coveredin Chapters 3, 4, and 5 respectively.

FOUNDATION

© Butler Cox pic 1990

Chapter 3
Continue to exploit existing tools

We demonstrated in the previous chapter that
the adoption and use of CASEtools is part of the
migration path towards an I-CASE development
environment. A survey of Foundation members
at the end of 1989 revealed that just under 70
per cent are currently using CASE tools, and
over the next three years, over 90 per cent
expect to be using them (see Figure 3.1). This
is an indication of the increasing level of
confidence that members havein the ability of
CASE products to provide significant benefits.
CASE tools will not, however, provide the
productivity improvements that are required in
the short term to deal with the pressures facing
development departments. First, most CASE
tools are specifically aimed at the development
of new applications, while most of the current
workload is for the maintenance of existing
applications. Second, the CASE tools currently
available are simply not as productive as some

fourth-generation languages. (Recent analysis
of the details of nearly 350 projects submitted
by members of the Butler Cox Productivity
Enhancement Programme revealed that pro-
jects on which CASE tools such as analyst
workbenchesand report and enquiry generators
were used had a lower productivity rating —
that is, a lower rate of code production — than
projects developed without CASEtools.)
This places development departmentsin a very
awkwardsituation. The tools that they need to
migrate towards a better development environ-
ment in the medium to long term are unable to
providethelevelof productivity that they need
to cope with short- to medium-term develop-
ment pressures. To overcome this problem,
development departments will need to continue
to exploit existing, well proven, fourth-genera-
tion languages in developing new applications,
start to use the newerre-engineering tools to

by 1992

Type of tool
CASEtools

wummmeEnd-1989
mmm 8(992

(Source: Survey of Foundation members)
Figure 3.1 Over 90 per cent of Foundation members expect to be using CASE and fourth-generation-language tools

10 20 30 40
Percentage of Foundation members

50 60 70 80 90 100

FOUNDATION
© Butler Cox plc 1990 27

Chapter 3 Continue to exploit existing tools

maintain and enhance their existing appli-
cations, and assess the potential of application
packages as a means of reducing the de-
velopment workload.

Continue to use well proven fourth-
generation languages
For several years, there was uncertainty about
whether fourth-generation languages had a
long-term future. This uncertainty arose be-cause of the problems associated with earlyfourth-generation languages — such as their lackof flexibility and the operational inefficiency ofthe applications developed with them. Therewasalso a fear that emerging CASE tools andapplication generators would supersede fourth-generation languages. Now, however, the earlyproblemshave largely been overcome. Fourth-generation languages are well established inmost development departments. As Figure 3.1shows,over 85 per cent of Foundation membersare currently using fourth-generation languages,and this is expected to increase to over 90 percent in the next three years. Fourth-generationlanguages have also proved to be highly pro-ductive in terms of the rate at whichfunctionality is delivered — often providingthree times more function points per man-month than third-generation languages, andrequiring almost 50 percent less time and effortthan equivalent Cobol developments.
By 1993/94, many of today’s fourth-generationlanguageswill have evolved from coding-basedtools to automated tools that support screen-painting and code-generation. They will alsohave merged with CASE products to form thebasis of an I-CASE development environment.Indeed, with some fourth-generation languages,this trendis already apparent. This means thatit will be possible to develop applications in afourth-generation language, but using the mostappropriate development approach and method.Thus, CASE analysis techniques and designworkbenchescould be used for applications thatmust be of very high quality and whereit isnecessary to be able to track back through thedesign decisions that were made, whileprototyping could be used for applicationswhereusers are unsureofthe full extent of theirneeds andare willing to work interactively withthe developers.

Many fourth-generation languages are nowavailable as part of an integrated product setthat includes a variety of CASE tools andapplication generators. QuickBuild from ICL inthe United Kingdom, and Oracle from OracleCorporation in the United States, are twoexamples. This trend will continue as toolsbecome available to automate more develop-ment activities and more stages of theapplicationslife cycle.
Like other tools, fourth-generation languageshavetheir strengths and weaknesses. Both mustbe understood so that an appropriate choice oftool can be madeforany particular developmentproject. Many fourth-generation languages arenot, for example, appropriate for developingvery complex transaction-processing appli-cations. Thereis also a lack of standards, whichmeansthat applications developed with a par-ticular fourth-generation languageare usuallytied to that language andits supplier, becausethe code has a unique syntax. One exception tothis is dBase from Ashton-Tate Corporation;other suppliers provide tools that compile orinterpret dBase source code.
On the positive side, however, fourth-genera-tion languagesprovidefacilities not commonlyavailable with other tools. Several are very openproducts,in that applications developed in themcan run on a range of hardware and can workwith a range of database managementsystems.FOCUS,from Information Builders Inc,isa goodexample. Applications written in FOCUS can runon a broad range of hardware architectures(including IBM, Digital, Hewlett-Packard, andvarious implementations of Unix) and caninterface with a wide range of databases,including DB2, Adabas, Informix,Ingres, Oracle,and dBase. Most fourth-generation languagescan now be used in several hardware andsoftware environments — MVS and VM fromIBM, VMSfrom Digital, Unix from AT&T, MS-DOS from Microsoft, and OS/2 from Microsoftand IBM.
Many systems departments now recognise thatfourth-generation languages are most effectivewhentheyare used in conjunction with proto-typing. This approach enables the developer touse the language to produce successiveprototypesof the required application, each animprovement on its predecessor. The usersassess each prototype, and their comments on

FOUNDATION

© Butler Cox pic 1990

Chapter 3 Continue to exploit existing tools

how it needs to be changed to meet their
requirements are included in the next pro-
totype. This process ensuresthat the delivered
application closely matches the users’ require-
ments. Most development departments have
produced their own in-house prototyping
methodologies for use with fourth-generation
languages; all are based on similar principles.
One of the most successful is described in
Figure 3.2.
Someorganisations are using fourth-generation
languages in conjunction with various CASE

tools. CASE tools can be used to carry out the
business analysis and produce the business
specifications that are an essential starting point
for the first prototype. Fourth-generation
languages and the prototyping methodology can
then be used to develop the application.
To meet the increasing need for new appli-
cations in the short to medium term, there-
fore, the development department should con-
tinue to use fourth-generation languages when-
everpossible, and should use proven CASEtools
either in conjunction with the fourth-generation

Information Engineering Associates
Information Engineering Associates(IEA) is a subsidiary of
DuPont, a major chemical company based in the United
States. IEA uses Application Factory, a fourth-generation
language from Cortex, with its own in-house prototyping
methodology, to develop applications for DuPont's Textile
Fibres Division. It has been so successful that it now
promotesits services outside DuPont.
Scott Schultz, head of IEA, believed that the traditional
developmentlife cycle had many shortcomings.In an
attempt to overcome them, he and his team adopted
Application Factory and developed a method known as
Rapid Iterative Production Prototyping (RIPP). At the heart
of RIPPis a classic, iterative prototyping method, whichis
restricted to a 90-day time period. (The RIPP processis
illustrated in the diagram below.) Before the start of the
90-day period, a high-level specification is defined in
business terms and becomesthe basis for the first

Figure 3.2 Prototyping with fourth-generation languages can bring great gains in productivity and quality

prototype. Once the prototyping period has started, the
application will go through severaliterations, with the
users collaborating with the systems developers. Each
iteration moves the application closer to the users’
requirements. At the end of the 90-day period, the
application is delivered to the user. If the application
provestoo big for one time period, it is broken down
into smaller applications, each of which is allocated
its own 90-day time period, and the whole process
is repeated. When the project is complete, the
developers and users get together to celebrate their
joint achievement.
In 1988, DuPontestimated that, for 15 applications,it had
saved over $2.3 million by using RIPP, and delivered
applications of higher quality. Scott Schultz believes that
the greatest advantagesof the RIPP approachis thatit
brings the IT and business functions closer together.

Requestproject

sl ‘90-day time period’
Y =

Define Develop 2 Evaluate > '
project >) iteration ”|

—

iteration Evaluate |in a

‘n’ interations of ‘x’ days each Y
Implement

Evaluate = Version ‘m’Version ‘m =

N
Celebrate
victory

FOUNDATION
Butler Cox pic 1990 29

Chapter 3 Continue to exploit existing tools

languages, or to carry out development
activities not supported by them.

Use re-engineering tools to help
manage old applications
As in many areas of business computing, the
field of re-engineering has been subject to over-
eager claims by suppliers, and is described in
confusing new terminology. Re-engineering
tools will, nevertheless, provide many develop-
ment departments with a meansof makinggreat
savings in two areas. First, they can be used toreduce the effort required to maintain the
existing applications portfolio, which onaverage, consumesat least 60 per cent of thedevelopment department's effort. Second, theycan be usedto prolong the usefulness of someof the older applications, in which mostorganisations have invested many thousands ofman-days.
Before the end of 1991, tools for re-engineeringexisting Cobol applications will be available,providing a real opportunity for manyorgani-sations to break free of the legacy of appli-cationsoriginally developed many years ago. By1992 or 1993, tools for re-engineeringapplications written in the more commonfourth-generation languages will also beavailable. In fact, it will be easier to developthese re-engineering tools because fourth-generation languages generally have fewersyntactical constructs than Cobol, and theapplications developed with them are newer,which means that a re-engineering tool does nothave to be designed to cater for the logicalcomplexity that usually arises as a result ofrepeated enhancements and maintenance.
There are three types ofre-engineering tools
Re-engineering tools can be categorised intothree groups — redocumentation tools, re-structuring and renovationtools, and inverse-engineering tools. Each requires its own pro-cedures(illustrated in Figure 3.3), and differentlevels of skill are needed to use them. Clearly,each has a role to play, and developmentdepartmentswill haveto assess their needs forthe various types of re-engineering tools in theshort, medium, and long term. In the short tomedium term,they can be used to simplify the

maintenancetask, to move to a new technologysuch as a relational database, to providelinksthat can integrate existing applications ordatabases, or to facilitate the use of moreadvanced architectures such as powerfulworkstations that use windowing techniquesandare based on a client-server configuration.In the longer term, their importance will in-creaseas theirrole in transferring the existingapplications portfolio to an LCASE developmentenvironmentis recognised.
Redocumentation toolsRedocumentation tools provide a means ofautomating the various tasks involved indocumenting an application. Typically, theyproduceprocess flow charts andcross-referencelistings directly from the source code and datadefinitions. Examples are the 4DxRef tool thatproduces documentation of applications de-veloped in Fourth Dimension, from AnalysesConseils Informations (ACI) in France, andAbstract, a tool from Advanced SystemConceptsin the United States that documentsRGPIII code. The outputs from suchtools enabledevelopers to assess the likely impact of achangeandto estimate the effort required withgreater accuracy.
Redocumentation tools have been available forsometime. Early versionsof these tools tendedto produce large quantities of printed output,which the developer had to go throughmanually. More recenttools provideinteractivescreen-based access to the documentation. Re-documentation tools will become standardfeatures of many other types of tool in the nearfuture.
Since early 1987, the Centre of SoftwareMaintenance at Durham University in theUnited Kingdom, the West’s largest researchgroup Carrying out research purely into softwaremaintenance, has been investigating the role ofredocumentation tools in the automation ofmaintenance. A three-year project, backed byRank Xerox, a major hardware and softwaresupplier, and the software-supportspecialists,AGS Information Services, aims to produce asystem for documentingapplications in a struc-tured manner when an application is firstdeveloped, and then semi-automatically re-documenting the application when enhance-ments and changes are made. Such a tool willbe a marked improvement on current re-documentation tools.

: FOUNDATION
© Butier Cox pic 1990

Chapter 3 Continue to exploit existing tools

 Figure 3.3 The different types of re-engineering tools require different procedures, different levels of support,
and different technical knowledge

Redocumentation tools

i SSSRedocumentation |tool Ee Existing code
(no changes)

Existing code cl

Ss
Documentation:
— Cross-references
— Flow diagrams... .

Restructuring and renovation tools

Restructuring or
renovation tool

Existing code New application (same function):

Expertise — Structured— ‘Clean’
— Same language for restructuring

tools
£ . — Newlanguage for renovation tools

Inverse-engineering tools

Reverse-
”| engineering tool

Forward-
engineering toolBusiness

definition |

Existing code New applications:

Expertise Potential Expertise — Structured
amendments — ‘Clean’

— New language

Data dictionary

FOUNDATION
 © Butler Cox ple 1990 31

Chapter 3 Continue to exploit existing tools

Code-analysis tools also fall into the re-
documentation category. These tools provide
information on how well structured the codeis,
and assess the maintainability and testability of
the code. This information can be used to
estimate the cost of maintaining the applications
in the future.
According to recent research carried out by
IBM, 50 per cent of the maintenanceeffort is
spent analysing the code prior to making any
changes. The logical step forward from
redocumentation and code-analysis tools istherefore the interactive code-analysis tool.VIASOFT Inc hassuch a tool for screen-based
interactive analysis of Cobol code and haspromised an extension for SQL code. Thistool,
called VIA/Insight, provides maintenancestaff
with a flexible meansof accessing and analysing
the existing code before carrying out anyenhancements or maintenance. Another
interactive code-analysis tool, PM/SS, from theAdpac Corporation, has been used by Norwich
Union, a leading British insurance company,to help analyseits existing applications beforeloading them into a data dictionary. AsFigure 3.4 describes, the use of PM/SS reducedthe estimated time to load application detailsinto the dictionary by a factor of 10.
Restructuring and renovation toolsRestructuring tools are used to structure andstandardise the code of existing applications.Typically, this type of tool aligns the code topredefined standards, simplifies the logic, and

removes any redundant code. Examples ofrestructuring tools are Retrofit and DataTec,from Peat Marwick Main and Co.
Renovation tools take the re-engineering ofapplications a stage further than straight-forward restructuring. The application isanalysed andtranslated into a high-level designlanguage, such as pseudo code, that can thenbe changed before the application is re-created using structured and standardisedcode. An exampleofthis type oftoolis Recoder,from Language Technology Inc in the UnitedStates.
Restructuring or renovating is obviously notappropriateforall applications — for instance,for an old, unstructured application wherelittlemaintenance has been done to date, or for anapplication thatis near the endofits usefullife.The use of restructuring and renovation toolscan, however, bring major benefits to mostdevelopment departments, particularly inhelping to overcome the problems of main-taining applications that are either poorlydocumented or badly structured. HartfordInsurance, based in Connecticut, reports thatmaintenancecosts havefallen by 20 to 50 percent on all the applications that have beenrestructured with the Recoder tool. Main-tenance staff do, however, have to spend con-siderable time becoming acquainted with thenew codebefore the maintenanceeffort can bereduced.

Norwich Union
Norwich Unionis a large insurance company, rankedsecond in the UK life-funds market. The company founditself in a situation commonto many that have a lot ofincompatible information stored in a variety of systems. Itrealised that a data dictionary would enableit to stan-dardise data definitions, and thus, to save time andeffortin the maintenanceof oid systems and in the developmentof new ones. The problemthatit faced was daunting,however; it had

a

total of 18 million lines of code totransfer — eight million lines of in-house code, somedating back to the 1970s, and 10 million lines of code thathad recently been boughtin from the United States.
In February 1988, Norwich Union began twopilotdictionary exercises, using PM/SS from Adpac.Thefirstinvolved about 30 in-house applications, including some200 data items. ‘‘We achieved a 10:1 improvement — it
Figure 3.4 A large insurance companyhas usedre-engineeringtools to build a data dictionary

took only 10 per centof the time it would have takenpreviously to load the applications into the data dictionary.We usedthis as our cost justification’, stated Steve Kirby,the then Dictionary Administrator at Norwich Union. Onthe secondpilot, the team took one month to complete aProject that they estimated would previously have taken14 months.
Norwich Union still uses PM/SS to load details of oldapplications into the data dictionary. This processiscarried out only when an existing application requiressufficient maintenance or enhancementto justify the effortof loading details of the whole application into thedictionary. All new developments have to be consistentwith the existing data dictionary. Currently, Norwich Unionis assessing the useofits data dictionary, and the use ofPMISS,as an impact: or change-analysis tool.

32

FOUNDATION
©Butler Cox pic 1990

Chapter 3 Continue to exploit existing tools

Inverse-engineering tools
Inverse-engineering tools start by reverse-
engineering an application andits associated
databases to a stage where they can then be
‘forward-engineered’ to create a new version
of the application in a structured manner, and
in any selected language. They providefacilities
for translating existing code and data structures
into a specification of the application expressed
in high-level business termsin the form of flow
diagrams or a pseudo-English language. This
specification can then be changed, if required,
or loaded into a data dictionary before the
application is recreated.
Inverse-engineering tools have the potential to
provide the greatest benefits of all the re-
engineeringtools. Currently, however, there are
no inverse-engineering tools available that can
reverse-engineer and forward-engineer both the
code and the data, although Bachman
Information Systems Inc has shownthe benefits
of inverse engineering in the data area.
Bachman’s products can inverse-engineer the
data structures from flat files and from
hierarchical databases such as IDS, IDMS, and
IMS databases to create the equivalent data
structures for IDMS and DB2 databases.
Figure 3.5 summarises the inverse-engineering
tool set currently available from Bachman.

Bachman, which clearly leads in this field,
admits that the developmentof a tool to carry
out the inverse-engineering of data is easier
than developing one to inverse-engineer
processes. Several complex problems have to be
overcome before inverse-engineering of pro-
cesses will be possible:
— Extracting a description of the application

in business terms from the complex
computer code and data definitions, which
in most cases, do not contain all the
information required to construct such a
description. The task is also complicated by
the great variations in coding practices.

— Providing a database management system
that has sufficient power to hold all the
results of the reverse-engineering process.
Once a description in business terms has been
extracted from the code,the information will
needto be stored in a powerful database. To
display and manipulate this information,
some form of graphical tool will probably be
needed to showclearly the relationships that
have been constructed.

— Establishing a consistent meansof describing
applications. Currently, there are several
meansavailable (data-flow diagrams, prob-
lem-statement languages, object-oriented

Bachman’s aim is to produce

a

set of tools capable of
inverse-engineering (reverse- and forward-engineering)
both data and processes.Its current set of tools is
capable of inverse engineering IMS, IDS, and IDMS
schemas and/or data definitions embedded in Cobol code
into fully optimised DB2 statements. The total cost of the
software and hardware is around £30,000 ($50,000). The
tool set consists of four basic components — the capture
facility, the data analyst (DA), the database administrator
(DBA), and the expert advisor:
— Thecapture facility provides guidance on loading the

Bachman Repository with details of IMS, IDMS, and
Cobolfiles. It applies rules to decide how the
definitions should be stored in the repository and
builds a complete conceptual data model.

— The DAis an entity-relationship diagramming too! that
is used to: tidy up the data models produced by the
capture facility, enhance existing DA models;
normalise DA models reverse-engineered from the
DBA;and develop anentity-relationship modeleither
from scratch or from models transferred from other
tools such as IEW, Excelerator, and so on.It also uses

Figure 3.5 The Bachmantoolset provides powerful inverse-engineering tools for data structures

the expert system in aniterative way to prompt and
coach the data modeller as he develops the logical
data models.

— The DBAcreatesfully optimised DB2 or IMS
definitions either from scratch or from the logical
models produced by the DA.It also reverse-engineers
DB2 and IMS definitions to a logical definition
acceptable to the DAtool. Again, the system prompts
the designer, using expert-system techniques.

— The expert advisor provides advice to users of
the other three components of the tool set. The
knowledge of three ‘gurus’ — Charlie Bachman,
Chris Gane(pioneer of data-flow diagramming), and
Chris Loosely (designer of the DB2 access
mechanism) is embeddedin the expert advisor.
There are four levels of interaction. At the highest
level, the expert advisor provides the novice with
very precise and detailed guidance, which enables
him to learn quickly. At the lowestlevel, it
automatically takes many of the simpler decisions; so
that an expert can use the tool without being
bombarded with constant advice.

FOUNDATION
©Butler Cox ple 1990

33

Se

ee

ee,ee

Chapter 3 Continue to exploit existing tools

representations), but each has its limitations.Standards on how to manipulate suchinformation on a screen will need to becreated.
We expect that, by the beginning of 1992,inverse-engineering tools will be available toprocess both the processes and the data. Thesetools will need the assistance of an expert butwill be very effective for loading details ofexisting applications written in third- andfourth-generation languagesinto an CASE datadictionary. The leaders in developing productsin this field are Bachman and LanguageTechnology Inc.
Over the next few years, inverse-engineeringtools will evolve to the stage where theycan analyse about 80 per cent of the existingcode; the remaining 20 per cent will requirehumanintervention. These tools will probablyuse some form of knowledge base — a data-base that contains information and rules — tohelp extract a description of the applicationin business terms. When a new problem isencountered, the user will add new rules tothe knowledgebase, enabling thetool to resolvea similar problem automatically when it occursagain.

Re-engineering tools will change theapplications life cycle
In the future, re-engineering tools will changethe way in which applications are developedand maintained. Thelife cycle of the L-CASEdevelopment environment, described inChapter 2, will be extended to include re-engineering, as shown in Figure 3.6. Many ofthe existing core applications will be transferredto the I-CASE environment, with the aid of re-engineeringtools, by analysing the applications,restructuring them, and reverse-engineeringthem. This process is described in more detailbelow.
Before any decision is madeto load the detailsof an existing application into the LCASE datadictionary, code-analysis tools should be usedto determine the condition of the application.This analysis will serve as a basis for estimatingthe effort required to load the application intothe dictionary, and for assessing whetheritisworthwhile.

34

Once the size of the task is known, and thecoding and data-naming conventions have beendefined and standardised, restructuring andrenovating tools can be usedto structure thecode to ensure thatit is easier to understand.Standardising the data, however, may be moredifficult and very time-consuming as it willprobably need to conform with existing data inthe data dictionary or other applications. Report64, Managing the Evolution of CorporateDatabases, discusses the issues surroundingdatabase integration.

Reverse-engineering tools can then be used toextract a description (in business terms) of theapplication from the code anddata structures.This description will be transferred to theL-CASE development environment to forward-engineer the application.
Clearly, this will not be an easy processand willrequire considerable human intervention. How-ever, it will permit existing applications to betransferred to the LCASE development environ-ment in a semi-automated and cost-effectivemanner, andwill reduce the high proportion ofdevelopmenteffort spent on maintenance.
 Figure 3.6 The life cycle of the I-CASE developmentenvironmentwill be enlarged to includere-engineering, so that existing applica-tions can be transferred to the I-CASEenvironment

Code analysis
= Coderesiructuring

New Reverse-engineering
applications Build and
test

Analysis

Design

FOUNDATION
© Butler Cox pie 1990

ee

ll

Chapter 3 Continue to exploit existing tools

Evaluate the potential of
application packages
In the past, a considerable amountof effort was
required to modify packages so that they could
interface with other applications and match
users’ needs. The total cost of the package and
the modifications often made it more cost-
effective to develop the equivalent bespoke
application. This is no longer alwaysthe case,
because software packages are now available
as integrated sets of modules rather than as
monolithic packages, and they are becoming
extremely flexible. In Report 69, Software
Strategy, we gave several examples of ‘soft’
packages that can be modified to meet users’
needs. Such packagesare typically sold with a
set of tools to help with modification and
implementation.
In Report 69, we also showedthat if a suitable
package is available, it is usually a more Cost-
effective solution, and therefore a better
investment, than a bespoke development. These
three trends in the package market — the
growing flexibility of packages, the increased
availability of sets of integrated packages, and
their growing cost-effectiveness — mean that
the development department should always
evaluate packages as a means of meeting a
particular application requirement.

Soft packages will provide flexible
solutions
The inflexible packages of the 1970s are now
being superseded bythe flexible ‘soft’ packages
of the 1990s. Today, suppliers such as SAP in
Germany and Computer Associates in the
United States provide packages that can be
tailored to match individual requirements. Their
only disadvantage is that they require develop-
mentstaff to learn how to use the tool set that
will be used to modify a packagefora particular
application. Some package suppliers are now
addressing this problem by supplying a com-
bination of package and tool set that permits the
development of bespoke applications as well as
tailoring of the package.
As the different I-CASE development environ-
ments become established, package suppliers
will begin to supply the basic building blocks
that can be added to an LCASE environment,
so that the package can be customised in-house

© Butler Cox ple 1990

to create a bespoke application. We expect that,
by the late 1990s, packages will be supplied as
a set of related ‘objects’ that can be loaded
directly into an organisation’s data dictionary
and be used to develop an application. (Object-
oriented concepts are described in Chapter4.)

These developments will mean that, as I-CASE
is established in the mid- to late-1990s, the
distinction between bespoke development and
package solutions will start to becomeblurred.
Overthe last 20 years, an increasing amount of
the functionality on bespoke developments has
been constructed from basic building blocks that
form part of the software infrastructure.(It is
no longer necessary, for example, to develop
database-access routines on an application-by-
application basis.) The trend in packagesis the
reverse — they are now supplied in ways that
allow them to be broken downinto smaller and
smaller building blocks. In the 1990s,
development departmentsare therefore likely
to be occupying the middle ground, assembling
well integrated medium-sized building blocks
both from the software infrastructure and from
packages to form an application that is a good
fit with users’ needs. This trend for packages
and bespoke developments to merge is
illustrated in Figure 3.7, overleaf.

Integrated packages will serve both
industry-specific and common
business areas
Several major hardware and software suppliers
(such as IBM and Oracle) are now offering
integrated industry-specific packages. This
trendis likely to continue into the 1990s. Late
in 1989, Oracle Corporation announcedthatit
was expandinginto the package market, with
a range of products from word processing to
manufacturing packages. Figure 3.8, on page 37,
summarises the features of Oracle’s core suite
of manufacturing packages. IBM hasa set of
more than 50 software products aimed at
integrating the plant-floor, design-operations,
and production-planning areas of manufac-
turing.

These integrated packages will provide inter-
faces to the most commonly used database
management systems, making integration with
existing applications much simpler. Most
suppliers will provide packages that cover

35

 ee
Chapter 3 Continue to exploit existing tools

 Figure 3.7 Packages and bespoke developments for common applications will merge in the 1990s

Bespoke development Packages
1950s to 1970s

Smallest possible building block: Largest possible building block:first-, second-, or third-generation- the packagelanguage code
Difficult to customiseFully customised |
Poorly integratedSemi-integrated
Poorfit to users’ needsGood fit to users’ needs 1980s

Small/medium-sized building block: Large/medium-sized building blockfourth-generation-language code
Some customisation possibleFully customised
Semi-integratedSemi-integrated
Reasonablefit to users’ needsGood fit to users’ needs

1990s

Medium-sized building block:modules and objects
Fully customised
Well integrated
Good fit to users’ needs

FOUNDATION36 © Butler Cox ple 1990

Chapter 3 Continue to exploit existing tools

Figure 3.8 Integrated suites of packageswill replace
large areas of commonapplications

Oracle Inc is one of the world’s largest software houses,
with revenues of $584 million in 1988. Its main product
is the Oracle database managementsystem and its
associated toolset. It recently announced an expansion
to its product range — the Core Manufacturing suite of
packages.
Core Manufacturing providesa setoffull-featured,
portable, decentralised products designed to support
distributed manufacturing. This productwill run onall
the hardware and software environments supported by
Oracle and is designed to permit very easy access to
the packages via a Macintosh-style set of menus, pop-
up windows, graphics, online help, and other facilities,
all of which reduce the numberof keystrokes required.
Thereare five basic packagesin the integrated suite:
— Bill of materials, which provides engineers with a

tool to configure products quickly and accurately.
— Workin progress, which enables production to be

scheduled for maximum throughput and to facilitate
just-in-time manufacturing techniques.

— Master scheduling, whichtightly links customers’
delivery requirements to production schedules.

— Manufacturing resource planning, which improves
control over production cycles and minimises
inventory levels.
Orderentry, which gives sales departments
immediate access to accurate price data and
delivery commitments.

This product can also belinked with Oracle’s financial/
personnel set of packages to provide a tightly integrated
manufacturing, accounting, and personnel system.

OUNDATION
© Butler Cox ple 1990

common business areas, such as accounting,
personnel, and so on, as well as industry-specific
areas, like manufacturing, construction, and
distribution.
Even with I-CASE, package solutions
will remain cost-effective

Package suppliers will tailor their products so
they can be used within an I-CASE development
environment. This meansthat it will be possible
to modify a package within an I-CASE environ-
ment and integrate it with existing applications.
A package solution will therefore be a better
investment for most applications, even as
organisations migrate towards an I-CASE
development environment.
By continuing to exploit existing tools, most
organisations will be able to meet the
requirementsof users, and migrate towards an
LCASE development environment. Over the
next five years, however,there will be further
advances, both in current tools and in new
forms of tools that are outside the I-CASE
environment. Exploiting these more advanced
tools will place systems departments in an even
better position to meet the growing demands
being placed upon them. The emerging,
advancedtools that Foundation members should
now be assessing are the subject of the next
chapter.

37

Chapter 4
Use emerging tools to develop more advanced
applications

So far in this report, we have seen howadvances in tools will produce an integrateddevelopment environment (I-CASE) that isappropriate for large corporate or departmentalapplications. We have also seen how existingtools can be exploited to support systemsdevelopment until L-CASE matures. LCASE isnot, however, the only advance that will bemadein developmenttools duringthefirst halfof the 1990s.
Other advanceswill makeit possible to developmoresophisticated applications than those thatare feasible today. Initially, these moreadvanced tools will be available only outside theLCASE development environment. When theybecome widely adopted and proven, I-CASEstandardswill be expanded to accommodate thenew tools. Most organisations will, however,need to adopt these new types oftools over thenext few years; they cannotafford to wait untilthey become integrated into LCASE.
Several emerging tool technologies are promis-ing to bring benefits to the developmentenvironmentin the next five years. They arelisted in Figure 4.1. Object-oriented and rule-basedtools, in particular, promise a wide rangeof major benefits, and in several other areas,advances are producing newtools or adding newfeatures to existing ones:
— Object-oriented tools enable applications tobe developed in a way that models the realworld. Applications developed with object-oriented tools consist of various ‘objects’that have certain attributes and relation-ships in common with the real world.

Object-oriented tools promise to provide
significant increases in productivity by
making code re-usable and easier to
understand, improving the user interface,
and providing support for hypermedia(multimedia) applications — that is,

38

applications that support more than onemedium — for instance, data, voice, image,and video. (Hypermedia was discussed indetail in Report 73, Emerging Tech-nologies.)
— Rule-based development tools have beenavailable for several years, but over thenext five years, they will becomeeasier touse and their capabilities will increasesignificantly. In particular, they will in-creasingly be able to integrate rule-basedapplications with other types of application.They will encourage the development ofrule-based applications that can tacklecomplicated problems, and they will beused to improve the automatic assistancegiven to users by embedding ‘guidance onuse’ in the application.
— In otherareas, advances in developmenttools are making it possible to executeexisting applications faster, to developmultimedia applications, to exploit com-puter resources better, or to integrateapplications in areas that are currentlyisolated.
Obviously, not all the tools mentioned in thischapter will be applicable to all developmentdepartments, but we recommend that membersconsider how and whereit mightbe possible tobenefit from using them.
Object-orientation will be aneffective developmentapproach by 1994
Object-orientation is not a new concept; it wasused extensively inartificial intelligence workin the 1960s. Yet, over the last few years, it hasreceived so much publicity that it is now oftentaken to mean anything with an icon or a

: FOUNDATION
© Butler Cox pic 1990

Chapter 4 Use emerging tools to develop more advanced applications

Figure 4.1 sophisticated applications

eee i Object- Rule-based
oriented tools tools

Significant increase in ys
development productivity is
Easier interpretation of the
application a
Support for greater logical
complexity a
Support for hypermedia o
applications
Support for better user sy
interfaces
Integration with non-
data processing systems ve
Improved guidance to the
user se

Improved performance

Improved utilisation ofresources

Future advancesin tools outside the |-CASE environmentwill permit the development of more

 System developmenttools
 Parallel Multimedia/

tools interfacing tools
Distributed Integrated
processing tools

window-basedinterface. Object-orientation, in
fact, provides a means of developing appli-
cations that emulate the way in which objects
in the real world relate to each other. Objects
are arranged in a hierarchy, with each object
building on the attributesof other objects higher
up the hierarchy. Representing objects in this
way has several advantages, such as ease of
understanding and reduced coding and
maintenance.

Development techniques and tools specially
designed to provide the basic elements of object-
orientation are already available. Because the
potential benefits of full object-orientation are
so significant, more and more suppliers are
examining ways of introducing object-
orientation to existing tools, or of developing
new tools based on object-oriented concepts.
Oncetheinitial barriers to using such a radically
different development approach have been
surmounted,early users of object-oriented tools
have gained considerable benefits, and the take-
up of object-oriented concepts is set to develop
quickly in the first half of the 1990s, as
described overleaf in Figure 4.2.

FOUNDATION
© Butler Cox plc 1990

Object-orientation reflects the objects
and activities of the real world

With the object-oriented approach, applications
are constructed from software objects that, in
most cases, represent objects in the real world,
and from messagesthat represent commands or
actions to be carried out by objects. Each object
has two basic components — the form of the
data or information associated with the object
(its state), and the procedures associated with
the object (its methods). The combination of
both data and procedures within an object is
knownas encapsulation. Examples of an object
andits state and methods, taken from a banking
application, are shownin Figure 4.3, on page
41. In thetop left-hand cornerof this figure, the
‘Account’ is the object, and its state contains
four elements: account number, account owner,
balance, and interest rate. Three methods are
associated with the object: deposit of cash,
withdrawal of cash, and processing of a cheque.

Messages sent to an object are interpreted
according to the object’s state and methods.
Thus, the same message may be sent to several

39

Chapter 4 Use emerging tools to develop more advanced applications

Figure 4.2 Object-oriented concepts andtools will be

in use within most organisations by 1994

1990 Several organisations use object-oriented programming
systems and object-oriented database management
systems to develop complex applications. Organisations
Start introducing window- and icon-basedinterfacesto
in-house applications.

1992 Most in-house applications have a standard object-oriented-typeinterface. Object-oriented facilities appearin several tools and in application areas such asofficeautomation and process control. Organisations assesstheviability of using object-oriented concepts for a widerrange of developments.

1994 —_|-CASEsuppliers start supplying object-oriented toolsand database management systems. Packagescontaining commonly used objects becomeavailable,and these will be incorporated into an organisation’slibrary of objects. Object-oriented developmentbecomes established as one of the approachesavailable to the systems departmentto aid in the taskof developing applications.

different objects, each of which may interpretit differently. This is known as polymorphism.In our example, the message ‘withdraw $100from account number 123 (Mr Jones)’ may besent to both the objects, ‘Savings’ and ‘Bonus’.If sufficient funds are available, the withdrawalwill be madefrom the ‘Savings’ account. Fundswould be withdrawn from the ‘Bonus’ accountonly if the money had beenin the account fora predefined period of time.
Related objects can be groupedinto classes andarranged into a hierarchy. On the lowerleft-handside of Figure 4.3, the various types ofaccounts are arranged into a hierarchy. Theobject ‘Account’ is the basic form of account.‘Savings’, ‘Normal’ and ‘Bonus’ are allspecialised forms of account. ‘Account’ istherefore both an object and a class. The objects‘Savings’, ‘Normal’, and ‘Bonus’ are specialforms of ‘Account’ and are thus sub-classes of‘Account’. All the attributes (state and methods)associated with ‘Account’ also apply to

‘Normal’, ‘Savings’, and ‘Bonus’, and thusaredefined only once.
If necessary, the attributes associated with anyobject can be modified, or new ones can beadded, but only the attributes that are differentneed to be defined. For instance, in ourexample, the method ‘cheque’is redefined toexclude cheque withdrawals from the savingsaccount. This arrangement of objects into ahierarchy, where objects transfer attributesdownthehierarchy, is known as inheritance.
Object-orientation with encapsulation, poly-morphism, andinheritance provides a meansofdeveloping applications that are easier tounderstand, require less maintenance, and areeasier and quickerto construct:
— Applications developed by using object-oriented techniquesare easier for businesspeople to understand because the des-criptions of the high-level objects and theactions resulting from the messages reflect

the business processes.
— They require less maintenance because smallchangesin the real world should result insmall changesin the corresponding objects.Equivalent applications developed usingmoretraditional techniques would typicallyrequire a sizeable change, with a cor-respondingly large amount of recoding.
— Applications developed using object-orientedtechniques are easier and quicker toconstruct because existing objects can be re-used in other applications. In addition, theinheritance property of objects means thatless coding is required.
Object-orientation is being introducedinto many development aids
Over the past few years, object-orientation hasgradually been recognised as a very productiveapproach to the development of computerapplications. Several development methods andtools based on the object-oriented approach arealready available. These can be divided intothree main areas — object-oriented analysis anddesign methods, object-oriented programmingsystems, and object-oriented database manage-ment systems. However, many of the object-oriented programming and database toolsavailable today are primitive. They will need tobe enhanced to provide many of the basic

< FOUNDATION
© Butler Cox pic 1990

Chapter 4 Use emerging tools to develop more advanced applications

Class name
Object: Account Superclass
State:
— AccountNumber
— AccountOwner Instance methods
— Balance Deposit:
— Rate

Methods: Withdraw:
— Deposit
— Withdraw
— Cheque Cheque:

Account
 Class name

Superclass
Savings

Class name
Superclass
Cheque:

aaClass name
ae Superclass

Withdraw:
Figure 4.3 Each object has two basic components — the form of the data associated with th i i

and the procedures associated with the object (its methods) metrenthen oblast: (Ue

Instance variable names

Instance variable names <none>

Instance variable names <none>

Instance variable names period ‘The minimum deposit period’

Account
Object ‘Every object is a sub-class of something in

this case Object’
AccountNumber AccountOwner Balance Rate
‘The state of the object’
Amount
‘Deposit amount into the receiver (an Account)’
Balance := Balance + Amount
Amount
‘Withdraw amount into the receiver’
Amount>Balance iffrue: [AccountOwner

error: ‘Not enough moneyin this account).
Balance := Balance - Amount
Amount
‘The code for cheque withdrawals’
self withdraw: Amount ‘Note: Here we re-use the

method we have already defined’

Normal
Account

Savings
Account
Amount
AccountOwner

error: ‘You can’t write cheques against this account’

Bonus
Savings
DepositDate ‘Date of last deposit’
Amount
DepositDate + period < Date today
ifFalse: [AccountOwner

error: ‘You can't withdraw from this account yet’].
ASuper withdraw: Amount

features (such as a high-level language, and data
recovery and back-up) required for commercial
computing before the object-orientation
approach can be widely adopted. The larger
suppliers of tools are all working to incorporate
object-oriented concepts into their products,
and the current shortcomings will undoubtedly
be overcome.
Early in 1989, the Object Management Group
was established in the United States to set a
standard for the emerging methodsin object-
oriented development and to promote the
concept of object management. By September
1989, there were 18 members, including Data

FOUNDATION
© Butler Cox ple 1990

General, Hewlett-Packard, Sun Microsystems,
Unisys, Canon,Philips, and 3Com. In December
1989, the Object Management Group and the
X/Open Group announced an agreement under
which they will cooperate in areas of mutual
interest, with X/Open adopting standards
approved by the Object Management Group,
where appropriate, and incorporating the
specifications into future releases of its X/Open
Portability Guide Book.
Object-oriented analysis and design imethods
Object-oriented analysis and design methods
exploit the underlying object-oriented pro-
gramming and database management systems

41

Chapter 4 Use emerging tools to develop more advanced applications

and aim to overcome some of the deficienciesof existing development methods and tools.Theywill be created by merging new conceptswith existing and well established methods toprovide methods that will makeit possible tore-use design and code, and to develop easilymaintainable, flexible, expandable, and modularapplications. To date, no such methods are inwidespread use. They arelikely to emerge overthe next three years, as object-orientationbecomes more popular.
Object-oriented programming systemsThe term ‘object-oriented programming sys-tems’ has, to date, been used to describe toolssuch as Smalltalk-80 from ParcPlace Systems Incin the United States. This type of tool is basedon object-oriented techniques, and providesdevelopers with a user interface that in-corporates high-level editors, debuggers, agraphical facility, and windows.
At present, many object-oriented programmingsystems are still immature programminglanguages; the syntax of some of them is at alowerlevel than the syntax of fourth-generationlanguages, which makes it more difficult tounderstand the code. The operations of an appli-cation written in an object-oriented pro-gramming system haveto be defined in detail;applications written in fourth-generationlanguages are mucheasier to write and under-standat the detailed level. Other object-orientedprogramming systems are more advanced how-ever. These are enhancedthird-generation pro-gramming languages, integrated object-orienteddevelopment tool sets, and object-orientedexpert systems. Manyof these are available foruse with the most popular hardware andsoftware environments, although by far themost commonare those available for Unix andMS-DOSenvironments.
One of the more popular object-orientedprogramming systems is actually a third-generation language that has been enhanced toinclude object-oriented concepts. This is C+ +from AT&T, an enhanced version of the CGprogramming language. The benefits providedby enhancing third-generation languagesin thisway are reduced learning time, relatively easyconversion of existing applications, and thematurity (and hence, stability) of the third-generation language.

42

Some suppliers are now attempting to enhanceCobol by providing it with object-orientedprogrammingfacilities. Hewlett-Packard, MicroFocus, and Realia (a US supplier of Cobolcompilers) are currently proposing to theCodasyl Cobol Committee that object-orientedfeatures be addedto the Cobol standard. Theybelieve that this is practical because of thenatural relationship between objects and Coboldata structures. Enhancing Cobolin this waywould enableit to be converted,like C, into aneffective object-oriented language. Someexperts, however, see these proposals as anattempt to keep Cobolalivea little longer.
Codasyl has begun to discuss these proposalswith major suppliers of Cobol compilers,including IBM,Digital, and NCR. Although thenext version of the Cobol standard is not dueto be finalised before 1999, we believe thatCodasyl1 will need to permit object-orientationbefore then. Indeed, if Cobol is to remain aviable programming language,it will probablybe necessary to add object-orientation withinthe next twoyears.
More advanced and user-friendly object-oriented tools are also starting to appear. Thesetools simplify the task of programming byproviding anintegrated set of developmentaidssuch as powerful debugging facilities andautomatic code analysers, all accessible via awindows-baseduserinterface. One such toolisObjectworks, from ParcPlace Systems Inc.Objectworks enables applications to bedeveloped in either Smalltalk-80 or C++.
Object-oriented facilities are also being com-bined with expert systems to provide tools thatwill enable very complex applications to bedeveloped and easily maintained. The AionDevelopment System (ADS), from Aion in theUnited States, is one such example. In Report73, Emerging Technologies, this type of tool wasclassified as a fifth-generation toolkit, as itprovides clear improvements in capability andproductivity over the earlier generations oftools.

Object-oriented database managementsystems
Object-oriented database management systemsprovide facilities for holding objects in a data-base and loading them into memory when they

» FOUNDATION
© Butler Cox pic 1990

Chapter 4 Use emerging tools to develop more advanced applications

need to be executed. They are more relevant
to commercial computing than object-oriented
programming systems, and many tool suppliers
have such databases under development. Some
suppliers are promising either to add object-
oriented capabilities to their relational database
management systemsin the same way as they
added relational features to earlier databases,
or to provide an interface that makes the
relational database appearto be object-oriented.
Whichever approach is taken, true object-
oriented database management systems, such
as G-BASE from Graphael Soretas (in France),
Vbase from Ontologic Systems Inc (in the United
States), or Iris from Hewlett-Packard, will
eventually supersede the amendedrelational
database systems, because starting with a
relational database and adding object-oriented
featuresrestricts the capability of the database.

Other object-oriented tools
Theobject-oriented developmenttools discussed
above will mainly be used byskilled developers
to producelarge business applications. There are
other tools based on the object-oriented
approach, however. These are distinguishable
from those just discussed by their ease of use,
their incomplete implementation of object-
orientation, and the specialised coverage that
they provide. These tools include such products
as Apple’s HyperCard, a programmable
object-oriented multimedia database manager
(Report 73, Emerging Technologies, describes
the benefits of the multimedia aspects of
HyperCard), and CASE:W,an expert-system
CASE tool that permits the development of
applications that havea user interface based on
Microsoft Windows without having to write
code for the complex window handlers.

Initial problems should not discourage
the adoption of object-oriented tools

Although object-oriented technology is still
relatively immature, several companies have
already used the object-oriented approach to
develop various applications and have foundit
to be very productive. Cadre Technologies, a
large US developer of computer-aided software-
engineering tools, claims that the amount of
new code needed for an application has been
reduced by 80 per cent since it introduced
object-oriented tools, because so much of the
existing object-oriented code can be re-used.

FOUNDATION
© Butler Cox pie 1990

In Canada Wild Leitz, part of the Swiss
manufacturing group, used an object-oriented
approach to develop a geographical information
system. It has found that the system is easier
to maintain because the impact of any change
is isolated to a few objects. BehavHeuristic, a
US software development company that
specialises in intelligent systems based on neural
network technology, has used an object-
oriented development environment to develop
a system that enables airlines to optimise the
allocation of seats between classes.
Adopting an object-oriented approach to de-
velopment will not be a straightforward task,
however. First, convincing managers of the
business case will be difficult, because a
reasonable understanding of the technology will
be required to appreciate how the benefits can
be achieved. Second, a considerable investment
in tools and training will be required, and the
benefits may not be achievable for several
years.
To use object-oriented techniques, development
staff will need newskills to identify the objects
andthe relationships between them. Suppliers
(and current users) of object-oriented tools
estimate that it takes about four months of
intensive training to teach object-oriented
design and programming to a developer
accustomed to structured design and pro-
gramming.
To adopt object-oriented development tech-
niques without antagonising management or
users, we suggest that organisations take the
following approach:
— If possible, identify an area of applications

development that is well suited to object-
oriented techniques and that has a
relatively high profile — for example, an
application that deals with objects in the
real world, like stock control, or process
control. In such areas,it is usually easy to
identify the objects and the relationships
between them, but the application would
be difficult or expensive to develop with
existing tools. Success with object-oriented
techniquesin one area will arouse interest
and encourage further developments in
other areas.

— Standardise on an object-based userinter-
face. Both existing and new applications

43

Chapter 4 Use emerging toois to develop more advanced applications

can be made considerably more user-
friendly with object-oriented techniquessuch as window-and icon-based interfaces.
One of the first computers to use suchtechniques was the Macintosh. Object-
oriented userinterfaces are being used onmore and more computers — NextStep, the
interface for the NeXT workstation beinga good example. NextStep, the Open Soft-
ware Foundation’s Motif, and IBM’sPresentation Managerare all examples of
how the WIMPS (windows, icons, menus,and pointing devices) interface is being
transferred to mainstream computing.

Rule-based technology will emerge
in several forms
Rule-based technology has been widely used tobuild systems that capture human expertise,and formsthe core of expert-system shells andlanguages, as explained in Foundation Report60, Expert Systems in Business. During thefirsthalf of the 1990s, there will be a phenomenalincreasein the useof rule-based technology, notonly embeddedin the tools used for develop-ment, but also as part of the application beingdeveloped. This technology will provide a meansof developing rapidly changing, complexapplications that would previously have beentoo expensiveor haveresulted in an impossiblemaintenancetask.
The main advancesin rule-based technology willbe in the following four areas:
— Integration of expert-systems tools withcurrent tools — Many suppliers of existingtools will integrate their products eitherwith an existing expert-system tool or withone that they have developed themselves.The enhanced tool will facilitate the de-

velopment of data processing applications
that have embedded expert systems that
can either provide advice and help to the
user, or be used to code complex parts ofapplications that could not be solved withconventional programming techniques.

— Fifth-generation toolkits — There are
several fifth-generation toolkits currently
in use that have provedto be very effective
for the developmentboth of expert systemsand of other types of application. These
tools, which combinerules and objects with

44

older development techniques, will enable
very sophisticated and complex applicationsto be developed and easily maintained.

— Application-specific tools for buildingexpert systems — Rule-based tools (andeven knowledgebases) will increasingly be
available for specific application areas,
These tools will, in some cases, enable
developers with no experience of know-‘ledge engineering to develop knowledge-
based applications.

— Tools with embedded expert systems — Anincreasing number of tools used to helpdevelop applications will have expert
systems embedded in them. They willprovide expert guidance to developers andwill help to improve the quality andproductivity of applications development.

These advances will help organisations over-come manyof the barriers that have limited thetake-up of rule-based or expert systems to date,such as the need for knowledge-engineeringexpertise, problems experienced by earlyattempts to exploit expert systemsin a businessenvironment, andthe inability to integrate rule-based systems with existing systems. Figure 4.4shows how these advances make rule-basedapplications and expert systems more accessibleto developers, with the loss, in some cases, ofsome flexibility. As rule-based tools becomemore readily available and are more widelyused, the successful development of expertsystems will become more common.
Ideally, rule-based tools should be capable ofbeing used in different hardware and softwareenvironments, provide access to other databasesand languages, and allow business users todefine new rules, and carry out appropriatetesting while the applicationis being used. Thisideal is many years away, but the currentadvancesare steps in the right direction.
It will be possible to integrate expertsystems and conventional applications
One of the reasons for the slow take-up ofexpert systemsis the difficulty of integratingthem with conventional data processing appli-cations. Most successful expert systems havebeen standalone applications, used in veryspecialised areas. Several banks and financial

FOUNDATION
© Butler Cox pic 1990

Chapter 4 Use emerging tools to develop more advanced applications

 Figure 4.4 There is a trend towards less flexible but more usable rule-based development tools

Application-area
specific

Application-
area

independent

Expert-system or
artificial-intelligence

 Knowledge engineer ————> System developer —————> Application-areaexpert

institutions, for instance, have demonstrated
the benefits of using expert systems, but these
are largely separate applications because of the
difficulties of integrating the expert system with
conventional applications. Many leading tool
suppliers are now beginning to work on
integrating the tools and development environ-
ments used for building expert systems with
existing tools and databases and thus improve
the level of integration between expert systems
and conventional applications.

One supplier who has been working on this
problem for several years is Information
Builders. It is best known for its fourth-
generation language and database management
system, FOCUS, which is used worldwide by
approximately 600,000 people. In 1987, Inform-
ation Builders acquired Level Five Research, the
supplier of the LEVEL5 expert-system develop-
menttool, and is currently working on linking
database and expert-system technologies by
embedding LEVELS within FOCUS.Figure 4.5
describes how Information Builders intends to
integrate these two technologies and thereby
provide access to the wide range of existing
applications and databases running a variety of
computer systems already implemented with
FOCUS.Early in 1990, Information Builders will
be releasing a development tool, LEVEL5/

© Butler Cox ple 1990

Figure 4.5 Information Builders provides links to an

expert system from FOCUS

LEVELS,the expert system tool, is available today from
Information Builders as a standalone product for building
and running expert systems. Information Builders has also
linked the LEVELS productwith its FOCUS database
managementsystem, asillustrated in the diagram below, so
that LEVELS applications can be called from within FOCUS
in the same way as subroutines can be called. Not only will
this enable FOCUSusersto call expert-system-based
routines from within any FOCUSapplication, butit will
enable LEVELS to be used on the wide range of computer
systems supported by FOCUSand gives access,via
FOCUS,to enormousstores of existing data.
 Manydifferent types of hardware
(mainframe/minicomputer/PC)

LEVELS
Direct Indirect Direct

 Most of the popular j= A limited number of |»
database management | database management |

systems systems
E jE ee ae

OBJECT. This tool will enable the development
of integrated business applications, using a
combination of advancedartificial intelligence
techniques and an object-oriented development
environment.

45

Chapter 4 Use emerging tools to develop more advanced applications

Fifth-generation toolkits will increase
productivity in developing complexapplications
Fifth-generation toolkits, such as Aion’s AionDevelopmentSystem, provide similar benefitsto those cited above. Manyof them,like NeuronData’s NEXPERT, are available for use invarious hardware andsoftware environments,provide access to a variety of databasemanagement systems, and can be integratedwith programming languages such as Cobol,
Pascal, and C.
A more detailed description of these tools isgiven in Report 73, Emerging Technologies.Report 73 also describes the problems likely tobe encountered in adopting them, and theimplications for the systems department.
Application-specific tools will reduce
the need for knowledge-engineeringskills
At the beginning of 1989, a new type ofapplication-specific expert-system tool began toappear. This type of tool providesall the basicbuilding blocks and facilities required toconstruct an expert system, and containsembedded general knowledgeof the applicationarea. The users of such a tool are ‘shielded’ fromthe complexities of knowledge engineering bya framework that helps them to develop theapplication. In somecases,solittle knowledge-engineering experience is required that userscan make significant contributions to thedevelopmentof an expert system, or even buildit themselves.
To date, such tools are available for three
application areas:
— Engineering diagnostics: This area is by far

the most exploited by expert-system-based
technology. Here, the tool analyses several
inputs, received either remotely from
sensors or entered directly, assesses the
situation, and identifies where the problemor the fault lies. TestBench, from the
Carnegie Group and Ford, is an offlineconsultative tool for tackling large and
complex engineering-diagnostic problems.

— Process control and management:Tools in
this area are aimed primarily at the com-
puter-integrated manufacturing market,

46

although they are also used in network
management, and alarm analysis. Typically,they will need to respondin realtimeto theanalysis of any situation. G2, from GensymCorporation in the United States, is an
online, realtime, application-specific toolfor building expert systemsin this area.

— Production design, planning, and schedul-ing: These tools help with the design,planning, and scheduling of products in amanufacturing environment. Genesis is aproduction-planning and scheduling toolkitfrom Sira in the United Kingdom, designedfor use by engineers on the shopfloor. Icad,from Icad Engineering Automation Ltd ofCoventry in the United Kingdom,is a toolthat integrates a design knowledge base andCAD techniques to provide ‘intelligentCAD’.
The move away from general-purpose rule-based tools that can be used only by staff withknowledge-engineering skills towards moreapplications-specific tools that require staff withlittle or no skill in the knowledge-engineeringarea will certainly increase the use of expertsystems. In the early 1990s, the use ofapplication-specific tools will spread to otherareas where rule-based technology can beexploited.

Embedded expert systems will provideguidance to the user
Earlier, in Chapter 3, we said that knowledgebases will be embedded in inverse-engineeringtools used to unscramble existing applicationscode, and that they will help developers tofollow complex development methods.Examples include VIA/Insight, the interactiveCobol code analyser from VIASOFT Inc, whichis based on a knowledge base, and TOP-ONE/CONVEX, which converts Cobol from ICL toIBM environments, and is based on an expertsystem. There is a growing trend for tools tohave a knowledge base embedded in them tohelp developers carry out tedious or complextasks.
Embedded expert systemswill be available inthe near future to support:
— The analysis process: Helping to gatherfacts and information, analysing this

FOUNDATION
© Butler Cox pic 1990

Chapter 4 Use emerging tools to develop more advanced applications

information and assessing its completeness,
and generating the specification of re-
quirements.

— The testing process: Testing the application
interactively, and interactively analysing
the code for mistakes. VIASOFT Inc has
released a product called VIA/SmartTest
that analyses the code, and an application
knowledge base containing the rules for
analysis and testing. This product can be
combined with VIASOFT’sinteractive code
analyser, VIA/Insight, to form VIA/Center,
a comprehensive set of maintenance tools.

— Decision making: Providing guidance at
critical points during development on the
best use of the tools available.

In summary, the continuing advancesin rule-
based tools described abovewill reduce the need
for specialist knowledge-engineering skills to
develop rule-based applications. By the mid-
1990s, the development anduse of rule-based
applications will be commonplace, and
application-specific tools will enable most users
to develop their own rule-based applications.

Other advances in tool technology
will be valuable in particular
areas
Concurrently with advancesin object-oriented
and rule-based tools, there will be changes in
the capabilities of existing tools, and additions
to them that will enable different types of
applications to be developed. The most sig-
nificant advances will be:
— Theintroductionoftools to exploit parallel

computers.

— The use of multimedia tools to develop new
types of applications.

— The use of powerfultools to develop greatly
improved human/machine interfaces.

— The use of tools to facilitate distributed
processing and thus improve the use of
computer resources.

— The useof varioustools to integrate office
automation. and data processing appli-
cations.

FOUNDATION
© Butler Cox ple 1990

New tools will enable existing appli-
cations to exploit parallel
computers

In Report 73, Emerging Technologies, we
discussed the trendsin parallel computers and
the benefits that can be achieved, and described
areas in which parallel computing has already
been exploited in business. The barriers in-
hibiting the use of parallel computers and the
implications for the systems department were
discussed in detail. We reported that, by about
1993, it will be relatively simple to write
applications that can be transferred from
uniprocessors to computers based on parallel
processors. The extent to which these
transferred applications can exploit the power
available with parallel computers will, however,
be limited, in most cases.

It is already possible to transfer applications
directly from a uniprocessor computer to a
parallel computer if the computers have
compatible operating systems. Although it may
be possible to run several of the transferred
applications in parallel, thereby increasing
throughput, the execution time for individual
applications is not likely to decrease by much.
Even so, the operational improvement
achievablein this way will be adequate for most
of today’s applications.

There are, however, several kinds of specialised
tools that can be used to enable existing
applications to make better use of the processing
poweravailable with parallel computers. Some
tools analyse the application and automatically
identify sections of code that can be run in
parallel; others permit the developer to identify
whole modules of the existing application and
to define the code that will enable these to be
run in parallel. The problemis that all of these
tools rarely fully exploit the power available
with parallel computers, because they work
with sequential code, which means that any
inherently parallel characteristics of the
application are not taken into account. Over the
next few years, however, reasonably efficient
tools will become available for transferring
existing (sequential) applicationsinto a parallel
environment. Since few existing applications
will need to be redesigned and rewritten to
exploit the full power available with parallel
computers, these tools will allow most

47

Chapter 4 Use emergingtools to develop more advanced applications

organisations to exploit parallel computers with
the minimum of rework.

Multimedia tools will enable new types
of applications to be developed
Windowing techniques not only make the
human/machineinterface look more interesting,but also enabletheuser to be more productive.This is also true for hypermedia (or multimedia)systems, which were described in detail inReport 73, Emerging Technologies. In thatreport, however, we warnedagainst the use ofmultimedia systems just to add special effectsto the user interface; multimedia systems mustalso provide somebusinessbenefits.
We expect that, by about 1993, tools will beavailable to enhance windows-based interfacesto provide a multimedia capability, both forexisting and new applications. The majorlimiting factor on the development of multi-media applications is the immaturity ofmultimedia database management systems.Although several suppliers are currentlyoffering such systems — Informix Software’sInformix-Online database, and GraphaelSoretas’s G-BASE,for example — it will taketime before they are widely adopted. Earlyexamplesof this type of tool are starting to havean impact in the area of expert systems,however. Several suppliers of expert systemsare using Apple’s HyperCardas an interface totheir products, and Intellisoft has successfullycombined hypertext software with its expert
system, Knowledge Pro.
During the mid-1990s, products like NextStepfrom NeXT, and NewWave from Hewlett-Packard will evolve to form a powerful PC- or
workstation-based interface to applications.These developments will provide facilities for
developing extremely powerful and easy to use
human/machine interfaces that use windows,
multitasking, multimedia, and object-oriented
facilities. Figure 4.6 shows examples of the
types of user interfaces that will be availablein the 1990s.
The use of these types of interfaces will have
a profound effect on future workstations. As
more poweris required in the terminal both to
drive the user interface and for applications
processing, today’s dumbterminals and PCswill

48

be replaced by or upgraded to powerful work-
stations with a WIMPSinterface.
Future tools will makeit possible to
develop greatly improved human/
machine interfaces
At present, applications developed in-houserarely have powerful, user-friendly human/machineinterfaces, primarily because the timeand costs constraints on in-house developmentsare usually so severe. Over the next few years,the introduction of powerful tools will makeitpossible to develop window-basedinterfaces formanyin-house applications. We have alreadymentioned how tools such as CASE:W can beused to generate all the basic windowingfunctions neededfor an application, without theneedfor detailed programming. This typeof toolwill become much more common once thecurrent copyright disputes over the various‘look-and-feel formats’are settled. Until thesedisputes are settled, tool suppliers will bereluctant to invest heavily to provide productsthat support a particular windowingstyle.

Extensions to current tools willencourage better use of com-
puting resources
Thetrendsin userinterfaces and workstationsare associated with the trend towards dis-tributed data processing. Distributed processing,in its broadest sense, allows applications, orparts of an application, to be executed onvarious processors connected through anetwork. The decision about what to executewhereis madeeither at compile or at executiontime, the aim being to make moreefficient useof the resources available and hence improvecost-effectiveness and response times. Theability to offload some(or all) of the processingonto cheaper computers makes distributedprocessing a very attractive proposition.
Distributed processing ranges from the auto-matic distribution of predefined programs ormodules across various processors,as in parallelcomputing, to complete applications that aredistributed across a network of computers. Themost common form in use today is that ofclient/server systems, where theclient machines(that is, workstations) contain the user inter-face, while the server machine holds the

FOUNDATION
© Butler Cox ple 1990

Chapter 4 Use emerging tools to develop more advanced applications

database. Requests for data are passed across
the network from the client to the server, and
only the appropriate data is returned to the
client machine.

Much work has been donein providingtools to
support distributed data processing. IBM, for
example, provides strong support with facilities
such as the Transparent Computing Facility
(CF) clustering service for its AIX operating
system.This facility enables all the machines in
the cluster to cooperate with one anotherin a
transparent manner — thatis, the user need not

be concerned with which machinein the cluster
is currently being used.Digital is also providing
support for distributed data processing withits
Vaxcluster approach. Although a Vaxcluster
system can contain a wide range of Vax
processors, storage controllers, and peripheral
devices, and can vary greatly in size and
components, it functions as a single entity.

Several of the major tool suppliers are also
seeking to provide their products with facilities
to support distributed processing. Information
Builders, with FOCUS, and Must Software

{Reeorrvitueviviverultveviau‘

X-Windows environment.
(Source: Open Software Foundation)

object-oriented programming. (Source: Paul Avis Photography Inc)

Figure 4.6 In the 1990s,userswill have access to extremely powerful human/machineinterfaces

The photograph shows Motif, the graphical user interface designed by the Open Software Foundation, Motif combines Digital's
XUI and Hewlett-Packard’s X Widgets with a Presentation Managerlook and NewWave’s three-dimensional windowsin an

 The photograph shows NextStep, the user interface for Steve Jobs’s N'|eXT machine. NextStep includesa set of tools for

FOUNDATION

© Butler Cox ple 1990
49

Chapter 4 Use emerging tools to develop more advanced applications

International, with Nomad, have adoptedphased approachesto ensurethat, by the early1990s, their respective fourth-generationlanguages can be used to develop distributedapplications. This trend will be followed bymanyothersuppliers. We expectthat, by 1993,most development departments will have theopportunity to exploit their organisation’scomputing resources byusing tools that supportthe development of distributed applications,providing, of course, that their computers arenetworked.

Future tools will be able to integrateoffice automation and data pro-
cessing applications
To date, office automation applications and dataprocessing applications have, by and large, beentreated as two separate areas. Many organi-sations have recognised the advantages ofintegrating these two types of application, andtool suppliers have begunto provide tools thatwill make this possible.

Oracle, for instance, has announced anelectronic mail system, Oracle*Mail, that iscompatible with the various other Oracle tools.The eventual aim is to provide a database thatsupports all information, regardless of its formor function. Thus, the Oracle database willsupport word processing information, facsimileinformation, and data processing information,regardless of its origin or business area.

50

The advancesin tools described in this chapter(and earlier in the report) will not only enablethe development department to provide moresophisticated applications, but they will alsoenable users to makebetter use of the comput-ing resources available within the organisation.As the facilities available with the new toolsbegin to emerge, the development departmentwill have to manage the expectations ofitsusers. Many business managers will be awareof the potential of the new tools andfacilitiesandwill begin to pressfor applications that takeadvantage of them.If the development depart-ment fails to respond in an appropriate way,business managerswill start to experiment withthe tools themselves. Indeed, they will beencouraged to do so by the suppliers, whowillposition many of their products as end-usertools.
The systems department must therefore re-appraiseits attitude towards end-user comput-ing in the light of the new tools that arebecomingavailable. In particular, it must strikethe appropriate balance between uncontrolleddevelopmentby users and stifling theinitiativeof users, thereby jeopardising the enormousbenefits that can be gained from end-usercomputing. In the final chapter of the report,weoffer advice on how the systems departmentcan provide support and guidance to users sothat they can exploit the end-user toolseffectively, and so that the systems departmentcan prevent future chaos with end-usercomputing.

FOUNDATION
© Butler Cox pic 1990

Chapter 5
Encourage and expand end-user computing

In most organisations, some applications
developmentis being carried out outside the
development department. Systems departments
may or may not be aware ofthis work, and may
or may not be supporting it. As a consequence,
there is no consensusoneither the role of users
in applications development, or on the scope of
end-user computing. For the purposes of this
report, we therefore define end-user computing
as the developmentofa ‘program’ in whicha user
(a memberof staff not directly attached to, or
working within, the development department)
plays a majorrole. A ‘program’in this context can
range from a simple procedure to retrieve and
analyse data toacomplex, multi-user application.
The tools designed specifically for end-user
computing are relatively immature compared
with traditional development tools. From the
early 1980s onwards, most systems departments
have providedtheir users with varioustools and
support in their use. Successful use of these
tools has been the exception rather than the
rule, andit is therefore still commonfor systems
departmentsto consider end-user computing as
a ‘second class’ form of computing. Neverthe-
less, the trend towards end-user computingis
unlikely to be reversed. The tools suitable for
use by’ business users are becoming more
sophisticated, enabling a growing number of
them to develop advanced applications. If
correctly supported, guided, and managed, end-
user computing will provide business benefits
because users will be able to fully exploit the
computing resources available. Well developed
and useful end-user applications canalso relieve
some of the pressures on the development
department.

End-user tools have met with
varied success in the past
Since users beganto get involved in developing
their own applications in the early 1980s, they

FOUNDATION
© Butler Cox pic 1990

have been obliged to use tools that were mainly
designed for professional systems developers,
rather than business users. Today, however,
they have access to tools such as FOCUS, which
can be used as a flexible data-access tool and
as a tool for developing quite complex
applications. Users have developedrelatively
large applications with Mapper from Unisys, and
HyperCard from Apple Computer Inc, and the
macrofacilities of products such as Symphony
and Excel are being used more and more to
produce very complex spreadsheet applications.
The problem is that these tools do not auto-
matically include vital features such as
recovery, audit, and back-up, and it is un-
realistic to expect most users to have the
expertise to provide such features themselves.

The experience of most organisations with end-
user computing has therefore been mixed.
Furthermore, as the numberof users involved
in developing their own applications grows, and
the business significance of their applications
increases,the risk to the business also increases.
One company we spoke to used a complex
spreadsheet, developed by an accountant, to
calculate budgets for the following year. Asa
result of one mistake in the spreadsheet,all the
budget figures were underestimated by 10 per
cent, with the result that insufficient funds
were reserved for the business for the following
year.
Our survey of Foundation members confirmed
that problems with end-user computing are very
common. Most members quoted difficulties in
at least one ofthe following areas overthe last
few years:
— A lack of control and coordination of

development effort.
— Insufficient understanding by users of the

meaning of the information being accessed

51

Chapter 5 Encourage and expand end-user computing

and of systemsissues such as security and
back-ups.

— Limited availability of suitable tools for end-
user computing.

— Problems with maintaining applications
developed by users.

Development departments therefore tend to be
very wary of attempts by users to develop
applications themselves. Any attempt by
systems departmentsto prevent users develop-
ing their own applications, however, is doomed
to failure. Business users will be increasinglyable and willing to use computers as an aid to
their work. The systems department’s role
should be to encourage and support end-user
computing in a way that allows business userssufficient freedom whilst also providing
standards and guidelines in the areas where
these are necessary for corporate consistency.Indeed, because of the current pressures ondevelopment departments, they can no longerignore end-user computing.
Appropriate tools are now makingend-user computing a valid option
In the last two years of the 1980s, there havebeen marked improvements in end-user com-puting tools. With the growthin the use of PCs,a wide rangeof user-oriented tools has becomeavailable, with improveduserinterfaces, auto-matic validation of information, and powerfulcommands making them easier to understandand use. This trend is likely to increase asadvances continue to be made in both fourth-generation languages and the user interface,particularly windowing techniques. Somefeatures, such as security and back-up,arestillnot generated automatically by most end-usertools, but such features have becomelesscriticalin the last few years because the latesthardware and network technologies now oftenincorporate them automatically. Furthermore,users now tend to be offered much bettersupport and guidance both by the tools and bythe systems department. These trends will resultin an increase in the numberof business users
who are prepared and competent to developtheir own applications and whowill regard end-
user computingas an effective use of their time.
In our survey, just over 75 per cent of
Foundation memberssaid that they provided

oO ©

business users with tools that enable them toaccess data and to develop applications. Veryfew, however, had any idea, other than
estimates based on installed equipment ormachine usage, of the extent to whichthe toolswere actually used, what they are used for, orhowthelevelof useis likely to rise in the future,This is partially due to the fact that measuringthe use madeof PCs that are not networkedis
extremely difficult. Nevertheless, the majoritybelieved that there would be a significant andsteady increase in end-user computing over thenext five years. (This trend was confirmed bythe organisations we interviewed that did keeprecords.)
Renault, a French car manufacturer, providesbusiness users with microcomputers andmainframetools and packages. Most users onlyneed database query facilities, provided byIBM’s QMP/DB2, and enhanced graphical andstatistical facilities, provided by the SASpackage from SASInstitute Incorporated. Morecomplex applications are developed using SASor Nomad 2 from Must Software International.Experienced users have developed micro-computer applications with Ashton Tate’sdBase, Borland’s Paradox, and the Multiplanand Excel spreadsheets. Renault expects thenumberofusers to increase from 1,000 in 1989to 10,000 in 1996.
At British Airways, an international airline,business users have produced over 10,000proceduresthatare retained for future use, andcountless others that have been used anddiscarded. If users had not carried out thisdevelopment work, someof it would never havebeen done and some of it would have beenadded to the development department’sapplications backlog. Figure 5.1 shows thegrowth in end-user computing within BritishAirways. Such levels of growth indicate theimportance of end-user computing to anorganisation.
Therate of growth in end-user computing willclearly vary from organisation to organisation,butit will be encouraged by four major factors:
— Technology: More powerful and easier-to-use end-user tools are emerging, cheaperPCs and intelligent workstations arebecoming available, and it is becomingpossible for users to access computing

FOUNDATION
© Butler Cox pic 1990

Chapter 5 Encourage and expand end-user computing

resources via a network without having to
concern themselves with the physical con-
figuration of the hardware or databases. The
technological advances that are likely to
have the greatest effect on the growth in
end-user computing are described in
Figure 5.2.

— Business pressures: Within many organi-
sations, there is an increasing need for appli-
cations to be produced rapidly, in response
to business pressures. The majority of these
applications tend to be small, and to have a
relatively short life. Many of these ‘throw
away’ systems can be developed by users.

— Education and awareness: There is a grow-
ing number of computer-literate business
staff who have received some formaltraining
in computing and who are willing to use
computer-based technology. This is leading
to an increasing level of awareness of the
capabilities of computer applications, par-
ticularly in the areas of flexible yet
sometimes complex information access and
report generation (sometimes known as
executive information systems), and of

Figure 5.1 End-user computingat British Airways has

grown dramatically

British Airways employs about 49,000staff. In 1984, it
replacedits existing end-user tool, ADI/ADRS, with
FOCUS.Atthat time, there were 122 staff with the
ability to use FOCUS.Since then, the FOCUS user
population has increased to over 2,000 — a 17-fold rise
in less than five years. British Airways is now the
biggest user of FOCUSin the United Kingdom. In the
16-month period prior to our meeting with British
Airways, the numberofstaff using FOCUS on a regular
basis had also risen dramatically — about 30 per cent
per annum.
Since staff began to develop applications in FOCUS,
over 10,000 procedures have been written and retained.
These rangefrom very basic general enquiry and
access applications to very complex applications that
actually write other FOCUSapplications and then
execute them.
During the interview, Chris Bell, from the FOCUS
Support Information Management Group, demonstrated
the potential benefits of using a powerful end-user tool
such as FOCUS. He wasable to use simple one- or
two-line commandsto extract information on the use of
FOCUS,by date, development area, and so on, without
leaving his desk or using the telephone. This demon-
strates thatif they are correctly implemented, and
supported with the appropriate training and guidance,
end-usertools can beeffective aids to everyday work.

Figure 5.2 Advancesin technology will make tools

easier for users to exploit

Increased guidance: |n the short term, most data-access
and retrieval tools will have in-built help facilities to
provide guidance on the use of the tool, but they will
provide no guidance on the meaning or use of the data.
In the medium to longer term, as expert and object-
oriented systems mature, the more advanced end-user
tools will be easier to use and will contain knowledge
not only of what the data means, but of how it can be
used. End-user tools that contain an embedded
knowledge base will start to emerge in the early 1990s
and tools based on object-orientation will follow in the
mid-1990s.
Better facilities for transferring information: Otherless
powerful or less flexible end-usertools, such as
spreadsheets,financial-modelling packages, and word
processors, will be able to accept and process
information regardless of its source. Sucha facility is
already available with some computers — the clipboard
facility on the Apple Macintosh allows data,text,
graphics, and imagesto be transferred from onetool to
another in a consistent manner.
Improved userinterface. Many end-usertools will be
based on PCs or powerful workstations. Initially, the PCs
may well be standalone,although the requirement for
access to large databaseswill require many of them to
be networked. Powerful networked workstations will be
used where more computing poweris required. These
machines, combined with the end-user tools based on
them, will provide a very flexible and powerful
human/machineinterface, using icons, windows, pull-
down menus, and so on.

FOUNDATION
1 Cox pic 1990

flexible information access, analysis, and
reporting (sometimes known as decision-
support systems).

— Frustration: It is becoming increasingly
difficult to attract and retain good develop-
ment staff. This has resulted in a staff
shortage that has increased the applications
backlog and thus extended the time it takes
to develop a new application. The response
of users to an unacceptable timescale will be
to do more of the work themselves, or to
commission contract staff or a software-
development company to do the work.

Ensuring that the most effective use of end-user
computing is achieved will become more and
more important for all organisations as the
demand for new applications continues to
outstrip the development department's ability
to produce and maintain them. In the United
Kingdom,for example, the average backlog now
amounts to about 30 months. The demand for
new applicationsis growing at about 15 per cent

53

Chapter 5 Encourage and expand end-user computing

a year, whilst the numberof qualified develop-
mentstaff is growing only at about 5 per cent
a year. It is clear from these numbers that the
gap between the demand for applications and
the development department’s capacity to
provide new applications will continue to
widen, even if there are substantial improve-
ments in development productivity.
Provided with the appropriate tools, training,
and guidance, users could do much of the
maintenance workcurrently being carried out
by the development department. A survey of
24 members of Butler Cox’s Productivity
Enhancement Programme,carried out in late1988, showed that about 40 per cent of all
maintenance work, primarily generating new
reports, could be carried out by users. They
could also access and analyse information
without needing to have specific software
written by the development department, thus
contributing to a reduction in the applications
backlog.
Tt is clear, however, that the advances in end-
usertools will not, by themselves, overcomeallthe problemsdescribed aboveorresult in all theimprovements. Nevertheless, with help andguidance from the systems department, userswill be able to makebetter use of the availablecomputing resources and make a considerablecontribution to reducing the developmentworkload faced by most organisations. Effectiveend-user computing can produce significantbusiness benefits. It can also result in a betterrelationship between the systems departmentand the user community, a better understandingby that community of the developmentissuesfacing the department, and a reduction in theworkload of the development department. Thechallenge that faces the systems departmentisto provide an appropriate level of guidance andsupport to maintain some control withoutdiscouraging the enthusiasm of users and stifling
their creative use of the emerging end-user
tools.

It is critical to provide appropriate
guidance and support
The advances describedearlier in this report will
make tools easier to use and more business-
oriented. More and moreusers will therefore be
able to play a constructive role in ensuring that

54

the organisation’s computing resourcesare usedfor the maximum benefit of the business. The
resources of the systems department are,however, limited, and therefore need to be
allocated carefully to ensure that they are used
to the greatest possible effect.

We recommendthat systems departmentsstart
by categorising the different types of user so
that each category can be provided with the
level of support, guidance, education, and toolsthat will enable business users to make the mosteffective use of the computing resourcesavailable to them. Without such a categori-sation, it will be difficult to allocate resources
in the most effective way and to plan for thegrowth of end-user computing.
Categorising staff in the way described belowshould not determine absolutely what tools maybe used, or whatlevel of service an individualis entitled to. Individual organisations are likely
to have their own policies and constraints whendeciding on the tools and support that shouldbe provided. The categorisation will, however,enable the systems departmentto get a betterunderstanding of the extent of end-usercomputing, and hence ofthe levels of guidance,support, and technology (hardware, softwarepackages, and tools) that it is appropriate toprovide in order to encourage end-usercomputing throughout the organisation.
The systems department should also setguidelines for different types of application, andencourage users to seek the developmentdepartment's ‘seal of approval’ for each appli-cation. Encouraging users to have theirdevelopments approved will prevent the pro-liferation of poorly documented applications.

Identify categories of user
There are four main ways in which systemsdepartments can classify different types ofbusinessuser:by their role, by the type of datathey access, by their department, or by theirneed for or use of applications and tools. Werecommend that the latter is used, which iscommonly broken downinto five categories:
— Category 1: Potential users, who at presentdo not use any computer-based appli-

cations.

FOUNDATION

© Butler Cox pic 1990

Chapter 5 Encourage and expand end-user computing

— Category 2: Those who have a need to use
or who only use applications and packages
that have been written for a specific task
that requires them to input data — for
example, an accounts application.

— Category 3: Those who have a need to use
or who use enquiry and analysis tools to
access databases and analyse the data.

— Category 4: Those who have a need to
develop or who use end-usertools to develop
small applications, primarily for personaluse.

=— Category 5: Those who have a need to
develop or who develop applications that
may be used by many other users.

Each category ofuseris, in effect, an expansion
of the one prior to it. Users tend to move
through Categories 1 to 5 whenfirst introduced
to end-user computing, and regress through the
categories as they move into the higher
managerial roles. Each category refers to the use
(actual or potential) made of end-user tools
ratherthan to the type of tool used. Therefore,
someoneusing a spreadsheet simply to add up
a list of figures would be in Category 2, a user
loading data into a spreadsheet from a database
and analysing it would be in Category 3, anda
user writing macros and developing a
spreadsheet for a specified task would be in
Category 4 or 5.

Staff can be assigned to the appropriate
category by means of a simple questionnaire
that assesses their use of tools as well as their
needs. There will, of course, need to be some
mechanism for re-assessing at regular intervals
the category to which an individualis assigned,
because neither his needs nor the technologies
used will be static. Once staff have been
categorised in this way, the appropriate level
of support and resources can beallocated in the
most effective manner. Figure 5.3 suggests how
the various types of support and resources —
tools, training, help, guidance, and so on —
might be allocated. In this figure, the tools
shown in the cells on the first row have been
classified as follows:
— Fixed-processing tools: These are the

applications and packages used to support
the daily work of the users. Most of the
applications will have been developed in-
house or bought as packages. All of these
tools carry out a fixed processing task on
specified information.

— Flexible processing tools: These are the
packages, such as spreadsheets and financial
modelling packages, that allow users to
process data in a predefined manner.

— Data-access tools: These enable data to be
accessed and retrieved from centralised or
corporate databases. They generally permit

1. Potential

Type of support needed user (None)

Training IT awareness

a [aHelp (you telephoees
Guidance (we advise you) ea

Figure 5.3 Allocating appropriate resources to the different types of end user will encourage growth in, and improve,
end-user computing

Category of user (Relationship with development department)

2. Current user
(Weak)

Tools Fixed/flexible
processing tools

Hardly at all

3.Data-access 4. Personal 5. User developer
user (Medium) developer (Very strong)

user(Strong)

PLUS PLUS PLUS Fourth-
Data-access tools Report-generation generation tools

tools

“Powerworkstal

PLUS PLUS PLUS
Basic data Basic Best practice for
processing development data processing

Verylittle Hand-holding
and directingHand-holding

FOUNDATION
© Butler Cox pie 1990

Chapter 5 Encourage and expand end-user computing

‘read only’ access andthe datais transferred
to a local machineif it is to be amended or
modified. These tools use a simple pro-
gramming language or a pseudo-English
language syntax.

— Report-generation tools: These generally
enable reports to be generated from a local
or centralised database. Again, they tend to
use a simple programming language or a
natural-language syntax.

— Fourth-generation tools: These are used to
develop applications (sometimes with thecooperation of the development department
and sometimes without) that tend to be run
on PCs or powerful workstations.

By wayofillustration, an individual classified
in Category 2 would normally be provided, as
a minimum, with access to either a dumb
terminal or a PC. A dumb terminal would be
adequate for someone whorequired access only
to fixed-processing tools — that is, applications
that were already fully developed, and that onlyrequired data to be input. A PC, however,
would be needed by someone who required

access to the more advancedflexible-processing
tools such as spreadsheets. Such staff wouldusually need to attend a standard training
course on the use of the tools. Support wouldbe provided via a permanently staffed help desk
because this type of user typically requiresimmediate assistance. There wouldbelittle needfor any further guidance other than that
provided by the training course.

Issue guidelines for different types of
application
Guidelines for end-user applications should be
defined to avoid constraining users. Appli-
cations should beclassified by size, the number
of users, the type of data they access, and so
on. The classification can also serve to
determine the level of inspection required to
attain the systems department’s ‘seal ofapproval’, discussed below.
An example of a matrix that can be used toclassify end-user applications and to define theguidelines for their development is shown inFigure 5.4. In this example (whichis based on
 Figure 5.4 A matrix can be used to classify applications and define the guidelines for their development

Class A
(simple spreadsheet or
database query)

Class B(spreadsheet used onregular basis or data-
base reporting
program used by more
thanone person)

Class C
(micro-based DBMS
application, or complex
spreadsheet, or simple
spreadsheet used for
critical decision-
support)

Data attributes
@ Personal
@ Non-strategic
@ Low-volume
@ Independent

@Departmental
®@High-volume
@Used by otherprograms

@ Strategic or sensitive
@ Used to update

corporate database

Application
attributes

@ Personal
®@ Standalone
@ Low complexity

®@ Corporate@ Used by more than
one person

@ Complex
@ Uses non-
recommended
technology

(Source: Based on an example from the Software ManagementInstitute)

Project attributes
@ One to five

workdays
@ Noformal projectmanagement

warranted

 management _warranted -

@ 21 to 40 workdays
@ Formal project

approval/project
management
warranted

®@ More than 40 days
— system develop-
ment standards
apply

Associated
guidelines

® Obiain authorisation
@ Use password
@ Back up data
@ Use common sense
@ Document as

appropriate
© Label the

application and
output reports

ssAguidelin
Do rec trol analysisDocument‘Get‘seal of
approval’ for systemsecurity and so on

Class B guidelines +
@ Do compulsory

control analysis
@ Dofeasibility and

cost-benefit analysis
@ Get agreement from

development depart-
ment

FOUNDATION

© Butier Cox pi

Chapter 5 Encourage and expand end-user computing

work done at the Software Management
Institute), all end-user applications are classified
into one of three Classes, according to their
attributes. An application is always allocated to
the highest possible class.If, for instance, it had
data and application attributes in Class A, and
project attributes in Class C, it would be
considered as a Class C application. Examples
of the application types that might fall into each
category are included in the matrix.

The guidelines associated with that class of
application are then applied, to ensure that the
user is not unnecessarily restricted. For the
development of a simple spreadsheet, for
example, categorised as Class A, the following
guidelines would apply:

— Obtain appropriate authorisation to develop
the application. Professionals often have
implicit authorisation by virtue of their job
level; clerical staff may have to request it
from a supervisor.

— Use passwords to restrict access to the
application.

— Always back-up both the data and the
application.

— Documentthe application and procedures
for using it.

— Label the application and any output it
produces as ‘Class A’.

For Class B and Class C applications, the
guidelines would become progressively more
stringent because the scope of such applications
is wider and the risks are therefore greater.
Classifying end-user applicationsin this way will
ensure that they are evaluated prior to
development, that appropriate development
guidelines are followed, and that future users
are aware of the standards to which each
application was developed. In some organi-
sations, however, it will not be practical to
classify all applications, and the guidelines
should be aimed at the riskier Class B and
Class C applications.

Encourage users to seek the systems
department’s ‘seal of approval’

Systems departments should encourage users to
regard the conceptof the ‘seal of approval’ as

FOUNDATION
jutler Cox pic 1990

the equivalent of the acceptance testing they
carry out on applications developed by systems
staff. In providing its approval, the systems
department should be looking for good docu-
mentation, comprehensive testing, consistent
use of data, and so on. The systems department
will also have the opportunity to add security,
back-up, or systems features that the user may
not have considered. Oncethe applications have
been approved, any subsequent maintenance
and enhancements can be carried out in a
controlled manner either by users or by the
development department.

Clearly, not all end-user applications will require
the samelevel of inspection. Indeed, some will
need noneatall. If users are required to submit
major applicationsfor inspection, however, and
if the process is conducted effectively, the
end-user development environment can be
effectively managed.

Provide guidance and support for end-
user computing

Business users will adopt a growing variety of
developmenttools to help them develop their
own applications. As a result, the role of the
development department will change in time.
It will still be responsible for developing those
applications that are too complicated for users
to develop themselves, and those that span
business functions, and for supporting users as
they carry out their own developments.

In addition, it will be the systems department’s
responsibility to guide and support end-user
computing. In Report 71, Staffing the Systems
Function, we described in detail the skills
required forthis critical area. Further advice on
providing support and guidance for end-user
computing, from both within and outside the
systems department, is given in the Butler Cox
Foundation Position Paper Information Centres
in the 1990s, published in February 1990.
Moreover, users will demand better human/
machine interfaces, based on windows and
icons, and better advisory and helpfacilities to
be built into applications. All this will place
additional demands on the development
department. By exploiting the emerging tools
identified in this report, these demands should
be well within its capabilities.

57

The Butler Cox Foundation
The Butler Cox Foundation is a service for senior
managersresponsible for information managementin
major enterprises. It provides insight and guidance to
help them to manage information systems and
technology more effectively for the benefit of their
organisations.

The Foundation carries out a programmeof syndi-
cated research that focuses on the business implica-
tions of information systems, and onthe management
of the information systems function, rather than on
the technology itself. It distributes a range of publica-
tions to its membersthat includes Research Reports,
Management Summaries, Directors’ Briefings, and
Position Papers. It also arranges events at which
members can meet and exchange views, such as con-
ferences, managementbriefings, research reviews,
study tours, and specialist forums.

Membership of the Foundation
The Foundationis the world’s leading programmeof
its type. The majority of subscribersare large organi-
sations seeking to exploit to the full the most recent
developments in information technology. The mem-
bershipis international, with more than 400 organi-
sations from over 20 countries, drawnfromallsectors
of commerce, industry, and government. This gives
the Foundation a unique capability to identify and
communicate ‘best practice’ between industry
sectors, between countries, andbetweenIT suppliers
and users.

Benefits ofmembership
The list of members establishes the Foundation as
the largest and most prestigious ‘club’ for systems
managers anywhere in the world. Members have
commented on the following benefits:
— The publicationsare terse, thought-provoking,

informative, and easy to read. They deliver alot
of message in a minimum of precious reading
time.

— Theeventscombineaccessto the world’s leading
thinkers and practitioners with the opportunity
to meet and exchange views with professional
counterparts from different industries and
countries.

— The Foundation represents a network of systems
practitioners, with the power to connect
individuals with commonconcerns.

Combined with the manager’s owncreativity and
business knowledge, Foundation membership
contributes to managerial success.

FOUNDATION

FOUNDATION
Recent Research Reports
56 The Impact of Information Technology on

Corporate Organisation Structure
57 Using System Development Methods
58 Senior Management IT Education
59 Electronic Data Interchange
60 Expert Systemsin Business
61 Competitive-Edge Applications: Myths and

Reality
62 Communications Infrastructure for Buildings
63 The Future of the Personal Workstation
64 Managing the Evolution of Corporate

Databases
65 Network Management
66 Marketing the Systems Department
67 Computer-Aided Software Engineering

(CASE)
68 Mobile Communications
69 Software Strategy
70 Electronic Document Management
71 Staffing the Systems Function
72 Managing Multivendor Environments
73 Emerging Technologies: Annual Review for

Managers
74 The Future of System Development Tools
RecentPosition Papers and
Directors’ Briefings
Information Technology and Realpolitik
The Changing Information Industry: An
Investment Banker’s View

A Progress Report on New Technologies
Hypertext
1992: An AvoidableCrisis
Managing Information Systems in a
Decentralised Business

Pan-European Communications:
Threats and Opportunities

Information Centresin the 1990s
Forthcoming Research Reports
Assessing the Value from IT
Systems Security
New Telecommunications Services
Using IT to Transform the Organisation
Electronic Marketplaces

Butler Cox
The Butler Cox Foundation is one of the services
provided by the Butler Cox group. Butler Coxis an
independent managementconsultancy and research
company.It specialisesin the application of informa-
tion technologyin industry, commerce, and govern-
ment throughout Europeand therest of the world.It
offers a wide range of services to both users and
suppliers of information technology.

eed
SekeeaLeh aeSeeeeeeeeay|]
emed
eeeee
DeUeAUiedBt]

Pd
me

POeeee
SPUReeeeey
Germany (FR), Austria, aed Switzertawd

eee
eReeeResed

Deed
Teer
coy
emeeAeaibaarg

Pintawd
Bg|See)

Ieetomd
De
ea|SReeeseORa

LaelPe
Seee
eeee)
eaSeeeyee

AeekET
eehiiehe tank
Sn
eeey
Seeike

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64

