

E s R/ R R 2R &R e n s A=

FOUNDATION

The Future of System Development Tools

Research Report 74, March 1990

Butler Cox plc

LONDON
AMSTERDAM MUNICH PARIS

Published by Butler Cox ple
Butler Cox House
12 Bloomshury Square
London WC1A 2LL
England

Copyright © Butler Cox ple 1990

All rights reserved. No part of this publication may be reproduced by any method
without the prior consent of Butler Cox ple.

Availability of reports

Members of the Butler Cox Foundation receive three copies of each report upon publication;

additional copies and copies of ear

Photoset and printed in Great Britain by Flexiprint Ltd., Lancing, Sussex.

lier reports may be purchased by members from Butler Cox.

2 am o= omm o w s w o oam

FOUNDATION

The Future of System Development Tools

Research Report 74, March 1990

Contents

1 Treat the promises made for new system development tools with caution 1
There have been continuing advances in tools z
These advances have led to increased costs 4
There is still much uncertainty about the future of development tools 6
Purpose and structure of the report 7

2 Plan for the future with I-CASE in mind 9
The potential benefits of I-CASE are considerable 10
Suppliers are beginning to commit to I-CASE 12
Standards are being formulated for I-CASE 16
The levels of cost, risk, and commitment associated with I-CASE are high 19

It would be wise to migrate slowly towards I-CASE 22
3 Continue to exploit existing tools 2
Continue to use well proven fourth-generation languages 28
Use re-engineering tools to help manage old applications 30
Evaluate the potential of application packages 35
4 Use emerging tools to develop more advanced applications 38
Object-orientation will be an effective development approach by 1994 38
Rule-based technology will emerge in several forms 44
Other advances in tool technology will be valuable in particular areas 47
5 Encourage and expand end-user computing Bl
End-user tools have met with varied success in the past il
Appropriate tools are now making end-user computing a valid option 52
It is critical to provide appropriate guidance and support 54
Report conclusion 58

A Management Summary of this report has been published separately and distributed
to all Foundationmembers. Additional copies of the Management Summary are available
Jfrom Butler Cox.

FOUNDATION

© Butier Cox plc 1920

Report synbpsis

This report considers the new types of system development tools that are beginning
toappear. These include I-CASE, reverse-engineering, rule-based, and object-oriented
tools, all of which will, in the long term, make the development department’s task much
easier. Many of these are still at an early stage of development, and the claims made
for them should be treated with caution. However, benefits can be gained if they are
adopted selectively and with regard for the future. In summary, our advice is: continue
to exploit fourth-generation languages; always consider package solutions; plan to
migrate to I-CASE, without yet making a full commitment to it; use re-engineering tools
to maintain existing applications and as a means of preparing them for an I-CASE
environment; adopt rule-based tools as they mature in the 1990s; and monitor
developments in other new types of tools as they emerge, particularly tools for
exploiting object management, parallel computers, multimedia tools, and tools for
developing advanced user interfaces.

|

Chapter 1

Treat the promises made for new system
development tools with caution

All businesses are increasingly dependent on
computer applications. As a consequence, sys-
tems departments are under growing pressure
to produce more efficient applications that con-
tain more functionality, that are more reliable
and more flexible, and that provide access to
greater amounts of information. Furthermore,
development managers are expected to achieve
this with fewer resources and reduced time-
scales. To keep pace with these growing
demands, systems departments rely heavily on
the use of development tools, the capabilities
of which have continually advanced in response
to business demands. These advances, however,
have created some significant problems for the
development department. Not only are some of
the tools that are currently being used to
develop applications out of date (because they
have reached the limits of their capability but
are retained to maintain old applications), but
there is little compatibility between different
types of tools.

Suppliers of development tools are responding
by promising improved tools for use both by
professional systems development staff and by
business users who will use the tools to develop
their own applications. The suppliers claim that
the new tools will solve many of the problems
currently faced by the development department
in providing a service that is both reliable and
flexible, and in building applications that have
greater functionality. The improved tools, claim
the suppliers, will be easier to use, which means
that many business users will find it easier to
use the tools to develop their own applications.
Indeed, many of the tools will be positioned as
end-user tools. In the development community,
however, there is great uncertainty about the
form that these future tools might take, about
their impact on the development process, and
about the most appropriate timing for their
introduction.

FOUNDATION

© Butler Cox ple 1990

These concerns are not unfounded. As
Figure 1.1 shows, the situation is already
complex, and will become more so in the

Figure 1.1 Over the next five years, existing types
of development tools will combine to

form new ones

Type of tool

Third-generation
languages

1990 1991 1992 1993 1994

Object-oriented third-
generation languages

Object-criented pro-
gramming systems

 Fifth-generation
toolkilss el =
Expert systems

End-user tools and
:'gg‘:i}—p'roféss‘iqnag;ﬁGL"s

Expert system fourth-
generation languages

Data dictionaries

Integ ratg_d_fﬁrbjéq
 support environments %

"> Combination of types of tools

‘ Tools becoming available, but not yet in
widespread use

- Tools available and in widespread use

mEm Tools still available, but no longer in
" widespread use

Chapter 1 Treat the promises made for new system development tools with

caution

mid-1990s, with various types of development
tools combining to form enhanced tools and new
types of tools emerging. The tools available in
the mid-1990s will be more integrated with each
other and will provide more powerful facilities,
thereby increasing productivity and quality and
permitting the development of more complex
applications.

In the past, the introduction of a new type of
development tool was accompanied by promises
about the benefits it would bring. Rarely, how-
ever, have these promises been realised. Third-
generation languages, for instance, were sup-
posed to facilitate ‘programming in English’
(Cobol), and ‘automatic programming’ (Fortran).
Some fourth-generation languages were sup-
posed to remove the need for programmers.
Foundation members are concerned that the
claims now being made for the new tools will,
similarly, fail to materialise. They are also
concerned about the durability of the new tools,
especially in view of the levels of investment
and commitment that are required to exploit
them fully and the level of risk involved. In this
report, we examine the trends, describe the
different types of development tools likely to
be available in the next five years, and assess
the validity of the claims being made for them.

We use the term ‘system development tool’ as
a generic term for all the computer-based
development tools that contribute directly to
the development of an application, regardless
of whether the user of the tool is a professional
developer or a business user., This definition
therefore includes all the different generations
of programming tools, CASE tools, expert-
system development tools, and end-user tools.
From now on in this report, we use the word
‘tool’ in place of the cumbersome ‘system
development tool’ wherever this definition is
intended.

Figure 1.2 shows the various types of tools that
are covered by the above definition and in
common use today, and gives examples of each
type of tool. In this report, we concentrate on
those tools (both general-purpose and niche)
that will have the greatest impact on the
development of applications in the next five
years (up to 1995). To keep the scope of the
research manageable, we have looked at types
of tools, rather than at individual tools, of which
there are hundreds available today.

bo

Project-management, planning, and estimating
tools are mostly excluded from the scope of this
report because they are management tools
rather than development tools. An exception is
made in Chapter 2, however, because manage-
ment tools are an integral part of the future
integrated development environment. Where
advances in particular tools, like CASE tools,
depend on advances elsewhere — for instance,
In methods or standards — we have commented
on these other advances, where appropriate.

There have been continuing
advances in tools

Because of the increasing demands placed on
the development department by the business,
and because of the increasingly serious shortage
of skilled systems development staff, tool
suppliers have concentrated much of their
effort on the area in which the greatest gains
are likely to be made — the main-build (or
programming) stage of the development process,
This is the stage at which the greatest amount
of development time and effort is currently
spent. (The maintenance stage of the appli-
cations life cycle may take up to 60 per cent of
the time and effort, but this stage can be
considered to be iterations of the earlier stages,
of which the programming stage is one.) As a
result, advances in programming tools have
resulted in significant productivity improve-
ments at the main-build stage.

There has not, however, been a smooth tran-
sition from one major advance to the next. As
Figure 1.3 on page 4 illustrates, when a new
generation of tool is first introduced, the overall
level of benefit initially falls, until development
staff become familiar with the new tool, and
procedures and methods are established. The
level of benefit thereafter increases to a point
above the level achieved with the previous tool.
As experience is gained with the new type of
tool, its limitations are recognised and the
increase in benefit levels off. Eventually, the
type of tool reaches the limits of its capability,
and a new, more advanced generation is
introduced. This pattern can be clearly traced
in the progress of programming tools since the
late 1940s:

— Initially, there was no choice other than to
use first-generation languages. They were,
however, extremely difficult to use because

£ FOUNDATION

Cox plc 1990

Chapter 1 Treat the promises made for new system development tools with

of the cryptic codes that represented
instructions and storage locations. As the
benefits of using computer systems were
realised, programmers recognised that
developing large applications with first-
generation languages was not only complex,
but also very costly.

— Second-generation languages provided a
more productive means of developing larger
and more complex applications, with
mnemonic symbols replacing the cryptic
codes, and a wider range of facilities. Second-
generation languages were later extended by
adding labour-saving facilities such as macro
functions, code libraries, and subroutine
structures. As the number of computers
within an organisation increased, however,
it became clear that the applications written
in a second-generation language for one type
of computer could not be transferred to

caution

another type, and could not satisfy the
growing needs of the business.

Third-generation languages provided code
that was, in theory, independent of the type
of computer being used. To make their
products more attractive, however, suppliers
of third-generation languages added non-
standard functions to their own products.
These negated the benefit of using a standard
language and meant that many of the
applications could not easily be transferred
to another computer. As the demands of the
business increased, the limitations of third-
generation languages (the difficulties of
understanding and maintaining the code, and
their limited productivity compared with
fourth-generation languages) were realised.

Fourth-generation languages improved the
productivity of development staff, enabling
applications to be developed more quickly.

Figure 1.2 The term system development tools includes all generations of programming tools, CASE tools, expert-

system development tools, and end-user tools

Type of tool

First-generation
languages

Second-generation
languages

Third-generation
languages

Fourth-generation
languages

Computer-aided
software engin-
neering tools
(CASE)

Re- engineermg
tools
Expert-system

tools

 End-user ‘t(_)c_;lvs

Description

Programming tool that uses a binary format to express the application inthe
form of basic processor instructions (machine code).

Programmlng iool that uses "’ymbols and mnemonics to exp ss

application in the form of precessor unstruc’{mns {assembfy !eng ge). =

Programming tool that uses a subset of natural language to describe how
the computer is to implement the solution.

Programming tpol tha’t uses a. subset of rsetural |anguage to specif
the computer is to do to implement the solution. This type _of tool

divided into professional and end-user fourth- geﬁeration langu ges. (Unless* :

oth

ise Specmed the term fouth generatzon Ianguage refers in thgs report
ofessional teol) ,

Tools that automate the techniques on which systems development methods
are based. These tools typically provide some level of support for at least
one stage of development. These tools include analyst workbenches,
application generators, and system generators.

Tools that enebfe éxxstmg apphcattons o be wmproved by prowdmg facmtles-’f,.:
to redocument, analyse, restructure, aﬂd/or regenerate apphcaftlons in a-'

standard and consistent manner.

Include a wide range of tools all based on the technlques associated with
knowledge engineering. These tools permit the development of applications
based on the knowledge or know-how of experts, specialists, or technicians.
Compared with most of the tools mentioned above, they are used to express
the problem, not the solution.

include a wide vanety of 100ls, rangmg from S|mple spreadsheets and data

~ access and reportmg tools to simple development and modelling toals. There

is an increasing overlap between end-user tools and some pf the other
categories mentioned above. : : :

System 36& f ssembEer

_ Professional:

z End-user:

dBase

Examples

ICL 1900 machine code
Motorola 6800 machine code

PLAN (ICL 1900)

Cobol
Fortran
PLA

Focus
Oracle
_ Application Master

FOCUS
Mapper

Qracle*CASE
IEF
FOUNDATION
IEW

Recoder :
Viafinsight

CRYSTAL
LEVELS
NEXPERT

Excel

FOUNDATION

Chapter 1 Treat the promises made for new system development tools with

caution

Figure 1.3 Programming tools have all followed a
characteristic life cycle

A Level of benefit

Fourth-
generation

Third-
generation

Second-
generation

First- b

generation

v

1940 1950 1960 1970 1980 1990

a Initial problems
b Higher productivity gains
¢ Limitations realised

Once again, however, fourth-generation
languages were often specific to a particular
hardware architecture, which meant that it
was still difficult to transfer applications
from one type of computer to another.
Although most fourth—generation—language
suppliers are working to overcome this
difficulty, some systems departments are still
recovering from the uncontrolled use of a
variety of fourth-generation languages.

Today, the term fourth-generation language
covers many types of tool, from Telon, a
powerful screen-based development tool
used by professional development staff, to
FOCUS, a development tool and database
mmanagement system that can be used equally
well by professional developers and by users,
and Mapper, which has been used very
successfully by many users, some of whom
have used it to develop very large
applications. All that these tools have in
common is that they can be used to produce
applications more concisely and rapidly than
traditional third-generation languages, and
provide a better support environment than
third-generation languages.

As one generation of tools has followed another,
other advances have been made in associated
development aids such as compilers, editors,

debuggers, database management systems, and
code libraries. The net result is that develop-
ment departments now have a wide range of
tools and aids to choose from. Most organisations
are currently using both third- and fourth-
generation languages (see Figure 1 4). Some are
also using second-generation languages in
specialised areas, such as realtime systems,
where operational efficiency is critical or where
there is a need for special hardware.

These advances have led to
increased costs

The benefits deriving from each generation of
tool have not been achieved without actual and
potential costs being incurred by systems
departments. The actual costs arise from the
increasing costs of adopting a new generation
of tool and from the resulting increased
complexity. The potential costs arise from the
risks associated with adopting any new tools
when business success depends so heavily on
the applications developed with them.

Increasing costs

Although the cost of any single type of tool has
increased over time, the cost of adopting the
latest generation of tools has increased
dramatically, from hundreds of dollars in 1960
for a Cobol development environment (editor,
compiler, and linker) to hundreds of thousands
of dollars in 1990 for a CASE development
environment. Even if inflation is taken into
account, the cost of adopting a new generation
of tools today has increased 100-fold since the
1960s. Furthermore, each new generation of
tools has typically required an increasing
amount of additional hardware, training, and
consultancy. The cost of these has also increased
substantially.

Managing increased complexity

Although each new generation of tools
duplicates most of the functions provided by its
predecessor, it is usually incompatible with its
predecessor. The newer tools are therefore first
used to develop new applications, while the
older tools continue to be used to maintain
existing applications. Most organisations, for
example, will maintain Cobol code for at least
two years (and possibly 10 or more years) after
they stop using it as the main development

% FOUNDATION

© Butler Cox plc 1990

A

Chapter 1 Treat the promises made for new system development tools with

caution

1940s 1950s

Expert systems

Fourth-generation languages
Third-generation languages

Second-generation languages

Firstgeneration languages

- Emerging
. Available/in use
. Passed peak usage

E Still in use in specialist areas

Figure 1.4 Today, development departments have a multitude of tools to choose from

One type of tool Two types of tool

At least three
types of tool

1980s

1960s 1970s

language. Because of this, many organi-
sations now use a mixture of third-generation
languages, fourth-generation languages, some
elementary CASE tools (being used as main-line
development tools), and a few other develop-
ment tools, such as assembler languages and
expert-system shells, which are used for
specialised applications.

This complex situation was confirmed by the
results of a recent survey of members of Butler
Cox’s Productivity Enhancement Programme
(PEP). Thirty-eight PEP members used over 60
different fourth-generation languages and
application generators (tools that generate
applications, typically in Cobol, from a series of
definitions and screen-based forms), 36 of which
were used by only one organisation. The most
popular tool — FOCUS, from Information
Builders Inc — was being used by only seven
organisations. In most cases, using a wide
variety of old and new tools is the only way the
systems department can meet the demands of
the business for new applications, but con-
trolling such a development environment places
a heavy burden on systems management.

FOUNDATION

© Butler Cox plc 1990

The management task is further complicated by
the lack of standards for linking either the tools
or the applications produced with them, and by
the overlap or gaps in the functionality provided
by different tools. The problems caused by the
lack of standards are particularly acute for
applications written in fourth-generation
languages. Although there are many fourth-
generation languages available for a particular
development environment, there are often very
limited facilities for linking the applications
written in each language. The gaps in the
functionality provided by different tools means
that it is not possible to use a set of tools that
covers the complete applications life cycle.

Tt is the responsibility of the systems department
to ensure that the tools available within the
development department are carefully selected
to minimise the gaps and overlap, and that they
are used to best effect. Advice on these aspects
of systems management has been provided in
previous Foundation Reports and PEP Papers
— notably Report 47, The Effective use of System
Building Tools, Report 67, Computer-Aided
Software Engineering (CASE), Report 69,

Chapter 1 Treat the promises made for new system development tools with

caution

Software Strategy, and PEP Paper 10, Making
Effective Use of Modern Development Tools.

Accepting business risks

As a result of the dramatic increase in the use
of computers in all areas of business in the past
decade, organisations have become better
informed and more efficient, but they have also
become more dependent on certain critical
applications, and hence, on the tools that were
used to develop those applications. The risk
associated with adopting new tools is therefore
considerable. The marketplace for development
tools is highly volatile, with many suppliers
merging, going out of business, or failing to
support or improve their products.

The risk is increased because the time taken to
achieve some of the potential benefits has also
increased with each new generation. With
Cobol, benefits could be achieved within months
of the programmers being trained, because the
benefits derived directly from using the
language; with CASE tools, some benefits, such
as the ability to re-use code and designs, depend
on the availability of a library of code modules,
and it may take several years to accumulate
such a library. There is therefore a risk that a
new (and better) tool will emerge before the cost
of the existing one has been fully recovered.

There is still much uncertainty
about the future of
development tools

As in the past, the new generation of tools now
coming onto the market is promising to resolve
current problems. The difference is that several
types are emerging, all promising to address a
much wider range of specific problem areas.
Some suppliers are starting to integrate their
tools both with their existing products, and with
those from other suppliers, to create an
integrated development environment, which
has the added advantage of eliminating the need
for an organisation to depend on a single tool
supplier. Other suppliers are working on
products that are not part of an integrated
development environment, but that promise to
provide facilities for developing applications to
exploit emerging technologies, such as parallel
computing. At the same time, increasingly
powerful end-user tools are emerging. These will

provide easy-to-use facilities that will allow
users to develop a wider range of applications,
and that will therefore encourage the growth
of end-user computing.

Integrating the development environment

In an integrated development environment,
tools provide support over the whole appli-
cations life cycle, and use a database to store
all the various forms of development infor-
mation and data. This type of environment is
commonly known as integrated computer-aided
software engineering (I-CASE). There is cur-
rently a lot of uncertainty about the future
development of I-CASE and about the claims
made for I-CASE tools. This is not surprising as
many suppliers are promising that the same
benefits will be available from different tools,
and the standards committees cannot agree on
a single standard for the interface between the
various tools and a development database. Many
systems departments are also unsure about how
to migrate from their existing tool set and
applications portfolio to an -CASE development
environment,

Providing new types of development
facilities

Outside the I-CASE development environment,
many other advances in tools are promising
facilities to meet current needs for sophisticated
decision-support systems, powerful user-
friendly interfaces, and easily maintainable
applications. One advance that has recently
received considerable attention is the object-
oriented approach to development and the
associated tools and application development
methods. It promises not only to increase
productivity by making it easier to re-use code,
but also to reduce the effort involved in
maintaining applications (because the ‘objects’
represent things in the real world). The object-
oriented approach to development requires staff
who are skilled in identifying objects and the
relationships between them. Its applicability to
business-computing applications is still to be
proven, however.

Enhancing the capabilities of end-user
computing

Advances in end-user tools have been hastened
by the introduction of fourth-generation

X FOUNDATION

2 Butler Cox ple 1990

\

Chapter 1 Treat the promises made for new system development tools with

languages aimed specifically at business users,
and an increased willingness by users to develop
their own applications. Most organisations
already find it difficult enough to strike the right
balance between mandating what users do for
themselves and providing them with complete
freedom on the applications that they develop.
If the right balance is not struck, organisations
will find themselves either having to deal with
the consequences of poorly developed and
incompatible systems, or failing to gain the full
benefits of a valuable resource because users
refuse to become involved in development. If
implemented and supported correctly, the new
tools will result in very effective and productive
use of the end-user resource.

Purpose and structure of the report

All of these developments will have a significant
impact on the development environment. What
is unclear is when they will occur, what form
they will take, and what development
departments should be doing now to prepare for
them. The fact that more than 180 Foundation
members responded to the questionnaire sent
out at the beginning of the research, the biggest
response ever received, is an indication of the

caution

level of concern and interest that members have
in this area. Without doubt, the scale of change
in the types of tools available in the next five
years, and in the benefits achievable, will be
greater than ever before. To manage this change
successfully, most development departments
will have to address two critical questions:

— Migration:. How does the development
department migrate from its existing set of
tools and applications to the emerging tools?

— Eaxploitation: How does the development
department ensure that it is in a position to
exploit the emerging tools as soon as it 18
advantageous to do so?

The purpose of this report is to help systems
directors to answer these questions, and to
provide advice on when and which types of tool
to adopt to serve the business to best effect.

In researching this report and predicting the
trends in the market, we sought the views of
those suppliers of the tools who are likely to be
the market leaders by the mid-1990s and of
several experts in the field of systems
development. (The research team and the scope
of the research are described in Figure 1.5.)

Figure 1.5 Research team and scope of the research

The research for this report was led by Kevan Jones, a
consultant with Butler Cox in Londen, who specialises in
systems development and has experience in the use of
modern development tools. The work for this report
included a worldwide research programme, which
spanned the period from April to December 1989. Kevan
Jones was assisted, in particular, by:

— Simon Forge, a principal consultant in Butler Cox’s
Paris office. with considerable experience in the field
of systems development.

— Rob Moreton, an associate of Butler Cox, who is a
principal lecturer at the City of Birmingham
Polytechnic, and who specialises in systems
development issues.

— Lothar Schmidt, a senior consultant in Butler Cox's
Munich office, with extensive knowledge of the
European software market.

Further research was carried out by John Cooper
(Australia), Antonio Morawetz (ltaly), and Per Hansen
(Sweden), all associates or consultants with Butler Cox,
and John: Schmidt, a senior manager from Ernst & Young
in the United States.

We conducted an extensive review of the published
literature and carried out detailed interviews with tool
suppliers in Europe and the United States. More than 180
Foundation members replied to the guestionnaire sent out
at the beginning of the research, and we subsequently
held a series of workshops in the United Kingdom and
France to gather more detailed information on particular
aspects of advances in the development-tool market.

In addition, we conducted interviews with various experts
in the field in France, Germany, Austria, Italy; Sweden,
Australia, and the United Kingdom. We should like to offer
our special thanks to Russell Jones, editor of the Systems
Development Monitor, David Gradwell, founder of Data
Dictionary Systems Limited and Rapporteur for the
International Standards Organisation Committee for
Information Resource Dictionary Standards, and Dr Gilles
Kahn, a Research Director at INRIA, France, who
specialises in development aids.

We also drew on the experience of experts within Butler
Cox, on our consultancy work in the systems development
area, and on the Butler Cox Productivity Enhancement
Programme (PEP) database, which is now the most
comprehensive source of information in Europe about the
characteristics of systems development projects.

FOUNDATION

1990

-3

Chapter 1 Treat the promises made for new system development tools with

caution

From our research, it is clear that one of the
most important of the advances is the -CASE
development environment. This promises to
provide a stable and flexible development
environment that will allow systems depart-
ments to mix and match tools from different
suppliers. The adoption and implementation of
an I-CASE development environment will have
a major impact on the development department
and will provide many benefits. It will not,
however, be the solution to all development
problems. Currently, it is not clear what form
an I-CASE development environment will take,
who the major suppliers will be, or to what
standards they will conform. In Chapter 2, we
look at the major suppliers and players in the
developing I-CASE market and provide guidance
on the gradual adoption of I-CASE products.

For most development departments, an I-CASE
development environment will provide an
effective means of developing many of the
applications required, but such an environment
will not be fully available for several years. In
Chapter 3, we look at the steps that
organisations can take in the meantime, without
creating barriers to the subsequent smooth

migration towards an I[-CASE development
environment.

Significant advances in tools are also occurring
outside the I-CASE development environment,
and these should not be ignored because they,
too, will provide benefits. In Chapter 4, we
describe these advances and identify the tools
that should be exploited.

Many of the advances occurring in the field of
development tools will mean that the tools will
be easier to use, both by professional developers
and by business users. Chapter 5 is concerned
with the very important area of development
tools that can be used by business users. The
potential growth in end-user computing, and the
benefits that can be gained from it, are
enormous. End-user computing is already well
established in some organisations. In others,
however, there are often barriers preventing it
from being fully exploited. In this chapter, we
show how advances in tools that can be used
by business users can overcome these barriers
and encourage the growth of productive end-
user computing, provided that the tools are
properly introduced and supported.

FOUNDATION

© Butler Cox plc 1990

Chapter 2

Plan for the future with I-CASE in mind

Most development departments are currently
operating in a far-from-ideal situation. They are
under increasing pressure from the business to
provide more sophisticated applications, with
improved development productivity, but the
tools that they have available do not provide full
coverage of the applications life cycle, nor are
the different tools usually either compatible or
integrated with each other (see Figure 2.1,
overleaf). The lack of an integrated set of tools
means that applications may be of uncertain or
poor quality and that considerable effort may
be needed to provide automated support for the
whole of the applications life cycle. I-CASE
(integrated computer-aided software engineer-
ing), a development environment that supports
a set of integrated tools, promises to provide a
solution to these problems.

Indeed, there is convincing evidence that
I-CASE development environments, while still
in the very early stages of development and
unlikely to reach maturity before the beginning
of 1992, will eventually be widely adopted.
Early users of semi-integrated CASE tools are
already demonstrating their undoubted poten-
tial, suppliers are beginning to bring I-CASE
products to the market, and standards are being
formulated to ensure that there is order in the
market as it develops. It should, however, be
acknowledged that the adoption of a complete
[-CASE development environment is expensive,
and risky while the market is still in an
embryonic stage of development. Furthermore,
it requires a high level of commitment if the
potential benefits are to be realised. Until
I-CASE matures and becomes more firmly
established, it is therefore prudent to plan for
migration towards it, not making a full
commitment to it yet, but leaving the path clear
for its eventual adoption.

The term I-CASE is used to describe a set of tools
that provides an integrated and semi-automated

© Butler Cox plc 1980

support environment for the full applications
life cycle. This consists of the definition of
business requirements, the analysis and design
stages, the automatic generation of the
application, testing, and the maintenance of
operational systems. Each of these stages will
be supported by a range of integrated tools.
Such tools will, for example, help to ensure the
completeness of design, analysis, documenta-
tion, and testing, and will automatically
generate code, databases, and test data. As a
result, they will help to improve productivity
and quality. An I-CASE development environ-
ment will also provide a means of analysing,
supporting, and maintaining applications that
were originally developed outside that
environment.

There are three basic elements to an I-CASE
development environment, as the bottom half
of Figure 2.1 shows. The functional boundaries
between these basic elements vary from
supplier to supplier, but the elements may
generally be defined as follows:

— The I-CASE systems development lool set
will provide the tools that are required at
each stage of the applications life cycle.
These will consist mainly of modified
versions of the tools in use today — such
as fourth-generation languages and CASE
tools — that interface to the I-CASE data
dictionary and fit into the I-CASE
framework (see below).

— The I-CASE framework will provide both a
standard interface to which all the tools
must conform, and a means of supporting
the project team at every stage of
development via a common user interface.
The framework can be either a standard
data dictionary interface, or a layer of
software that provides the interface
between the tools and the data dictionary.

Chapter 2 Plan for the future with I-CASE in mind

Figure 2.1 There is a considerable difference between today’s tools and I-CASE

The current situation: Fragmented, incompatible tool set
Systems developer
i 3

Common user interface
A A

A
Design
tools _

Analysis

Documentation

The future: Integrated CASE (I-CASE)

Systemns developer

Common user interface
A y y A

¥ W

Inverse- Analysis iy
engineering and design : taolg:g ‘
tools tools =

O System development tool set
E Data dictionary
[0 Tool framework

The framework is sometimes also known as The potential benefits of I-CASE
the integrated project-support environment are considerable

(IPSE).

— The I-CASE data dictionary will be the store Although there are no complete I-CASE
for all development information, for all development environments available today, the
stages of the applications life cycle. It will potential benefits are considerable. [-CASE
therefore support the flow of information promises to improve the quality of applications,
between the various life-cycle stages. The to increase productivity and usability, and to

dat:_:x dictionary is also known as the re- reduce dependence on individuzal tool suppliers.
pository, ?npyclopaedia, or information Experience of using CASE tools, which will form
resource dictionary system (IRDS). part of the I-CASE development environment,

- FOUNDATION

10 € Butler Cox ple 1990

Chapter 2

shows that they are already improving the
quality of applications, and hence, their
reliability. Such increases in quality will result
in improvements in productivity, particularly in
the maintenance stage of the life cycle.

Improved quality

The data dictionary lies at the heart of I-CASE
and serves as the means of passing information
automatically from one tool to another. By using
the dictionary in this way, the errors often
introduced when an analyst or programmer
changes from one tool to another, or uses a tool
to implement a paper-based specification, are
eliminated.

An I-CASE development environment also
provides an effective means of communication
between development staff and users. This is
particularly so at the analysis and design stages,
where systems developers and users can work
together to develop the specification, using the
interactive screen-based analysis and design
tools. This will result in problems being resolved
at the design stage, not at the programming
stage. In turn, this will result in applications that
are a better fit with the users’ needs.

The use of the I-CASE data dictionary as the
central store of all development information also
means that common definitions and routines can
be used by different applications, thus improv-
ing quality (and productivity) because it will be
easier to re-use existing code, and ensuring
greater compatibility between different appli-
cations.

Increased productivity

Increased productivity in the maintenance of
applications will result from improved quality,
because less time will be spent removing errors
introduced at the main-build stage. Productivity
at the main-build stage will also increase
because it will not be necessary to respecify
information already stored in the dictionary,
thereby reducing the opportunities for intro-
ducing new errors. Once information has been
stored in the dictionary by one of the I-CASE
tools, developers can be certain that that
information can be used without modification
by any of the other tools. Increased productivity
in the analysis, design, and development of
applications will result from increased

. FOUNDATION

© Butier Cox plc 1990

Plan for the future with I-CASE in mind

automation and greater re-use of design
information.

The I-CASE data dictionary will also increase
productivity by providing development staff
with access to all past applications. If this
information is well organised, developers should
easily be able to locate designs or code that are
similar to those required for a new application.
Re-use of designs or code in this way will
obviously improve productivity.

Some automated code and application
generators have been available for several
yvears. During the first two years of the 1990s,
more will be introduced and they will become
more sophisticated, making it possible to
generate applications and test data auto-
matically from the output of the analysis and
design process. They will be used to construct
applications, reports, and screen layouts, largely
removing the need for traditional programming.

Report-generator and screen-painting tools will
malke it possible for a developer, or a business
user with knowledge of the application, to con-
struct complex screen layouts with icons,
buttons, and pull-down menus, in a matter of
minutes. These report generators will form part
of the tool set in the I-CASE development
environment, dramatically improving the pro-
ductivity of constructing applications. Figure 2.2,
overleaf, shows the stages in the construction
of a screen layout, using Fourth Dimension from
Analyses Conseils Informations (ACI), which
took three minutes to construct. Fourth
Dimension also allows screen layouts and
reports based on various standard formats and
data definitions to be generated automatically.
Standard-format screens can be generated in
seconds with this option.

Greater ease of use

While the use of tools in the I-CASE develop-
ment environment will automate many of the
more mundane or repetitive tasks involved in
development, the developer will still have to
make complex decisions concerning the use of
the development methods and the appropriate
tools. The T-CASE development environment
will provide appropriate guidance to the
developer and easy-to-use interfaces to the
various tools that support the whole life cycie.

il

Chapter 2

Figure 2.2 Powerful I-CASE automation tools will
improve productivity

These layouts were created using the screen-paintin_g facility
provided by the application generator, Fourth Dimension, from

ACI.

" & fie Ed@it Eoviconment Design Font Style Layoutl Colors
Bl Layout: Client Input —= :’D_;-E
= =
LClient Informat]]

50

100

200

(Aecept) (C Concer)

250

o0 150 200 250 300 350 5]]

The control buttons are initially positioned on the screen and
the text title is added.

" & Tile tdit Enviconment Design fant Style Layout Colors

EME = - = Layout: Chent Input = ——?f@
— == oJoul Glen ——— V0
= “ Chient Information
GGt Tnereal Conmer {iEmd] [
Number [Fimber— _ Starns [Tk Cumenr =]
Company An

Division
Site

[Accept) (Cancai E
250

» L'_E_‘ e T e L e e a0 o]
EEE] IEE

2 |
Each data field can then be defined on the screen, using
pop-up windows, and the appropriate text is then added.

" & File Edit Enuironment Design Font Stgle Lagoul Colors

SIS Loyout: Client Inpul B

Client Information
Inwrmal Contact “

Number FER=—] Swms [EETmE
Company
Division 100

o e so 260 750 00 s o
I

The finishing touches can be added by highlighting the fields
and options that are important.

Expert systems embedded in the I-CASE
development environment will provide access
to a knowledge base about the development
process and will provide guidance or advice,
when required. These ‘smart’ -CASE develop-
ment environments will also have the ability to
add to, or modify, their knowledge base, with

Plan for the future with I-CASE in mind

the assistance of the user, to reflect the latest
methods or procedures. Using such an
environment to automate a development task
will reduce the number of human errors
introduced into an application and thus improve
the quality of the delivered application. Smart
I-CASE tools will also help to improve the
operational performance of applications by
providing developers with advice about the
most efficient data structures and coding.

The I-CASE development environment will also
provide a consistent user interface for
development staff, probably based on
windowing techniques, which is independent of
the tool being used. This will reduce the time
it takes to become familiar with new tools, and
thus increase development productivity. It is
important to remember, however, that these
advantages are not restricted to an I-CASE
development environment.

Reduced dependence on tool suppliers

In the future, an I-CASE data dictionary will
store all data relating to past, current, and
future projects in a standard manner (and
independent of most of the tools used), which
means that organisations will be less dependent
on a particular tool supplier. In effect, it will
be possible to plug tools into the I-CASE tool
framework, or indeed, unplug them, as and
when required, with little impact on the
application base. The exception is where the
tool stores proprietary information in the data
dictionary, such as non-standard code. To
achieve true independence, however, will
require all tool suppliers to conform with the
same standard for storing information in a data
dictionary.

Suppliers are beginning to commit
to I-CASE

While a fully functional I-CASE development
environment is unlikely to be available before
the beginning of 1992, many tool suppliers are
already offering semi-integrated CASE tools
(a set of CASE tools that provide coverage
over a large portion of the applications life
cycle). These include Information Engineering
Facility (IEF) from Texas Instruments and J ames
Martin Associates, FOUNDATION Integrated
Environment for Software Engineering from

. FOUNDATION

© Butler Cox plc 1990

Chapter 2 Plan for the future with I-CASE in mind

Andersen Consulting, IEW from Ernst &Young
and Knowledgeware Inc, and CASE* from
Oracle Corporation. As products like these
mature, they will form the basis of I-CASE
development environments. Some organisations
are already using these tools and are starting to
reap the benefits. EBES, a Belgian utility
company, implemented the [EF tool set in 1988.
Its experience is described in Figure 2.3.

Suppliers are, however, taking different
approaches to developing the basic components
of -CASE, and currently fall into one of three
groups. The first group comprises hardware and
software suppliers who are cooperating to

produce software for an I-CASE development
environment. The second group comprises

independent software suppliers, and the third

group comprises suppliers of development

methods, who are working to provide the
improved versions of their products that are
essential for the effective use of I-CASE.

Cooperating hardware and software
suppliers

Several of the major hardware suppliers have
realised the importance of an I[-CASE
development environment (in particular, its
potential to sell additional hardware), and have
announced their commitment to it. Rather than
compete with the established CASE suppliers,
they have promised to provide a data dictionary
and a ‘standard’ framework in which to
integrate the CASE tools and other tools that are
available today.

IBM

In September 1989, IBM announced its I-CASE
development environment, called AD/Cycle,
which provides a standard development
environment that complies with IBM's Systems
Application Architecture (SAA). Within this
development environment, there will be a DB2

EBES

EBES is a privately owned company that produces
electricity and distributes electricity, gas, water, and cable
TV to the northern part of Belgium. It has a systems
development department with a total of 100 staff. Of
these, 40 are primarily involved in developing applications
(financial, personnel, materials handling, and customer
information systems) and are organised by business area.
The other 60 provide support to the users of the 2,000
terminals in an IBM mainframe environment. In the past,
EBES suffered from the same problems as most
development departments; it had a large maintenance
load and an applications backlog that was continually
growing.

the need for more rigorous information planning, and

improve the applications-development process. In March
1988, after evaluating various products, EBES decided to
adopt the Information Engineering Facility (IEF) tools set

and its associated Information Engineering Method (IEM),
from Texas Instruments/James Martin Associates.

After some success with a limited pilot project, EBES
realised the full implications of adopting such a tool set.
To achieve the potential benefits in quality and
productivity, the systems depariment would have to
change its development methods, the development
approach, hardware, and the organisation structure itself.

EBES therefore carried out a further study to define an
environment in which the methodology and its associated
-CASE tools could be effectively and efficiently used. It
resulted in the development of a model of the company,

Figure 2.3 Users of integrated CASE tools are reporting early successes

A company-wide strategic-planning study drew attention to

recommended the introduction of a computer-aided tool to

which grouped the business areas into 14 natural
‘clusters’. These are the basis on which the long-term
architectures of the company’s information systems, its
hardware strategy, and the organisational implications of
such changes, are assessed.

One year after completing the pilot-testing phase, the
company has developed three applications with the 1EF
tool set and methods. They have taken about the same
amount of time and effort as applications using traditional
development tools and methods. EBES believes, however,
that the learning phase is now complete, and that future
developments using the new tool set will take much less
time and effort. Furthermore, the applications developed
with |EF are of high quality because the developers were
able to concentrate on the business aims of the appli-
cations, rather than on their technical features. Several
complete areas of the business have been analysed in
preparation for using |EF to develop further applications,
and ambitious plans have been made in many areas.

Although EBES spent only a matter of months learning
how to use the tool set, it took a further year to
understand the full implications of introducing such a
fundamentally new approach fo development. EBES has
shown that, if correctly planned and managed. the
introduction of such tool sets will result in immediate
benefits in terms of quality, and in productivity benefits
within six to 12 months. The tool set will not, however,
provide all the benefits on its own; changes also have to
be made in development methods and the development
approach, and in various aspects of the organisation
structure.

. FOUNDATION

@ Butler Cox ple 1920

13

Chapter 2

repository (data dictionary), a tool framework
(the Repository Manager), and numerous tools
supplied by IBM and other software suppliers.
Thirty-five suppliers have so far committed to
providing tools that will be compatible with
AD/Cycle. The three suppliers providing the
major elements of the tool set are Knowledge-
ware, Index Technologies, and Bachman
Information Systems Inc.

Although the repository is far from complete,
IBM has very ambitious plans to have a working
version of AD/Cycle available by July 1990.
Experts in the field, however, do not expect to
see AD/Cycle appear until well into 1991, and
they expect the initial version to be a very basic
product.

Digital

Digital has an I-CASE strategy similar in some
respects to that of IBM. Several of the basic
products are already available and integrated
with Digital’s data dictionary, Common Data
Dictionary Plus (CDD/Plus), which was released
at the end of 1988. Digital’s main thrust,
however, is with its object-oriented interface
between the tools and the data dictionary. This
interface, known as ‘a tools integration
standard’, is expected to be available in
mid-1990 and will provide an integrated project-
support environment. Currently, DECdesign, a
front-end analysis and design tool, can be used
to load high-level design information into the
data dictionary, but it is still necessary for a
programmer to translate the design information
into detailed implementation logic for Digital’s
Vax Cobol generator. There are plans, however,
to improve the level of integration in the near
future. As with IBM, there is considerable
collaboration with other tool suppliers — Digital
currently has agreements with 20 different tool
suppliers,

ICL

Although ICL is not a major international
hardware supplier, its products in the I-CASE
area are very advanced. ICL has an established
set of integrated tools in the form of QuickBuild,
a set of cooperating products for the
management of information and the rapid
development of applications. The basic pro-
duct consists of Data Dictionary System (DDS),
a fourth-generation language (Application
Master), an application and database generator
suitable for use in the early stages of

14

Plan for the future with I-CASE in mind

development (Automatic System Generator), a
query language (Query Master), a reporting
language (Report Master), various other
development aids, and a development method.
DDS is the most technically advanced data-
dictionary product available on the market.

Over the next few Years, ICL plans to enhance
the QuickBuild set of products so that it includes
a three-tier data-dictionary structure, as shown
in Figure 2.4. This structure includes the
Advanced Development Dictionary (ADD), from
the-Sema Group, which complements ICL’s own
DDS, providing a distributed data-dictionary
system across both ICL and Unix hardware. One
of the benefits of such a configuration is that
high-performance transaction-processing appli-
cations can exploit the IDMSX database on a
mainframe, and management information
systems or distributed applications can be based
on either a mainframe or minicomputers exploit-
ing Ingres. ICL expects the basic facility of the
ADD, acting as a local dictionary supporting the
DDS corporately, to be available in the middle
of 1990. In addition, ICL is currently talking to
several independent tool suppliers with a view
to integrating various tools with its I-CASE
development environment.

Independent software suppliers

Independent software suppliers are also
developing tools that will “fit into’ an I-CASE
development environment or than can evolve
into full I-CASE products. Many of the suppliers
of existing CASE tools or semi-integrated CASE
tools are already well established, with their
products being used by many organisations.
Some of the most prominent are Oracle
Corporation, Computer Associates, Cincom,
Software AG, Cortex, Ernst & Young, and Texas
Instruments and James Martin Associates.
Figure 2.5, lists some of these, with details of
their products, the hardware on which they run,
and the coverage they provide over the
applications life cycle.

Oracle Corporation offers an ‘open’ type of
semi-integrated CASE product, called CASE*.
This can be used on a wide range of hardware,
from IBM 370-type mainframes down. The data
dictionary, CASE*Dictionary, is based on an
Oracle database and can be accessed via a
variety of predefined routines or by using IBM’s
SQL, the industry-standard database-access
language. There is also a variety of tools, such

£ FOUNDATION

< ‘Butler Cox plc 1990

Chapter 2 Plan for the future with I-CASE in mind

Figure 2.4 ICL is aiming to provide a hierarchy of data dictionaries

Corporate computer/data dictionary
ICL VME mainframe

IDMSX/Ingres
Data Dictionary Systern (DDS)

Strategic planning Departmental computer/data dictionary
Project management Unix
Analysis and -
development work-
benches

Ingres

Advanced Development Dictionary (ADD)

Analysis workbench

v v

Local computers/data dictionary/databases o
Personal computers/powerful workstations _

Ingres
Development data dictionary/production database

Feasibility Analysis/ Main Project
m study design build Maintenance management

Oracle CASE" Many mainframes
Corporation and PCs

Coiex .. | Corvisien |

Ernst & Young IEW IBM mainframes — pu—————
and PCs

Texas Instruments/ ~ IEF
James Martin
Associates

as CASE*Designer and CASE*Generator, that generation languages. The Oracle CASE*
provide the developer with a flexible and product set supports various structured
powerful development environment, and inter- development methods including CASE*Method
faces to a wide range of third- and fourth- and IEF.

FOUNDATION

© Butler Cox ple 1920 15

Chapter 2 Plan for the future with I-CASE in mind

Methods suppliers

There are many applications-development
methods on the market today, each used almost
exclusively within national boundaries. In the
United States, the Yourdon method from
Yourdon Inc is the most popular. In the United
Kingdom, SSADM, a derivative of Learmonth &
Burchett Management Systems’ LBMS System
Design Methodology (LSDM), is the most popular
because of its mandatory use in the government
and public sectors. Merise occupies a similar
position in France. In West Germany, most
methods are developed in-house. In the
Netherlands, the Niam method, and in
Italy, the Daphne method, are growing in
popularity.

The fragmentation of the market is compounded
by the differences in the relationships between
the methods and tools (CASE, third- and fourth-
generation languages, and so on). Some methods
are embedded in a tool — such as IEF from
Texas Instruments/James Martin Associates.
Others — such as SSADM — are quite
independent of the tools. Two programmes are
currently underway that promise to help
improve the situation for organisations that
operate internationally and to increase the
coverage of the life cycle provided by the
various methods:

— The 12 countries in the European Com-
munity are discussing the possibility of
producing a Euro-method. It would
probably be a combination of SSADM and
Merise, with elements of Niam. Although
this is unlikely to appear for several years,
it will be of crucial importance to pan-
European organisations, and of increasing
interest to all organisations as 1992
approaches.

— The SSADM Research Centre in the United
Kingdom has set up a scheme whereby tool
suppliers can assess the compliance of their
products with SSADM. The results of the
compliance tests will be published. If this
scheme is a success, it will provide potential
buyers with guidance on which tools
comply with the method, and it may
€ncourage suppliers of other methods to do
likewise.

Early in 1990, LBMS acquired Michael Jackson
Systems Ltd. LBMS is now working towards
merging its method, LSDM, with Jackson

Structured Programming. This will enable the
realtime version of LSDM to be brought to the
market 12 months earlier than originally
planned. LBMS is planning, subsequently, to
include the Prompt project-management
method in the merged method.

Standards are being formulated
for I-CASE

Although many suppliers are producing the
basic components of an I-CASE development
environment, progress towards integrated
products has been slow, partly because of the
lack of commonly agreed standards. An
immense amount of work is now being carried
out worldwide to define the various standards
required for an I-CASE development environ-
ment, in an attempt to ensure that the
components of I-CASE will fit together with
minimal effort. It is too early to predict which
standard, or standards, will prevail. Over the
next two years, as many as four may emerge —
those defined by the International Standards
Organisation (ISO), those defined by the
American National Standards Institute (ANSI),
the de facto IBM standard, and the de facto
Digital standard. By the mid-1990s, some of
these will merge to form standards incorporating
the best features of each.

Most potential I-CASE suppliers are already
releasing statements of intent of future com-
pliance with standards, but some data dictionary
products and CASE tools are being introduced
that do not comply with any of the standards.
If a full I-CASE development environment is to
emerge, suppliers and users must back the
standards committees by contributing to the
development of the standards, and adopting
them when they are defined. Failure to do so
could result in the creation of several I-CASE
development environments, based on pro-
prietary standards controlled by the suppliers
of the software or hardware. Development tools
will then be restricted to a particular proprietary
I-CASE environment, thus limiting the potential
benefits to be derived from I-CASE.

Standards need to be created in
three areas

Standardisation is needed in three areas before
an ‘open’ I-CASE development environment can
be achieved:

% FOUNDATION

© Butler Cox plc 1990

Chapter 2 Plan for the future with I-CASE in mind

— The logical form of the information held in

the data dictionary, and the means of
accessing and manipulating it, so that
different tools can use and share the
information.

The means of passing information between

dictionaries, some of which may have been
created to optimise performance, and some
to divide information logically.

— The interface between the I-CASE frame-
work and the tools, so that the different tools
can easily be ‘plugged in’ to the I-CASE
development environment.

The logical form of information in the data
dictionary and the interface to it

Work is being done by the standards committees
in both the United States and Europe to define
the logical form of the information in the
data dictionary and the interfaces to it.
ANSI has released its X3.137-1988 standard,
known as the Information Resource Dic-
tionary System (IRDS) Command Interface
and Panel Interface. This standard is more
concerned with the interface than with the
form of information that will be required within
the data dictionary.

A second standard in this area is currently being
defined by the ISO. Also known as IRDS, it is
concerned with an overall set of standards for
the interface to the data dictionary, as well as
standards for the forms of information that will
be held within it. A working draft of this
standard is due for release in 1991/92.

The means of passing infermation

between dictionaries

Through its IRDS Export/Import project, the ISO
is also developing standards that will make it
possible to move the contents of one data
dictionary, and its definitions, to another. These
standards will overcome the difficulties
associated with multiple data dictionaries, and
make it possible to use a hierarchy of
dictionaries, in the form illustrated earlier in
Figure 2.4. Work is also being done in this area
by the Electronic Design Interchange Format
(EDIF)/CASE group in the United States. To
date, the EDIF/CASE group has provided only
an outline of the functions that such a standard
would require. '

© Butler Cox ple 1920

The interface between the I-CASE framework
and the tools

Many research projects in Europe, the United
States, and Japan are attempting to define a
standard for the I-CASE framework:

— The European Community’s Esprit pro-
gramme (European Strategic Programme for
Research and Development of Information
Technology) has concentrated on the
development of a Unix-based software-
engineering standard, known as the Portable
Common Tool Environment (PCTE). This
standard is now complete, and, in essence,
forms a layer between the tools and the
operating system. More than 500 man-years
have been invested in developing the PCTE
standard, in producing various imple-
mentations of PCTE, and in promoting it
as a FEuropean (and possibly worldwide)
standard.

— The PCTE standard is also being used by the

Atmosphere (Advanced Techniques and
Methods of System Production in a Hetero-
geneous, Extensible, and Rigorous Environ-
ment) project within the Esprit II work
programme for Advanced Systems Engi-
neering Environments. This project aims
to develop a standard framework within
which existing methods and tools can be
integrated, and is expected to take about five
years to complete. It currently involves 38
contractors from 13 nations. The main
partners are listed in Figure 2.6.

— The Alvey programme was set up in 1983 by

three UK government departments, British
industry, and academia, in response to
increasing overseas competition, and in

Figure 2.6 There are seven main partners in the
Esprit Atmosphere project aimed at
producing a standard development
framework

Organisation Country

ASSOC CAP SESA INNOVATION r

Bull SA

GEC

Nixdorf Computer AG

Philips Glosilampenfabrigken NV

Société Francaise de Génie Logiciel
(SFGL)

Siemens AG

17

Chapter 2 Plan for the future with I-CASE in mind

particular, to the Japanese Fifth-Genera-
tion Computer Project. The programme had
the objective of stimulating British IT
research through collaborative projects. In
January 1988, the Alvey Directorate was
subsumed into the new Information
Engineering Directorate of the Department
of Trade and Industry. Many Alvey projects
are now complete, and several are still
underway. Between 1983 and 1987, $33
million ($52.8 million) was committed to
research and development into various
aspects of software engineering, par-
ticularly integrated project support environ-
ments (IPSEs). Several commercially
available products have been developed as
aresult of early work on two IPSE projects,
Aspect and Eclipse. The IPSE 2.5 Project
is due to finish in early 1990. Some of the
research from this and other projects will
be carried forward and exploited by the
European Software Factory project as part
of the Eureka programme, which
encourages industry-led projects with
European Community and other European
partners.

— A project in the United States, sponsored
by the US Department of Defense, has
developed the Common APSE (Ada
Programming Support Environment)
Interface Standard (CAIS). CAIS was first
developed in 1982 to resolve the in-
compatibility between Ada development
environments in the American Army and
Navy. Although CAIS has some very highly
regarded features, it is judged by the PCTE
community to be three years behind the
work being done in Europe.

— InJapan, the Sigma (software industrialised
generator and maintenance aids) project
was established in the mid-1980s and
involves more than 190 software com-
panies. Its aim is to develop a common
support environment for developers all over
Japan, thereby improving productivity and
quality and increasing the sharing of
information among development staff. The
project is due to finish in the middle of
1990. Sigma has two distinet elements: a
standard software development environ-
ment and a networked system for
information exchange. In the context of

I-CASE, the former is of greater
importance, although it is not as com-
prehensive as other developments in the
United States and Europe. The develop-
ment environment is based on a Unix
workstation running a standard set of 50
integrated tools. The Sigma products may
be available in Europe before the end of
1990. (Delegates on the Foundation’s Study
Tour of Japan in 1986 met with Professor
Ohno, Chairman of the Sigma system

_ development committee and one of the
founders of the project. Details of his
presentation can be found in the 1986 Study
Tour Presentation Summaries.)

Both PCTE and CAIS have their origins in the
technical computing field and were developed
for Unix environments. So far, they have had
little impact in the commercial computing field,
but this will change as Unix becomes more
popular in the commercial field and as more
suppliers and organisations see the benefits of
these standards. Currently, the PCTE and CAIS
communities are assessing the possibility of
merging the two standards to form one common
standard, taking the best features from each.

Most suppliers intend to comply with
the standards

Hardware suppliers are issuing statements of
intent of future compliance with the various
I-CASE standards, and software suppliers are
promising to conform with those hardware
suppliers’ products. We were, however, unable
to identify any group or organisation responsible
for verifying the extent to which suppliers are,
in fact, conforming to these standards.

IBM, Digital, and ICL (the three major hardware
suppliers who have developed, or are in the
process of developing, I-CASE products) have
already committed to conforming to some
degree to either the ANSI and/or the ISO IRDS
standard:

— IBM has acknowledged that its Repository
Manager/MVS (the AD/Cycle data dic-
tionary) does not fully conform to the ANSI
IRDS standard. It does, however, provide
most of the services and capabilities
required for compliance with the standard.
In fact, the functions provided by the

Chapter 2

entity-relationship model exceed those
required by the ANSI standard.

— To try to ensure the ‘openness’ of its
product, Digital has submitted its tools
integration standard to the wvarious
standards organisations as a proposed
standard for all I-CASE development
environments. The term ‘open’ means that
the Digital I-CASE environment will support
other tools and the development of
applications for other hardware and
software environments.

— ICL’s Data Dictionary System already fulfils
the general requirements of the ANSI IRDS
standard and has facilities in areas covered
by the first draft of the ISO IRDS
framework.

Most independent software suppliers are
releasing statements of intent to conform to at
least one of the hardware suppliers’ data-
dictionary or I-CASE framework standards.
Oracle, for instance, will conform to whichever
standards lead the market (which may result in
its products complying with more than one
standard), and IEF will conform to the IBM
standards for AD/Cycle.

The levels of cost, risk, and com-
mitment associated with I-CASE
are high

Although the potential benefits of a complete
I-CASE development environment are con-
siderable, the levels of investment required are
significant, and as with any area of IT in the
early stages of its growth, the risks are high. In
addition, to exploit the full potential of I-CASE,
organisations need to make a substantial
commitment of time and effort, both to cope
with the changes required to incorporate I-CASE
into the development environment, and to
manage the complex environment that will be
created by having to use I-CASE as well as
traditional development methods and tools.

I-CASE will be costly and will require
additional hardware

Although no complete I-CASE development
environment yet exists, the cost of imple-
menting currently available CASE tools
indicates the level of investment that is likely

< FOUNDATION

© Butler Cox ple 1990

Plan for the future with I-CASE in mind

to be required. In Report 67, Computer-Aided
Software Engineering (CASE), we quoted the
experience of one organisation that had spent
$1.34 million installing and implementing an
analysis and design CASE tool for 30
development staff. The total cost of creating an
I-CASE development environment for the same
number of staff will be higher than this,-
probably $2 million or more, excluding the cost
of additional hardware and the cost of loading

details of existing applications into the data
dictionary.

Most potential I-CASE suppliers agree that the
typical hardware configuration used for
developing applications today is insufficient
for an I-CASE development environment.
Figure 2.7, overleaf, shows the typical hardware
configuration that is likely to be required by a
large organisation for an [-CASE development
environment and for running the applications
once they have been developed. (Note,
however, that additional hardware is required
only for developing applications in an I-CASE
environment, not for running them as well.)

For a smaller organisation, or an organisation
with a smaller requirement for bespoke
applications, a simpler hardware configuration
would be adequate, with PC-based CASE tools
and standalone workstations. This type of
configuration will usually cost less than
mainframe-based CASE tools, but will provide
limited facilities for the development of large
or distributed applications. A more complex
configuration that allows the dictionary (or
dictionaries) to be distributed will enable larger
organisations to maximise the usage of their
various computers and reduce some of the
pressures on the main development machine
and dictionary.

The introduction of I-CASE will hasten the trend
towards powerful networked workstations.
Today, CASE-tool suppliers perceive the
personal computer, rather than the dumb
terminal, as the device that will increasingly be
used by development staff, but the basic PC
available today cannot provide the facilities that
will be required for a full I-.CASE development
environment. A typical developer using an
L-CASE tool will require a large, high-resolution
colour screen, access to fast, high-resolution
printers and plotters, sufficient processing
power and memory (at least 4 megabytes) to

19

Chapter 2 Plan for the future with I-CASE in mind

Figure 2.7

The I-CASE development environment requires a
running applications

complex hardware configuration for developing and

Local development systems

ey D—Tj

Local I-CASE data dictionary

Powerful workstation/PC
for development

Local production systems

-
S I:__l Powerful workstation/PC

for production

Local database

Local development systems

=
Powerful work-

1
station/PC for

_ development

Local I-CASE data
dictionary

Local production systems

l

91
l:]-_l Powerful work-

station/PC for
. Production

Local database

drive these devices, and probably at least 100
megabytes of disc storage. The workstations will
also need to be networked so they can access
a centrally controlled dictionary and so that
developers can intercommunicate with each
other. This type of workstation is available
today (the PS2/70, for instance), but costs
several times as much as a basic PC.

In practice, most organisations are likely to use

20

powerful networked workstations for the
[-CASE development environment and PCs for
other non-I-CASE development tools. PCs,
rather than powerful workstations, will also be
used as the user interface for most of the
operational systems developed in the I-CASE
environment, because the processing power,
storage, and screen resolution available with
PCs will be perfectly adequate for most
applications.

. FOUNDATION

© Butler Cox plc 1990

Chapter 2

An immature I-CASE marketplace
leads to high risks

Adopting I-CASE today is risky because the cost
of the products (and of implementing them) is
high, the products are unproven, and standards
are not, as yet, well defined. Until the standards
issues are resolved, organisations have two
options. Those who purchase hardware from a
single major supplier who has issued a statement
of intent to conform to a particular standard can
select tools that conform to the same standard.
For others, choosing the ‘open’ CASE tools and
other non-CASE tools that are emerging will be
the least risky approach, because these will not
commit them to a particular [-CASE develop-
_ment environment.

Most of the semi-integrated CASE products
available today, which could evolve to become
I.CASE products, have at least one of the
technical shortcomings discussed below. While
these are not necessarily equally important to
every organisation, the shortcomings of today’s
products will need to be overcome before
I-CASE can become established as a really
effective development environment.

Lack of full life-cycle support: The full benefits
of I-CASE cannot be achieved unless the tools
provide full support over the whole life cycle.
If full coverage is not available, it will be
necessary either to transfer information to and
from tools outside the I-CASE environment, or
to use non-automated methods to fill in the gaps.
There are still, for instance, very few methods
or tools for automatically converting logical
designs into physical designs, few tools with .
powerful testing facilities, and few with flexible
reporting facilities based on windowing
techniques and graphical displays. In each case,
it will not be possible to use the data dictionary
to ensure consistency and accuracy, thereby
increasing the probability of introducing errors.

Difficulty of a distributed development
environment with a centralised data
dictionary: In any I-CASE development
environment, several developers will need to
interact with the data dictionary at the same
time, and the hardware and software must
allow this to happen with reasonable response
times. Problems may arise if the dictionary is
held centrally on one computer, and many
believe that a distributed data dictionary is the

¥ FOUNDATION

@© Butler Cox plc 1990

Plan for the future with I-CASE in mind

only way of overcoming these problems. The
precise way in which the dictionary is
distributed will depend on the individual
organisation. The critical issue, however, is how
the dictionary is updated and how information
is controlled as it is passed from one part of the
distributed dictionary to another.

Lack of control facilities for a distributed data
dictionary: With a multi-user distributed data
dictionary, there must be control facilities to
prevent the same information being updated
simultaneously, by several users, and to provide
adequate recovery, integrity, and file-locking
features. These issues are being addressed by
the IRDS Export/Import facilities and the work
of the EDIF/CASE group, but the techniques
will need to be improved to facilitate the use
of multiple versions of multiple dictionaries
stored in a variety of hardware and software
environments. Existing CASE tools provide only
a limited level of version control, if any, for
distributed data dictionaries.

Lack of support for different computer systems:
Most organisations will need to run applications
on different computer hardware and/or in
different software environments. Even if an
organisation currently has a single hardware
supplier, it should consider ‘open’ I-CASE tools,
so that the choice of tools does not preclude the
use of other hardware in the future. None of
the promised I-CASE environments will provide
complete ‘openness’. Even some of the ‘open’
tools available today provide only a very limited
choice of hardware with which they can be
used.

Lack of support for group working: Most CASE
tools available today provide very good support
for individual developers. The real benefits of
CASE and I-CASE, however, will arise from large
projects involving teams of developers. The tools
must therefore provide good support for groups
of people, in particular to facilitate inter-
communication between members of a develop-
ment team.

I-CASE will require a high level of
commitment

Adopting and implementing an I-CASE develop-
ment environment will have a significant impact
on the development department because the
[-CASE tools provide automated support for,

21

Chapter 2 Plan for the future with I-CASE in mind

and thus have an impact on, the whole
applications life cycle. Adopting an I-CASE
development environment will probably result
in changes not only to the set of tools used, but
also to the level of management required, to the
organisational structure of the development
department, and to the development approach,
methods, and standards used within the
development department, as these are all
inextricably linked. A decision to adopt an I-
CASE development environment should
therefore not be made without recognising the
high level of commitment that will be required
to make these changes.

Most experts expect that an I-CASE develop-
ment environment will make it easier to develop
core corporate and departmental applications
because such applications have large areas of
commonality. The process of managing the
whole development environment will, however,
become more complicated because it will still
be necessary to support, manage, and control
the tools and applications that cannot be
included in the -CASE environment. In general,
it will be necessary to establish different
procedures for the I-CASE and non I-CASE
environments.

One of the major differences of an I-CASE
development environment will be in the life
cycle of an application. Figure 2.8 shows the
difference between the typical life cycle used
today and that required by an I-CASE develop-
ment environment. The traditional life cycle is
supported by various methods and tools.
However, the information that is passed from
one stage to the next is typically in the form of
a document that has to be manually loaded into
any tools that support later stages. Also, with
the traditional life cycle, small enhancements
and the maintenance of applications tend to be
treated as different activities, not necessarily
following all the stages of the life cycle.

The changes in the life cycle that will be brought
about by an I-CASE development environment
are significant. The data dictionary will act as
the medium for passing information from one
tool or stage to the next, and maintenance and
small enhancements will have to follow the
same life-cycle stages as the original design
and build. This will have the effect of changing
the traditional development life cycle from
the ‘waterfall’ model (shown in the top half of

Figure 2.8) to the cyclic process shown in the
bottom half of the figure.

The change in the life cycle required by I-CASE
will have an impact both on the development
approach and on the methods used. We have
already seen how the methods suppliers are
enhancing their existing products so they can
provide full coverage of the applications life
cycle, and we can expect this process to
continue as I-CASE development environments
become established.

The changes to the life cycle brought about by
[-CASE will also result in better control of the
maintenance process, which in turn, will result
in the development of more manageable
applications. With the traditional life cycle,
development departments may have good
intentions to keep the documentation of the
varlous applications up to date. However, other
pressures usually result in changes made to
program code not being reflected in the analysis
and design documentation. Moreover, the
changes are often not fully tested. This not only
makes the application more difficult to maintain
in the future, because the documentation is out
of date, but it can create a need for further
maintenance, because the broader implications
of the change — those that can be determined
only by assessing the original analysis and design
documentation — can be missed.

In the I-CASE life cycle, all work, whether it is
new development, enhancement, or main-
tenance, will follow the analysis, design, build,
and test cycle, and will be enforced by the
development approach. The documentation will
be updated automatically at each stage,
resulting in more manageable applications.

It would be wise to migrate
slowly towards I-CASE

We have seen that while an I-CASE develop-
ment environment promises considerable
benefits, the costs, risks, and level of com-
mitment required are also very significant,
because I-CASE is still in the very early stages
of its development. Since no complete I-CASE
development environment will be available until
1992 at the earliest, we recommend that
organisations begin to migrate towards I-CASE,
taking care not to create barriers to its
subsequent adoption, but not yet making a full

. FOUNDATION

€ Butler Cox pic 1890

Chapter 2 Plan for the future with I-CASE in mind

life cycle

I-CASE life cycle

Traditional New application or major

@ amendment

Analysis

Documentation

Figure 2.8 The development life cycle in an I-CASE environment differs markedly from the life cycle that is
common today

o Design
FY
5 T
Build
b -~
/ i i :
g N 4
Test
Documentation /,/’
Documentation
and code L+
Documentation

and code

New developments and all amendments

Analysis

Documentation

© Butler Cox plc 199!

. FOUNDATION

0

23

Chapter 2 Plan for the future with I-CASE in mind

commitment to it. In migrating towards an
I-CASE development environment, organisa-
tions should identify where I-CASE will be most
beneficial, selectively adopt tools to fit into the
environment, and define the data models that
will need to be loaded into the I-CASE data

dictionary.

Identify where I-CASE will be most
beneficial

An I-CASE development environment will not
completely replace the need for other tools,
particularly those that are very technically
advanced and those that are required for special
or one-off applications. (Developments in such
tools are described in Chapter 4.) I-CASE tools
will be particularly suitable for the larger
corporate or departmental applications, which
will tend to share common features with past
applications, and where the facilities of the
I-CASE data dictionary can therefore be
exploited. A US survey of over 650 CASE users,
carried out in December 1988, confirmed the
trend towards using CASE tools for larger
applications. Figure 2.9 summarises the results
of this survey. However, our research found
several organisations that were experiencing
difficulties with using CASE tools for very large
projects. Care must therefore be taken in
matching the capabilities of the tools with the
size of the project.

Figure 2.9 Growth in the use of CASE tools will be
most marked in the development of large
corporate or departmental applications,
where the power of the data dictionary
can be exploited

Type of application

Corporate ey
Deparimental e
Small pilot R —

100 200 300

Number of organisations

e 1988
Em— Predicted 1990

(Source: Sentry Market Research, Westborough,
Massachusetts)

Selectively adopt tools to fit into the
I-CASE environment

Organisations will migrate towards an I-CASE
development environment by selectively
adopting various tools such as application
generators, analyst workbenches, and so on. In
selecting these tools, systems departments
should be careful not to make a premature
commitment to any single [[CASE development
environment, nor to commit to several in-
compatible tools that will restrict subsequent,
migration towards I-CASE. In Report 67, Com-
puter-Aided Software Engineering (CASE), we
provided guidelines for the selection of CASE
tools. These guidelines, which are summarised
in Figure 2.10, can also be used for selecting and
adopting the tools that will allow a smooth
migration towards an ‘open’ I-CASE develop-
ment environment. The main steps in the
selection and adoption process are:

— Identify the needs: Assess and analyse the
business needs for maintaining existing

Figure 2,10 CASE tools should be selected according
to agreed criteria so that they may
subsequently be integrated into
the I-CASE environment

Product criteria Supplier criteria

General The company

Proven reliability
Ease of installation

Complete technical and
user documentation

‘Technical

Fast response :
Appropriate method — -

| single or multimethod
Consistency and integration
within stages of the Iife cycle
Consistency and integration
between stages of the life
cycle

Graphics support for some
types of technigues
Simple-to-use graphics
facilities

Environment

Support of acceptable
hardware bases

Ability to work within
acceptable software
environments

Appropriate multi-user
support

Ability to interface with other
environments

Financial strength
Commercial stability
Reasonable market share
Good relationships with
other CASE-tool suppliers
Broad customer base and
geographic coverage

‘Commitment to the

product
Established record of
marketing the product
Appropriate levels of

‘expenditure on research
‘and development

Existence of specific plans
to develop the product

Support

Acceptable level of
manpower devoted to
customer support
Provision of training
Provision of customising
support

Good response to
problems and gueries

24

FOUNDATION

© Butler Cox pic 1990

Chapter 2 Plan for the future with I-CASE in mind

applications and developing new applica-
tions. This will identify critical business
areas where an I-CASE environment could
be exploited. Also assess the effectiveness
and efficiency of the existing development
environment. This will identify areas
(development methods, analysis tools, and
so on) where improvements are required
and can be provided by an I-CASE environ-
ment. Do not adopt I-CASE for its own sake;
there must be an identifiable business need
and suitable applications.

Obtain commitment: Gain the commitment
of senior management (who will have to
agree to the funding required), of develop-
ment staff (who will have to use the tools),
and of the user community (who will be
involved in adopting an I-CASE develop-
ment environment). Maintain this com-
mitment by ensuring all those involved in
the process are aware of the plans and
timescales.

Phase the adoption of I-CASE: Identify the
embryonic I-CASE environment that is most
likely to meet current and future needs, and
most likely to match the organisation’s
hardware environment. Select the tools
that will meet the business and application
needs and will allow a smooth migration to
the chosen I-CASE environment. Selecting
tools that either use a common database
management system as the repository, or
conform to data dictionary standards, will
allow the data stored by a tool to be
transferred to, or accessed by, other tools.
To start with, however, it may be necessary
to develop in-house software to overcome
a lack of compatibility between the
different tools.

Implement and assess the tools: Tools should
first be used on a pilot project to develop
an important and realistic application (but
not one that is eritical to the success of the
business). The pilot should be of relatively
short duration — certainly less than one
year. The pilot-application team (develop-
ment staff and users) should be well trained
and skilled in the use of the tools, and
committed to the concepts of I-CASE. The
results of the pilot should be assessed so
that ways of improving the use of the tools
can be identified, and the future use of the

FOUNDATION

© Butler Cox plc 1920

tools be encouraged. When implementing
the tools, it is also important to assess them
carefully by identifying the measures that
can be used to determine if the tools are
performing as expected.

Identify the data model(s) that will need
to be loaded into the I-CASE dictionary

An I-CASE development environment will be
ideally suited to the development of large, core
applications. Many such applications will,
however, already have been developed, and the
main concern will be how to transfer them to
the I-CASE development environment so that
they can be maintained and enhanced. Re-
engineering tools are promising to help in this
area although, at present, none of them take the
code and data descriptions of an existing
application "and create the system design
information that will need to be loaded into the
I-CASE data dictionary.

Over the next two years, a full set of tools for
re-engineering existing data descriptions and
program code will probably be introduced. (A
detailed description of re-engineering tools is
given in Chapter 3.) These tools will make it
possible to extract the high-level analysis and
design information from existing applications
and automatically load it into the I-CASE data
dictionary. The I-CASE development environ-
ment can then be used to recreate the appli-
cation. Thus, the tools will soon be available to
enable existing applications, developed using
traditional tools and techniques, to be converted
to the I-CASE environment.

The most time-consuming and complex part of
the re-engineering process will be building the
data model(s) for the existing databases. The
data model(s) give the standard definition for
each piece of information that will be stored in
the data dictionary. Correctly defining the data
model(s) will ensure that each piece of
information is held only once, and thus, that it
is gathered and stored in a consistent manner.

Without the assistance of re-engineering tools,
the task of defining the data model(s) for all the
various (and often fragmented) databases
associated with an organisation’s existing core
applications will be exceedingly difficult. In the
meantime, however, organisations should begin
to identify the applications that will need to be

25

Chapter 2

transferred to the I-CASE development en-
vironment, should start to define the high-level
data model(s) that will need to be stored in the
data dictionary, and should work to achieve
some conformity between the wvarious
databases. The task of defining the high-level
data model(s) is very time-consuming, however.
By starting now, organisations will develop a
good understanding of the various data
model(s), and once the I-CASE development
environment has been fully implemented, the
effort of loading the data model(s) into the
I-CASE dictionary will be minimised.

Plan for the future with I-CASE in mind

Organisations should prepare for the intro-
duction of I-CASE now by following the advice
given in this chapter. Nevertheless, they should
recognise that I-CASE will not, by itself, provide
all the benefits and increases in productivity
required to satisfy business needs in the next
two to three years. In the meantime, most
organisations will therefore need to continue to
exploit their existing tools, make effective use
of the more advanced tools now becoming
available, and encourage and make effective use
of énd-user computing. These areas are covered
in Chapters 3, 4, and 5 respectively.

'X FOUNDATION

© Butler Cox pic 1990

Chapter 3

Continue to exploit existing tools

We demonstrated in the previous chapter that
the adoption and use of CASE tools is part of the
migration path towards an I-CASE development
environment. A survey of Foundation members
at the end of 1989 revealed that just under 70
per cent are currently using CASE tools, and
over the next three years, over 90 per cent
expect to be using them (see Figure 3.1). This
is an indication of the increasing level of
confidence that members have in the ability of
CASE products to provide significant benefits.

CASE tools will not, however, provide the
productivity improvements that are required in
the short term to deal with the pressures facing
development departments. First, most CASE
tools are specifically aimed at the development
of new applications, while most of the current
workload is for the maintenance of existing
applications. Second, the CASE tools currently
available are simply not as productive as some

fourth-generation languages. (Recent analysis
of the details of nearly 350 projects submitted
by members of the Butler Cox Productivity
Enhancement Programme revealed that pro-
jects on which CASE tools such as analyst
workbenches and report and enquiry generators
were used had a lower productivity rating —
that is, a lower rate of code production — than
projects developed without CASE tools.)

This places development departments in a very
awkward situation. The tools that they need to
migrate towards a better development environ-
ment in the medium to long term are unable to
provide the level of productivity that they need
to cope with short- to medium-term develop-
ment pressures. To overcome this problem,
development departments will need to continue
to exploit existing, well proven, fourth-genera-
tion languages in developing new applications,
start to use the newer re-engineering tools to

by 1992

Type of tool

CASE tools
Fourth-generation languages

Application generators

—

End-user t_c?o]s_:’-in; g

EEE— End-1989

====2 1992

(Source: Survey of Foundation members)

Figure 3.1 Over 90 per cent of Foundation members expect to be using CASE and fourth-generation-language tools

10 20 30 40

Percentage of Foundation members

50 60 70 80 90 100

FOUNDATION

@ Butler Cox plc 1990

27

Chapter 3 Continue to exploit existing tools

maintain and enhance their existing appli-
cations, and assess the potential of application
packages as a means of reducing the de-
velopment workload.

Continue to use well proven fourth-
generation languages

For several years, there was uncertainty about
whether fourth-generation languages had a
long-term future. This uncertainty arose be-
cause of the problems associated with early
fourth-generation languages — such as their lack
of flexibility and the operational inefficiency of
the applications developed with them. There
was also a fear that emerging CASE tools and
application generators would supersede fourth-
generation languages. Now, however, the early
problems have largely been overcome. Fourth-
generation languages are well established in
most development departments. As Figure 3.1
shows, over 85 per cent of Foundation members
are currently using fourth-generation languages,
and this is expected to increase to over 90 per
cent in the next three years. Fourth-generation
languages have also proved to be highly pro-
ductive in terms of the rate at which
functionality is delivered — often providing
three times more function points per man-
month than third-generation languages, and
requiring almost 50 per cent less time and effort
than equivalent Cobol developments.

By 1993/94, many of today’s fourth-generation
languages will have evolved from coding-based
tools to automated tools that support screen-
painting and code-generation. They will also
have merged with CASE products to form the
basis of an I-CASE development environment.
Indeed, with some fourth-generation languages,
this trend is already apparent. This means that
it will be possible to develop applications in a
fourth-generation language, but using the most
appropriate development approach and method.
Thus, CASE analysis techniques and design
workbenches could be used for applications that
must be of very high quality and where it is
necessary to be able to track back through the
design decisions that were made, while
prototyping could be used for applications
where users are unsure of the full extent of their
needs and are willing to work interactively with
the developers.

28

Many fourth-generation languages are now
available as part of an integrated product set
that includes a variety of CASE tools and
application generators. QuickBuild from ICL in
the United Kingdom, and Oracle from Oracle
Corporation in the United States, are two
examples. This trend will continue as tools
become available to automate more develop-
ment activities and more stages of the
applications life cycle.

Like other tools, fourth-generation languages
have their strengths and weaknesses. Both must
be understood so that an appropriate choice of
tool can be made for any particular development
project. Many fourth-generation languages are
not, for example, appropriate for developing
very complex transaction-processing appli-
cations. There is also a lack of standards, which
means that applications developed with a par-
ticular fourth-generation language are usually
tied to that language and its supplier, because
the code has a unique syntax. One exception to
this is dBase from Ashton-Tate Corporation;
other suppliers provide tools that compile or
interpret dBase source code.

On the positive side, however, fourth-genera-
tion languages provide facilities not commonly
available with other tools. Several are very open
products, in that applications developed in them
Can run on a range of hardware and can work
with a range of database management systems.
FOCUS, from Information Builders Inc, is a good
example. Applications written in FOCUS can run
on a broad range of hardware architectures
(including IBM, Digital, Hewlett-Packard, and
various implementations of Unix) and can
interface with a wide range of databases,
including DB2, Adabas, Informix, Ingres, Oracle,
and dBase. Most fourth-generation languages
can now be used in several hardware and
software environments — MVS and VM from
IBM, VMS from Digital, Unix from AT&T, MS-
DOS from Microsoft, and 0S/2 from Microsoft
and IBM.

Many systems departments now recognise that
fourth-generation languages are most effective
when they are used in conjunction with proto-
typing. This approach enables the developer to
use the language to produce successive
prototypes of the required application, each an
improvement on its predecessor. The users
assess each prototype, and their comments on

. FOUNDATION

© Butier Cox plc 1990

Chapter 3 Continue to exploit existing tools

how it needs to be changed to meet their
requirements are included in the next pro-
totype. This process ensures that the delivered
application closely matches the users’ require-
ments. Most development departments have
produced their own in-house prototyping
methodologies for use with fourth-generation
languages; all are based on similar principles.
One of the most successful is described in
Figure 3.2.

Some organisations are using fourth-generation
languages in conjunction with various CASE

tools. CASE tools can be used to carry out the
business analysis and produce the business
specifications that are an essential starting point
for the first prototype. Fourth-generation
languages and the prototyping methodology can
then be used to develop the application.

To meet the increasing need for new appli-
cations in the short to medium term, there-
fore, the development department should con-
tinue to use fourth-generation languages when-
ever possible, and should use proven CASE tools
either in conjunction with the fourth-generation

Information Engineering Associates

Information Engineering Associates (IEA) is a subsidiary of
DuPont, a major chemical company based in the United
States. |EA uses Application Factory, a fourth-generation
language from Cortex, with its own in-house prototyping
methodology, to develop applications for DuPont's Textile
Fibres Division. It has been so successful that it now
promotes its services outside DuPont.

Scott Schultz, head of IEA, believed that the traditional
development life cycle had many shortcomings. In an
attempt to overcome them, he and his team adopted
Application Factory and developed a method known as
Rapid lterative Production Prototyping (RIPP). At the heart
of RIPP is a classic, iterative prototyping method, which is
restricted to a 80-day time period. (The RIPP process is
illustrated in the diagram below.) Before the start of the
90-day period, a high-level specification is defined in
business terms and becomes the basis for the first

Figure 3.2 Prototyping with fourth-generation languages can bring great gains in productivity and quality

prototype. Once the prototyping period has started, the
application will go through several iterations, with the
users collaborating with the systems developers. Each
iteration moves the application closer to the users'
reguirements. At the end of the 90-day pericd, the
application is delivered to the user. If the application
proves too big for one time period, it is broken down
into smaller applications, each of which is allocated
its own 90-day time period, and the whole process

is repeated. When the project is complete, the
developers and users get together to celebrate their
joint achievement.

in 1988, DuPont estimated that, for 15 applications, it had
saved over $2.3 million by using RIPP, and delivered
applications of higher quality. Scott Schultz believes that
the greatest advantages of the RIPP approach is that it
brings the IT and business functions closer together.

Reguest
project

X

Develop
iteration
N

f :

Define
project

Y

‘90-day time period’

Evaluate
iteration
"

’—J Evaluate |

A

Celebrate
victory

'n' interations of ‘x’ days each X
Implement
Evaluate < v 3 Version ‘m’
ersion ‘'m =

FOUNDATION

© Butler Cox pic 1890

29

Chapter 3 Continue to exploit existing tools

languages, or to carry out development
activities not supported by them.

Use re—ehgineering tools to help
manage old applications

As in many areas of business computing, the
field of re-engineering has been subject to over-
eager claims by suppliers, and is described in
confusing new terminology. Re-engineering
tools will, nevertheless, provide many develop-
ment departments with a means of making great
savings in two areas. First, they can be used to
reduce the effort required to maintain the
existing applications portfolio, which on
average, consumes at least 60 per cent of the
development department’s effort. Second, they
can be used to prolong the usefulness of some
of the older applications, in which most
organisations have invested many thousands of
man-days.

Before the end of 1991, tools for re-engineering
existing Cobol applications will be available,
providing a real opportunity for many organi-
sations to break free of the legacy of appli-
cations originally developed many years ago. By
1992 or 1993, tools for re-engineering
applications written in the more common
fourth-generation languages will also be
available. In fact, it will be easier to develop
these re-engineering tools because fourth-
generation languages generally have fewer
syntactical constructs than Cobol, and the
applications developed with them are newer,
which means that a re-engineering tool does not
have to be designed to cater for the logical
complexity that usually arises as a result of
repeated enhancements and maintenance.

There are three types of
re-engineering tools

Re-engineering tools can be categorised into
three groups — redocumentation tools, re-
structuring and renovation tools, and inverse-
engineering tools. Each requires its own pro-
cedures (illustrated in Figure 3.3), and different
levels of skill are needed to use them. Clearly,
each has a role to play, and development
departments will have to assess their needs for
the various types of re-engineering tools in the
short, medium, and long term. In the short to
medium term, they can be used to simplify the

30

maintenance task, to move to a new technology
such as a relational database, to provide links
that can integrate existing applications or
databases, or to facilitate the use of more
advanced architectures such as powerful
workstations that use windowing techniques
and are based on a client-server configuration.
In the longer term, their importance will in-
crease as their role in transferring the existing
applications portfolio to an I-CASE development
environment is recognised.

Redocumentation tools

Redocumentation tools provide a means of
automating the various tasks involved in
documenting an application. Typically, they
produce process flow charts and cross-reference
listings directly from the source code and data
definitions. Examples are the 4DxRef tool that
produces documentation of applications de-
veloped in Fourth Dimension, from Analyses
Conseils Informations (ACI) in France, and
Abstract, a tool from Advanced System
Concepts in the United States that documents
RGP III code. The outputs from such tools enable
developers to assess the likely impact of a
change and to estimate the effort required with
greater accuracy.

Redocumentation tools have been available for
some time. Early versions of these tools tended
to produce large quantities of printed output,
which the developer had to go through
manually. More recent tools provide interactive
screen-based access to the documentation. Re-
documentation tools will become standard
features of many other types of tool in the near
future.

Since early 1987, the Centre of Software
Maintenance at Durham University in the
United Kingdom, the West’s largest research
group carrying out research purely into software
maintenance, has been investigating the role of
redocumentation tools in the automation of
maintenance. A three-year project, backed by
Rank Xerox, a major hardware and software
supplier, and the software-support specialists,
AGS Information Services, aims to produce a
system for documenting applications in a struc-
tured manner when an application is first
developed, and then semi-automatically re-
documenting the application when enhance-
ments and changes are made. Such a tool will
be a marked improvement on current re-
documentation tools.

X FOUNDATION

© Butler Cox plc 1930

Chapter 3 Continue to exploit existing tools

Figure 3.3 The different types of re-engineering tools require different procedures, different levels of support,
and different technical knowledge

Redocumentation tools

Redocumentation |
tool . Existing code
(no changes)

Existing code i

Documentation:

— Cross-references
— Flow diagrams . . .

Restructuring and renovation tools

Restructuring or
renovation toal

Existing code New application (same function):

Expertise — Structured
— ‘Clean’
— Same language for restructuring
tools

: : — New language for renovation tools
Inverse-engineering tools

Reverse- B Business : Forward- -
71 engineering tool Tl definition W engineering tool L
|
A Ll i
Existing code i New applications:
Expertise : Paotential : Expertise — Structured
: amendments : e
H ; — New language
Data dictionary
FOUNDATION

© Butler Cox ple 1990 31

Chapter 3 Continue to exploit existing tools

Code-analysis tools also fall into the re-
documentation category. These tools provide
information on how well structured the code is,
and assess the maintainability and testability of
the code. This information can be used to
estimate the cost of maintaining the applications
in the future.

According to recent research carried out by
IBM, 50 per cent of the maintenance effort is
spent analysing the code prior to making any
changes. The logical step forward from
redocumentation and code-analysis tools is
therefore the interactive code-analysis tool.
VIASOFT Inc has such a tool for screen-based
interactive analysis of Cobol code and has
promised an extension for SQL code. This tool,
called VIA/Insight, provides maintenance staff
with a flexible means of accessing and analysing
the existing code before carrying out any
enhancements or maintenance. Another
interactive code-analysis tool, PM/SS, from the
Adpac Corporation, has been used by Norwich
Union, a leading British insurance company,
to help analyse its existing applications before
loading them into a data dictionary. As
Figure 3.4 describes, the use of PM/SS reduced
the estimated time to load application details
into the dictionary by a factor of 10.

Restructuring and renovation tools
Restructuring tools are used to structure and

standardise the code of existing applications.
Typically, this type of tool aligns the code to
predefined standards, simplifies the logic, and

removes any redundant code. Examples of
restructuring tools are Retrofit and DataTeg,
from Peat Marwick Main and Co.

Renovation tools take the re-engineering of
applications a stage further than straight-
forward restructuring. The application is
analysed and translated into a high-level design
language, such as pseudo code, that can then
be changed before the application is re-
created using structured and standardised
code. An example of this type of tool is Recoder,
from Language Technology Inc in the United
States.

Restructuring or renovating is obviously not
appropriate for all applications — for instance,
for an old, unstructured application where little
maintenance has been done to date, or for an
application that is near the end of its useful life.
The use of restructuring and renovation tools
can, however, bring major benefits to most
development departments, particularly in
helping to overcome the problems of main-
taining applications that are either poorly
documented or badly structured. Hartford
Insurance, based in Connecticut, reports that
maintenance costs have fallen by 20 to 50 per
cent on all the applications that have been
restructured with the Recoder tool. Main-
tenance staff do, however, have to spend con-
siderable time becoming acquainted with the
new code before the maintenance effort can be
reduced.

Norwich Union

Norwich Union is a large insurance company, ranked
second in the UK life-funds market. The company found
itself in a situation common to many that have a lot of
incompatible information stored in a variety of systems. It
realised that a data dictionary would enable it to stan-
dardise data definitions, and thus, to save time and effort
in the maintenance of oid systems and in the development
of new enes. The problem that it faced was daunting,
however; it had a total of 18 million lines of code to
fransfer — eight million lines of in-house code, some
dating back to the 1970s, and 10 million lines of code that
had recently been bought in from the United States.

In February 1988, Norwich Union began two pilot

dictionary exercises, using PM/SS from Adpac. The first
involved about 30 in-house applications, including some
200 data items. “We achieved a 10:1 improvement — it

Figure 3.4 A large insurance company has used re-engineering tools to build a data dictionary

took only 10 per cent of the time it would have taken
previously to load the applications into the data dictionary.
We used this as our cost justification”’, stated Steve Kirby,
the then Dictionary Administrator at Norwich Union. On
the second pilot, the team tock one month to complete a
project that they estimated would previously have taken
14 months.

Norwich Union still uses PM/SS to load details of old
applications into the data dictionary. This process is
carried out only when an existing application requires
sufficient maintenance or enhancement to justify the effort
of loading details of the whole application into the
dictionary. All new developments have to be consistent
with the existing data dictionary. Currently, Norwich Union
is assessing the use of its data dictionary, and the use of
PM/SS, as an impact- or change-analysis tool.

32

. FOUNDATION

&€ Butler Cox pic 1990

Chapter 3 Continue to exploit existing tools

Inverse-engineering tools

Inverse-engineering tools start by reverse-
engineering an application and its associated
databases to a stage where they can then be
‘forward-engineered’ to create a new version
of the application in a structured manner, and
in any selected language. They provide facilities
for translating existing code and data structures
into a specification of the application expressed
in high-level business terms in the form of flow
diagrams or a pseudo-English language. This
specification can then be changed, if required,
or loaded into a data dictionary before the
application is recreated.

Inverse-engineering tools have the potential to
provide the greatest benefits of all the re-
engineering tools. Currently, however, there are
no inverse-engineering tools available that can
reverse-engineer and forward-engineer both the
code and the data, although Bachman
Information Systems Inc has shown the benefits
of inverse engineering in the data area.
Bachman’s products can inverse-engineer the
data structures from flat files and from
hierarchical databases such as IDS, IDMS, and
IMS databases to create the equivalent data
structures for IDMS and DB2 databases.
Figure 3.5 summarises the inverse-engineering
tool set currently available from Bachman.

Bachman, which clearly leads in this field,
admits that the development of a tool to carry
out the inverse-engineering of data is easier
than developing one to inverse-engineer
processes. Several complex problems have to be
overcome before inverse-engineering of pro-
cesses will be possible:

— Extracting a description of the application
in business terms from the complex
computer code and data definitions, which
in most cases, do not contain all the
information required to construct such a
description. The task is also complicated by
the great variations in coding practices.

— Providing a database management system
that has sufficient power to hold all the
results of the reverse-engineering process.
Once a description in business terms has been
extracted from the code, the information will
need to be stored in a powerful database. To
display and manipulate this information,
some form of graphical tool will probably be
needed to show clearly the relationships that
have been constructed.

— Establishing a consistent means of describing
applications. Currently, there are several
means available (data-flow diagrams, prob-
lem-statement languages, object-oriented

Bachman’s aim is to produce a set of tools capable of
inverse-engineering (reverse- and forward-engineering)
both data and processes. lts current set of tools is
capable of inverse engineering IMS, IDS, and IDMS
schemas and/or data definitions embedded in Cobol code
into fully optimised DB2 statements. The total cost of the
software and hardware is around £30,000 ($50,000). The
tool set consists of four basic components — the capture
facility, the data analyst (DA), the database administrator
(DBA), and the expert advisor:

— The capiure facility provides guidance on loading the
Bachman Repository with details of IMS, IDMS, and
Caobol files. It applies rules to decide how the
definitions should be stored in the repository and
builds a complete conceptual data model,

— The DA is an entity-relationship diagramming tool that
is used to: tidy up the data models produced by the
capture facility; enhance existing DA models;
normalise DA models reverse-engineered from the
DBA: and dsvelop an entity-relationship model either
from scratch or from models transferred from other
tools such as |IEW, Excelerator, and so on. It also uses

Figure 3.5 The Bachman tool set provides powerful inverse-engineering tools for data structures

the expert system in an iterative way to prompt and
coach the data modeller as he develops the logical
data models.

_ The DBA creates fully optimised DB2 or IMS
definitions either from scratch or from the logical
models produced by the DA. It also reverse-engineers
DB2 and IMS definitions to a logical definition
acceptable to the DA tool. Again, the system prompts
the designer, using expert-system technigues.

— The expert advisor provides advice to users of
the other three components of the tool set. The
knowledge of three 'gurus’ — Charlie Bachman,
Chris Gane (pioneer of data-flow diagramming), and
Chris Loosely (designer of the DB2 access
mechanism) is embedded in the expert advisor.
There are four levels of interaction. At the highest
level, the expert advisor provides the novice with
very precise and detailed guidance, which enables
him to learn quickly. At the lowest level, it
automatically takes many of the simpler decisions, so
that an expert can use the tool without being
bombarded with constant advice.

FOUNDATION

© Butler Cox ple 1990

33

——

Chapter 3 Continue to exploit existing tools

representations), but each has its limitations.
Standards on how to manipulate such
information on a screen will need to be
created.

We expect that, by the beginning of 1992,
inverse-engineering tools will be available to
process both the processes and the data. These
tools will need the assistance of an expert but
will be very effective for loading details of
existing applications written in third- and
fourth-generation languages into an I-CASE data
dictionary. The leaders in developing products
in this field are Bachman and Language
Technology Inc.

Over the next few years, inverse-engineering
tools will evolve to the stage where they
can analyse about 80 per cent of the existing
code; the remaining 20 per cent will require
human intervention. These tools will probably
use some form of knowledge base — a data-
base that contains information and rules — to
help extract a description of the application
in business terms. When a new problem is
encountered, the user will add new rules to
the knowledge base, enabling the tool to resolve
a similar problem automatically when it occurs
again.

Re-engineering tools will change the
applications life cycle

In the future, re-engineering tools will change
the way in which applications are developed
and maintained. The life cycle of the I-CASE
development environment, described in
Chapter 2, will be extended to include re-
engineering, as shown in Figure 3.6. Many of
the existing core applications will be transferred
to the I-CASE environment, with the aid of re-
engineering tools, by analysing the applications,
restructuring them, and reverse-engineering
them. This process is described in more detail
below.

Before any decision is made to load the details
of an existing application into the I-=CASE data
dictionary, code-analysis tools should be used
to determine the condition of the application.
This analysis will serve as a basis for estimating
the effort required to load the application into
the dictionary, and for assessing whether it is
worthwhile.

34

Once the size of the task is known, and the
coding and data-naming conventions have been
defined and standardised, restructuring and
renovating tools can be used to structure the
code to ensure that it is easier to understand.
Standardising the data, however, may be more
difficult and very time-consuming as it will
probably need to conform with existing data in
the data dictionary or other applications. Report
64, Managing the Evolution of Corporate
Databases, discusses the issues surrounding
database integration.

Reverse-engineering tools can then be used to
extract a description (in business terms) of the
application from the code and data structures.
This description will be transferred to the
I-CASE development environment to forward-
engineer the application.

Clearly, this will not be an easy process and will
require considerable human intervention. How-
ever, it will permit existing applications to be
transferred to the I-CASE development environ-
ment in a semi-automated and cost-effective
manner, and will reduce the high proportion of
development effort spent on maintenance.

Figure 3.6 The life cycle of the I-CASE development
environment will be enlarged to include
re-engineering, so that existing applica-
tions can be fransferred to the I-CASE
environment

Old
applications
Code analysis

Code restructuring

Reverse-engineering

New
applications
In use =

Build and T
fout Dictionary

A

Analysis
Design

. FOUNDATION

© Butler Cox ple 1990

T A L e

Chapter 3 Continue to exploit existing tools

Evaluate the potential of
application packages

In the past, a considerable amount of effort was
required to modify packages so that they could
interface with other applications and match
users’ needs. The total cost of the package and
the modifications often made it more cost-
effective to develop the equivalent bespoke
application. This is no longer always the case,
because software packages are now available
as integrated sets of modules rather than as
monolithic packages, and they are becoming
extremely flexible. In Report 69, Software
Strategy, we gave several examples of ‘soft’
packages that can be modified to meet users’
needs. Such packages are typically sold with a
set of tools to help with modification and
implementation.

In Report 69, we also showed that if a suitable
package is available, it is usually a more cost-
effective solution, and therefore a better
investment, than a bespoke development. These
three trends in the package market — the
growing flexibility of packages, the increased
availability of sets of integrated packages, and
their growing cost-effectiveness — mean that
the development department should always
evaluate packages as a means of meeting a
particular application requirement.

Soft packages will provide flexible
solutions

The inflexible packages of the 1970s are now
being superseded by the flexible ‘soft’ packages
of the 1990s. Today, suppliers such as SAP in
Germany and Computer Associates in the
United States provide packages that can be
tailored to match individual requirements. Their
only disadvantage is that they require develop-
ment staff to learn how to use the tool set that
will be used to modify a package for a particular
application. Some package suppliers are now
addressing this problem by supplying a com-
bination of package and tool set that permits the
development of bespoke applications as well as
tailoring of the package.

As the different I-CASE development environ-
ments become established, package suppliers
will begin to supply the basic building blocks
that can be added to an I-CASE environment,
so that the package can be customised in-house

< FOUNDATION

© Butler Cox plc 1990

to create a bespoke application. We expect that,
by the late 1990s, packages will be supplied as
a set of related ‘objects’ that can be loaded
directly into an organisation’s data dictionary
and be used to develop an application. (Object-
oriented concepts are described in Chapter 4.)

These developments will mean that, as I-CASE
is established in the mid- to late-1990s, the
distinction between bespoke development and
package solutions will start to become blurred.
Over the last 20 years, an increasing amount of
the functionality on bespoke developments has
been constructed from basic building blocks that
form part of the software infrastructure. (It is
no longer necessary, for example, to develop
database-access routines on an application-by-
application basis.) The trend in packages is the
reverse — they are now supplied in ways that
allow them to be broken down into smaller and
smaller building blocks. In the 1990s,
development departments are therefore likely
to be occupying the middle ground, assembling
well integrated medium-sized building blocks
both from the software infrastructure and from
packages to form an application that is a good
fit with users’ needs. This trend for packages
and bespoke developments to merge is
illustrated in Figure 3.7, overleaf.

Integrated packages will serve both
industry-specific and common
business areas

Several major hardware and software suppliers
(such as IBM and Oracle) are now offering
integrated industry-specific packages. This
trend is likely to continue into the 1990s. Late
in 1989, Oracle Corporation announced that it
was expanding into the package market, with
a range of products from word processing to
manufacturing packages. Figure 3.8, on page 37,
summarises the features of Oracle’s core suite
of manufacturing packages. IBM has a set of
more than 50 software products aimed at
integrating the plant-floor, design-operations,
and production-planning areas of manufac-
turing.

These integrated packages will provide inter-
faces to the most commonly used database
management systems, making integration with
existing applications much simpler. Most
suppliers will provide packages that cover

35

T T 7 W

Chapter 3 Continue to exploit existing tools

Figure 3.7 Packages and bespoke developments for common applications will merge in the 1990s

Bespoke development Packages
1950s to 1970s

Smallest possible building block: Largest possible building block:
first-, second-, or third-generation- the package
language code

Difficult to customise
Fully customised)

Poorly integrated
Semi-integrated

Poor fit to users' needs
Good fit to users’ needs

\

= S 1980s

Small/medium-sized building block: Large/medium-sized building block
fourth-generation-language code

Some customisation possible
Fully customised

Semi-integrated
Semi-integrated

Reasonable fit to users’ needs

= 2

1990s

Good fit to users’ needs

Medium-sized building block:
modules and objects
Fully customised

Well integrated

Good fit to users’' needs

{ FOUNDATION

36 © Butler Cox pic 1990

Chapter 3 Continue to exploit existing tools

Figure 3.8 Integrated suites of packages will replace
large areas of common applications

QOracle Inc is one of the world'’s largest software houses,
with revenues of $584 million in 1988. Its main product
is the Oracle database management system and its
associated tool set. It recently announced an expansion
to its product range — the Core Manufacturing suite of
packages.

Core Manufacturing provides a set of full-featured,
portable, decentralised products designed to support
distributed manufacturing. This product will run on all
the hardware and software environments supported by
Oracle and is designed to permit very easy access to
the packages via a Macintosh-style set of menus, pop-
up windows, graphics, onlfine help, and other facilities,
all of which reduce the number of keystrokes required.
There are five basic packages in the integrated suite:

— Bill of materials, which provides engineers with a
tool to configure products quickly and accurately.

— Work in progress, which enables production to be
scheduled for maximum throughput and to facilitate
just-in-time manufacturing techniques.

— Master scheduling, which tightly links customers’
delivery requirements to production schedules.

_ Manufacturing resource planning, which improves
control over production cycles and minimises
inventory levels.

Order entry, which gives sales departments
immediate access to accurate price data and
delivery commitments.

This product can also be linked with Oracle’s financial/
personne!l set of packages to provide a tightly integrated
manufacturing, accounting, and personnel system.

FOUNDATION

@ Butler Cox plc 1990

common business areas, such as accounting,
personnel, and so on, as well as industry-specific

areas, like manufacturing, construction, and
distribution.

Even with I-CASE, package solutions
will remain cost-effective

Package suppliers will tailor their products so
they can be used within an I-CASE development
environment. This means that it will be possible
to modify a package within an I-CASE environ-
ment and integrate it with existing applications.
A package solution will therefore be a better
investment for most applications, even as
organisations migrate towards an I-CASE
development environment.

By continuing to exploit existing tools, most
organisations will be able to meet the
requirements of users, and migrate towards an
I-.CASE development environment. Over the
next five years, however, there will be further
advances, both in current tools and in new
forms of tools that are outside the I-CASE
environment. Exploiting these more advanced
tools will place systems departments in an even
better position to meet the growing demands
being placed upon them. The emerging,
advanced tools that Foundation members should
now be assessing are the subject of the next
chapter.

37

Chapter 4

Use emerging tools to develop more advanced

applications

So far in this report, we have seen how
advances in tools will produce an integrated
development environment (I-CASE) that is
appropriate for large corporate or departmental
applications. We have also seen how existing
tools can be exploited to support systems
development until I-CASE matures. I-CASE is
not, however, the only advance that will be
made in development tools during the first half
of the 1990s.

Other advances will make it possible to develop
more sophisticated applications than those that
are feasible today. Initially, these more
advanced tools will be available only outside the
[-CASE development environment. When they
become widely adopted and proven, I-CASE
standards will be expanded to accommodate the
new tools. Most organisations will, however,
need to adopt these new types of tools over the
next few years; they cannot afford to wait until
they become integrated into I-CASE.

Several emerging tool technologies are promis-
ing to bring benefits to the development
environment in the next five years. They are
listed in Figure 4.1. Object-oriented and rule-
based tools, in particular, promise a wide range
of major benefits, and in several other areas,
advances are producing new tools or adding new
features to existing ones:

— Object-oriented tools enable applications to
be developed in a way that models the real
world. Applications developed with object-
oriented tools consist of various ‘objects’
that have certain attributes and relation-
ships in common with the real world.
Object-oriented tools promise to provide
significant increases in productivity by
making code re-usable and easier to
understand, improving the user interface,
and providing support for hypermedia
(multimedia) applications — that is,

38

applications that support more than one
medium — for instance, data, voice, image,
and video. (Hypermedia was discussed in
detail in Report 73, Emerging Tech-
nologies.)

— Rule-based development tools have been
available for several years, but over the
next five years, they will become easier to
use and their capabilities will increase
significantly. In particular, they will in-
creasingly be able to integrate rule-based
applications with other types of application.
They will encourage the development of
rule-based applications that can tackle
complicated problems, and they will be
used to improve the automatic assistance
given to users by embedding ‘guidance on
use’ in the application.

— In other areas, advances in development
tools are making it possible to execute
existing applications faster, to develop
multimedia applications, to exploit com-
puter resources better, or to integrate
applications in areas that are currently
isolated.

Obviously, not all the tools mentioned in this
chapter will be applicable to all development
departments, but we recommend that members
consider how and where it might be possible to
benefit from using them.

Object-orientation will be an
effective development
approach by 1994

Object-orientation is not a new concept; it was
used extensively in artificial intelligence work
in the 1960s. Yet, over the last few years, it has
received so much publicity that it is now often
taken to mean anything with an icon or a

Chapter 4 Use emerging tools to develop more advanced applications

sophisticated applications

Benefits Object- Rule-based
oriented tools tools

Significant increase in
development productivity = 7
Easier interpretation of the £ '
application g
Support for greater logical
complexity a =
Support for hypermedia o)
applications
Support for better user 1
interfaces
Integration with nan-
data processing systems -
Improved guidance to the
user =
Improved performance
Improved utilisation of
resources

Figure 4.1 Future advances in tools outside the I-CASE environment will permit the development of more

System development tools

Parallel Multimedia/ Distributed Integrated
tools interfacing tools processing tools
v~
o~
=

window-based interface. Object-orientation, in
fact, provides a means of developing appli-
cations that emulate the way in which objects
in the real world relate to each other. Objects
are arranged in a hierarchy, with each object
building on the attributes of other objects higher
up the hierarchy. Representing objects in this
way has several advantages, such as ease of
understanding and reduced coding and
maintenance.

Development techniques and tools specially
designed to provide the basic elements of object-
orientation are already available. Because the
potential benefits of full object-orientation are
so significant, more and more suppliers are
examining ways of introducing object-
orientation to existing tools, or of developing
new tools based on object-oriented concepts.
Once the initial barriers to using such a radically
different development approach have been
surmounted, early users of object-oriented tools
have gained considerable benefits, and the take-
up of object-oriented concepts is set to develop
quickly in the first half of the 1990s, as
described overleaf in Figure 4.2.

FOUNDATION

@ Butler Cox plc 1990

Object-orientation reflects the objects
and activities of the real world

With the object-oriented approach, applications
are constructed from software objects that, in
most cases, represent objects in the real world,
and from messages that represent commands or
actions to be carried out by objects. Each object
has two basic components — the form of the
data or information associated with the object
(its state), and the procedures associated with
the object (its methods). The combination of
both data and procedures within an object is
known as encapsulation. Examples of an object
and its state and methods, taken from a banking
application, are shown in Figure 4.3, on page
41. In the top left-hand corner of this figure, the
‘Account’ is the object, and its state contains
four elements: account number, account owner,
balance, and interest rate. Three methods are
associated with the object: deposit of cash,
withdrawal of cash, and processing of a cheque.

Messages sent to an object are interpreted

according to the object’s state and methods.
Thus, the same message may be sent to several

39

Chapter 4 Use emerging tools to develop more advanced applications

Figure 4.2 Object-oriented concepts and tools will be
in use within most organisations by 1994

1990 Several organisations use object-oriented programming
systems and object-oriented database management
systems to develop complex applications. Organisations
start introducing window- and icon-based interfaces to
in-house applications.

1991 Tool suppliers release more o
oriented tool sets and databs
for a wider ran
environments. |

1992 Most in-house applications have a standard object-
oriented-type interface. Object-oriented facilities appear
in several tools and in application areas such as office
automation and process control. Organisations assess
the viability of using object-oriented concepts for a wider

range of developmenis.

e

developmen

1993 riented ment teol
the liorary of objects that
isations e: ir U
el o
1994 |-CASE suppliers start supplying object-oriented tools

and database management systems. Packages
containing commonly used objects become available,
and these will be incorporated into an organisation’s
library of objects. Object-oriented development
becomes established as one of the approaches
available to the systems depariment to aid in the task
of developing applications.

different objects, each of which may interpret
it differently. This is known as polymorphism.
In our example, the message ‘withdraw $100
from account number 123 (Mr Jones)” may be
sent to both the objects, ‘Savings’ and ‘Bonus’.
If sufficient funds are available, the withdrawal
will be made from the ‘Savings’ account. Funds
would be withdrawn from the ‘Bonus’ account
only if the money had been in the account for
a predefined period of time.

Related objects can be grouped into classes and
arranged into a hierarchy. On the lower left-
hand side of Figure 4.3, the various types of
accounts are arranged into a hierarchy. The
object ‘Account’ is the basic form of account.
‘Savings’, ‘Normal’ and ‘Bonus’ are all
specialised forms of account. ‘Account’ is
therefore both an ohject and a class. The objects
‘Savings’, ‘Normal’, and ‘Bonus’ are special
forms of ‘Account’ and are thus sub-classes of
‘Account’. All the attributes (state and methods)
associated with ‘Account’ also apply to

40

‘Normal’, ‘Savings’, and ‘Bonus’, and thus are
defined only once.

If necessary, the attributes associated with any
object can be modified, or new ones can be
added, but only the attributes that are different
need to be defined. For instance, in our
example, the method ‘cheque’ is redefined to
exclude cheque withdrawals from the savings
account. This arrangement of objects into a
hierarchy, where objects transfer attributes
down the hierarchy, is known as inheritance.

Object-orientation with encapsulation, poly-
morphism, and inheritance provides a means of
developing applications that are easier to
understand, require less maintenance, and are
easier and quicker to construct:

— Applications developed by using object-
oriented techniques are easier for business
people to understand because the des-
criptions of the high-level objects and the
actions resulting from the messages reflect
the business processes.

— They require less maintenance because small
changes in the real world should result in
small changes in the corresponding objects.
Equivalent applications developed using
more traditional techniques would typically
require a sizeable change, with a cor-
respondingly large amount of recoding.

— Applications developed using object-oriented
techniques are easier and quicker to
construct because existing objects can be re-
used in other applications. In addition, the
inheritance property of objects means that
less coding is required.

Object-orientation is being introduced
into many development aids

Over the past few years, object-orientation has
gradually been recognised as a very productive
approach to the development of computer
applications. Several development methods and
tools based on the object-oriented approach are
already available. These can be divided into
three main areas — object-oriented analysis and
design methods, object-oriented programming
systems, and object-oriented database manage-
ment systems. However, many of the object-
oriented programming and database tools
available today are primitive. They will need to
be enhanced to provide many of the basic

FOUNDATION

©. Butler Cox pic

Chapter 4 Use emerging tools to develop more advanced applications

—» Class name

|
Favi ngs ﬁlormal

Withdraw:

Figure 4.3 Each object has two basic components — the form of the data associated with th i i
and the procedures associated with the object (its methods) B objact: {lixentetel

’— Account
Object: Account Superclass Object ‘Every object is a sub-class of something in
State: this case Object’
__ AccountNumber Instance variable names AccoumNumber AccountOwner Balance Rate
A The state of the object’
ccountOwner Instance methods
— Balance Deposit: Amount
__ Rate ‘Deposit amount into the receiver (an Account)
Balance := Balance + Amount
N Withdraw: Amount :
- " Withdraw amount into the receiver'
— Deposi Amount>Balance ifTrue: [AccountOwner
— Withdraw error; ‘Not enough money in this account’].
— Chedue Balance := Balance - Amount
Cheque: Amount
| ‘The code for cheque withdrawals'
self withdraw: Amount ‘Note: Here we re-use the
Account method we have already defined’
Class name Normal
[Superclass Account

Instance variable names <none>

—p Class name Savings

Superclass Account

Instance variable names <none>

Cheque: Amount

AccountOwner
error: “You can't write chegues against this account’

Bonus —» Class name Bonus
Superclass Savings

Instance variable names period ‘The minimum deposit period’

DepositDate ‘Date of last deposit’
Amount
DepositDate + period < Date today
ifFalse: [AccountOwner
arror: “You can't withdraw from this account yet'].
ASuper withdraw: Amount

features (such as a high-level language, and data
recovery and back-up) required for commercial
computing before the object-orientation
approach can be widely adopted. The larger
suppliers of tools are all working to incorporate
object-oriented concepts into their products,
and the current shortcomings will undoubtedly
be overcome.

Early in 1989, the Object Management Group
was established in the United States to set a
standard for the emerging methods in object-
oriented development and to promote the
concept of object management. By September
1989, there were 18 members, including Data

FOUNDATION

© Butler Cox plc 1990

General, Hewlett-Packard, Sun Microsystems,
Unisys, Canon, Philips, and 3Com. In December
1989, the Object Management Group and the

- X/Open Group announced an agreement under

which they will cooperate in areas of mutual
interest, with X/Open adopting standards
approved by the Object Management Group,
where appropriate, and incorporating the
specifications into future releases of its X/Open
Portability Guide Book.

Object-oriented analysis and design methods

Object-oriented analysis and design methods
exploit the underlying object-oriented pro-
gramming and database management systems

41

Chapter 4 Use emerging tools to develop more advanced applications

and aim to overcome some of the deficiencies
of existing development methods and tools.
They will be created by merging new concepts
with existing and well established methods to
provide methods that will make it possible to
re-use design and code, and to develop easily
maintainable, flexible, expandable, and modular
applications. To date, no such methods are in
widespread use. They are likely to emerge over
the next three years, as object-orientation
becomes more popular.

Object-oriented programming systems

The term ‘object-oriented programming sys-
tems’ has, to date, been used to describe tools
such as Smalltalk-80 from ParcPlace Systems Inc
in the United States. This type of tool is based
on object-oriented techniques, and provides
developers with a user interface that in-
corporates high-level editors, debuggers, a
graphical facility, and windows.

At present, many object-oriented programming
systems are still immature programming
languages; the syntax of some of them is at a
lower level than the syntax of fourth-generation
languages, which makes it more difficult to
understand the code. The operations of an appli-
cation written in an object-oriented pro-
gramming system have to be defined in detail;
applications written in fourth-generation
languages are much easier to write and under-
stand at the detailed level. Other object-oriented
programming systems are more advanced how-
ever. These are enhanced third-generation pro-
gramming languages, integrated object-oriented
development tool sets, and object-oriented
expert systems. Many of these are available for
use with the most popular hardware and
software environments, although by far the
most common are those available for Unix and
MS-DOS environments.

One of the more popular object-oriented
programming systems is actually a third-
generation language that has been enhanced to
include object-oriented concepts. This is C+ +
from AT&T, an enhanced version of the C
programming language. The benefits provided
by enhancing third-generation languages in this
way are reduced learning time, relatively easy
conversion of existing applications, and the
maturity (and hence, stability) of the third-
generation language.

42

Some suppliers are now attempting to enhance
Cobol by providing it with object-oriented
programming facilities. Hewlett-Packard, Micro
Focus, and Realia (a US supplier of Cobol
compilers) are currently proposing to the
Codasyl Cobol Committee that object-oriented
features be added to the Cobol standard. They
believe that this is practical because of the
natural relationship between objects and Cobol
data structures. Enhancing Cobol in this way
would enable it to be converted, like C, into an
effective object-oriented language. Some
experts, however, see these proposals as an
attempt to keep Cobol alive a little longer.

Codasyl has begun to discuiss these proposals
with major suppliers of Cobol compilers,
including IBM, Digital, and NCR. Although the
next version of the Cobol standard is not due
to be finalised before 1999, we believe that
Codasyl will need to permit object-orientation
before then. Indeed, if Cobol is to remain a
viable programming language, it will probably
be necessary to add object-orientation within
the next two years.

More advanced and user-friendly object-
oriented tools are also starting to appear. These
tools simplify the task of programming by
providing an integrated set of development aids
such as powerful debugging facilities and
automatic code analysers, all accessible via a
windows-based user interface. One such tool is
Objectworks, from ParcPlace Systems Inc.
Objectworks enables applications to be
developed in either Smalltalk-80 or C+ + .

Object-oriented facilities are also being com-
bined with expert systems to provide tools that
will enable very complex applications to be
developed and easily maintained. The Aion
Development System (ADS), from Aion in the
United States, is one such example. In Report
73, Emerging Technologies, this type of tool was
classified as a fifth-generation toolkit, as it
provides clear improvements in capability and
productivity over the earlier generations of
tools.

Object-oriented database management
systems

Object-oriented database management systems
provide facilities for holding objects in a data-
base and loading them into memory when they

FOUNDATION

& Butler Cox plc 1990

Chapter 4 Use emerging tools to develop more advanced applications

need to be executed. They are more relevant
to commercial computing than object-oriented
programming systems, and many tool suppliers
have such databases under development. Some
suppliers are promising either to add object-
oriented capabilities to their relational database
management systems in the same way as they
added relational features to earlier databases,
or to provide an interface that makes the
relational database appear to be object-oriented.
Whichever approach is taken, true object-
oriented database management systems, such
as G-BASE from Graphael Soretas (in France),
Vbase from Ontologic Systems Inc (in the United
States), or Iris from Hewlett-Packard, will
eventually supersede the amended relational
database systems, because starting with a
relational database and adding object-oriented
features restricts the capability of the database.

Other object-oriented tools

The object-oriented development tools discussed
above will mainly be used by skilled developers
to produce large business applications. There are
other tools based on the object-oriented
approach, however. These are distinguishable
from those just discussed by their ease of use,
their incomplete implementation of object-
orientation, and the specialised coverage that
they provide. These tools include such products
as Apple’s HyperCard, a programmable
object-oriented multimedia database manager
(Report 73, Emerging Technologies, describes
the benefits of the multimedia aspects of
HyperCard), and CASE:W, an expert-system
CASE tool that permits the development of
applications that have a user interface based on
Microsoft Windows without having to write
code for the complex window handlers.

Initial problems should not discourage
the adoption of object-oriented tools

Although object-oriented technology is still
relatively immature, several companies have
already used the object-oriented approach to
develop various applications and have found it
to be very productive. Cadre Technologies, a
large US developer of computer-aided software-
engineering tools, claims that the amount of
new code needed for an application has been
reduced by 80 per cent since it introduced
object-oriented tools, because so much of the
existing object-oriented code can be re-used.

X FOUNDATION

© Butler Cox plc 1990

In Canada Wild Leitz, part of the Swiss
manufacturing group, used an object-oriented
approach to develop a geographical information
system. It has found that the system is easier
to maintain because the impact of any change
is isolated to a few objects. BehavHeuristic, a
US software development company that
specialises in intelligent systems based on neural
network technology, has used an object-
oriented development environment to develop
a system that enables airlines to optimise the
allocation of seats between classes.

Adopting an object-oriented approach to de-
velopment will not be a straightforward task,
however. First, convincing managers of the
business case will be difficult, because a
reasonable understanding of the technology will
be required to appreciate how the benefits can
be achieved. Second, a considerable investment
in tools and training will be required, and the
benefits may not be achievable for several
years.

To use object-oriented techniques, development
staff will need new skills to identify the objects
and the relationships between them. Suppliers
(and current users) of object-oriented tools
estimate that it takes about four months of
intensive training to teach object-oriented
design and programming to a developer
accustomed to structured design and pro-
gramming.

To adopt object-oriented development tech-
niques without antagonising management or
users, we suggest that organisations take the
following approach:

— If possible, identify an area of applications
development that is well suited to object-
oriented techniques and that has a
relatively high profile — for example, an
application that deals with objects in the
real world, like stock control, or process
control. In such areas, it is usually easy to
identify the objects and the relationships
between them, but the application would
be difficult or expensive to develop with
existing tools. Success with object-oriented
techniques in one area will arouse interest
and encourage further developments in
other areas.

— Standardise on an object-based user inter-
face. Both existing and new applications

43

Chapter 4 Use emerging toois to develop more advanced applications

can be made considerably more user-
friendly with object-oriented techniques
such as window- and icon-based interfaces.
One of the first computers to use such
techniques was the Macintosh. Object-
oriented user interfaces are being used on
more and more computers — NextStep, the
interface for the NeXT workstation being
a good example. NextStep, the Open Soft-
ware Foundation’s Motif, and IBM'’s
Presentation Manager are all examples of
how the WIMPS (windows, icons, menus,
and pointing devices) interface is being
transferred to mainstream computing.

Rule-based technology will emerge
in several forms

Rule-based technology has been widely used to
build systems that capture human expertise,
and forms the core of expert-system shells and
languages, as explained in Foundation Report
60, Expert Systems in Business. During the first
half of the 1990s, there will be a phenomenal
increase in the use of rule-based technology, not
only embedded in the tools used for develop-
ment, but also as part of the application being
developed. This technology will provide a means
of developing rapidly changing, complex
applications that would previously have been
too expensive or have resulted in an impossible
maintenance task.

The main advances in rule-based technology will
be in the following four areas:

— Integration of expert-systems tools with
current tools — Many suppliers of existing
tools will integrate their products either
with an existing expert-system tool or with
one that they have developed themselves.
The enhanced tool will facilitate the de-
velopment of data processing applications
that have embedded expert systems that
can either provide advice and help to the
user, or be used to code complex parts of
applications that could not be solved with
conventional programming techniques.

— Fifth-generation toolkits — There are
several fifth-generation toolkits currently
in use that have proved to be very effective
for the development both of expert systems
and of other types of application. These
tools, which combine rules and objects with

44

older development techniques, will enable
very sophisticated and complex applications
to be developed and easily maintained,

— Application-specific tools for building
expert systems — Rule-based tools (and
even knowledge bases) will increasingly be
available for specific application areas,
These tools will, in some cases, enable
developers with no experience of know-
‘ledge engineering to develop knowledge-
based applications.

— Tools with embedded expert systems — An
increasing number of tools used to help
develop applications will have expert
systems embedded in them. They will
provide expert guidance to developers and
will help to improve the quality and
productivity of applications development.

These advances will help organisations over-
come many of the barriers that have limited the
take-up of rule-based or expert systems to date,
such as the need for knowledge-engineering
expertise, problems experienced by early
attempts to exploit expert systems in a business
environment, and the inability to integrate rule-
based systems with existing systems. Figure 4.4
shows how these advances make rule-based
applications and expert systems more accessible
to developers, with the loss, in some cases, of
some flexibility. As rule-based tools become
more readily available and are more widely
used, the successful development of expert
systems will become more common.

Ideally, rule-based tools should be capable of
being used in different hardware and software
environments, provide access to other databases
and languages, and allow business users to
define new rules, and carry out appropriate
testing while the application is being used. This
ideal is many years away, but the current
advances are steps in the right direction.

It will be possible to integrate expert
systems and conventional applications

One of the reasons for the slow take-up of
expert systems is the difficulty of integrating
them with conventional data processing appli-
cations. Most successful expert systems have
been standalone applications, used in very
specialised areas. Several banks and financial

FOUNDATION

© Butler Cox plc 1990

Chapter 4 Use emerging tools to develop more advanced applications

Figure 4.4 There is a trend towards less flexible but more usable rule-based development tools

Application-
area
specific
/Ruls-based
Application- o= = == t(o}i)glst)s :
arga - e Expert-system toolkits L
independent Expert-systern or ' (\ 0 PR s
it artificial-intelligence ke)
languages ~
(Lisp, Prolog) /

Knowledge engineer ——» System developer ———» Application-area

expert

institutions, for instance, have demonstrated
the benefits of using expert systems, but these
are largely separate applications because of the
difficulties of integrating the expert system with
conventional applications. Many leading tool
suppliers are now beginning to work on
integrating the tools and development environ-
ments used for building expert systems with
existing tools and databases and thus improve
the level of integration between expert systems
and conventional applications.

One supplier who has been working on this
problem for several years is Information
Builders. It is best known for its fourth-
generation language and database management
system, FOCUS, which is used worldwide by
approximately 600,000 people. In 1987, Inform-
ation Builders acquired Level Five Research, the
supplier of the LEVELS5 expert-system develop-
ment tool, and is currently working on linking
database and expert-system technologies by
embedding LEVEL5 within FOCUS. Figure 4.5
describes how Information Builders intends to
integrate these two technologies and thereby
provide access to the wide range of existing
applications and databases running a variety of
computer systems already implemented with
FOCUS. Early in 1990, Information Builders will
be releasing a development tool, LEVELbS/

. FOUNDATION

© Butler Cox plc 1990

Figure 4.5 Information Builders provides links to an
expert system from FOCUS

LEVELS, the expert system tool, is available today from
information Builders as a standalone product for building
and running expert systems. Information Builders has also
linked the LEVELS5 product with its FOCUS database
management system, as illustrated in the diagram below, so
that LEVELS applications can be called from within FOCUS
in the same way as subroutines can be called. Not only will
this enable FOCUS users to call expert-system-based
routines from within any FOCUS application, but it wil
enable LEVELS5 to be used on the wide range of computer
systems supported by FOCUS and gives access, via
FOCUS, to enormous stores of existing data.

Many different types of hardware
(mainframe/minicomputer/PC)

= LEVELS |8
;b e v

Direct Indirect Direct
b Y b
Most of the popular |- A limited number of
database management [database management |
systems systems i

OBJECT. This tool will enable the development
of integrated business applications, using a
combination of advanced artificial intelligence
techniques and an object-oriented development
environment.

45

Chapter 4 Use emerging tools to develop more advanced applications

Fifth-generation toolkits will increase
productivity in developing complex
applications

Fifth-generation toolkits, such as Aion’s Aion
Development System, provide similar benefits
to those cited above. Many of them, like Neuron
Data’s NEXPERT, are available for use in
various hardware and software environments,
provide access to a variety of database
management systems, and can be integrated
with programming languages such as Cobol,
Pascal, and C.

A more detailed description of these tools is
given in Report 73, Emerging Technologies.
Report 73 also describes the problems likely to
be encountered in adopting them, and the
implications for the systems department.

Application-specific tools will reduce
the need for knowledge-engineering
skills

At the beginning of 1989, a new type of
application-specific expert-system tool began to
appear. This type of tool provides all the basic
building blocks and facilities required to
construct an expert system, and contains
embedded general knowledge of the application
area. The users of such a tool are ‘shielded’ from
the complexities of knowledge engineering by
a framework that helps them to develop the
application. In some cases, so little knowledge-
engineering experience is required that users
can make significant contributions to the
development of an expert system, or even build
it themselves.

To date, such tools are available for three
application areas:

— Engineering diagnostics: This area is by far
the most exploited by expert-system-based
technology. Here, the tool analyses several
inputs, received either remotely from
sensors or entered directly, assesses the
situation, and identifies where the problem
or the fault lies. TestBench, from the
Carnegie Group and Ford, is an offline
consultative tool for tackling large and
complex engineering-diagnostic problems.

— Process control and management: Tools in
this area are aimed primarily at the com-
puter-integrated manufacturing market,

46

although they are also used in network
management, and alarm analysis. Typically,
they will need to respond in realtime to the
analysis of any situation. G2, from Gensym
Corporation in the United States, is an
online, realtime, application-specific tool
for building expert systems in this area.

— Production design, planning, and schedul-
ing: These tools help with the design,
planning, and scheduling of products in a
manufacturing environment. Genesis is a
production-planning and scheduling toolkit
from Sira in the United Kingdom, designed
for use by engineers on the shop floor. Icad,
from Icad Engineering Automation Ltd of
Coventry in the United Kingdom, is a tool
that integrates a design knowledge base and
CAD techniques to provide ‘intelligent
CAD".

The move away from general-purpose rule-
based tools that can be used only by staff with
knowledge-engineering skills towards more
applications-specific tools that require staff with
little or no skill in the knowledge-engineering
area will certainly increase the use of expert
systems. In the early 1990s, the use of
application-specific tools will spread to other
areas where rule-based technology can be
exploited.

Embedded expert systems will provide
guidance to the user

Earlier, in Chapter 3, we said that knowledge
bases will be embedded in inverse-engineering
tools used to unscramble existing applications
code, and that they will help developers to
follow complex development methods.
Examples include VIA/Insight, the interactive
Cobol code analyser from VIASOFT Inc, which
is based on a knowledge base, and TOP-ONE/
CONVEX, which converts Cobol from ICL to
IBM environments, and is based on an expert
system. There is a growing trend for tools to
have a knowledge base embedded in them to
help developers carry out tedious or complex
tasks.

Embedded expert systems will be available in
the near future to support:

— The analysis process: Helping to gather
facts and information, analysing this

FOUNDATION

© Butler Cox pic 1990

Chapter 4

information and assessing its completeness,
and generating the specification of re-
quirements.

— The testing process: Testing the application
interactively, and interactively analysing
the code for mistakes. VIASOFT Inc has
released a product called VIA/SmartTest
that analyses the code, and an application
knowledge base containing the rules for
analysis and testing. This product can be
combined with VIASOFT's interactive code
analyser, VIA/Insight, to form VIA/Center,
a comprehensive set of maintenance tools.

— Decision making: Providing guidance at
critical points during development on the
best use of the tools available.

In summary, the continuing advances in rule-
based tools described above will reduce the need
for specialist knowledge-engineering skills to
develop rule-based applications. By the mid-
1990s, the development and use of rule-based
applications will be commonplace, and
application-specific tools will enable most users
to develop their own rule-based applications.

Other advances in tool technology
will be valuable in particular
areas

Concurrently with advances in object-oriented
and rule-based tools, there will be changes in
the capabilities of existing tools, and additions
to them that will enable different types of
applications to be developed. The most sig-
nificant advances will be:

— The introduction of tools to exploit parallel
computers.

— The use of multimedia tools to develop new
types of applications.

— The use of powerful tools to develop greatly
improved human/machine interfaces.

— The use of tools to facilitate distributed
processing and thus improve the use of
computer resources.

— The use of various tools to integrate office
automation and data processing appli-
cations.

FOUNDATION

© Butler Cox plc 1990

Use emerging tools to develop more advanced applications

New tools will enable existing appli-
cations to exploit parallel
computers

In Report 73, Emerging Technologies, we
discussed the trends in parallel computers and
the benefits that can be achieved, and described
areas in which parallel computing has already
been exploited in business. The barriers in-
hibiting the use of parallel computers and the
implications for the systems department were
discussed in detail. We reported that, by about
1993, it will be relatively simple to write
applications that can be transferred from
uniprocessors to computers based on parallel
processors. The extent to which these
transferred applications can exploit the power
available with parallel computers will, however,
be limited, in most cases.

It is already possible to transfer applications
directly from a uniprocessor computer to a
parallel computer if the computers have
compatible operating systems. Although it may
be possible to run several of the transferred
applications in parallel, thereby increasing
throughput, the execution time for individual
applications is not likely to decrease by much.
Even so, the operational improvement
achievable in this way will be adequate for most
of today’s applications.

There are, however, several kinds of specialised
tools that can be used to enable existing
applications to make better use of the processing
power available with parallel computers. Some
tools analyse the application and automatically
identify sections of code that can be run in
parallel; others permit the developer to identify
whole modules of the existing application and
to define the code that will enable these to be
run in parallel. The problem is that all of these
tools rarely fully exploit the power available
with parallel computers, because they work
with sequential code, which means that any
inherently parallel characteristics of the
application are not taken into account. Over the
next few years, however, reasonably efficient
tools will become available for transferring
existing (sequential) applications into a parallel
environment. Since few existing applications
will need to be redesigned and rewritten to
exploit the full power available with parallel
computers, these tools will allow most

47

Chapter 4 Use emerging tools to develop more advanced applications

organisations to exploit parallel computers with
the minimum of rework.

Multimedia tools will enable new types
of applications to be developed

Windowing techniques not only make the
human/machine interface look more interesting,
but also enable the user to be more productive.
This is also true for hypermedia (or multimedia)
systems, which were described in detail in
Report 73, Emerging Technologies. In that
report, however, we warned against the use of
multimedia systems just to add special effects
to the user interface; multimedia systems must
also provide some business benefits.

We expect that, by about 1993, tools will be
available to enhance windows-based interfaces
to provide a multimedia capability, both for
existing and new applications. The major
limiting factor on the development of multi-
media applications is the immaturity of
multimedia database management systems.
Although several suppliers are currently
offering such systems — Informix Software’s
Informix-Online database, and Graphael
Soretas’s G-BASE, for example — it will take
time before they are widely adopted. Early
examples of this type of tool are starting to have
an impact in the area of expert systems,
however. Several suppliers of expert systems
are using Apple’s HyperCard as an interface to
their products, and Intellisoft has successfully
combined hypertext software with its expert
system, Knowledge Pro.

During the mid-1990s, products like NextStep
from NeXT, and NewWave from Hewlett-
Packard will evolve to form a powerful PC- or
workstation-based interface to applications.
These developments will provide facilities for
developing extremely powerful and easy to use
human/machine interfaces that use windows,
multitasking, multimedia, and object-oriented
facilities. Figure 4.6 shows examples of the
types of user interfaces that will be available
in the 1990s.

The use of these types of interfaces will have
a profound effect on future workstations. As
more power is required in the terminal both to
drive the user interface and for applications
processing, today’s dumb terminals and PCs will

48

be replaced by or upgraded to powerful work-
stations with a WIMPS interface.

Future tools will make it possible to
develop greatly improved human/
machine interfaces

At present, applications developed in-house
rarely have powerful, user-friendly human/
machine interfaces, primarily because the time
and costs constraints on in-house developments
are usually so severe. Over the next few years,
the introduction of powerful tools will make it
possible to develop window-based interfaces for
many in-house applications. We have already
mentioned how tools such as CASE:W can be
used to generate all the basic windowing
functions needed for an application, without the
need for detailed programming. This type of tool
will become much more common once the
current copyright disputes over the various
‘look-and-feel formats’ are settled. Until these
disputes are settled, tool suppliers will be
reluctant to invest heavily to provide products
that support a particular windowing style.

Extensions to current tools will
encourage better use of com-
puting resources

The trends in user interfaces and workstations
are associated with the trend towards dis-
tributed data processing. Distributed processing,
in its broadest sense, allows applications, or
parts of an application, to be executed on
various processors connected through a
network. The decision about what to execute
where is made either at compile or at execution
time, the aim being to make more efficient use
of the resources available and hence improve
cost-effectiveness and response times. The
ability to offload some (or all) of the processing
onto cheaper computers makes distributed
processing a very attractive proposition.

Distributed processing ranges from the auto-
matic distribution of predefined programs or
modules across various processors, as in parallel
computing, to complete applications that are
distributed across a network of computers. The
most common form in use today is that of
client/server systems, where the client machines
(that is, workstations) contain the user inter-
face, while the server machine holds the

FOUNDATION

© Butler Cox plc 1990

Chapter 4 Use emerging tools to develop more advanced applications

database. Requests for data are passed across
the network from the client to the server, and
only the appropriate data is returned to the
client machine.

Much work has been done in providing tools to
support distributed data processing. IBM, for
example, provides strong support with facilities
such as the Transparent Computing Facility
(TCF) clustering service for its AIX operating
system. This facility enables all the machines in
the cluster to cooperate with one another in a
transparent manner — that is, the user need not

be concerned with which machine in the cluster
is currently being used. Digital is also providing
support for distributed data processing with its
Vaxcluster approach. Although a Vaxcluster
system can contain a wide range of Vax
processors, storage controllers, and peripheral
devices, and can vary greatly in size and
components, it functions as a single entity.

Several of the major tool suppliers are also
seeking to provide their products with facilities
to support distributed processing. Information
Builders, with FOCUS, and Must Software

X-Windows environment.

(Source: Open Software Foundation)

Figure 4.6 In the 1990s, users will have access to extremely powerful human/machine interfaces

| B oi 2 nareh conpurere ans sortuare fr ‘
[curpiiers, the ose uit1 address the foiisuing pesds

The photograph shows Motif, the graphical user interface designed by the Open Software Foundation, Motif qombines Digital’s
¥Ul and Hewlett-Packard’s X Widgets with a Presentation Manager look and NewWave's three-dimensional windows in an

The photograph shows NexiStep,
object-oriented programming.

(Source: Paul Avis Photography Inc)

the user interface for Steve Jobs's NeXT machine. NextStep includes a set of tools for

FOUNDATION

© Butler Cox plc 1990

49

Chapter 4 Use emerging tools to develop more advanced applications

International, with Nomad, have adopted
phased approaches to ensure that, by the early
1990s, their respective fourth-generation
languages can be used to develop distributed
applications. This trend will be followed by
many other suppliers. We expect that, by 1993,
most development departments will have the

opportunity to exploit their organisation’s

computing resources by using tools that support
the development of distributed applications,
providing, of course, that their computers are
networked.

Future tools will be able to integrate
office automation and data pro-
cessing applications

To date, office automation applications and data
processing applications have, by and large, been
treated as two separate areas. Many organi-
sations have recognised the advantages of
integrating these two types of application, and
tool suppliers have begun to provide tools that
will make this possible.

Oracle, for instance, has announced an
electronic mail system, Oracle*Mail, that is
compatible with the various other Oracle tools.
The eventual aim is to provide a database that
supports all information, regardless of its form
or function. Thus, the Oracle database will
support word processing information, facsimile
information, and data processing information,
regardless of its origin or business area.

50

The advances in tools described in this chapter
(and earlier in the report) will not only enable
the development department to provide more
sophisticated applications, but they will also
enable users to make better use of the comput-
ing resources available within the organisation.
As the facilities available with the new tools
begin to emerge, the development department
will have to manage the expectations of its
users. Many business managers will be aware
of the potential of the new tools and facilities
and will begin to press for applications that take
advantage of them. If the development depart-
ment fails to respond in an appropriate way,
business managers will start to experiment with
the tools themselves. Indeed, they will be
encouraged to do so by the suppliers, who will
position many of their products as end-user
tools.

The systems department must therefore re-
appraise its attitude towards end-user comput-
ing in the light of the new tools that are
becoming available. In particular, it must strike
the appropriate balance between uncontrolled
development by users and stifling the initiative
of users, thereby jeopardising the enormous
benefits that can be gained from end-user
computing. In the final chapter of the report,
we offer advice on how the systems department
can provide support and guidance to users so
that they can exploit the end-user tools
effectively, and so that the systems department
can prevent future chaos with end-user
computing.

FOUNDATION

© Butier Cox pic 1990

Chapter 5

Encourage and expand end-user computing

In most organisations, some applications
development is being carried out outside the
development department. Systems departments
may or may not be aware of this work, and may
or may not be supporting it. As a consequence,
there is no consensus on either the role of users
in applications development, or on the scope of
end-user computing. For the purposes of this
report, we therefore define end-user computing
asthe development of a ‘program’ in which a user
(a member of staff not directly attached to, or
working within, the development department)
plays amajorrole. A ‘program’ in this context can
range from a simple procedure to retrieve and
analyse data to a complex, multi-user application.

The tools designed specifically for end-user
computing are relatively immature compared
with traditional development tools. From the
early 1980s onwards, most systems departments
have provided their users with various tools and
support in their use. Successful use of these
tools has been the exception rather than the
rule, and it is therefore still common for systems
departments to consider end-user computing as
a ‘second class’ form of computing. Neverthe-
less, the trend towards end-user computing is
unlikely to be reversed. The tools suitable for
use by business users are becoming more
sophisticated, enabling a growing number of
them to develop advanced applications. If
correctly supported, guided, and managed, end-
user computing will provide business benefits
because users will be able to fully exploit the
computing resources available. Well developed
and useful end-user applications can also relieve
some of the pressures on the development
department.

End-user tools have met with
varied success in the past

Since users began to get involved in developing
their own applications in the early 1980s, they

FOUNDATION

have been obliged to use tools that were mainly
designed for professional systems developers,
rather than business users. Today, however,
they have access to tools such as FOCUS, which
can be used as a flexible data-access tool and
as a tool for developing quite complex
applications. Users have developed relatively
large applications with Mapper from Unisys, and
HyperCard from Apple Computer Inc, and the
macro facilities of products such as Symphony
and Excel are being used more and more to
produce very complex spreadsheet applications.
The problem is that these tools do not auto-
matically include vital features such as
recovery, audit, and back-up, and it is un-
realistic to expect most users to have the
expertise to provide such features themselves.

The experience of most organisations with end-
user computing has therefore been mixed.
Furthermore, as the number of users involved
in developing their own applications grows, and
the business significance of their applications
increases, the risk to the business also increases.
One company we spoke to used a complex
spreadsheet, developed by an accountant, to
caleulate budgets for the following year. As a
result of one mistake in the spreadsheet, all the
budget figures were underestimated by 10 per
cent, with the result that insufficient funds
were reserved for the business for the following
year.

Our survey of Foundation members confirmed
that problems with end-user computing are very
common. Most members quoted difficulties in
at least one of the following areas over the last
few years:

— A lack of control and coordination of
development effort.

_ Insufficient understanding by users of the
meaning of the information being accessed

51

Chapter 5 Encourage and expand end-user computing

and of systems issues such as security and
back-ups.

— Limited availability of suitable tools for end-
user computing.

— Problems with maintaining applications
developed by users.

Development departments therefore tend to be
very wary of attempts by users to develop
applications themselves. Any attempt by
systems departments to prevent users develop-
ing their own applications, however, is doomed
to failure. Business users will be increasingly
able and willing to use computers as an aid to
their work. The systems department’s role
should be to encourage and support end-user
computing in a way that allows business users
sufficient freedom whilst also providing
standards and guidelines in the areas where
these are necessary for corporate consistency.
Indeed, because of the current pressures on
development departments, they can no longer
ignore end-user computing.

Appropriate tools are now making
end-user computing a valid option

In the last two years of the 1980s, there have
been marked improvements in end-user com-
puting tools. With the growth in the use of PCs,
a wide range of user-oriented tools has become
available, with improved user interfaces, auto-
matic validation of information, and powerful
commands making them easier to understand
and use. This trend is likely to increase as
advances continue to be made in both fourth-
generation languages and the user interface,
particularly windowing techniques. Some
features, such as security and back-up, are still
not generated automatically by most end-user
tools, but such features have become less critical
in the last few years because the latest
hardware and network technologies now often
incorporate them automatically. Furthermore,
users now tend to be offered much better
support and guidance both by the tools and by
the systems department. These trends will result
in an increase in the number of business users
who are prepared and competent to develop
their own applications and who will regard end-
user computing as an effective use of their time,

In our survey, just over 75 per cent of
Foundation members said that they provided

o1
(8]

business users with tools that enable them tq
access data and to develop applications. Very
few, however, had any idea, other than
estimates based on installed equipment or
machine usage, of the extent to which the tools
were actually used, what they are used for, or
how the level of use is likely to rise in the future.
This is partially due to the fact that measuring
the use made of PCs that are not networked is
extremely difficult. Nevertheless, the majority
believed that there would be a significant and
steady increase in end-user computing over the
next five years. (This trend was confirmed by
the organisations we interviewed that did keep
records.)

Renault, a French car manufacturer, provides
business users with microcomputers and
mainframe tools and packages. Most users only
need database query facilities, provided by
IBM’s QMP/DB2, and enhanced graphical and
statistical facilities, provided by the SAS
package from SAS Institute Incorporated. More
complex applications are developed using SAS
or Nomad 2 from Must Software International.
Experienced users have developed micro-
computer applications with Ashton Tate’s
dBase, Borland’s Paradox, and the Multiplan
and Excel spreadsheets. Renault expects the
number of users to increase from 1,000 in 1989
to 10,000 in 1996.

At British Airways, an international airline,
business users have produced over 10,000
procedures that are retained for future use, and
countless others that have been used and
discarded. If users had not carried out this
development work, some of it would never have
been done and some of it would have been
added to the development department’s
applications backlog. Figure 5.1 shows the
growth in end-user computing within British
Airways. Such levels of growth indicate the
importance of end-user computing to an
organisation.

The rate of growth in end-user computing will
clearly vary from organisation to organisation,
but it will be encouraged by four major factors:

— Technology: More powerful and easier-to-
use end-user tools are emerging, cheaper
PCs and intelligent workstations are
becoming available, and it is becoming
possible for users to access computing

FOUNDATION

© Butler Cox plc 1990

Chapter 5 Encourage and expand end-user computing

resources via a network without having to
concern themselves with the physical con-
figuration of the hardware or databases. The
technological advances that are likely to
have the greatest effect on the growth in
end-user computing are described in
Figure 5.2.

— Business pressures: Within many organi-
sations, there is an increasing need for appli-
cations to be produced rapidly, in response
to business pressures. The majority of these
applications tend to be small, and to have a
relatively short life. Many of these ‘throw
away’ systems can be developed by users.

— Education and awareness: There is a grow-
ing number of computer-literate business
staff who have received some formal training
in computing and who are willing to use
computer-based technology. This is leading
to an increasing level of awareness of the
capabilities of computer applications, par-
ticularly in the areas of flexible yet
sometimes complex information access and
report generation (sometimes known as

executive information systems), and of

Figure 5.1 End-user computing at British Airways has
grown dramatically

British Airways employs about 49,000 staff. In 1984, it
replaced its exising end-user toal, ADI/ADRS, with
FOCUS. At that time, there were 122 staff with the
ability to use FOCUS. Since then, the FOCUS user
population has increased to over 2,000 — a 17-fold rise
in less than five years. British Airways is now the
biggest user of FOCUS in the United Kingdom. In the
16-month period prior to our meeting with British
Airways. the number of staff using FOCUS on a regular
basis had also risen dramatically — about 30 per cent
per annum.

Since staff began to develop applications in FOCUS,
over 10,000 procedures have been written and retained.
These range from very basic general enquiry and
access applications to very complex applications that
actually write other FOCUS applications and then
execute them.

During the interview, Chris Bell, from the FOCUS
Support Information Management Group, demonstrated
the potential benefits of using a powerful end-user tool
such as FOCUS. He was able to use simple one- or
two-line commands to extract information on the use of
FOCUS, by date, development area, and so on, without
leaving his desk or using the telephone. This demon-
strates that if they are correctly implemented, and
supported with the appropriate training and guidance,
end-user tools can be effective aids to everyday work.

FOUNDATION

© Butler Cox pic 1990

Figure 5.2 Advances in technology will make tools
easier for users to exploit

Increased guidance: In the short term, most data-access
and retrieval tools will have in-built help facilities to
provide guidance on the use of the tool, but they will
provide no guidance on the meaning or use of the data.
In the medium to longer term, as expert and object-
oriented systems mature, the more advanced end-user
tools will be easier to use and will contain knowledge
not only of what the data means, but of how it can be
used. End-user tools that contain an embedded
knowledge base will start to emerge in the early 1990s
and tools based on object-orientation will follow in the
mid-1990s.

Better facilities for transferring informatior: Other less
powerful or less flexible end-user tools, such as
spreadsheets, financial-modelling packages, and word
processors, will be able to accept and process
information regardless of its source. Such a fagcility is
already available with some computers — the clipboard
facility on the Apple Macintosh allows data, text,
graphics, and images to be transferred from one teol to
another in a consistent manner.

Improved user interface: Many end-user tools will be
based on PCs or powerful workstations. Initially, the PCs
may well be standalone, although the requirement for
access to large databases will require many of them to
be networked. Powerful networked workstations will be
used where more computing power is required. These
machines. combined with the end-user tools based on
them, will provide a very flexible and powerful
human/machine interface, using icons, windows, pull-
down menus, and so on.

flexible information access, analysis, and
reporting (sometimes known as decision-
support systems).

_ Frustration: It is becoming increasingly
difficult to attract and retain good develop-
ment staff. This has resulted in a staff
shortage that has increased the applications
backlog and thus extended the time it takes
to develop a new application. The response
of users to an unacceptable timescale will be
to do more of the work themselves, or to
commission contract staff or a software-
development company to do the work.

Ensuring that the most effective use of end-user
computing is achieved will become more and
more important for all organisations as the
demand for new applications continues to
outstrip the development department’s ability
to produce and maintain them. In the United
Kingdom, for example, the average backlog now
amounts to about 30 months. The demand for
new applications is growing at about 15 per cent

53

Chapter 5 Encourage and expand end-user computing

a year, whilst the number of qualified develop-
ment staff is growing only at about 5 per cent
a year. It is clear from these numbers that the
gap between the demand for applications and
the development department’s capacity to
provide new applications will continue to
widen, even if there are substantial improve-
ments in development productivity.

Provided with the appropriate tools, training,
and guidance, users could do much of the
maintenance work currently being carried out
by the development department. A survey of
24 members of Butler Cox’s Productivity
Enhancement Programme, carried out in late
1988, showed that about 40 per cent of all
maintenance work, primarily generating new
reports, could be carried out by users. They
could also access and analyse information
without needing to have specific software
written by the development department, thus
contributing to a reduction in the applications
backlog.

It is clear, however, that the advances in end-
user tools will not, by themselves, overcome all
the problems described above or result in all the
improvements. Nevertheless, with help and
guidance from the systems department, users
will be able to make better use of the available
computing resources and make a considerable
contribution to reducing the development
workload faced by most organisations. Effective
end-user computing can produce significant
business benefits. It can also result in a better
relationship between the systems department
and the user community, a better understanding
by that community of the development issues
facing the department, and a reduction in the
workload of the development department. The
challenge that faces the systems department is
to provide an appropriate level of guidance and
support to maintain some control without
discouraging the enthusiasm of users and stifling
their creative use of the emerging end-user
tools.

It is critical to provide appropriate
guidance and support

The advances described earlier in this report will
make tools easier to use and more business-
oriented. More and more users will therefore be
able to play a constructive role in ensuring that

54

the organisation’s computing resources are used
for the maximum benefit of the business. The
resources of the systems department are,
however, limited, and therefore need to be
allocated carefully to ensure that they are used
to the greatest possible effect.

We recommend that systems departments start
by categorising the different types of user so
that each category can be provided with the
level of support, guidance, education, and tools
that will enable business users to make the most
effective use of the computing resources
available to them. Without such a categori-
sation, it will be difficult to allocate resources
in the most effective way and to plan for the
growth of end-user computing.

Categorising staff in the way described below
should not determine absolutely what tools may
be used, or what level of service an individual
is entitled to. Individual organisations are likely
to have their own policies and constraints when
deciding on the tools and support that should
be provided. The categorisation will, however,
enable the systems department to get a better
understanding of the extent of end-user
computing, and hence of the levels of guidance,
support, and technology (hardware, software
packages, and tools) that it is appropriate to
provide in order to encourage end-user
computing throughout the organisation.

The systems department should also set
guidelines for different types of application, and
encourage users to seek the development
department’s ‘seal of approval’ for each appli-
cation. Encouraging users to have their
developments approved will prevent the pro-
liferation of poorly documented applications.

Identify categories of user

There are four main ways in which systems
departments can classify different types of
business user: by their role, by the type of data
they access, by their department, or by their
need for or use of applications and tools. We
recommend that the latter is used, which is
commonly broken down into five categories:

— Category 1: Potential users, who at present
do not use any computer-based appli-
cations.

FOUNDATION

© Butler Cox pic 1990

Butler Cox pl

Chapter 5

— Category 2: Those who have a need to use
or who only use applications and packages
that have been written for a specific task
that requires them to input data — for
example, an accounts application.

— Category 3: Those who have a need to use
or who use enquiry and analysis tools to
access databases and analyse the data.

— Category 4: Those who have a need to
develop or who use end-user tools to develop
small applications, primarily for personal use.

=

_ Category 5: Those who have a need to
develop or who develop applications that
may be used by many other users.

Each category of user is, in effect, an expansion
of the one prior to it. Users tend to move
through Categories 1 to 5 when first introduced
to end-user computing, and regress through the
categories as they move into the higher
managerial roles. Each category refers to the use
(actual or potential) made of end-user tools
rather than to the type of tool used. Therefore,
someone using a spreadsheet simply to add up
a list of figures would be in Category 2, a user
loading data into a spreadsheet from a database
and analysing it would be in Category 3, and a
user writing macros and developing a
spreadsheet for a specified task would be in
Category 4 or 5.

Encourage and expand end-user computing

Staff can be assigned to the appropriate
category by means of a simple questionnaire
that assesses their use of tools as well as their
needs. There will, of course, need to be some
mechanism for re-assessing at regular intervals
the category to which an individual is assigned,
because neither his needs nor the technologies
used will be static. Once staff have been
categorised in this way, the appropriate level
of support and resources can be allocated in the
most effective manner. Figure 5.3 suggests how
the various types of support and resources —
tools, training, help, guidance, and so on —
might be allocated. In this figure, the tools
shown in the cells on the first row have been
classified as follows:

— Fixed-processing tools: These are the
applications and packages used to support
the daily work of the users. Most of the
applications will have been developed in-
house or bought as packages. All of these
tools carry out a fixed processing task on
specified information.

Flexible processing tools: These are the
packages, such as spreadsheets and financial
modelling packages, that allow users to
process data in a predefined manner.

_ Data-access tools: These enable data to be
accessed and retrieved from centralised or
corporate databases. They generally permit

Figure 5.3 Allocating appropriate resources to the different types of end user will encourage growth in, and improve,
end-user computing

1. Potential

Type of support needed user (None)

Tools —

Machine (access) =

2. Current user
(Weak)

Fixed/flexible
processing tools

 Dumb terminallPC PG

i }ﬂ . i . *WDfiS§ on = "
Training IT awareness Use of tools PLUS PLU_S PLUS :
Basic data Basic Best practice for
processing development data processing
Help (you telephone us) — permanenty Permanently Telephone ~ Telephone or
i e - staffed help desk staffed help desk face-oface
Guidance (we advise you) — Hardly at all Very little Hand-holding Hand-holding

Category of user (Relationship with development department)

3.Data-access 4 Personal 5. User developer
user (Medium) developer (Very strong)
user (Strong)
PLUS PLUS PLUS Fourth-
Data access tools Report-generation generation tools

tools

Powerful

and directing

. FOUNDATION

© Butler Cox plc 1990

ot
Ut

Chapter 5

‘read only’ access and the data is transferred
to a local machine if it is to be amended or
modified. These tools use a simple pro-
gramming language or a pseudo-English
language syntax.

— Report-generation tools: These generally
enable reports to be generated from a local

or centralised database. Again, they tend to-

use a simple programming language or a
natural-language syntax.

— Fourth-generation tools: These are used to
develop applications (sometimes with the
cooperation of the development department
and sometimes without) that tend to be run
on PCs or powerful workstations.

By way of illustration, an individual classified
in Category 2 would normally be provided, as
a minimum, with access to either a dumb
terminal or a PC. A dumb terminal would be
adequate for someone who required access only
to fixed-processing tools — that is, applications
that were already fully developed, and that only
required data to be input. A PC, however,
would be needed by someone who required

Encourage and expand end-user computing

access to the more advanced flexible-processing
tools such as spreadsheets. Such staff would
usually need to attend a standard training
course on the use of the tools. Support would
be provided via a permanently staffed help desk
because this type of user typically requires
immediate assistance. There would be little need
for any further guidance other than that
provided by the training course.

Issue guidelines for different types of
application

Guidelines for end-user applications should be
defined to avoid constraining users. Appli-
cations should be classified by size, the number
of users, the type of data they access, and so
on. The classification can also serve to
determine the level of inspection required to
attain the systems department’s ‘seal of
approval’, discussed below.

An example of a matrix that can be used to
classify end-user applications and to define the
guidelines for their development is shown in
Figure 5.4. In this example (which is based on

Figure 5.4 A matrix can be used to classify applications and define the guidelines for their development

Class A
(simple spreadsheet or
database query)

Class B

(spreadsheet used on
regular basis or data-
base reporting
program used by more
than one person)

Class C

(micro-based DBMS
application, or complex
spreadsheet, or simple
spreadsheet used for
critical decision-
support)

Data attributes

® Personal

® Non-strategic
® | ow-volume
® |ndependent

® Departmental

@ High-volume

® Used by other
programs

® Strategic or sensitive
® Used {o update
corporate database

Application
attributes

® Personal
® Standalone
® [ow complexity

® Corporate
® Used by more than
one person

® Complex

® Uses non-
recommended
technology

(Source: Based on an example from the Software Management Institute)

Project attributes

® One to five
workdays

® No formal project
management
warranted

'® Six to 20 workdays

® Some project
approval/project
management
warranied

® 21 to 40 workdays

® Formal project
approval/project
management
warranted

® NMore than 40 days
— system develop-
ment standards
apply

Associated
guidelines

® Obtain authorisation

® Use password

® Back up data

® Use common sense

® Document as
appropriate

® | abel the
application and
output reports

 Class A guidelines: +

® Do recommended
‘control analysis

® Document

® Get ‘'seal of
approval' for system
security and so on

Class B guidelines +

® Do compulsory
control analysis

® Do feasibility and
cost-benefit analysis

® Get agreement from
development depart-
ment

56

Chapter 5 Encourage and expand end-user computing

work done at the Software Management
Institute), all end-user applications are classified
into one of three classes, according to their
attributes. An application is always allocated to
the highest possible class. If, for instance, it had
data and application attributes in Class A, and
project attributes in Class C, it would be
considered as a Class C application. Examples
of the application types that might fall into each
category are included in the matrix.

The guidelines associated with that class of
application are then applied, to ensure that the
user is not unnecessarily restricted. For the
development of a simple spreadsheet, for
example, categorised as Class A, the following
guidelines would apply:

— Obtain appropriate authorisation to develop
the application. Professionals often have
implicit authorisation by virtue of their job
level: clerical staff may have to request it
from a supervisor.

— Use passwords to restrict access to the
application.

— Always back-up both the data and the
application.

— Document the application and procedures
for using it.

— Label the application and any output it
produces as ‘Class A’.

For Class B and Class C applications, the
guidelines would become progressively more
stringent because the scope of such applications
is wider and the risks are therefore greater.
(Classifying end-user applications in this way will
ensure that they are evaluated prior to
development, that appropriate development
guidelines are followed, and that future users
are aware of the standards to which each
application was developed. In some organi-
sations, however, it will not be practical to
classify all applications, and the guidelines
should be aimed at the riskier Class B and
Class C applications.

Encourage users to seek the systems
department’s ‘seal of approval’

Systems departments should encourage users to
regard the concept of the ‘seal of approval’ as

FOUNDATION

© Butler Cox pic 1990

the equivalent of the acceptance testing they
carry out on applications developed by systems
staff. In providing its approval, the systems
department should be looking for good docu-
mentation, comprehensive testing, consistent
use of data, and so on. The systems department
will also have the opportunity to add security,
back-up, or systems features that the user may
not have considered. Once the applications have
been approved, any subsequent maintenance
and enhancements can be carried out in a
controlled manner either by users or by the
development department.

Clearly, not all end-user applications will require
the same level of inspection. Indeed, some will
need none at all. If users are required to submit
major applications for inspection, however, and
if the process is conducted effectively, the
end-user development environment can be
effectively managed.

Provide guidance and support for end-
user computing

Business users will adopt a growing variety of
development tools to help them develop their
own applications. As a result, the role of the
development department will change in time.
It will still be responsible for developing those
applications that are too complicated for users
to develop themselves, and those that span
business functions, and for supporting users as
they carry out their own developments.

In addition, it will be the systems department’s
responsibility to guide and support end-user
computing. In Report 71, Staffing the Systems
Function, we described in detail the skills
required for this critical area. Further advice on
providing support and guidance for end-user
computing, from both within and outside the
systems department, is given in the Butler Cox
Foundation Position Paper Information Centres
in the 1990s, published in February 1990.
Moreover, users will demand better human/
machine interfaces, based on windows and
icons, and better advisory and help facilities to
be built into applications. All this will place
additional demands on the development
department. By exploiting the emerging tools
identified in this report, these demands should
be well within its capabilities.

57

The Butler Cox Foundation

The Butler Cox Foundation is a service for senior
managers responsible for information management in
major enterprises. It provides insight and guidance to
help them to manage information systems and
technology more effectively for the benefit of their
organisations.

The Foundation carries out a programme of syndi-
cated research that focuses on the business implica-
tions of information systems, and on the management
of the information systems function, rather than on
the technology itself. It distributes a range of publica-
tions to its members that includes Research Reports,
Management Summaries, Directors’ Briefings, and
Position Papers. It also arranges events at which
members can meet and exchange views, such as con-
ferences, management briefings, research reviews,
study tours, and specialist forums.

Membership of the Foundation

The Foundation is the world’s leading programme of
its type. The majority of subscribers are large organi-
sations seeking to exploit to the full the most recent
developments in information technology. The mem-
bership is international, with more than 400 organi-
sations from over 20 countries, drawn from all sectors
of commerce, industry, and government. This gives
the Foundation a unique capability to identify and
communicate ‘best practice’ between industry

sectors, between countries, and between IT suppliers
and users.

Benefits of membership

The list of members establishes the Foundation as
the largest and most prestigious ‘club’ for systems
managers anywhere in the world. Members have
commented on the following benefits:

— The publications are terse, thought-provoking,
informative, and easy toread. They deliver alot
of message in a minimum of precious reading
time.

— The events combine accessto the world’s leading
thinkers and practitioners with the opportunity
to meet and exchange views with professional
counterparts from different industries and
countries.

— The Foundation represents a network of systems
practitioners, with the power to connect
individuals with common concerns.

Combined with the manager’s own creativity and
business knowledge, Foundation membership
contributes to managerial success.

- FOUNDATION

@ Butler Cox plc 1890

Recent Research Reports

56 The Impact of Information Technology on
Corporate Organisation Structure

57 Using System Development Methods

58 Senior Management IT Education

59 Electronic Data Interchange

60 Expert Systems in Business

61 Competitive-Edge Applications: Myths and
Reality

62 Communications Infrastructure for Buildings

63 The Future of the Personal Workstation

64 Managing the Evolution of Corporate
Databases

65 Network Management

66 Marketing the Systems Department

67 Computer-Aided Software Engineering
(CASE)

68 Mobile Communications

69 Software Strategy

70 Electronic Document Management

71 Staffing the Systems Function

72 Managing Multivendor Environments

73 Emerging Technologies: Annual Review for
Managers

74 The Future of System Development Tools

Recent Position Papers and

Directors’ Briefings

Information Technology and Realpolitik

The Changing Information Industry: An
Investment Banker’s View

A Progress Report on New Technologies

Hypertext

1992: An Avoidable Crisis

Managing Information Systems in a
Decentralised Business

Pan-European Communications:
Threats and Opportunities

Information Centres in the 1990s

Forthcoming Research Reports
Assessing the Value from IT

Systems Security

New Telecommunications Services
Using IT to Transform the Organisation
Electronic Marketplaces

Butler Cox

The Butler Cox Foundation is one of the services
provided by the Butler Cox group. Butler Cox is an
independent management consultancy and research
company. It specialises in the application of informa-
tion technology in industry, commerce, and govern-
ment throughout Europe and the rest of the world. It
offers a wide range of services to both users and
suppliers of information technology.

et bey Com ple
Pestler Uk Niminer, 12 Phammmbuary Squane.
London WOCIA 204,
W) K] 010), Telex BRIITIT BUTOOX G
Fax (01) 831 6250

Wobgrum and the Nethrviamds
Bt € on Pernebun I
Prine Hembriklaan 52
175 BE Amsterdam, The Nethertands
® (020) T8 51 11, Pax (000) 75 &3 31

Frapmsy
Patler Cox SARL
Tour Akao, 164 Roe Ambwosse oz,
B2 N Dhemis Cddex |, Prance
W) AR 2060 .64, Tidcopiour (1) 48.20. 7258

Germany (FR), Awstvin, and Switzevtand
Batley Cox Gl
Wi - Wagnor-Ser. 10, 800 Milnchen 2, West
W (0N 5 23 40 OF, Fax (088) & 23 95 1%

Awstrwlio and New Beolawsd
My J Coeypor
Batler Cus Foundation
Laovel 10, 70 Pt Sareet, Sydoey, NSW 2000, Australis
W (0F) 223 a2, Pax (V) 220 6007

Fibarmad
TT bwwwration Oy
Mevinllindatu B, K¢ 0150 Helsinki, Finkisi
W (00) DIS LSS, M (0] 105 2085

Frvisimd
SEP Cvovsslt ing
72 Merron Nguare, Duidis 2, lrebun)
W00 T TR, Telew 20007 N,
Pax (00) TiTgs

Fatw
s Viatern Nel
Vi Lvogaanil |, 30000 Mikames, Bady
W R T ek NA, Pl () A0S e

vy

Tty U Fosomiol s S armlbsacia AP
Tl roahomeen 21, Bhem B5E0 |71 B0 Solea, Sendem
W) T S e, e fO) TOR S 6T
Npwrsm mwid Pron ¥ gl
T Nenmenlh X4
et Mgt B d b D Madred Sy

W0 TR e P () TED e

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64

