

S
a
s

S
S-
—
_
;i

THE BUTLER COX FOUNDATION
REPORT SERIES NO. 47

THE EFFECTIVE USE OF SYSTEMBUILDING TOOLS
ISSUED MAY 1985

Research Method

The researchfor this report was carried outin late
1984 and early 1985 by David Flint, a senior consul-
tant with Butler Cox who hasa long-standing interest
in tools and methods for computer systems develop-
ment.

The workfor this report built on previous Butler Cox
research, notably that for Foundation Report No. 36
(Cost-Effective Systems Development and Main-
tenance). The research was extendedbya literature
search, and the published material that significantly
influenced the developmentof this report (including
that referred to explicitly) is listed in the Bibliogra-
phy at the end of the report.

The experience of Foundation members and other
organisations in using system building tools was
researched by means of focus groups, individual
interviews and analysis of published case histories.
Information was collected on morethan70 installa-
tions in France,the Netherlands, Sweden,the United
Kingdom andthe United States which have, collec-
tively, hundreds of man-years’ experience of using
several dozen different system building tools.

Using information from about 30 installations, we
were able to calculate some representative produc-
tivity figures for some of the more commonly used
tools. We werealso able to form views about the
applicability of different types oftools, the best ways
of using them and the consequences of using them

(or, in some cases,of not using them) both for users
and for information systems departments. The
overall picture was sufficiently clear to enable some
simple models to be built to demonstrate the finan-
cial implications of using system building tools.

Research Conclusion
The research showedthat the use of advanced sys-
tem building tools, such as Mapper, Focus,Linc or
Gener/ol, could enable systems to be developed (and
maintained) between four and 20 times as fast as
is generally possible with Cobol and PL/1. The
research also identified the most common mistakes
that are madein the application of system building
tools. In particular, we found that the effective use
of system building tools requires a fundamental
changein the development approach.
Thereport is therefore structured as a methodology
for selecting and using system building tools. By
following this methodology, Foundation members
can avoid the mistakes and maximise the benefits
that are obtainable from system building tools.
The main findings of the research are highlighted in
the report synopsis.

Additional report copies
Normally members receive three copies of each
reportasit is published. Additional copiesof this or
any previous report (except those that have been
superseded) may be purchased from Butler Cox.

ox Foundation
© Reproduction by any methodis strictly prohibited Photoset andprinted in England by Flexiprint Ltd., Worthing, Sussex

THE BUTLER COX FOUNDATION
REPORT SERIES NO.47

THE EFFECTIVE USE OF SYSTEMBUILDING TOOLS
CONTENTS

REPORT SYNOPSIS i
fe UNDERSTAND THE VALUE OF SYSTEM BUILDING TOOLS.

Impact on development productivity ..
Benefits for individual systems............
Benefits for the information systems department..

2. DETERMINE THE OBJECTIVES FOR USING SYSTEM BUILDING TOOLS..
Suitability of existing systems environments
Soundnessof existing applications ..
Rate of change to existing systems.
Additions to existing systems....
The demand for new systems
Summary oo...

3. CHOOSE THE APPROPRIATE SYSTEM BUILDING TOOLS...... 12
Identify the tools that meet the constraints.... 2
Narrow the field .. 44
Evaluate the shortlisted to 15
Select the most appropriate tools 21

4. DEFINE THE NECESSARY CHANGES IN THE DEVELOPMENT ENVIRONMENT... 23
Abolish or reduce the programmer-analyst split 23
Use prototyping:eeeee 24
Provide good computer support .. 24
Reduce the amount of documentation.. 25
Accept thelimitations of the system building tools . 26
Deliver databases rather than systems.... 26
A pause for breathceceeee 26

5. BUILD THE PILOT APPLICATION 27
Select the pilot application 27
Establish the pilot team .. 27
Build the application.... 28
Evaluate the experience.... 28

6. EXTEND THE USE OF SYSTEM BUILDING TOOLS... 29
Make the required staffing changes..... 29
Provide adequate facilities oe = 30
Update the standards and pro TER

EcbcdieSOOOoPAPROPOS

CE 31
Manage the changeover Periodcseceecserectertes

tes

tecetseesscnerereaseenenensentacnesaensenseasenaestinercessseeters 32
Gonclisiontmereee 33

APPENDIX 1: MEASURING PRODUCTIVITY WITH FUNCTION POINTS:csceececceeeeeeicteeteritenteerees 34

APPENDIX 2: A CLASSIFICATION OF SYSTEM BUILDING TOOLS o........: cesseseeetert ittteceinees 37

APPENDIX 3: DEVELOPMENT PRODUCTIVITY IN PRACTICE........-.-cccscs estes scr esterissittissensessesscrseticy 39

BIBLIOGRAPHY. ...ccccsssscscceseerestlslsvesseccscssecesssseecsececeenenceesereecsttaseuesssveusneretesneseqnscrecsesazeuetbenssbeveserenecneatenerte? 4

‘The Butler GoxFoun

© Reproduction by any methodis strictly prohibited

THE BUTLER COX FOUNDATION
REPORT SERIES NO.47

THE EFFECTIVE USE OF SYSTEM

The construction of application systemsis a central
and crucial activity for every information systems
department. In the past this activity has produced
severe problems for systems managers and, on
occasion, for the whole organisation. For example:
inadequate computer systems delayed Morgan Stan-
ley’s entry into the gold market for several years; the
computer systems at the British Driver and Vehicle
Licensing Centre at Swansea have been muchcriti-
cised; and in May 1983, the Stockholm Stock
Exchange wastotally shut down for about ten days
by an overload in its electronic system for register-
ing trades.

Probably every readerof this report will remember
systems that were very late, over-budgetorthat failed
to meettheir objectives to such an extent that they
had to be abandoned.
Major disasters have become less common as the
information technology industry has matured and as
proper managementdisciplines have comeinto use.
In addition, some information systems departments
have introduced formal quality control and structured
analysis and design methods. These typically have
produced someincreasein productivity together with
a more manageable development process. But the
main benefit arising from these methods has been
a greater degree of confidencein the system specifi-
cation and the avoidance of major errors in specifi-
cation and design.

Despite these improvements, system construction
remains a slow and expensive process in mostlarge
organisations, and the delay between a user request
andthefirstlive use of a system maystill be several
years. The resulting impatience of users has to some
extent been contained by personal computing and in-
housetimesharing (or information centres). Neverthe-
less, most organisations still have some form of
development backlog. Worsestill, many users have
needs that they never put forward because they
believe that the information systems departmentwill
be unable to meet them promptly and economically.
Since the beginnings of commercial computing, sys-
tem developers have sought aids and tools that would
speed-up and simplify the system development pro-

‘The Butler Cox Foundation
© Reproduction by any method is strictly prohibited

BUILDING TOOLS
REPORT SYNOPSIS

 Figure S.1 Representative sample of system building
tools

cess. Indeed, a Cobol compiler is just such a tool.
More recently, many suppliers have promoted
modern system building tools as the means of
increasing development productivity. There are now
hundreds of suchtools, each claiming to solve the
users’ problems. A representative sample of these
toolsis listed in Figure S.1. (Sometimes these tools
are known collectively as ‘fourth-generation lan-
guages’, but we do not use that term in this report
because webelieveit is misleading.)
Many Foundation members now have substantial
experience of using modern system building tools.
Whilst some membersare enthusiastic users, others
have rejected their use, or even abandoned them
after building several systems with them. The most
commonobjections to using system building tools
are:
—The need for excessive amounts of computer

power.
—Lack of recovery features.
—Lack of security and integrity features.

REPORT SYNOPSIS

—Inability to cope with complex applications.

As a consequence, manyorganisations restrict the
use of system building tools to a narrow range of
applications — often to applications provided through
an information centre.
Despite the fact that some organisations find great
difficulties in using system building tools, others have
achieved remarkable successes. Webelieve that
most information systems departments can obtain
major benefits by introducing or extending the use
of system building tools.In this report we explain how
organisations can improve their effectiveness by
using these tools.
Our research has shownthat introducing and mak-
ing effective use of system building tools requires

management commitment and a disciplined
approach that has six main stages:
—Understand the value of system building tools.
—Determine the objectives for using system build-

ing tools.
—Select the appropriate system building tools.
—Define the necessary changesin the development

environment.
—Build the pilot application.
—Extend the use of the system building tools.
Eachof these stages is the subject of one chapter
of this report.

The Biter Gay Ex

© Reproduction by any method is strictly prohibited

CHAPTER1
UNDERSTAND THE VALUE OF SYSTEM BUILDING TOOLS

System building tools can provide considerable
benefits both to the organisation and to the informa-
tion systems department. These benefits are widely
misunderstood becauseit is believed that they apply
only to the technical process of systems develop-
ment. The improvementin development productivity
is important and is often much greater thanis gener-
ally recognised by systems staff. But improved
development productivity produces benefits for the
whole organisation, not only for the information sys-
tems department. These benefits are critical in plan-
ning for the future of information systems.

With the right system building tools, systemswill be
better, will cost less, will be delivered sooner, and will
be easier and less expensive to maintain and
enhance.As a result, the information systems depart-
ment can build many more systems, cut costs, and
become more responsive to business needs.In this
chapter we explain how these benefits can follow
from the use of system building tools.

The benefits are of differing significance to different
organisations, and are provided to differing extents
(and sometimes not at all) by the various tools cur-
rently available. Thus, different organisations need to
set different objectives for using system building
tools. In Chapter 2 we explain how to identify the
objectives that are appropriate. Subsequent chapters
deal with selecting andinstalling system building tools
in order to realise the potential benefits.

IMPACT ON DEVELOPMENTPRODUCTIVITY
Improved development productivity is the key factor
in transforming the technology of system building
tools into benefits for the organisation. Lines-of-code
per man-day has been widely used in the past as a
measure of development productivity but, for reasons
given morefully in Appendix 1, we recommend that
development productivity should be measured in
function points delivered per development man-day.

The function point concept was devised by Allen
Albrecht of IBM as a measure of system size. Func-
tion points delivered per man-day is a good measure
of development productivity because:

‘The Butler Cox Foundation
©Reproduction by any methodisstrictly prohibited

—Function points measure function delivered, not
program size.

—Function points are independentof the language
and machine used.

—The function point concept is independent of
organisational structures.

As an example, a system with 1,000 function points
is equivalent to between 50,000 and 100,000lines of
Cobol or PL/1. Our research has shownthat, for a
range of organisations and over several years, the
productivity for development in PL/1 and Cobol ranges
between 0.03 and 1.5 function points per man-day.
The mean value during the past six or seven years
has been about 0.2 function points per man-day (see
Appendix 3), but for the purposes of this report we
have assumed that the normal productivity today in
Cobol or PL/1 is 0.35 function points per man-day. On
this basis, a system comprising 30,000 lines of PL/1
would require about six man-years of effort.

Whenadvanced system building tools are used the
productivity is usually between 1.5 and 7.5 function
points per man-day. For example:
—A United Kingdom manufacturer has increased

development productivity by a factor of seven by
using Focus.

—A Dutch insurance company has measured a
seven-fold increase in productivity through the use
of Mapper.

—AFrenchoil company estimates that Ramis has
provided a five-fold productivity improvement.

Muchhigher productivity can be obtainedin special
cases or if prototyping is used. But, in general,
advanced system building tools enable development
productivity to be four to 20 times as great as with
Cobol and PL/1.

BENEFITS FOR INDIVIDUAL SYSTEMS
For individual systems, system building tools can
reduce the development cost, decrease the develop-
menttime, improvethe quality and make the develop-
ment process more manageable.

CHAPTER 1 UNDERSTAND THE VALUE OF SYSTEM BUILDING TOOLS

System developmentcosts will be reduced
The most advanced system building tools, used most
effectively, allow systemsto be built with muchless
labour and computer powerthan is required when
using conventional languages such as Cobol or PL/1.
in many quite ordinary organisations — local authori-
ties, banks and manufacturers — savings of more
than 75 per cent have beenachieved.In a few excep-
tional cases the savings have been very muchlarger.
In the Santa Fe Railway, for instance, a team offour
people using Mapperbuilt in 17 months a system that
included, as just one of its functions, a railway yard
system. Working in parallel, a team of up to 20
programmersbuilt an equivalent system using IBM
Assembler. This system took two years to develop,
and was subsequently replaced by the more compre-
hensive Mapper system.
In the Corporation of Lloyds, the introduction of Focus
enabled the information systems department to quote
an acceptable price for a long-desired system for
which previous quotations (by the department and by
external suppliers) had been unacceptable.
Developmenttimes will be decreased
Becauselesseffort is needed to complete a system,
it can be developed faster. In the Leamington Spa
Building Society a team of three people using Linc
developed andinstalled a system equivalent to about
70,000 lines of Cobol in just five months. (This sys-
tem was subsequently acquired by Burroughs who
have now sold systems based onit to other building
societies.)

Systems quality can be improved
The high productivity obtainable through the use of
system building tools makesit possible to build pro-
totypes before implementing the complete system.
Prototypes generally provide a better means of estab-
lishing the user requirements for systems than do
conventional analysis and design, and this leads to
better designs and higher-quality systems. The
immediate benefit is a better solution to the business
problem. Other benefits include more user involve-
ment and less enhancementin the earlier years of
the project. (The value of prototypingis discussed at
greater length in Chapter 4, and the procedures for
using it are outlined in Chapter 6.)
The developmentprocesswill be more
manageable
The reducedeffort and time required by system build-
ing tools make the development processinherently
easier to manage. In addition, the use of these tools
provides a better base for estimates, since prototyp-
ing provides a more accurate specification and also
postponesthepointat which it mustbefinalised. The

reduced overall duration of the development process
makes planning easier, whilst the shorter period
betweenfinalising the specification anddelivering the
system allowsless time for changes in external cir-
cumstancesto dictate changes in the system.
Prototyping also allows final estimates of develop-
ment and execution costs to be deferred until after
the prototype is complete, at which point more will
be knownaboutthe users’ needs and the computer
resource requirements.

BENEFITS FOR THE INFORMATION SYSTEMS
DEPARTMENT
The development improvements brought about by
system building tools also provide benefits for the
information systems department. Becausethe tools
reduce boththe effort and the elapsed time needed
to build (or enhance) an application, the department
will be able to meet users’ requests more quickly and
the user will be able to pay for more enhancements
and systems. Thus, at one extreme, system building
tools allow more systems to be developed for the
samecost. Alternatively, the tools enable the same
numberof systems to be developed at a reduced
cost.In reality, most organisations will make a trade-
off between these two options.

Figure 1.1 Growth in applications systems base due to
the use of system building tools

Systems base
measured in4 r Using advanced
function points system building

tools
50,000

Using Cobol

 ThebonGav Enon
DUEL U IX TL

© Reproduction by any method is strictly prohibited

CHAPTER 1 UNDERSTAND THE VALUE OF SYSTEM BUILDING TOOLS

 Developing more systems 7ping yi Figure 1.3 Impact of system building tools on
If the number of developmentstaff is held constant departmentalcost-effectiveness
then the use of system building tools allowsthe total
number of systems developed to be increased dra- Installed function
matically. Figure 1.1 showsfor a hypothetical infor- points per
mation systems departmentthe total systems inven- $1,000 spent
tory (measuredin function points) and its projected A
growth over a five-year period.
We have assumedthatin the base year (Year0) the 105
department spends 36 per centofits budget on sys- Using system
tems development, 12 per cent on maintenance and BuildipgHoals
enhancements and 52 per cent on runninginstalled
systems. If the department continues to develop sys-
temsin Cobol it would add 10 per cent to its systems
basein thefirst year and slightly smaller increments ,
in subsequent years as extra resources have to be Tate eae)
found for maintenance. (We have also assumedthat
all systems are replacedafter five years of service.) 54
Figure 1.1 also shows the growth in the base of
installed systemsif the departmentbuildsall its new
systems with advanced system building tools. Over
five years, nearly four times as many systems are
developed — an impressive increase compared with
the continued use of Cobol or PL/1.
The cost of running the greater number of systems
made possible by system building tools will, of course,
increase the total cost of running the department.

Figure 1.2 Total departmental costs if system building

tools are used to build more systems
Cost ($M)

Using advanced
system building
tools

Figure 1.2 showsthat the cost of the continued use
of Cobol reducesslightly over the five-year period
becauseof the improving price-performance of com-
puter hardware. The figure also showsthat, if sys-
tem building tools are used for all new development,
the total departmental costs increase by a factor of
morethan 2.5. This increase reflects the larger num-
ber of systems developed and their lower machine
efficiency.

Nevertheless, the overall cost-effectiveness of the
department improves because thetotal costs rise

Using Cobol moreslowly thanthe increasesin the systems base.
Figure 1.3 shows the improvement in departmental
cost-effectiveness obtained by using system building
tools, measured by the numberof installed function
points per $1,000 of expenditure in each year. Sys-
tem building tools provide this improvement because,
for this hypothetical department, the savings in
development and maintenance outweigh the extra

0 =i 7 T + operational costs. This might not be the caseeither
0 1 2 3 4 5 if transaction volumes were especially high, or if

Years maintenance levels were particularly low,or if sys-
tems lasted on average for more thanfive years.

TheButler CoxFoundationtie
© Reproduction by any methodis strictly prohibited 3

CHAPTER7

Reducing information systems costs
In view of the rapid cost increases shownin Figure
1.2 it may seem strange to suggest that system build-
ing tools can reduce costs. Nevertheless, cost sav-
ings can beachieved, provided that the tools are used
to provide the same quantity of systems as would
have been developed with Cobol (and provided that
it is no longer necessary to pay for staff for whom
there is no longer any work).
Figure 1.4 shows the comparative costs overtime for
the same hypothetical information systems depart-
ment, but assumesthat the same numberof systems
are built in each case. As before, the department
rebuilds all its systems after five years of operation
and increasesits systems base by 10 per cent in the
first year. In this case, the tools produce a 24 per cent
reduction in total costs at the endof five years. This
reduction is due entirely to the need for fewer
development and maintenancestaff.
Thus, system building tools can provide significant
benefits for individual systems and for the informa-
tion systems department. Nevertheless, to make the
mosteffective use of suchtools, their selection and
introduction must be carefully planned and managed.

UNDERSTAND THE VALUE OF SYSTEM BUILDING TOOLS

Figure 1.4 Total departmental costs if system building
tools are used to build the same numberof

systems
Total costs
($M)

54

Using Cobol

Using advanced
system building4 tools

0 T T T = —
0 1 2 3 4 5

© Reproduction by any method is strictly prohibited

CHAPTER 2
DETERMINE THE OBJECTIVES FOR USING SYSTEM BUILDING TOOLS

System building tools are often sold, and sometimes
even evaluated, in terms of their technical charac-
teristics rather than the benefits they can provide. In
order to ensurethat the tools chosen will provide the
greatest benefits, each organisation mustfirst estab-
lish its objectives for using them.
Different tools are designed for use with different
hardware and software environments and for
developingdifferent types of application. Thus a tool
that is appropriate for developing a management
information system may not be suitable for reducing
the cost of mainstream transaction processing sys-
tems. It is therefore essential to determine the sys-
tems environments in whichthetools will be used and
the types of applications thatwill be developed with
them.

System building tools also provide the option of
rebuilding existing systems at an acceptable cost.
Another key objective to be determinedtherefore,is
whether

a

toolwill be used to build only new systems,
to rebuild existing systems, or to maintain (and/or
enhance) existing systems.

This chapter shows howthe objectives for using sys-
tem building tools may be determined. The objectives
for using system building tools, and hence the deci-
sion as to whichtools should be selected, will depend
on five factors:

—Whether the current systems environmentis a
suitable basis for the future.

—Whether the existing applications are a sound
basis for the future.

—Therate at which existing systems are expected
to change.

—The likely demand for additions to existing
systems.

—Thelikely demand for new systems.

Consideration of these factorswill clarify objectives,
andalso identify the constraints that the tools will
haveto satisfy. (In the next chapter we explain how
to select tools that meet the constraints andarelikely,
if they are used effectively, to meet the objectives.)

The Butler CoxFo
© Reproduction by any methodisstrictly prohibited

SUITABILITY OF EXISTING SYSTEMS
ENVIRONMENTS
Wedefine a systems environment as a specific com-
bination of hardware architecture, operating system,
file or database managementsystem, teleprocess-
ing monitor (where relevant) and development
process. Most substantial organisations now have
several distinct systems environments, and some
have as many as 20. Different types of application
system (operational support systems and manage-
ment support systems, for example) often are runin
different systems environments, and are sometimes
developed with different tools and procedures.

Thus a confectionery manufacturer runs its long-
established order-entry systems under CICS but its
sales information system for managers under IMS
DBIDC.Thereis also a VSPC servicein the informa-
tion centre.

There may also be different software environments
for batch and online systems. For example, several
public utilities process batch systems on ICL equip-
ment using the DMEoperating systems, but use VME
for their online systems.

If the existing systems environmentis an unsuitable
basis for future developments, especially those that
provide business advantages, it may be desirable to
movethe systemsto a different environment. It may
also be necessary to redevelop the systems.

An organisation therefore might decide to select sys-
tem building tools for use in its existing systems
environments, or it might replace (or supplement)
them with new environments that make the best use
of modern system building tools. To determine
whether to continue using an existing environment,
two questions must be answered:

—Canthe existing systems environment support the
generaldirection for future systems?

—Whatare the constraints on choosing a new sys-
tems environment?

CHAPTER 2. DETERMINE THE OBJECTIVES FOR USING SYSTEM BUILDING TOOLS

Can the systems environment support future
systems?

Amongst the developments that are affecting the
nature of systems in many organisations are:

—The growth in end-user computing.
—Thegrowthin online managerial access to opera-

tional data.
—The integration of systems across business

functions.
—The growth in the use of systems by customers

and suppliers.
—Theintegration of systems at the point of use.
—The growthof inter-business data communications.
The relative importance of these developments varies
between organisations but, in our view, the majority
of large organisationswill feel the impact of most of
them within the next five years. Many have already
doneso.
Someof these developments can provide advantages
to the business — for example, by locking customers
into the product ordering and delivery systems.It is
thereforecritically important for the information sys-
tems department to be able to support these
developments.
In our view the growth of user access and manipula-
tion of data is the most important single trend in data
processing. In most organisations this is mainly con-
fined to distinct information centre environments,
based on copies of live databases and constrained
by resource problems. By 1990, in many organisa-
tions, these constraints will have ceasedto betoler-
able. It will therefore be necessary for the same sys-
tems environment to support both operational
systems and user access and manipulation.

The importance of decision-support databases(that
is, systems optimisedforflexibility and access rather
than machine efficiency) is already clear. And, in
some organisations, these databases are already
being used both for transaction processing and
managementinformation systems. We expectthis
trend to continue as machine efficiency is progres-
sively traded for human effectiveness, specifically the
effectiveness of users and application developers.
Decision-support databaseswill increasingly replace
older databasesasthe basis for operational systems
in the same way that those databases have replaced
serialfiles. i

The systems environment mayeitherassist or impede
the changesrequiredin the nature of information sys-
tems. For example:

—Managerial access to operational data will be
easedif there is a suitable query facility, if data
structures correspond to managers’ viewsof the
business, if there is an online data dictionary and
if there is a facility to transfer data to a suitable
personal computer or workstation.

—lInter-business data communications will be eas-
ier to introduce if data complies with the relevant
industry-specific standards andif the telecommu-
nications software supports the appropriate pro-
tocols.

Whatare the constraints on choosing a new
systems environment?
The constraints on the choice of a new systems
environment maybe dueeither to externalpolicy or
to the need for compatibility with existing systems.
Moreover, an orderly move to a new systems environ-
ment will usually require some applications to be
rebuilt in the new environment. Not only does this
requirement increase the cost of installing a new
environment, it may also require a temporary ban on
system enhancements. Because theseissues relate
directly to applications we discuss them in the next
section (on page 7).
External policy constraints
Someinformation systems departments arefree, in
consultation with their immediate customers, to make
their own decisions on systems environments. Others
are subject to external controls. In the public sector
such restrictions usually originate with an elected
council or politically appointed board or with the
government. Therestrictions are usually imposed in
an attempt to stimulate or support indigenous pro-
ducts and suppliers.
In the private sector the constraints are more often
dueeither to a central policy imposed by a corporate
headoffice or to the deep scepticism felt by many
senior managersofthe ability of anyone except IBM
to build computers or manage ‘convergence’.
It is possible, if the argumentsare really good, to get
such policy constraints changed, but this is always
a slow and laborious process. In general, it is prob-
ably best to acceptthe constraints unless it becomes
clear, after attempting to choose suitable system
building tools, that there is no suitable tool for the
prescribed systems environment.
Compatibility with existing systems
Although the new systems environment may be
greatly superior to the existing one, the present data-
bases and systemswill continue to be used for some
time (possibly for several years). During the transi-
tion period there will be a need for some compatibil-
ity between the old and new environments, specifi-
cally in the areas of data access and/or terminal
communications.

© Reproduction by any method is strictly prohibited

CHAPTER 2. DETERMINE THE OBJECTIVES FOR USING SYSTEM BUILDING TOOLS

Ifthe existing systemsare large and monolithic it may
be necessary to phase the transfer to the new
environment, but impossible to transfer the old data-
basein parallel. In this situation, the new environment
will have to allow systems to accessthe old database.
At present this usually means using the same com-
puter, and this could restrict the choice of a new sys-
tems environment, whichin turn could impose unac-
ceptable restrictions on the choice of system building
tools.
Ideally, the same terminal should be able to access
applications runningin both the old and new environ-
ments. Thus, the old and new environments should
allow similar screen formats and function-key con-
ventions to be used.

SOUNDNESS OF EXISTING APPLICATIONS
If the existing applications are seriously unsoundit
may be necessary to rebuild existing systems to new
designs.If systems have to berebuilt, it will usually
be sensible to do so in a new systems environment
in order to obtain the benefits of increased produc-
tivity and greater flexibility.

The key questions to be considered are:
—Are the existing systemsfit for their purpose?
—Canyouafford the costs of rebuilding systems?
—Canyoujustify the time required to rebuild exist-

ing systems?

If the decision is taken to rebuild some(orall) of the
existing systems, high-productivity tools should be
chosen together with a systems environmentthat pro-
vides adequateflexibility for the future.

An element ofrisk is inevitable in any major systems
development, and the use of new development tools
in a new systems environmentwill certainly increase
therisk. It can be reduced by choosing products that
have been provenin organisations like your own but,
beyondthat, the risk has to be balanced against the
costs and benefits.

Are the existing systemsfit for their purpose?
Many organisations arestill running systems that only
partly meet the business needs, but which would
demand a prohibitive amount of time and effort to
rewrite. Of 20 senior systems executives from large
organisations whoreplied to a Butler Cox question-
naire in the autumn of 1984, two-thirds said that they
would maketheir systems‘‘largely or radically differ-
ent” if they were able to start again from scratch.
If the systemsare inadequateit is clearly desirable
to replace them with satisfactory ones. By reducing

 eee

the time and effort required for systems development,
system building tools, used in a new systems environ-
ment, may make this possible.
Can you afford to rebuild existing systems?
Evenif existing systems are clearly inadequate, the
costs of rebuilding them with conventional tools may
be prohibitive. But system building tools may make
it possible to rebuild systems at much lowercosts.
Savings of 80 per cent or more compared with con-
ventional tools are quite possible, and can be
obtained for maintenance and enhancements as well
as for new developments.
No systemlastsindefinitely, so the decision to rebuild
using system building tools may be seenasbringing
forward the rebuilding date, rather than as a com-
pletely new cost.
Even so, rebuilding substantial systemsis a costly
undertaking, and the most important costs may be
lost opportunity costs. Separate decisions must there-
fore be made for each system or group of systems.
The expected rate of change to existing systems also
has a material effect on the decision whether to
rebuild (see below).
Overall, for most organisations, we believe that the
rebuilding of applications cannot usually be justified
on cost savings alone. The costs may be acceptable,
however, if there are other benefits such as greater
flexibility or ease of use.
Can youjustify the time required to rebuild
existing systems?
Convertingall the existing systems to a new systems
environment is a daunting prospect. Notonly isit
expensive, it is alsolikely to require a temporary ban
on enhancements, which may be unacceptable to
users.
Using system building tools will often allow systems
of up to 1,000 function points to be rebuilt by five
peoplein six months. In many organisations a six-
month ban on amendments will be acceptable to
users, especially if the resulting system will include
some enhancements. The size of systems that can
be rebuilt is therefore related to the longest period
of time for which users can be persuaded to accept
a ban on enhancements. The larger the system,
the longer the ban, andthelesslikely users are to
acceptit.

RATE OF CHANGETO EXISTING SYSTEMS
Maintaining and enhancing existing systems is a
major part of the work of almost every information

CHAPTER 2. DETERMINE THE OBJECTIVES FOR USING SYSTEM BUILDING TOOLS

systems department. The maintenancelevel usually
dependsonthesize of the system being maintained,
on its quality, and on the rate at which the users’
requirements change. Allen Albrecht provided
delegates on the 1983 Butler Cox Foundation Study
Tour with data that showed the annual maintenance
level in IBM in 1980 was about 30 minutes per func-
tion point.

Another measure, the one that we will use in this
report, is the ratio of annual maintenance cost to
developmentcost(ignoring inflation). The IBM figures
imply a ratio of about two per cent, much lower than
is usual in Europe, where five per cent and even 10
per cent are not uncommon.For the purposeofthis
analysis the division between systems maintenance
and systems enhancementis not significant. We will
distinguish, however, between changesand additions
to existing systems. (Additions are discussed in the
next section, beginning on page 9.)
Changes mayberequiredeither to correct errors or
to amend the system to meet changeduser require-
ments. Additions are almost always enhancements,
consisting of new reports and new transactions, but
not additional processing for existing transactions.
The reason for making this distinction is that it is
usually possible to find system developmenttools that
provide substantia! benefits in adding new reports and
transactionsto existing systems,butit is moredifficult
to find tools that are effective for making changes to
systemsoriginally developed with conventionaltools.
In most organisations, corrections and small improve-
ments are subject to somekindof overall budgetlimit.
Larger improvements may be subject to separate
justification exercises. In general the rate at which
changes are made can, to a considerable extent, be
controlled by the information systems department.
The way in which this control is exercised reflects
the department's priorities. Some departments dis-
courage changesin orderto increase the resources
available for new development.

If the rate of change for a system is expected to be
high, it may be possible to reduce the cost of main-
tenanceby rebuilding the system with advancedsys-
tem building tools. If a system is redeveloped using
advancedtools then the maintenancecosts, includ-
ing the costs of changes,will be reduced as well, the
productivity improvementfactor being similar to that
obtained for original development. Against this sav-
ing mustbe set both the cost of redevelopment and,
usually, additional operating costs.
Every organisation has its own rules for such’evalu-
ations. We have performed some calculations to
investigate the trade-off between lower maintenance
costs and higher operational costs for tools giving a
four-fold productivity improvement.

Figure 2.1 Maintenance versus operating cost trade-off
for system rebuilding with a tool giving a
four-fold improvement in productivity

Annual maintenance
cost as a percentage
of original development
cost (assuming zero
inflation)

Rebuild using
system building

Gg

eeT
0 25% 50% 75%

30%

20% Keepthe existing system

10%

Annual operating cost as a percentage of development cost
(assuming conventional tools and methods)

The results are shown in Figure 2.1. In performing
the calculations, we have used discounted cashflow
with a 10 per cent discount rate overfive years. We
have assumed that operational costs fall by 10 per
cent per year, and that systems built with system
building tools cost 30 per cent more to run than those
built with Cobol.
Figure 2.1 showsthat, even for a system with low run-
ning costs, rebuilding is only cost-justified for moder-
ately high maintenance levels (above about 10 per
cent). The implication is that, for typical levels of
change and operating costs, rebuilding systemswill
not be cost-justified. (Rebuilding could be justified
overa longerperiod orif the tool gave either a greater
increase in productivity or a smaller increasein run-
ning costs.)
Nevertheless, there are organisations that have many
old systems and a high maintenance workload. In
April 1985, for example, the United States Office of
Manpowerand Budget specified a 25 per cent reduc-
tion in government computing through the useof sys-
tem building tools. Departments were instructed to
replace old systems.
Whererebuilding is not justified, the maintenance
task may be eased somewhatby using a data dic-
tionary to identify where changes need to be made
and by using development workbenches. There may
also be scope for systematic improvement of the
existing systems by appropriate planned maintenance
and techniques such asstructuredretrofit. Because
our research has concentrated on development,
rather than maintenance, wewill not discuss these
techniquesfurther.

tie Dulet CUXx
©Reproduction by any method is strictly prohibited

CHAPTER 2. DETERMINE THE OBJECTIVES FOR USING SYSTEM BUILDING TOOLS

ADDITIONS TO EXISTING SYSTEMS
In most organisationsit is often necessary to extend
systems, in the existing systems environment, by
adding new transactions and reports. Tools that may
be used for such additions are available for most sys-
tems environments. Nevertheless, when deciding
whetherto use advanced system building toolsin this
way, a trade-off has to be made betweenthe addi-
tional operational costs and the savings in develop-
ment effort. High development productivity and
acceptable operating costs are most usually achieved
with reports and online queries.

Figure 2.2 showsthe circumstancesin which extra
operational costs due to the use of advanced system
building tools will be less than the savingsin develop-
ment costs. Again, we have used discounted cash-
flow over five years with a discount rate of 10 per
cent, and we have assumedthat improved hardware
price/performance reduces operational costs by 10
per cent per year.

The figure clearly shows that system building tools
are usually appropriate for additions. Our analysis
indicatesthatit will almost always be less expensive
to use advanced system building tools for additions
to existing systems. Indeed, we regard the develop-
ment of queries and reports in conventional langu-
ages as nowjustified in only the most exceptionalcir-
cumstances, where the function is used intensively
by many people, for example, or where highly com-
plex processing is essential.

Nevertheless, it is important to systems’ users that
existing transactions can be mixed with transactions
built with the newtools. Even if a system building tool

Figure 2.2 Trade-off curve for system enhancements
Relative increased
operational cost
incurred by using
advanced system

building tool

2 Use conventional tools

1
Use advanced system
building tools

0 100% 200%
Annualoperating cost as a percentage of development cost

(assuming conventional tools and methods)

Cox Foundation
© Reproduction by any methodisstrictly prohibited

can interface with the existing systems environment
(IBM’s CICS and DL/, for example) it may not be
compatible with existing applications running in that
environment.
The new system building tool should also be able to
produce screen formats that comply with the stan-
dards used in existing systems, and should allow
function keys to be used in a uniform way across a
mixed set of transactions. It is also desirable that a
system built with the new tool should be able to use
existing modules and transactions.
System building tools may be used to increase the
numberof additions to existing systems rather than
reducethe cost of making additions.In this situation
it will be necessary to consider whetherthe organi-
sation can assimilate and make good use of the new
functions at the rate at which they can be delivered.
Wewill return to this issue in the next section, where
we discuss the demand for new systems.

THE DEMAND FOR NEW SYSTEMS
System building tools are most effective when they
are used for developing new systems.In someorgani-
sations the new systems required are not closely
linked with the existing systems base.In this situa-
tion it may be best to use a new systems environ-
ment with advanced system building tools for
developing the new systems. Whendeciding on which
systemsenvironmentsto use, and in determining the
criteria for selecting tools for use within those environ-
ments,it is necessary to considerboth the nature and
likely volume of new systems. The following questions
arise:
—How many new systems does the organisation

need during the next few years?
—Are the new systemsclosely related to existing

systems?
—lIs the introduction of new systemslikely to be seri-

ously constrained by budgetlimitations?
—Canthe organisation assimilate and exploit new

systems as fast as system building tools enable
them to be produced?

How many new systems does the organisation
need?
Almost every organisation has a known backlog of
applications. In addition, there is usually a hidden
backlog of applications that managers would like but
whichthey do not request becausethey believe that
the information systems department cannotprovide
them sufficiently quickly (or at a price) to make them
useful. If conventional development methods continue

CHAPTER 2. DETERMINE THE OBJECTIVES FOR USING SYSTEM BUILDING TOOLS

to be used, therefore, the amount of systems devel-
opment that needs to be done over the next few
years will continue to exceed the resources avail-
able to doit.

Are new systems closely related to existing
systems?
In some organisationsall the systems use a few key
databases and any new systems must also access
those databases. In these cases new systems should
be consideredin a similar way to additions; they may
be provided by using system building tools in the
current systems environment.
In other organisations systems are not closely linked,
and in most organisations there are some systems
that are not closely linked to the mainstream systems.
Examples include personnel systems in a retail
organisation and fixed asset systems in most organi-
sations. In selecting tools with which to build such
systems, the existing systems environmentis not a
limiting factor.

Indeed, the mainstream systems environment may
have been chosenfor its stability, network manage-
ment features and ability to handle large volumesof
data. If there are new systems that do not require
these features, but do need end-user computingfacil-
ities and high development productivity, then a new
systems environment may be chosen.This approach
has been extremely successful for some organi-
sations:
—TheSanta Fe Railway was an IBM userbut used

Sperry’s Mapperto build a real-time control sys-
tem for its operations.It still prefers IBM for some
corporate systems, however.

—Alarge retail organisation was an ICL user, but
nowbuildsall its online systems on minicomputers
running the Pick operating system.

New systems environments will also usually be
preferable when developing new kinds of systems
such as computer integrated manufacturing,
decision-support systems and office systems.
Will the introduction of new systemsbe restricted
by budgetary limitations?
Someinformation systems departments caninstall
any systems environment and build any application
that the customer will accept and pay for. Others are
subject to overall budgetary constraints that are often
set by an essentially political process without refer-
ence to the valueof particular systems. In manylarge
organisations, such limits are applied much. more
strictly to capital than to revenue budget items.
Though troublesome and frustrating to information
systems managers, suchlimitations may actually be

10

in the best interests of the business. Researchin the
PIMS MPIT programme of the Strategic Planning
Institute shows that, for companies with an inferior
strategic position, additional expenditure on informa-
tion systems may reduce managerial productivity
and, hence, profits. (These results were given by Gus
van Nievelt at the Foundation conferenceheld in The
Hague in May 1984.) We do not believe that such
counter-intuitive results are restricted to commercial
organisations — they doubtless also apply, with
appropriate modifications, in non-profit organisations.

In other organisations, however, it appears that
budgetlimitations come about becauseofa failure
of nerve. In essence, senior managers, and, some-
times, information systems managers, simply do not
believe the things they say about the benefits of com-
puter systems.If the information systems department
is competent, senior management should be pleased
to see its costs rise because the benefits to the
business will also be rising.

Canthe organisation assimilate many more new
systems?
Theability to deliver many more new systemsis only
valuable if the business needs, and can assimilate,
new systems. This is a question that must be
answeredindividually by each organisation. Neverthe-
less, our view is that most European businesses make
less use of computer systems than they should do,
because:
—Implementation lead-times discourage managers

from asking for systems.
— Developmentcosts are too high.
— Business(and information systems) managers are

too preoccupied with introducing basic systems to
give attention to the strategic systems that could
really enhancetheir businesses.

Advanced system building tools can help to overcome
the difficulties of assimilating new systems, because:
—Manysystem building tools make it easy to build

prototypes that help business managers to con-
sider various options.

—Somesystem building tools can be usedto pro-
vide end-user computing facilities. Accessing and
manipulating data makes managers more aware
of, and more ableto utilise, the data that already
exists.

Information systemsstaff can also help by encourag-
ing new and morepositive attitudes to systems, and
by providing appropriate training. Nonetheless, the
best way of developing the requisite awarenessis by
involving users through prototypes and end-user
computing.

© Reproduction by any method is strictly prohibited

CHAPTER 2. DETERMINE THE OBJECTIVES FOR USING SYSTEM BUILDING TOOLS

Another important factor in motivating the business
to make more (and better) use of systems is the
extent to which computer systems are used in run-
ning the information systems department. If the
department is seen to be making effective and
productive use of systems, thentherest of the busi-
ness will be more inclined to use systems as well.

SUMMARY
In this chapter we have discussed several options for
the future of information systems, some of them quite
radical. In so doing, we have considered issues rang-
ing from overall strategy to detailed cost accounting.

Althoughit is not usually possible to provide a direct
cost-justification either for a programme of system
replacementor for a move to a new systems environ-
ment, we believe that these are optionsthatall com-
puter users should consider very seriously. Many of
the most successful computer systems,the kind that
people talk about at conferences, originated from a
change to a new systems environment.

Today, manyinstallations are hemmedin by systems
and software that they feel obliged to keep but would
rather be without. Advanced system building tools
provide a way out of this dilemma. But it requires
determination to follow this route.

ay

CHAPTER 3
CHOOSETHE APPROPRIATE SYSTEM BUILDING TOOLS

Havingfirst determined the required system environ-
ments and the objectives for using system building
tools within those environments, the next stage is to
select the appropriate tools. Hundreds of system
building tools are now available from scores of sup-
pliers. Within the scopeof this report it is not possi-
ble to discuss them all separately, and so we have
divided them into five types:
—Incremental aids.
—Data dictionaries.
— Development workbenches.
—Discrete tools.
—Integrated toolkits.

Weuse the term ‘advanced system building tools’
(ASBTs) to indicate discrete tools and integrated
toolkits. (Our rationale for this classification is given
in Appendix 2.) We now describe briefly each of the
five types.
Incremental aids
Wedescribe tools that provide a single function as
‘incremental aids’. Examples include flowcharters
andtest harnesses.Typically these tools are used in
only one stage of the development process and, by
themselves, would not be sufficient to develop a com-
plete system.
Data dictionaries
Data dictionaries are usually based on proprietary
software products and are used to provide a meas-
ure of consistency throughout the development
process.A typical example is MSP’s Datamanager.
Development workbenches
Examples of development workbenches include
Philips Maestro, IBM’s CMS,ICL’s Program Master,
the Unix Programmers’ Workbench and Burroughs’
PROFS.
Discrete tools
Manysystem building tools have been desigried for
constructing only one or two specifictypes of pro-
gram, and werefer to these as discrete tools. We
identify four types of discrete tools, corresponding to

12

the four types of program that may be found in a data
processing system (batch updates, batch reports,
online updatesandonline reports). Thus discrete tools
are classified as:
— Batch updatetools (although there are not many

of these).
—Report writers, such as Mark IV.
—Teleprocessing development systems, such as

Oxford Software's UFO and Pansophic’s Gener/ol.
—dQuery processors, such as ASI’s Inquire.
Integrated toolkits
Integrated toolkits differ from discrete tools in hav-
ing their ownfile definition mechanisms(ordata dic-
tionary) and often their own database management
systems as well. Also, they are usually applicable to
at least three of the four types of program mentioned
above. Examples include Cincom’s TIS, Microdata’s
All, Burroughs’ Linc, Information Builders’ Focus,
NCSS’s Nomad and Mathematica’s Ramis.
The processof selecting the appropriatetools is best
doneby following four steps:

—ldentify the tools that meet the constraints.
—Narrowthefield.
—Evaluate the shortlisted tools.
—Select the most appropriate tools.
Initially, the best tools for a single systems environ-
ment are selected, but the final step also considers
the tools selected in the wider context of the whole
systems department.

IDENTIFY THE TOOLS THAT MEET THE
CONSTRAINTS
For many systems environments, only a few systembuilding tools are available but, in general, IBM usershave a much wider choice of system building toolsthan users of other mainframe computers, and DECusers have a wider choice than users of other
minicomputers.

CHAPTER 3

 Figure 3.1 System building tools with a good reputation

a Product — :

= :‘Operational systems | Linc
TALTRO Oe
Gener/ol i
Applications Master | IC
 Management infor- |Focus

mation and decision |Nomad
support systems |Ramis
User-controlled : Mapper
operational systems :

The ideal starting point for a selection exercise is for
there to be no constraint, so that the system build-
ing tool that best meets the objectives can be chosen.
The ideal tool necessarily depends on the applications
requirements, making it impossible to generalise as
to what the best products are. Nevertheless, we have
several products that have recently won competitive
evaluations or helped specific users to achieve
impressive results. These systems are listed in Figure
Cnr
It will usually not be possible to make a completely
unconstrained choice, however, because the tools
selected will need to meet at least one of the follow-
ing requirements:
—Thetools must produce applications that can co-

exist with existing applications.
—The tools must run on existing computers.
—Thetools must produce systems that can commu-

nicate with existing systems or terminals.
Compatibility with existing applications
The highest degree of compatibility with existing appli-
cationswill be obtained by continuing to use the cur-
rent programming language. This has the further
advantage that operational efficiency need not be
reduced.In this case,the possible tools are develop-
ment workbenches, incremental aids and data dic-
tionaries. Some, at least, may already be in use in
the information systems department. Others, notably
workbenches, are compatible with severaldifferent
host computers.
A lesser, but often quite adequate, degree of com-
patibility may be obtained with discrete tools — that
is, tools that can be used with standard systems
environments. The range of discrete tools available
depends on the systems environments currently
being used. Many IBM mainframe users, for exam-
ple, run mostof their online systems underCICS. For
CICS systems that are to access DL/1 databases
there are a variety of discrete tools available includ-
ing UFO, Mantis and Gener/ol.

 The Butler Cox Foundation
© Reproduction by any methodisstrictly prohibited

CHOOSE THE APPROPRIATE SYSTEM BUILDING TOOLS

For IBM mainframe users with non-standard
teleprocessing monitors or database management
systems, or for users of non-IBM compatible main-
frames, the choice is much morerestricted. Indeed,
there maybe only oneor twotools that are compati-
ble with the existing systems environment.In the case
of the ICL 2900, for example, the only teleprocess-
ing development systems appear to be ICL’s Appli-
cations Master and Cincom’s Mantis. For someof the
more unusual systems environmentsthereis no tool
at all.
For minicomputers there is a wide range of tools
for DEC machines and a much narrowerrange for
other minicomputers. Some minicomputer operating
systems have features that help with system con-
struction, however — the best knownbeing the IBM
System 38 operating system, Unix and Pick. Develop-
ment with one of these operating systems will
typically be two or three times as fast as equivalent
mainframe developments in a standard language.

Suitable tools for microcomputers are even scarcer,
but the requirement for compatibility with existing
applications is also less common.
Compatibility with existing computers
The need for system building tools to be compatible
with existing computers imposes fewer constraints
than those discussed above because it does not
require compatibility with existing applications and
software. Thus, for example, an Adabasuserwiththis
need might consider ADF and Mantis, though both
are incompatible with Adabas and hence with the
existing applications.
Also, once the requirement to run under a conven-
tional teleprocessing monitor and database manage-
ment system is removed, the integratedtoolkits that
are available for the particular hardware environment
can also be considered (see Figure 3.2).
 Figure 3.2 Someintegrated toolkits available for

particular hardware environments

13

CHAPTER 3 CHOOSE THE APPROPRIATE SYSTEM BUILDING TOOLS

These toolkits often provide higher development
productivity than the discrete tools required for com-
patibility with existing applications. This is because
they address a wider range of systems and, usually,
more of the development stages. They also reduce
the effort involved in passing between development
stages or betweenbatch and online operations — a
process that often requires great effort.
As with the discrete tools and incrementalaids, the
choice of integrated toolkits is greatest for IBM and
DECusers.

Ability to communicate with existing systems or
terminals
Occasionally, system building tools will be used to
develop systemsthat are completely independentof
existing systems. More commonly, however,therewill
be a need for the new systems to communicate with
existing systems or terminals, because:

—Developers may need to accessboth the old and
new systems environments, preferably using the
same terminals.

— Users may need to accessboth old and new sys-
tems and, again, they may need to use the same
terminals.

—Systemsbuilt with the new tools may need to
access existing systems,possibly to extract data.

A considerable degreeof de facto terminal standardi-
sation now exists, and many computers support
ASCII, 2780 and 3270 terminal protocols. These pro-
tocols can therefore be used to provide systems run-
ning on a new computerwith accessto existing sys-
tems, provided that extra software is written to
interface with the existing applications. If this
approach is acceptable then the communications
requirement need not greatly restrict the choice of
tools. It will, for example, be possible to use a
minicomputer with, say, Pick in what is otherwise a
mainframe installation.

The need for terminals to access both old and new
systems environments can often be met by adopting
a standard terminal and using telecommunications
switching techniques (although protocol conversion
mayalso play a part).

In each casethe constraint will not be too restrictive
if the existing system supports one of the standard
terminal protocols. If, however, the existing system
supports only some unusual, probably proprietary,
protocol then there may be few systems environ-
ments, except those provided bythe original supplier,
that meet the constraint, and the choice of system
building tool will be restricted accordingly.

14

NARROWTHEFIELD
The purpose of this second step is both torestrict
the numberof potential products to be evaluated and
to provide information for the evaluation. We have
divided this step into two activities:
—The one-daytest.
— Detailed study.

If only a few possible system building tools have been
identified in the first step thenthefirst activity may
be omitted.
The one-day test
The one-day test was devised by Scaffolding (GB) to
enable list of 20 possible system building tools to
be reduced to a shortlist of two for detailed
evaluation.
To carry out a one-daytest, a specification for a small,
but real, system is prepared. Each supplier is then
challenged to implement as much of the system
as possible in a day whilst you observe. If any
specific facilities or kinds of complexity are of par-
ticular interest, these should be included in the
specification.
By focusing on the organisation's needs,rather than
the strengths of the tool, you will rapidly come to
appreciate the real value and limitations ofthe tool.

Usually it will become apparent that some system
building tools are very unreliable, whilst others are
difficult to use for your applications. You should there-
fore be able to constructa shortlist for further study.
We recommendthat the shortlist should contain no
more than four products.
Detailed study
Eachof the shortlisted productswill then be studied
in detail by:
—Arrangingfor the suppliers to make presentationsabout the product.
—Allocating developmentstaff to become thoroughlyfamiliar with the capabilities of the tools.
—Using the tools to construct further test systems.
—Simulating system maintenance and enhancementactivities.
— Considering the operational implications of adopt-ing the tools.
For eachtool you should seek to provide data for thenext stage — evaluation. Special attention should bepaid to the wayin which the tool handles complexsituations, because this is the area in which many

TheB
© Reproduction by any method is strictly prohibited

CHAPTER 3 CHOOSE THE APPROPRIATE SYSTEM BUILDING TOOLS

otherwise valuable tools prove inadequate, or even
counter-productive.

EVALUATE THE SHORTLISTED TOOLS
Each of the shortlisted system building tools (or set
of tools) should now be evaluated underthe follow-
ing four headings:
—lImplications for systems development.
—\Impact on systemslifecycle costs.
—Deficiencies of the tool.
—Future prospects for the tool and its supplier.

Implications for development
The implications of using a particular system build-
ing tool for systems development should be assessed
in five ways:
—Applicability: Can the tool be used to build the kind

of systems that are needed now andwill be needed
in the future?

—Productivity: Is system developmentreally faster
than with existing tools and techniques? Is main-
tenance faster? By how much?

—Usability: Who can usethe tool? Doesit provide
features for users, even end users, oris it usable
only by professional developers?

—Compatibility with the current development
process: Will the toolfit in with existing tools and
methods? Doesthe tool allow new methods to be
used?

—Impact on existing skills: Does the tool require
developers to acquire new skills? Does it make
existing skills obsolete?

In each case the assessment must be made on the
basis of the practical experience gainedin the previ-
ous step, rather than on theories about which fea-
tures are the most valuable.

Applicability
Some system building tools can be used only for sim-
ple systemsorfor specific types of systems. The best
tools, however, can be used for almost as wide a
range of data processing systems as can Cobol and
PL/1. The following examples confirm that large, com-
plex and critical systems can bebuilt using advanced
system building tools:

—The whole operation of the Santa Fe Railway is
controlled by a system developed with Mapper.
This system runs on four Sperry mainframes, has
67G bytes of storage and supports 2,200 terminals
and printers.

The Butler Cox Foundation
© Reproduction by any methodisstrictly prohibited

—At Morgan Stanley, New York, most of the tele-
processing systems on a multi-mainframe con-
figuration with 122G bytes of storage are deve-
loped in Natural.

—AtElectricité de France no Cobol has been writ-
ten for several years, and all development is now
carried out using program generators developed
in-house.

Nevertheless, even the best system building tools
have their limitations. For example:

—ADFusesits own peculiar screen formats.
—Focushasno transaction or file recovery functions

(although these features are promised for
mid-1985).

—Gener/ol has no batch capability.
—Mapperis unsuitable for large and complex data-

bases, such asbill-of-materials.
—Powerhouse systems can bevery inefficient.
—UFOhaspoorsecurity features.

But theselimitations can be circumvented. Thus, ADF
can be modified to produce different screen formats,
a security system can bewritten in Coboland called
from UFO, and recovery features can be added to
Focus systems. The costs of overcoming suchlimi-
tations must be included whencalculating the over-
all productivity improvement provided by the tool. In
addition, the risks of using a non-standard version of
the tool must be considered.

Productivity
The productivity that can be obtained with various
system building tools varies greatly. Figure 3.3 gives
some of the values for productivity that we have
measured, or that have been published elsewhere,
for a selection of advanced system building tools.
Equivalent values are given for the more commonly

Figure 3.3 Productivity figures for some system building
tools

15

CHAPTER 3 CHOOSE THE APPROPRIATE SYSTEM BUILDING TOOLS

used programming languages. Thefigureillustrates
that the best integrated toolkits can be ten times as
productive as Cobol or PL/1.

It is more difficult to give productivity figures for work-
benches, partly because the relative improvements
are much smaller. For example, the experienceof the
most advancedusers of Maestro, some of whom now
have several years’ experience, indicates an improve-
ment of between 10 and 20 per cent. The improve-
ment would presumably be greater with a workbench
that, unlike Maestro, could support compilation and
interactive testing, in addition to providing good text
handling facilities. We are not aware of any such
product and, evenif one existed, we would not expect
the improvement to exceed 25 per cent — thus,
productivity might be increased from 0.35 to 0.44
function points per man-day.
Webelieve that no single incrementalaid is likely to
provide a productivity improvement of more than a
few per cent. Research by Barry Boehm at TRW sug-
gests that a set of such aids can increase develop-
ment productivity by no more than about 10 per cent.
The high productivity of integrated toolkits is due to
five key features:

—The languages used to describe data or define
processes are muchless oriented to the computer
than are conventional programming languages.

—Thedeveloperhasto deal only with a limited num-
ber of languages or subsystems, and these present
consistent human interfaces.

—Meta-data (descriptionsoffiles, records and pro-
grams) can be defined once and are then automat-
ically passed betweenthe varioustools, usually via
a data dictionary.

—Thetools operate interactively, both in helping the
user to define his needs and at the coding and test-
ing stages.

—Analysts can use the tools to develop programs,
and therefore no longer need to wastetime in writ-
ing detailed specifications for programmers.

Noneof the other types of system building tools pro-
vides all of these five key features, as Figure 3.4
shows. Teleprocessing developmenttools usually do
not provide meta-data definitions, are not suitable for
use by analysts and may actually increase the num-
ber of languages a programmer mustlearn. Thus,if
a system has batch and online elements a program-
mer will probably be neededboth to write the batch
parts and to link them with the online parts.
Therelatively poor productivity improvement obtained
from the use of workbenchesreflects the fact that
workbenches generally provide only one of the key
features — interactive operation. Nevertheless, they
do provide support for managementactivities and for
documentation. Although these features are useful,
they are secondary asfar as improving development
productivity is concerned.

The limited value of workbenches wascaptured, inad-
vertently, by one workbenchdesigner who described
programmers’ workas‘‘essentially being concerned
with text handling’. This is rather like describing a
pianist as ‘‘essentially being concerned with pushing
piano keys’’. Whilst true, it misses the point. The real
basis of programmers’ workis logical structures —
both for data and procedures. Substantial improve-
ments in developmentproductivity will be produced
only bytools that assist in defining and manipulating
these logical structures.
An example of a development system that produces
program source code, but does not assist directly

Figure 3.4 System building tool features influencing productivity

Type of system building tool

Teleprocessing Line editor, Cobol
Feature Integrated toolkit development system Workbench compiler, JCL, etc.
High-level language Yes Yes No No
Limited set of languages Yes To someextent No No
Meta-data definitions Yes Usually no No Yes!
Interactive use by developers Yes Yes Yes No
Usable by analysts Yes No No No
Supports managementactivities No “ No Sometimes No
Supports documentation No No Yes No
‘Onlyif data dictionary is used.

16 © Reproduction by any methodisstrictly prohibited

CHAPTER 3. CHOOSE THE APPROPRIATE SYSTEM BUILDING TOOLS

with logical structures, is the Delta toolkit. Its produc-
tivity approaches,but doesnotreach,that of the dis-
crete and integrated toolkits (see Figure 3.3).
Another reasonfor the relatively low productivity of
workbenchesis that, because they are aimedprin-
cipally at programmers, they have to be accommo-
dated within conventional development disciplines.
Thus, prototyping and integrated developmentare not
supported by workbenches, and the use of work-
benches may actually preclude the use of the
advanced tools needed for prototyping.

Usability
The range of people who can use a system building
tool depends both onthe tool and on the function for
whichit is to be used. Thus, managers can be taught
to use the reporting functions of Mapperor Focusin
a few hours, but may be unwilling to accept the longer
tuition needed to use the more sophisticated
functions.

In general, end users can master online query lan-
guages and report writers, whether provided as dis-
crete tools or as parts of integrated toolkits. But allow-
ing users access to these tools often generates
substantial, and largely unpredictable, machine loads.
Although technical solutions to this problem exist,
most tools do not use them.

Rather moretraining is required before end users can
define their ownfiles and write their own applications
using integrated toolkits. Probably only a minority of
users will ever make the effort needed to master sys-
tems such as Mapper and Focus, but the develop-
mentofintelligent pre-processors (suchas Informa-
tion Builders’ Fidel) is enabling users to achieve these
results without mastering the full toolkit.

In our view,it is unlikely that even the most advanced
system building tools will allow ordinary users to
develop substantial transaction processing systems.
Although users can begiven the required skills, as
has been doneextensively at Santa Fe Railway, what
this does is to convert them to programmers.

Discrete tools, such as UFO and Gener/olare usually
too complex to be used effectively by anyone other
than a data processing professional, preferably a
programmer. Workbenches can generally be used
only by data processing professionals and arereally
effective only when used by programmers.

Most incremental aids are aimed exclusively at data
processing professionals.

Compatibility with the current development
process
All types of system building tools can be used with
the conventional developmentprocess. Workbenches

TheBi
© Reproduction by any methodisstrictly prohibited

WE JuTCeltl

and incremental aids, however, can only be used in
this way, which presumably is the reason for the
recent popularity of development workbenches. In
general, workbenches emphasisethetraditionaldivi-
sion between analysts and programmers.

Discrete tools can generally fit into the traditional
development process, but someof them also support
prototyping. Integrated toolkits can be used with a
conventional development process but they produce
better results with a new development process based
on prototyping, analyst-programmer teams and
reduced documentation levels. (We shall discuss this
further in Chapter 4.)

Impact on existing skills
The introduction of any new tool requires developers
to learn a new language, and often a new set
of underlying concepts. In the case of an inte-
grated toolkit it may be necessary to learn several
new languages — one for data definition, one for
online transactions, a variant for batch processes,
and a report writer. It is not unusual for conven-
tional programmers already to have to master eight,
or even a dozen, different computerlanguages.If the
new tool simply adds to this numberit will increase
the dependence on technical skills and reduce
flexibility. The skills impact of a tool depends on
whether it can replace existing tools (at least for
most applications) and, if so, whetherit will be used
in this way. The former will have been established
whenthe selection criteria were determined; the
latter depends on the way in which theintroduction
of the new tool is managed. Weshall return to this
topic in Chapter 6.

We expectthat incremental aids and workbenches
will increase the technical content of the developer’s
job. Incremental aids are almostalways usedin addi-
tion to existing tools and, if several are to be used,
they generally do not use the same concepts or have
consistent user interfaces.

Discrete tools require developers to acquire new
skills, although these tools may mitigate the deficien-
cies of conventional interfaces to database manage-
ment systems and teleprocessing monitors. If a dis-
crete tool is well designed this may reducethelevel
of technical knowledge required. Certainly CICS
developmenttools like UFO haveoften been used by
staff without CICS and DL/1 expertise to build online
database systems under CICS.

Integrated toolkits generally reduce the technical
complexity of the systems environment, aliowing less
technically skilled people to develop applications.
Thus systems can be developed by analysts and,
sometimes, by users.

17

CHAPTER 3 CHOOSE THE APPROPRIATE SYSTEM BUILDING TOOLS

Impact on systemslifecycle costs
To determine the total cost of a typical system over
its usefullife it is necessary to consider development,
maintenance and operating costs and the likelylife
of the system.
Development costs
The main elements of developmentcosts are staff,
computer power and the cost of acquiring and
introducing the developmenttools.
Wehave already shownthat system building tools
generally reduce the amount of manpowerrequired
to develop systems. This element of development
costs will therefore fall, but the reduction may be
partly offset by a need for people with greaterskills
and a need toretain people to ensure continuity with
previous methods.

Almost all system building tools require more com-
puter powerthan conventional tools. Thus, one Focus
userfinds that its development staff are online for
twice as long and that each online session uses 50
per cent more cputime. This increase is offset by
the productivity gains obtained from the tool,
however, and the same user estimates an overall
reduction of 50 per cent in development machine
costs. It is worth noting that development staff
(assuming their number stays constant) will need
additional computer resources in order to produce
more systems, once a new system building toolis
introduced.

The costs of acquiring and using a system building
tool include purchase, rental, service and training
costs and, sometimes,the costs of reduced produc-
tivity during the introductory period. If these costs are
capitalised and spread overthelife of the tool they
will rarely amount to more than $1,000 per develop-
ment man-year (except for a development work-
bench, which might cost as much as $4,000 per
development man-year).
Maintenance and enhancementcosts
Maintenance and enhancementcosts are determined
by the level of maintenance, the rate of enhance-
ments,the productivity of the relevantstaff, and com-
puter costs.

The maintenancelevel is the amount of work needed
simply to keep the system running. Ideally this should
be zero, but it rarely is. We find that systems
produced quickly and with high-productivity tools do
not usually contain hidden problems that will
adversely affect the maintenancelevel (certainly no
more than with conventional methods).

The rate of enhancementsis determined by the vola-
tility of the business environment. It should not

18

depend onthe developmenttool usedbut,if the tool
makesit less expensive to include enhancements,
users will usually ask for more to be done.

Most system building tools provide improvementsin
maintenance productivity equivalent to that for
development productivity. The main exceptions are:
—Simple program generators. In this case main-

tenance productivity may be reduced.
—Libraries and data dictionaries, which provide

greater benefit for maintenance and enhancement
activities than for theinitial development.

Operating costs
Tools that generate programs in conventional lan-
guages generally produce systemsthatare,at best,
as efficient as programswritten directly in those lan-
guages. Beyondthis typeof toolit is not possible to
generalise about the impact of system building tools
on machineefficiency.
Some development tools — All, Gener/ol, Linc and
Protos, for example — produce moreefficient sys-
tems than Cobol. Most tools, however, use substan-
tially more cpu time and memory. Figure 3.5 gives
comparative figures for cpu usage for several sys-
tem building tools.

Experience has shown that it is much harder toPredict the performance of systems developed withadvanced system building tools than of those deve-loped with Cobol. This is especially so for integratedtoolkits, where optimising the procedures and datastructures may make enormous improvements. OneFocususer produced a 20-fold improvementin onesystem by careful tuning.
Advanced tools often also require more mainmemory, but the requirements for disc storage,peripherals, operator support and telecommunica-tions are generally little different from those for con-ventionally developed systems.

Figure 3.5 CPU efficiency of systems generated withsystem building tools

Tool
 ADF
All
Focus
Gener/ol
Info.
Mantis
LineProtos
Powerhouse

CD LOXFOUN

© Reproduction by any method is strictly prohibited

CHAPTER 3 CHOOSE THE APPROPRIATE SYSTEM BUILDING TOOLS

 Figure 3.6 System building tools usedin calculating
relative life cycle costs

Life of the system
The typicallifetime of applications will have been
established earlier when the objectives for using sys-
tem building tools were determined. Toillustrate the
relative lifecycle costs of four different tools we have
calculated the costs overtime for two different types
of system. Thefour tools, and the assumptions made
abouttheir productivity and operating costs (relative
to Cobol) are shownin Figure 3.6. Both types of sys-
tem are assumed to have maintenancecostsoffive
per cent per year of the original developmentcost.
One system has annual operating costs equivalent
to 20 per centof the original development cost, and

Figure 3.7 Life cycle costs for four different development
tools

$
A

$200,000 4

$100,000 4

Years
Assumptions:

Annual maintenance =5% of development cost
Annual operating cost= 20% of Cobol development cost

heButler Cox Foundation
© Reproduction by any methodis strictly prohibited

Figure 3.8 Lifecycle costs for four different development
tools

$ Teleprocessing
r development

tool

$500,000 + Development
workbench

 ; i
1 2 3 4 5 6

Years
Assumptions:

Annual maintenance =5%of development cost
Annual operating cost=80% of Cobol development cost

the other has annual operating costs equivalent to
80 per cent of the original development cost. The
lifecycle costs of developing, maintaining and oper-
ating these two types of system, using each of the
four development tools, are shown respectively in
Figures 3.7 and 3.8.
Figure 3.7 shows that for a system where annual
operating costs are relatively low (assumed to be 20
per cent of the Cobol developmentcost), the inte-
grated toolkit is the least expensive option over any
reasonable period of time.
Onthe other hand, Figure 3.8 showsthat, for a sys-
tem with higher annual operating costs (assumedto
be 80 per cent of the Cobol developmentcost), using
Cobol becomesless expensive than the integrated
toolkit after three years and less expensive than the
teleprocessing developmenttool after four-and-a-half
years. After six years the total costs of using the
integrated toolkit are about seven per cent higher
than with anyof the other three options. Bythis time
thereis little difference betweenthelifecycle costs
of the other three, although assuminga differentlevel
of maintenance would changetheir order.

19

CHAPTER 3 CHOOSE THE APPROPRIATE SYSTEM BUILDING TOOLS

Deficiencies of the tool
The deficiencies of many system building tools reflect
their origins and the fact that they are now usedin
different ways, or for different purposes, from those
originally envisaged. It is useful to recognise the ori-
gins of the tools being considered becausethesewill
suggest the kind of deficiencies that the tool may
have. It is then important to assess how far the sup-
plier has gone, orislikely to go, in correcting these
deficiencies.
All integrated toolkits consist of several components
that may be used separately. Often the components
have been developed separately, sometimesbydiffer-
ent companies, and only later ‘integrated’. The
processof integration always begins in the market-
ing literature (and sometimesfinishes there), then pro-
ceedsto data structures and the data dictionary, and
mayget as far as the user interface and the underly-
ing concepts. From the users’ point of view, the order
of importance is, generally:

—Commondata.
—cCommondata and process concepts.
—Consistent humaninterfaces.
—Integrated documentation.
Deficiencies in system building tools are generally
causedeither by an integrated toolkit having originally
been developed as a set of separate tools, or by the
tool having beenbuilt originally for use in a specific
environment such as a batch environment,or for use
by Assembler programmers, or for high-volume
teleprocessing systems,or for end-user timesharing.

Ina batch environment, programsare treatedasfiles
of static text and testing is based on the use of pro-
gram listings. Online operation requires the programs
to be treated as structures and, preferably, inter-
preted. It also requires testing aids that both relate
directly to the program and can benefit from the inter-
preter’s knowledge of program structure and data
names. Cobol compilers usually show their batch, and
card-orientated, origins very clearly. It is extremely
difficult to modify a batch-based toolfor interactive
use and this has rarely been done successfully.
Many of the older system building tools (such as
Cobol and PL/1) were conceived as a means of
producing Assembler programs. Debugging has
therefore required a knowledge of Assembler, and
again this deficiencyis difficult to remedy.
In order to enable high-volume systems to be deve-
loped with reasonable operational performance,
some system building tools provide the developerwith
a great deal of control over the managementof sys-
tem resources.In many casesthe useof these tools

20

absolutely requires the programmerto exercise such
control which,in turn, forces him to become an expert
in the internal operation of a teleprocessing monitor
or database management system.
Manyintegrated toolkits (Ramis, Nomad and Focus,
for example) wereoriginally developed for end-user
timesharing. As a consequence,these products have
deficiencies in the areasof security, integrity and effi-
ciency, especially for multi-access systems, and in
accessby inexperienced users. Theyarealsolikely
to be veryinefficient for any residual, but nonethe-
less necessary, batch applications.
Nevertheless, as the use of system building tools for
developing operational systems increases, the sup-
pliers are acting to remedy these deficiencies. For
example:

—Information Builders has added automatic recov-
ery and semi-tutorial facilities to Focus.

—Sperry has supplemented the Mapper interpreter
with a compiler that will generate moreefficient
systems.

—Mathematica has added better security features,
and a compiler, to RamisII.

Most integrated toolkits use their own, private,
integral database management system, and originally
they could work only with this, or perhaps with con-
ventionalfiles also. Some products (Info, Mapper and,
to a lesser degree, Linc, for example) still operate in
closed environments but others, especially those that
run on IBM computers, have been extended to
accessother suppliers’ databases. Figure 3.9 shows
some of the accesses that are now available.

Future prospects for the tool and its supplier
So far we have considered the way in which the sys-
tem building tool as it presently exists can be used
to develop the types of application currently foreseen.
It is necessary also to consider the likely future
developmentsof the tool and the future prospects of
its supplier.

Figure 3.9 Database systems that can be accessed by
some system building tools

Tool Database systems that canbe accessed
 Focus IMS, IDMS, Adabas, System2000, Vsam,

Isam, Osam, SQL/DS, Total,Model 204
Gener/ol _|Adabas, IMS,Total, Vsam, Isam
Nomad Vsam, Qsam, IMS, IDMS, SQL, DB2, Focus
Natural Adabas, Vsam, DL/1, IMS
Intellect |Adabas, IDMS, SQL, Focus, Vsam

©Reproduction by any method is strictly prohibited

CHAPTER 3. CHOOSE THE APPROPRIATE SYSTEM BUILDING TOOLS

The system building tool
In the longer term we expect the coverage, power
and usability of advanced system building tools to be
increased by their suppliers.

Most system building tools are presently aimed either
at end-user computingor at the professional develop-
mentof data processing systems. Suppliers will need
to address both these markets and they can do this
mosteffectively by developing a family of compati-
ble tools. Such families are already available from
suppliers such as Software AG, Burroughs, ICL, IBM
and Mathematica. Several suppliers have added
graphical, statistical and textfacilities to their fami-
lies in the last few years, although these are often
ratherprimitive. In the future we expectto see these
additional features enhanced. Where appropriate,
suppliers will also add compatible products for areas
such as computer-integrated manufacturing and text
systems development. Communications support also
will be enhanced in the areas of microcomputer-
mainframe communications, videotex, electronic mail
and inter-business communications.

Report writers are now very powerful and so the
scope for improving them is limited to integrating the
output of data, text and image, and providing
assistance to the user. For online query processors
the next step will be the introduction of simple learn-
ing functions similar to those already available with
Intellect.

There remains considerable scope for improving the
tools used to build transaction processing systems.
Programswill be simplified by making data validation
non-procedural and by moving the validation rules to
the data dictionary. (Dictionaries themselves will be
made more powerful and usable.) There is also room
for considerable improvement in the way in which
logic is specified, though it is not clear how this should
best be done.

Improvementsin usability will come in part through
improvements in the languages, but more significantly
from the addition of learning features and the greater
use of the data dictionary. Towards the end of the
decade we expectto seeintelligent knowledge-based
systemsintervening betweenthe user and the basic
facilities. In many cases these subsystems will be
locatedin anintelligent workstation, through which
the user may,transparently, gain access toa variety
of hosts and applications.

The supplier
The future survival and, indeed, prosperity of the sup-
plier is of basic importance to a prospective userof
system building tools. Possible suppliers now fall into
three groups: computer companies, major software
companies and independent developers.

| TP LOX FOUNGAuON
© Reproduction by any methodis strictly prohibited

In general, computer companies are reasonably
secure (although the withdrawal of a major main-
frame company would surprise no one). Nevertheless,
it is not unknown for computer companiestofail to
deliver promised software or to cease to develop
products once describedas ‘strategic’. Unfortunately,
and especially in the case of DEC and IBM, computer
companiesrarely produce the best system building
tools, although they are sometimes able to buy them
from independent developers, as with IBM and
Intellect and Burroughs and Linc.

Major software companies such as Cullinet,
Mathematica and ADRare now well-established and
secure. Several are ownedby large corporations. For
example, Martin Marietta owns both Oxford Software
(supplier of UFO) and Mathematica (supplier of
Ramis).
There are many independent developers and they
are, collectively, responsible for the best products.
Selecting a product from sucha supplier doesinvolve
a risk, however, and there does not seem to be any
way of controlling this risk.

For users of the less popular computers there may
be little choice other than to use the product of an
independent developer.In this caseit is important to
discuss with the supplier the arrangements to be
madeif support and maintenanceof the product were
to be discontinued. For example,will the supplier pro-
vide the source code andall internal documentation,
and under what terms? It is also important to con-
sider whetherthe benefits from using the tool could
continueif it were not enhanced, becauseit may not
be.

As Figure 3.9 illustrated, the user of a popular sys-
tem building tool has a further line of defence. There
is an increasing tendency, especially in the IBM
environment, for other suppliers to provide access
to the more popular tools. Some suppliers provide
conversion functions as well. If such a supplier should
withdraw from the market, or cease to enhanceits
product, the user always has the option of moving
to a competitive product.

SELECT THE MOST APPROPRIATE TOOLS
At this final step of the selection stage the results of
the evaluations should be set against the objectives
established in the second stage for using system
building tools in each of the systems environments.

It is often quite easy to make a good choice,but hard
to identify the best choice. The standard methods of
weighted scores and risk analysis may be used to
resolvethis difficulty. However,if there are now two
or three advanced system building tools that meet

21

ee

CHAPTER 3 CHOOSE THE APPROPRIATE SYSTEM BUILDING TOOLS

the criteria, it may not much matter which is chosen.
The best rule for breaking the tie is probably to
choosethe toolwith the largest number of European
users.
The selection should be carried out for each systems
environment. Here there is a danger that the desire
to start afresh with newtools in a new environment,
whilststill needing to maintain existing systems,will

22

lead to a proliferation of ‘best’ tools. There are,
however, good reasonsforrestricting the numberof
system building tools in use in a particular organis-
ation, and therefore using tools other than the best
in some cases, in the interests of flexibility and
standardisation. Ideally the experienced developer
should be competentin using all of the selected tools
and should be able to choose the best one for any
particular purpose.

© Reproduction by any method is strictly prohibited

CHAPTER 4

DEFINE THE NECESSARY CHANGESIN THE

The system building tools that we have called incre-
mental aids and workbenchesfit naturally into con-
ventional systems development processes and are
compatible with traditional programmer and analyst
functions. These tools can therefore be used in con-
ventional development environments.

Advanced system building tools, which we have
divided into discrete tools and integrated toolkits,
generally provide greater benefitsto their users. Many
organisations do not achieve the benefits because
the tools are used with inappropriate development
approaches and methods.In mostinstallations, the
following changes in the development environment
will be needed before the benefits of using advanced
tools can be realised:

—Abolish or reducethe split between programmers
and analysts.

—Useprototyping wherever possible.
—Increase the amountofinteractive computer sup-

port available to developmentstaff.
—Reduce the amount of documentation.
—Acceptthelimitations of the system building tools.
—Deliver databases rather than systems.

ABOLISH OR REDUCE THE PROGRAMMER:
ANALYST SPLIT
The traditional division between programmers and
analysts should be reduced or, preferably, eliminated
in order to get the best value from advanced system
building tools and to matchstaff skills to developing
needs.

Traditional programming skills, and particularly
knowledge of complex systems software, are not
needed in order to use advanced system building
tools. This is especially true for integrated toolkits
because these products canshield the user from a
great deal of tedious and complex detail. The need
for specialised language-related knowledge has

The Butler Cox
© Reproduction by any methodisstrictly prohibited

DEVELOPMENT ENVIRONMENT

caused developmentstaff to describe themselves in
terms of the software, as CICS-Cobol programmers
for example, rather than in relation to their organisa-
tion. The consequent high mobility of development
staff has been a great problem for many organi-
sations.

Most advanced system building tools can be used by
analysts and some even by users. Some organisa-
tions have found that analysts makebetter use of sys-
tem building tools than programmers becausetheir
thinking is not constrained by their experience with
conventional languages. There are many examples
of inexperienced staff achieving remarkably high
productivity with advancedtools.

Where separate people perform theroles of analyst
and designer, considerable effort is required to trans-
fer knowledge between them. This process, which
often takes the form ofwriting and maintaining copi-
ous documentation,is very time-consuming and can
easily lead to errors.

Where a new developmentteam is being established,
as will usually be the caseif systems are being rebuilt,
we recommendthatall staff should perform the full
range of developmentfunctions, though they may do
so with differing frequency. With system building
tools, many projects can be handled by only one or
two people carrying outall the developmentfunctions,
but for larger projects some form of team structure
may be needed.

If some systems have to meetstrict performance
requirements, possibly because of high transaction
volumes, it may be necessary to use a less produc-
tive but operationally moreefficient language. Such
requirements should be rare, and should be met by
concentrating expertise in a small conventional
programming team.

If there is a long-term commitment to the main-
tenanceof old systems, this should be allocated to
a separate maintenance team. (In some organisations
the maintenance team consists largely of freelance
staff with traditional programmingskills.)

23

Te

CHAPTER 4 DEFINE THE NECESSARY CHANGES IN THE DEVELOPMENT ENVIRONMENT

USE PROTOTYPING
Prototyping is feasible onlyif it is very much faster
to build a prototype than full system. The use of sys-
tem building tools enables prototypes to be built
quickly and inexpensively.
Whereverpossible, prototyping should replace formal
specifications as the usual means of identifying
requirements, because:
—Conventional methods are expensive and are

based on the false assumption that users can
relate to an abstract specification.

—Prototyping improves quality, increases user com-
mitment and reducesrisk.

Prototypes are an excellent way of helping users to
clarify their requirements — andthis is not confined
to cases wherethereis only a single ‘customer’ for
the system. Prototyping worked well at VP-Centralen,
where there were over 200 ‘customers’. (The
experience of VP-Centralen formed the case history
in Foundation Report No. 45 — Building Quality Sys-
tems.) Where there are many customers, however,
conflicts of requirementswill arise, due both to tech-
nical disagreements and to vested interests. In this
situation an effective meansof resolving disputes as
they arise is essential.

Conventional methods are expensive
In many organisations, producing system specifica-
tions consumes 30 per cent or more of the total
developmenteffort. Thus it may take up to eight man-
hours to specify each function point for the desired
system. By contrast, it may take aslittle as 20
minutes per function point to build a prototype. Even
if several prototypes haveto be built, there will still
be a substantial reduction in the overall development
effort.

Conventional methodsare based on false
assumptions
Conventional development methods assume that
users can specify systems before they have any
experience of those systems and canrelate effec-
tively to static, largely verbal, descriptions. Some
users are able to do this in some cases — when
specifying the replacementofa satisfactory system,
for example. In general, however, users find it very
mucheasier to see whatis wrong with a system than
to visualise a complete new system. The conventional
assumptionis evenless valid for managementinfor-
mation systems and systems that support the
moment-to-momentoperation of the businessthanit
has been for conventional ‘back-office’ administra-
tive systems.

24

Conventional methods also assumethat existing for-
mal methodologies are based onrigorous engineer-
ing principles, in that the correct use of the metho-
dology will necessarily produce the required system.
Anyone whohassubstantial experience of develop-
ing systemswill know that this assumption is very
doubtful. This fact was recognised as long ago as
1947 by computer pioneer Alan Turing when hetold
the London Mathematical Society that, based onhis
own work, ‘‘up to a point it is better to let the
(programming) errors be there than to spend such
time in design that there are none’. Webelieve that
this remains true, at least for the process of estab-
lishing user requirements.
Conventional development approachesplace a heavy
emphasis on pre-specifying all details becauseit is
very expensive to develop and modify systems with
conventional tools. Using advanced system building
tools, prototypes may bebuilt at a rate of up to 20
function points per man-day,whichis up to 100 times
as fast as conventional development. Changesto the
prototypes can also be madevery quickly.

Prototyping improves systems quality
Userswill review the prototype system and, if it fails
to meet their needs, will get it changed. Thus the
users’insights are brought to the problem atan early
stage, ensuring that the system provides the right
functions in a convenient way.
Prototyping increases user commitment
In reviewing a prototype, users are moreintimately
involved in the specification process than is usual.
Apart from its value to the final specification, this
involvement encouragesthe userto feel that the sys-
tem being built belongs to him. In addition, userswill
be able to consider, at an early stage, how the sys-
tem is to be introduced. Thus prototyping not only
improves the system but increases user commitment
both to the design and to the implementation of the
system.
Prototyping reducesrisks
Prototyping reducestherisks both oftotal failure and
of costly overruns, because prototypes are an inex-
pensive means of detecting serious specification
errors and/or wrong business assumptions. Estimates
of development and operating costswill also be more
accurateif they are madeat the endof the prototyp-
ing stage because, by then, more will be known about
the development and operational requirements.

PROVIDE GOOD COMPUTER SUPPORT
Unless advanced system building tools are being
usedprincipally to reduce the numberof development

© Reproduction by any method is strictly prohibited

CHAPTER 4 DEFINE THE NECESSARY CHANGES IN THE DEVELOPMENT ENVIRONMENT

staff, their introduction will require substantial invest-
ments in development computer power.
In our view, computer support for advanced system
building tools requires personal terminals, response
times below two seconds, and access to computer
power at any reasonable time. Research by IBM,
TRW and others has confirmed that providing these
facilities significantly improves development produc-
tivity.

The use of advanced system building tools requires
that development staff be provided with good com-
puter support, because:

—Ahigh proportion of developmentstaff will use the
tools.

—Staff consume more computer resources when
using the advancedtools.

—Better machine support allows extra functions,
such as documentation, to be provided.

—\Inadequate access to terminals or excessive
response times reduce the productivity of develop-
mentstaff.

A higher proportion of development staff will use the
tools either because the programmer-analyst division
will have been abolished, or because analysts will use
the tools for prototyping.

Staff consume more computer resources with the
new tools because the tools have been designed to
take advantage of online operation. Machine effi-
ciency has, in effect, been traded for humaneffi-
ciency.

Many conventionalinformation systems departments
are curiously ambivalent about their own use of com-
puters. Their staff program computers, but rarely use
them to support other activities. Development com-
puters can be used(butoften are not) for preparing
and storing systems documentation, for electronic
mail, for budgeting and for project control purposes.

Developmentstaff will not makefull use of computer
facilities unless doing so is as easy as writing. They
therefore need their ownterminals, just as they need
their own telephones and pens. When developing
teleprocessing systems, staff may need either two
terminals (one to show the screen and one to access
the development system) or a large-windowing sys-
tem such as the IBM Display Panel.

But merely providing a personal terminalis not suffi-
cient. Without adequate responsetimes its use will
be inconvenient andstaff will be obligedto fall back
on paperlistings. Many useful facilities require the
computer to search

a

file and this in turn requires a

The Butler Cox Fo.
© Reproduction by any methodis strictly prohibited

substantial amount of computer powerif the search
is to be completed in an acceptable time.

The use of computerised development tools is still
inhibited in some organisationsbyrestrictions on the
operating hours of the development computer, by the
times when compilations may be done or by the
amount of storage available to developmentstaff.
Effective use of the tools certainly requires these con-
straints to be reduced or eliminated.
In mostinformation systems departments, adequate
computer support for development staff can be
provided only throughthe use of a separate develop-
ment machine. Some organisations compromise by
locating the development machinein an operational
computercentre, remote from the development staff,
so that it can serve as a backup for an operational
machine. This approach should be discouraged
becauseit leads to excessive response times and
periodic loss of service during which the developers
are unable to work effectively.

REDUCE THE AMOUNT OF DOCUMENTATION
Mostinformation systems departments have a great
deal of documentation for their systems.In the best-
run departments the documentation is comprehen-
sive and current, but in many organisationsit is
neither. As a result it is rarely referred to, and the
considerable effort that goes into writing and revis-
ing it is largely wasted. Advanced system building
tools allow the amount of documentation, especially
design documentation, to be reduced substantially,
because:

—Prototyping is generally better and faster than
producing a detailed specification.

—Existing documentation is often out of date.
—Design documentation often encourages main-

tenance staff to make changes without thinking
through the implications for the application logic.

Advanced system building tools allow prototypes to
be built at a rate of up to 20 function points per man-
day (that is, each function point will take about 30
minutesto produce). By contrast, the effort required
to document a conventionally produced system is
typically in the rangeof two to six man-hours per func-
tion point.

It is not possible to eliminate documentation
altogether. Operating instructions and user guides
(where these are not provided online) are essential
parts of the delivered systems. Top-level documen-
tation, such as systemsflowcharts, will be necessary
to provide users and maintenance staff with an over-
view of the system context. In maintaining complex

25

CHAPTER 4 DEFINE THE NECESSARY CHANGES IN THE DEVELOPMENT ENVIRONMENT

systemsit is often difficult to locate all the placesin
which a particular data item is used. The need to do
this may be reduced by a database managementsys-
tem that provides users and programmerswith a view
of the data that reflects their actual interests, rather
than the physical storage arrangements (a property
knownas data independence). Alternatively (or addi-
tionally), a data dictionary can be employed.

Reducing the amount of documentation should not
be restricted to simple in-house systems. At VP-
Centralen, for example, data structure diagrams and
structure charts were not retained during the develop-
ment phase. At the end of the two-year project the
documentation consisted only of:
—Thestructured specification.
—Source code.
—Operating guidelines.
—The user manual.
In many cases the source code will be reasonably
self-explanatory, and its readability can be improved
by the use of meaningful data namesand careful use
of indentation. Where the purposeof the codeis not
immediately clear, annotation should be used.

ACCEPT THE LIMITATIONS OF THE SYSTEM
BUILDING TOOLS
Most system building tools have somelimitations as
to the types of system that can be produced. The
most commonlimitations are restrictions on screen
and report formats and onthe use of function keys.
Theserestrictions may be inherently obstructive (for
example, the inability to use the same function keys
in ADF and Cobol modules of a teleprocessing sys-
tem), or they may simply be incompatible with exist-
ing standards. Suchrestrictions mayjustify the rejec-
tion of the tool but, if the decision has been made
to useit, then the restrictions should be accepted and
compromises should be devised. Nevertheless, a
great deal of effort can be wasted in circumventing
irritating, but ultimately trivial, features of system
building tools.

Incremental aids, and workbenches such as Maes-
tro, allow the programmerto accessall the features
of the chosen programming language, so that no

26

design compromisewill be needed. However, the use
of such tools may require changesin the wayin which
staff carry out their work. Maestro, for example,
requires the results of compilationsto be transferred
to its ownfiles for inspection rather than allowing the
IBM timesharing features to be usedfor this purpose.

The implication is that the necessary procedures and
support must be put in place to make the mode of
operation of a tool a productive and convenient one.
It may also be necessary to change the department’s
standards in order to obtain the greatest benefits from
the tools.

DELIVER DATABASES RATHER THAN SYSTEMS
Anincreasing proportion of information systems pro-
vide managementinformation rather than automate
routine operations. Although these systems often
depend onbasic business data, they need to meet
managerial requirements for information that may
change very rapidly.

In these situations, placing a systems development
professional betweenthe user and the database may
only delay the production of the required information.
A reasonable approach, now being adopted by
several Foundation members, is for the information
systems department to provide suitably structured
databases together with tools for data retrieval,
analysis and reporting. Such systems are sometimes
referred to as ‘reportless systems’ because no
reports need be defined in their specifications.
The tools provided to users maybestatistical analy-
sis packages, such as SAS and SPSS,or integrated
toolkits such as Ramis and Nomad.In thelatter case,
the same tools may be used both by development
staff and by users, and this may allow someflexibil-
ity in the allocation of work.

A PAUSE FOR BREATH
By the end of this stage, the system building tools
most appropriate for the organisation will have been
evaluated and selected, and the changes requiredin
the development environment to make the best use
of the tools will have been defined. The next stage
is to begin to use the tools.

[he Butler Cox Foundation
© Reproduction by any method is strictly prohibited

Oncethe tools have been selected and the changes
in the development environment have beendefined,
it would be ideal to introduce the new tools and prac-
tices at onceinto all parts of the information systems
department.This is usually impractical because of:

—The numberof people affected.
—Theneed to continue supporting existing systems,

tools and methods.
—Theinevitable uncertainties about some of the pro-

posed practices.
It is therefore usually necessary to start with a pilot
system or set of systems.

The objectivesof a pilot application are often misun-
derstood.A pilot should not, in general, be another
stage in the process of selecting system building
tools; it should bethefirst real application of the tools
and methods that have already been selected and
defined. The pilot may reveal somecritical mistake
in the selection or definition of new methods,butthis
should be regarded as a very unlikely outcome. If the
previous stages have been performed properly and
managementis visibly committed to the new tools
and methods, there should be no last-minute surprise.

The objectives of a pilot application are to checkthat
the selected tools and new development methodswill
workin the organisation and to begin the process of
converting from older tools and methods. The process
will normally proceed in four stages:

—Select the pilot application.
—Establish the pilot team.
—Build the application.
—Evaluate the experience.

SELECT THE PILOT APPLICATION
The pilot application selected should be reasonably
representative of the systemsthat will be built in the
future, and it should be capable of being implemented
within a few months — ideally, three or four. In addi-

he Butler CoxFoundation
© Reproduction by any methodisstrictly prohibited

CHAPTER 5
BUILD THE PILOT APPLICATION

tion, the application should be significant to the busi-
ness. The advantages of choosing a representative
application are two-fold. The lessonslearnt will be of
general application and the success ofthe pilot will
be seen as being relevant to other systems. On the
other hand, choosing an atypical application will
encourage the sceptics and pessimists (who are
found in every information systems department) to
resist the further use of the new tools and methods.

Thepilot application should be of modestsize so that
the lessons can be learnt without undue delay and
management can retain control of the change
process. Experience has shownthatit is all too easy
to lose control. In one British companythe first Focus
systems were so successful that users were demand-
ing that their systems should be developed in Focus
even before the systems department had evaluated
the pilot applications.
The application should be significant to the business
in order to maximise the benefits to the business and
to the information systems department, and to secure
any senior management support that may then be
needed — fortraining courses or new hardware,for
example.

ESTABLISH THE PILOT TEAM
Wherepossible, the membersofthe pilot team should
be chosenfortheir interest in business results rather
than in the technology of the new methods. They must
be people who can adapt the changed development
environment to the requirements of the project
without losing sight of the overall objectives.

Because of the high productivity of advanced system
building tools the pilot team can be quite small. In two
months a team of three should be able to complete
a system of between 200 and 300 function points
(equivalent to about 15,000 lines of PL/1). All mem-
bers of the team should be properly trained in the use
of the tools and should be committed to the new
development procedures.

Ideally, the team should begiven time to gain some
experience of using the tools before embarking on

2t

CHAPTER 5 BUILD THE PILOT APPLICATION

the pilot. If this is not done the pilot experiencewill
notbefully representative of later project experience.

BUILD THE APPLICATION
Whenthe team is ready, work can commenceon the
pilot application.
The pilot project should operate in as normal a way
as the abnormal circumstances allow. However,proper recordsshould be keptof the effort expendedon the project and its progress evenif this will notusually be done. Problems, errors and solutions toproblems should also be carefully recorded.

EVALUATE THE EXPERIENCE
The main aim of the evaluation should be to deter-
mine whetherthe tools and new developmentproce-
dureswill allow the department to meetits objectives
for the use of system building tools. The secondary
aim should beto identify any changes needed in the
tools or proceduresto increase their effectiveness.
The evaluation should be conducted by someone whowasnot personally involved with thepilot applicationbut who is familiar with the objectives, tools andprocedures concerned. Given the importance of the

28

consequent decisions, the systems developmentmanagerwill often be the best choice.
In addition to the project team, the evaluation shouldinvolve users, technical support staff and operationsstaff. The evaluation should assess the developmentproductivity actually achieved and the quality of thesystems delivered.It should also look carefully for any
unforeseen problems.
The results of the evaluation should be:
—A recommendation for the future use of the new

tools and procedures. Should the tools and proce-
dures be brought into general use and, if so, what
systemsor functions should be excluded?

—Recommendations for any necessary changesor
extensions to the tools and procedures.

— Estimating guidelines for systems developedin thenew way.
—Any consequent recommendationsfor changesinstaffing, terms of employmentandoffice organi-sation that will be needed to exploit the new tools

and procedures.
The evaluation will show whetherit is possible to meetthe objectivesoriginally set, using the tools selected,in the revised development environment.If the deci-sion to proceed remains valid, the tools and pro-cedures should befully installed.

© Reproduction by any method is strictly prohibited

CHAPTER 6
EXTEND THE USE OF SYSTEM BUILDING TOOLS

Peter Drucker has argued that the most important
managementdecisions are always negative ones —
decisions to stop doing things. That is certainly true
for the introduction of system building tools. The key
decision is to abandon the old methods of systems
developmentin favour of the new ones. Information
systems management should makethis completely
clear and should expressits commitment to the new
tools and methods by making appropriate changes
in staffing, facilities, standards and procedures. There
will also be a need to manage the changeoverperiod.

MAKE THE REQUIRED STAFFING CHANGES
For most of the system building tools discussed in
this report, though not for incremental aids and
programmers’ workbenches, the new development
environmentwill require analysts to have much closer
contact with users and to perform much of the
development themselves. This will usually require:

—Newcriteria for staff selection.
—Business and technical training for existing staff.
—Reorganisation of development teams.
—Newstaff policies.

Newcriteria for staff selection
The new development environmentwill require rather
different people from those presently found in many
information systems departments.It is rarely possi-
ble, let alone desirable, to replaceall of the existing
development staff. Butit is desirable to rethink the
criteria for recruiting new staff. Analyst-programmers
should be recruited for their interest in results and
business knowledge, rather than for their technical
knowledge and experience. Indeed, some types of
experience — Cobol programmingin a large conven-
tional development team, for example — will be a
definite disadvantage. The attitudes of such people
are unlikely to be compatible with the effective use
of system building tools.

Analyst-programmers should be self-motivating,
results-oriented andableto relate well to users. They
will need to operate in small teams, or even alone,

The Butler Cox Foundation
© Reproduction by any methodis strictly prohibited

andit will not be possible to manage them en masse.
They must be people whowill set their ownpriorities
and whowill gain satisfaction from the results they
achieve for their clients, rather than from technical
virtuosity for its own sake.

Analyst-programmers needskills in business, data
analysis and in the use of advanced systembuilding
tools. That is also the skills priority order becauseit
is easier to learn to use

a

toolthanit is to learn data
analysis, and it is easier to learn data analysis than
to learn businessskills.

Businessskills are needed to ease communication
with clients, to avoid ignorant mistakes and to secure
the respectof users. It is no accident that Morgan
Stanley Bank in New Yorkobtains very high produc-
tivity from its development workforce, nearly half of
whom have banking qualifications.

Data analysis skills are needed to ensure that data
structures are not unduly tied to the requirements of
individual applications, but provideflexibility for user
access and future enhancements.

Skill in using the particular tools is needed to avoid
grossinefficiencies and to allow the rapid develop-
ment work on which prototyping, in particular,
depends.

Business andtechnicaltraining for existing staff
Existing programmers will need some business and
systemstrainingif they are to function effectively as
analyst-programmers. Regrettably, not all program-
mers will be willing, or able, to makethis transition.

Existing analysts will need sometechnicaltraining to
convert them to analyst-programmers. There should
be no seriousdifficulties in achieving this, but the
idea, found in someinstallations, that personal use
of a computer(or terminal) constitutes a loss of sta-
tus may haveto befirmly repudiated.

Reorganisation of development teams
To exploit fully the opportunities provided by system
building tools it will be necessary to reorganise the
development staff. The best results will usually be

29

CHAPTER 6 EXTEND THE USE OF SYSTEM BUILDING TOOLS

achieved by small integrated teams that are allocated
to particular business areas. For many Foundation
members, existing systems teams may be used as
the basis for the new development teamsbyintroduc-
ing retrained programmers and dividing the teams
into smaller units.
In the longer term, it is desirable that development
staff should rotate between businessareas,but this
should beleft until the staff have properly assimilated
the methodological changes.

Newstaff policies
Existing staff policies will reflect the existing develop-
ment environments. Introducing new development
environments based on system building tools may
require changes in remuneration and career
progression.
The skills needed by the new analyst-programmers
are greater than those of conventional analysts and
programmers. Although job satisfaction will be
greater for those using system building tools, the
organisation will probably need to increase salaries
and/orfringe benefitsif it is to retain its increasingly
skilled and effective development workforce.

The overall effect of these changeswill be to distance
the new analyst-programmers from existing program-
mers and technical supportstaff. It will no longer be
possible to rotate staff either between applications
development and technical support functions, or
between maintenanceof older systems and develop-
ment of new ones.

It will therefore be necessary to identify distinct
career paths for maintenance programmers,analyst-
programmers and technical support staff. Some
organisations may have to accept that they cannot
provide continuing career development for some
existing categories of staff, and should plan for them
to leave and be replaced through further recruitment.

PROVIDE ADEQUATEFACILITIES
For the reasons given in Chapter 4, every developer
should have his own terminal, and some may need
morethan one. In many organisationsthis will require
a significant increase in the number of terminals
installed in the information systems department. In
turn, this will require sufficient computer power to pro-
vide the necessary support. The new wayof working
may also require some changes in the working
environment. The necessary steps are to:

—lInstall extra computer capacity.
—Select software for additional support functions.

30

Growth in computer capacity at Morgan
Stanley

Figure 6.1

G bytes/
Mips

Disc storage
(G bytes)

100 +

Computer
power
(Mips)

504

1980 81 82 83 84 Time

—Consider a move away from open-plan offices.
—Provide adequate technical supportfor the tools.

Install extra computer capacity
Extra computer capacity will be needed both to sup-
port developers with their new tools and to run the
new applications that will be built. As an extreme
example, we showin Figure 6.1 the growth in com-
puter capacity at Morgan Stanley overthe four-year
period since the decision was madeto standardise
on Natural for applications development. Computer
powerhasincreased at an annual compoundrate of
more than 130 per cent during this period. Mostof
the growth in capacity has been required to run new
applications and is thus a measure of the success
of the policy, notofits failure.

There may also be a need, as discussed in Founda-
tion Report No. 38 — Selecting Local Network Facil-
ities — to changethe supporting networkin order to
provide very fast, preferably subsecond, response
times.
Select software for additional support functions
Developers will benefit from computer support for
activities other than system development, including
document preparation and presentation, messaging,

© Reproduction by any method is strictly prohibited

CHAPTER 6 EXTEND THE USE OF SYSTEM BUILDING TOOLS

planning and modelling. Software for word process-
ing, graphics, electronic mail, project management,
estimating and systems modelling may therefore be
useful. Appropriate systems should be selected, or
developed, and installed on the development
computer.
Consider a move away from open-plan offices
Open-plan offices have become increasingly
fashionable since the 1960s for all kinds of office
work. The case for open-plan offices for systems
developmentstaff has, in our view, never been made
convincingly. In general, systems developmentstaff
differ from ordinary office staff because they are moti-
vated more by results and personal development and
less by social factors.
Inthe last three years, experiments at IBM and TRW
have shownthat a move away from open-plan offices
to individual, or small-team, offices can help to make
substantial improvements in productivity, even when
conventional programming languages are used.

Somefurther physical facilities may also be needed
to make the best use of the prototyping opportuni-
ties provided by system building tools. The physical
facilities needed for effective prototyping have been
described in some detail by Bernard Boar of AT&T
in “Application Prototyping’. He argues that a demon-
stration room with a large-screen projector driven
from a terminal is a valuable addition to project
rooms.

Provide adequate technical support for the tools
Any significant piece of software requires proper
technical support. This is especially true for advanced
system building tools, which are very complex and
which affect the integrity and efficiencyof all the sys-
temsthat are built with them. The technical support
staff should provide advice about using the tools as
well as maintaining them. They should also (probably)
provide a specialist service for tuning applications
whereoperationalefficiency is a significant concern.

UPDATE THE STANDARDS AND PROCEDURES

The existing standards and procedureswill have been
developed for the existing tools and methods.In revis-
ing the standards and procedures, changeswill typi-
cally be needed to define:

—Therules for using the new tools.
—Theprocedures for prototyping.
—Newtechnical standards.
—Theproceduresfor regular monitoring of produc-

tivity.

©Reproduction by any methodis strictly prohibited

The revised standards and procedures should also
reinforce the view that systems are to be regarded
as corporate, rather than personal, property — an
attitude sometimes termed ‘egoless programming’.
This view is best encouraged by design and code
reviews, inspections or walkthroughs. These proce-
dures are especially valuable as a meansof sharing
expertise when unfamiliar tools and methods are
being introduced.
Rules for using system building tools
To meetthe objectives identified in Chapter 2, sys-
tem building tools must become the normal means
of systems development. Unless this is achieved the
systems departmentwill not be able to make the
quantum jumpin productivity that can be obtained.
Oncethe tools have beeninstalled, exceptionsto their
use should be permitted only when authorised by
senior managementand should be carefully tracked.
In general, exceptions should be discouraged.

Procedures for prototyping
Prototyping requires its own six-stage development
cycle, as shownin Figure 6.2 overleaf.

Though prototyping in principle is very powerful, it
cannot be used in every case. Thefirst stage (the
suitability review) therefore checksthat the specific
application is suitable for the prototyping approach.
Prototyping is not appropriate for:
—Systemswith a great deal of complex logic, espe-

cially in a batch system.
—Systems wheretheuseris unwilling to play his part

in refining the prototype.
—Systems where the requirements are already

knownin great detail.
—Systems where rapid completion is more impor-

tant than correct functioning.

The secondstage (preliminary analysis) establishes
the aims of the application, the essential functions,
the main logical data structures and whether anyof
the data needed already exists in machine-readable
form. This stage is similar to conventional systems
analysis, but is much shorter because it produces a
reasonablefirst approximation, not a perfect final
answer.
The third stage is to build the first prototype, which
should be sufficiently complete to allow meaningful
discussion with the user. The prototype should imple-
ment the essential functions identified by the prelimi-
nary analysis, though batch updating and system
security and integrity features can usually be omit-
ted. There is no need to spend too muchtime onthe
details of screen and print layouts at this stage.

31

CHAPTER 6 EXTEND THE USE OF SYSTEM BUILDING TOOLS

Figure 6.2 Prototype cycle

Suitability
review

Do not use
prototyping

Preliminary
analysis

M
Buildprototype
esr Jaci

Demonstrate

No SsRevise —

Yes

Implementation
review

 Selectimplementation
method

Extend theprototype Use ASBT Use
conventional

tools

At Stage 4,the first prototype is demonstratedto theprospective users. Discussion should concentrate onthe overall correctness of the modelso that seriouserrors and omissions can be detected. Discussion oflater versions should involve all those with anyinterest in the system, and should focus on details
as well as on the overall structure.
Oncea revised specification has emerged, the pro-totype should berevised (Stage 5), althoughit is bestnot to dothis in the presenceof the users. Additional
functions and improvementsin screen andprint for-
mats can be added, and the prototype is demon-strated again.
The numberof iterations of the demonstrate-revise
cycle should be controlled by keeping the user

32

informed of the costs of continued refinement andby setting somelimits to the processof refinement.The limit may be determined by a completion dateor by a predetermined numberofiterations (someorganisations use three). Nevertheless,the option ofcontinuing beyondthe limit must remain openif theinformation systems department and the user judge
that further refinement is necessary.
Oncethe user has accepted that a system based onthe prototype will meet his requirements, animplementation review (Stage 6) should becarriedout. This review decides whether the system shouldbe built by extending the prototype, by starting againwith advanced system building tools, or by using con-ventional development tools. The review will alsoproduce accurate cost estimates for developmentand operation.
Newtechnical standards
Most of the changes in the systems environmentrequired to makethe besi use of system building toolswill be contrary to, or at least out of sympathy with,existing technical standards. New standards andprocedureswill therefore be needed for estimating,documentation, program-structure and program-coding conventions. These technical standardsshould be reviewed periodically in the light ofexperience and to take account of changesin thetool.
Measuresof the development productivity obtainedby using system building tools should be used forestimating purposes. Feedback for the other itemsmay be obtained from inspections.
Regular monitoring of productivity
Developmentproductivity is the key factorthat linksdevelopment technologywith businessbenefits. If theinitial gains in productivity are not maintained thenthe benefits arelost; if the gains are exceeded, newopportunities may be revealed.
Productivity monitoring requires that the timeexpended on eachproject and the size of each sys-tem delivered be recorded. It is also useful to recordthe use of computer resources.

MANAGE THE CHANGEOVER PERIOD
Several transitional arrangements will be required toaccomplish the changeover from the old methods.They concern users, development managers anddevelopmentstaff.
Users will need to be educated about prototyping. Theneed for them to play an active role should bestressed. It must also be made clear to them thatprototyping does not produce a usable system but

© Reproduction by any method is strictly prohibited

CHAPTER 6 EXTEND THE USE OF SYSTEM BUILDING TOOLS

only a model. On occasion it may be possible to
derive a usable system directly from the prototype,
but that is a matter for the information systems
department to resolve.

Project development managers should not be
expected to carry the costs of training and of gain-
ing experience of the new tools, especiallyif they are
to be judged ontheir ability to meet timescales and
budgets. These costs should be carried as a depart-
mental overhead. It is, after all, the information sys-
tems department as a whole that benefits from the
increased skills and productivity.

Some developmentstaff will probably be unable or
unwilling to become analyst-programmers. Many
programmers identify themselves with a particular
range of computers and seetheir personal develop-
ment in terms of an increasingly close involvement
with those computers, often as software support
specialists. Such staff will perceive the new focus on
business requirements and the preference for
integrated development as a distraction from their
preferred career paths, and may be concernedat the

10

Tt
© Reproduction by any methodis strictly prohibited

prospectof learning new skills or the possibility of los-
ing their jobs.
It may be possible to transfer someof these staff to
maintenance, technical support or other specialist
roles. Others mayprefer to leave, and this should be
accepted and positively managed.

CONCLUSION
By following the six-stage process describedin this
report, an organisation should find itself, having
installed the most appropriate system building tools
in the most appropriate systems environments,in a
position to begin to realise the substantial benefits
that such tools can offer.
Webelieve that the only way in which most systems
departmentswill be able to meet the future demands
that will be placed on them is to abandontraditional
methods of systems developmentin favour of the use
of advanced system building tools. Furthermore, we
would recommendthat, in the process of making this
change, serious thought should be given to using the
new tools to redevelop the existing systems base.

33

APPENDIX 1
MEASURING PRODUCTIVITY WITH FUNCTION POINTS

Information systems departments need to measure
development productivity in order to manage
projects, monitor progress and measure the impact
of changesin the developmentprocess.It is helpful
if the measures used also allow objective compari-
sons to be made betweenorganisations so that they
can benefit from each other’s experiences.
Lines-of-code produced per man-day has been very
widely used as a measure of programming produc-
tivity. This measure breaks down, however,if the lan-
guageis changed,orif it is used in different ways.
Moreover,it does not measure the work of require-
ments analysis and systems design, which most
organisations now regard as more important than
programming.
Dr Allen Albrechtof IBM hasdevised ‘function points’
as a measure of system size. The number of func-
tion points produced per man-day is a good meas-
ure of development productivity because:
—Function points measure functions delivered, not

effort or program size.
—Function points are language and machine

independent.
—Function points are intelligible to users.
—The measureis independent of changes in infor-

mation systems and user organisation.
—Referencedata is available from several sources.

FUNCTION POINTS MEASURE FUNCTION NOT
EFFORT
The biggest defect of measuring lines-of-code pro-
ducedis that somelines are much more valuable than
others, either becauseofdifferencesin the language
used or because of programming style. Some pro-
grammerswrite verbose programsthat, though they
have morelines than terse ones, perform the same
functions and may be no easier to maintain.

Function points address this problem precisely
because they measure function, not programming

34

complexity. They are thus preferable bothtolines-of-
code and to computer science measures such as
Halstead metrics.
The function point concept has beenvalidated by a
study of 22 applications systems developed by IBM’s
DPServices organisation in the United States. Func-
tion points are counted by the process of function
point analysis (FPA), devised by Dr Albrecht and
described in a paper to a SHARE/GUIDE/IBM joint
symposium in 1979.

Detailed practical advice is available from IBM and
Burroughs. Briefly, the process comprises four
stages:
—Count and classify the functions.
—Calculate the ‘crude’ function points.
—Calculate the adjustmentfactor.
—Multiply the crude function points by the adjust-

ment factor.
FPA counts only functions that are available to sys-tem users. Functions used only in development, toassist in computer operations or for the location ofsystem errors in normal operations are not counted.
Functions are divided into three types:
—lInput transaction types, including referencefiles

maintained by other systems.
—Output transaction types.
—Inquiry types.
FPA counts files as they appear to the user. Thusindexes required to support convenient and rapidretrieval, and partial files required to circumvent theaddressing limits of the operating system, are not
counted.Files are classified either as:
—Masier files, if they are maintainedby this system,

or
— Interfacefiles, if they are either transaction files

generated by another system butusedin this sys-
tem or transactionfiles generatedby this system.

© Reproduction by any methodisstrictly prohibited

APPENDIX 7

Figure Ai.1 Points for functions andfiles

System attribute.

Functions
‘input
Output
Inquiry

Files %

_ Master
Interface

In analysing database systemsit is currently neces-
sary to consider the equivalentsetoffiles. This is a
drawback of FPA asit is currently defined.
Functions andfiles are then classified as simple, nor-
mal or complex, and each function andfile is allo-
cated a numberof points according to Figure A1.1.
The totalof points for all the functions andfiles in the
system is the crude function point count for the
system.
Different implementations of the same function may
have different function points, depending on the type
of system and the wayin whichit will be used. (The
clearest example of this is illustrated by the differ-
ence between online and batch systems.) To allow
for this, the system must now be rated on eachof
the 14 factors shownin Figure A1.2. For each factor
a rating of between 0 (no influence) and 5 (strong
influence throughout) is assigned. The sum of the
ratings is then used to calculate an adjustmentfactor,
by using the following formula:

Adjustmentfactor = 0.65 + 0.01 x (sum ofratings)

Figure A1.2 Function point analysis adjustment factors

Multiple site "Easeof change and use s

 e Butler CoxFOunc
Reproduction by any methodis strictly prohibited

MEASURING PRODUCTIVITY WITH FUNCTION POINTS

The factor may therefore vary from 0.65 to 1.35, but
it is almost always in the range 0.85 to 1.15 for sub-
stantial business systems. The crude function point
count is then multiplied by the adjustment factor to
obtain the final function-point count.

FPA maybe applied at any stage in a project and,
in particular, at a very early stage. If a complete
specification, or working system,is available a sys-
tem of up to 1,000 function points (equivalent to
between 50,000 and 100,000 lines of Cobol or PL/1)
may be analysed in just a few hours.

FUNCTION POINTS ARE LANGUAGE AND
MACHINE INDEPENDENT

Because FPAdeals only with the system as seen by
the user, and with logical functions, ratherthan lines
of code or numbers of screen formats, it is indepen-
dentof the language or computer used to implement
the system. This enables function points to be used
to compare systemswritten in different languages,
to different standards and on different computers.
It also enables FPA to be used for purposes other
than assessing development productivity, including:
—Providing a measure of the overall effectiveness

of information systems.
—Monitoring maintenance levels.
—Planning system conversions.
—Evaluating packages.
FPA can provide a figure for the total amountof appli-
cation function installed in an organisation, whether
provided by users, system professionals orin the form
of packages. Theratio of this figure to total informa-
tion systems costs provides a crude measure of
effectiveness.
The ratio of function points altered to total function
points installed provides a measure of the level of
maintenance. Similarly, the effort expended per
installed function point may be used as a measure
of maintenanceefficiency, provided that clear defi-
nitions of maintenance, excluding enhancements,are
used.In 1983 Dr Albrecht provided data ofthis type
to the Butler Cox Foundation Study Tourin which he
showed that maintenance efficiency at IBM had
increased between 1970 and 1980.
In planning system conversions, FPA can be used to
measure the size of the required conversion work.
Whenevaluating packages, FPA can be used to count
the total ‘value’ of the functions required, provided
andlikely to be used. These measures can be used

35

APPENDIX 1

to supplement subjective judgements about how well
a package ‘fits’ the organisation’s needs.

FUNCTION POINTS ARE INTELLIGIBLE TO
USERS
The conceptsoffiles and functions are readily under-
stood by users, who canalso easily accept that some
functions and files are more complex than others.
Though they should not be expected to perform FPA,
users should havelittle difficulty in understanding siz-
ings or comparisons based on FPA.
The function point concept therefore enables users
to understandthe relative complexity of their systems
without having to involve themselves with difficult
technicalities.

THE MEASUREIS INDEPENDENTOF CHANGES
IN SYSTEMS AND USER ORGANISATION
Because function points deal with system function-
ality, not with the way the functions are implemented,
they are equally applicable to any mixture of profes-
sional and user development, and to development
departments organised both with and without
separate programming teams. Nevertheless,to pro-
vide a basis for fair comparisons, all development
effort, whether expendedbyusers, analysts, program-
mers or other staff must be counted. (Some of the
function point figures quoted by computer users or
in research papers donot includeall of the develop-
menteffort, and care should betakenif these figures
are used for comparison purposes.)

A consistent basis for measurementof effort is also
necessary. Man-days, man-hours, man-months and
man-yearsareall in use but have different bases in
different organisations. For example:

—One Foundation member assumes 26 hours of
development work per week, but 52.14 weeks per
year(i.e. 1,356 hours per year).

36

MEASURING PRODUCTIVITY WITH FUNCTION POINTS

—Another assumes 35 hours per weekbut only 42
weeks per year(i.e. 1,470 hours per year).

—One major research study was based on 168 hours
per man-month (presumably 22 days of seven-and-
a-half hours each).

In this report we have used man-daysasourunit of
effort because:

—lIt is the shortest reasonable unit for allocating
developmentstaff.

—lt is, at least with the better tools, a sufficient
period for a useful result to be achieved.

—lIt is easier to measure than man-hours.
— It allows periods of absence andtraining time to

be readily excluded.
Where necessary, we have assumedthat a day com-
prises seven working hours and that there are 210
days available for project work in a year.

REFERENCEDATA IS AVAILABLE FROM
SEVERAL SOURCES
Many organisations collect data for lines-of-code
produced, including productivity rates. But this is
unsuitable as a basis for comparison andfor future
planning.

Afterlines-of-code, function points is the measure for
which the mostdata is available. Papers have been
published in academic journals by researchers such
as Allen Albrecht of IBM and Rudolph Eberhard of the
University of Auckland. IBM and Burroughs now both
promote FPA. We have drawnonthis work, as well
as on our ownresearches,for the productivity data
quoted in Chapters 1 and 3 (pages 1 and 15 respec-
tively) and in Appendix 3.
Wedo not know of any other measure of develop-
ment productivity for which comparable amounts of
data are available.

© Reproduction by any method is strictly prohibited

APPENDIX 2
A CLASSIFICATION OF SYSTEM BUILDING TOOLS

Manyclassifications of system building tools have
been suggested by consultants and other experts.
Unfortunately, these classifications are constantly
undermined by the suppliers, who:

—Constantly extend their products to provide new
features.

—Frequently lay claim to features that are thought
to be significant, even though their products lack
them.

Terms suchas‘relational’ and ‘non-procedural’ refer
to important specific concepts in software science,
but the terms have been applied to a wide variety of
products. Thus VisiCalc, Datastar, Querymaster,All
and Ramis have all been described as non-
procedural. Yet, clearly, they have little else in
common.
The term ‘fourth-generation language’ is now widely
used, most notably by James Martin, to indicate
advanced system building tools. This is a rather
unhelpful term because:
—lt implies that the languageis the most important

aspect of these products, whereas other aspects
(such as system software; methodsfor writing,
amending and compiling programs; and program
testing methods) are equally important.

—It groups together products such asLinc, Ramis,
Delta, UFO and Querymaster, which havelittle in
common.

The term ‘program generator’ is also widely used,
often as a synonym for‘system building tool’. In this
report we usethis term to describe tools that produce
programsin a high-level language, such as Cobol.
Some program generators (Linc, for example) are
very sophisticated and it is rarely necessary for a
programmerto change the generated code. Others,
(Microsoft’s Sourcewriter, for example) can only
generate simple programs,and wecall these ‘simple
program generators’.
Advanced system building tools have usually been
aimed at either professional development of large
systemsor user development of small systems. Thus,

The Butler Cox Foundation
© Reproduction by any methodisstrictly prohibited

sometools are too complex for anyone whois not
a system professional, whilst others can tackle only
simple systems or makeveryinefficient use of com-
puter resources. Within these categories many tools
are restricted to particular classes of problem, such
as financial or statistical applications, or to particu-
lar systems environments.
From the point of view of a potential user these
aspects are at least as important as the technologi-
cal factors — an excellent solution to the wrong
problem is oflittle use.

OUR CLASSIFICATION
Wehavedivided system building into five main (and
several subsidiary) categories:
—Incremental aids.
—Data dictionaries.
— Development workbenches.
— Discrete tools.
— Integrated toolkits.
In addition, we describe discrete tools and integrated
toolkits collectively as advanced system building tools
(ASBTs).
Incremental aids
Weuse the term incremental aids to describe tools
that provide a single function, generally usable at only
one stage of the development process. Examples
include flowcharters and test harnesses, editors and
program library systems.
Data dictionaries
A data dictionary holds in a single placeall the data
definitions used in a set of applications. Some data
dictionaries provide online support to system build-
ing tools and support to analysts.
Development workbenches
The best known development workbenchis Philips’
Maestro which consists of Softlab software running

APPENDIX 2. A CLASSIFICATION OF SYSTEM BUILDING TOOLS

on a Philips minicomputer. There are several other
hardware-software workbench products, including
one based on an IBM-compatible computer (and thus
able to compile and run programs).

The mostsignificant competition comes from the edi-
tors, compilers, filing systems andutilities provided
by computer manufacturers — for example IBM's
CMS,ICL’s MAC and the Unix Programmers’ Work-
bench.
Despite the name, then, workbenchesare primarily
software. Recognising this, some computer suppliers
have recently improved the quality of their work-
benches, announcing such products as Program
Master (ICL) and PROFS (Burroughs).
Discrete tools
The developmentof a substantial system generally
involves the definition of files and the construction
of four kinds of program: batch updates, batch
reports, online updates and online reports (though notall systems include all of these). Many system build-
ing tools have been designed to construct only one
or two kinds of program. Werefer to these products
as discrete tools.

38

Thus, there are four kinds of discrete tools, cor-
responding to the four kinds of program:

—Batch update tools, though there are rather few
of these.

—Report writers, such as Mark IV.
—Teleprocessing development systems, such asUFO and Gener/ol.
—(Query processors, such as ASI’s Inquire.

Integrated toolkits
Integrated toolkits differ from discrete tools in hav-
ing their ownfile definition mechanisms, and often
their own database management system, and by
addressing three or four of the four kinds of program.
However, they vary considerably in the types of sys-
tems and users for whom they are mainly intended.
For example: TIS, All and Linc are intended for the
professional developmentof transaction processing
systems; Focus, Nomad and Ramis are intended for
the development of managementinformation systems
by users or business analysts.

© Reproduction by any method is strictly prohibited

APPENDIX 3
DEVELOPMENT PRODUCTIVITY IN PRACTICE

Our research has established that development and
maintenanceproductivity are the key factors that link
system building tool technology with business
benefits. We have found that effective tools (and
especially advanced system building tools) can make
a major contribution to improving development
productivity.
In this appendix we present our detailed findings of
the productivity obtained with Cobol or PL/1 and with
system building tools.
We have measured the size of systems in function
points and have included all development activity,
whoever performsit. We are aware, however,that
the function point approach does have limitations.
Skill and experience are neededto applyit, and differ-
ent estimators may produce valuesthat differ by 20
per cent. But function points are preferable to lines-
of-code, at least for this purpose, because they are
a measure(albeit imprecise) of the right thing rather
than a precise measureof the wrong thing. (We gave
our reasons for preferring function points in more
detail in Appendix 1.)

COBOL AND PL/1 DEVELOPMENT
PRODUCTIVITY
Figure A3.1 showsproductivity data published by Dr
Allen Albrecht of IBM and Dr Rudolph Eberhard of
the University of Auckland, or collected during the
research for this report. The data relates to system
developmentin Cobol and PL/1 during the period 1977
to 1983. Though the precision of the data is not high,
the figure highlights several features:

—Most systems haveless than 800 function points
(that is, about 50,000lines of Cobol). In some cases
larger systems have been divided to ease the
management problems.

—Developmentproductivity varies over a very wide
range, from as much as 1.0 function points per
man-dayto aslittle as 0.05 function points per
man-day.The variations are almost as large within
one organisation as between organisations.

TheButer G

© Reproduction by any methodis strictly prohibited

 Figure A3.1 Cobol and PL/1 development productivity

Function points
per man-day

°
OST ce

(24. :
0.17 % =

0.054 ° T T
1,000 2,000

Numberof function points

Note: Each point represents the developmentproductivity achieved
(function points per man-day) in developing a system with the
specified number of function points.

—Theaverage productivity for systems of less than
800 function points is about 0.2 function points per
man-day.

DEVELOPMENTPRODUCTIVITY WITH
ADVANCED SYSTEM BUILDING TOOLS
Figure A3.2 overleaf shows development productivity
data for six advanced system building tools. The
choiceoftools reflects the availability of data rather
than the merits of the individual tools.

APPENDIX 3. DEVELOPMENT PRODUCTIVITY IN PRACTICE

Each bar on the diagram represents an actuallevel
of development productivity achieved with the par-
ticular tool.

As with Cobol and PL/1 the data shows considerable
variations — from 1.5 to 9 function points per man-
day for Focus and from 0.2 to 15 function points per
man-day for ADF, for example. (We believe that the
very high productivity values for ADF mayrelate to
applications that have been carefully selected to be
suitable for ADF,whilst the lowestvalue is for a highly
unsuitable system.)

Despite the variability, it is clear that advanced sys-
tem building tools provide much higher development
productivity than can usually be achieved with Cobol
and PL/1. In almost all cases the productivity
achieved with the advancedtools exceeds the best
that can be achieved with Cobol and PL/1.

If we assume that Cobol productivity is 0.35 function
points per man-day, then the advanced system build-
ing tools provide a productivity improvement of
between four and 20.

Furthermore, our research suggests that, for com-
plete systems, integrated toolkits provide higher
development productivity than discrete tools.

40

, Productivity et

Figure A3.2 Productivity obtained with advanced system
building tools

in function
points per
manday 107

Best that 17
can be obtained
with Cobol osd ieor PL/ ;

Average for
Cobal > 0.2
and PL/1

Linc RAMIS}; ADF UFO Mantis |

| Focus
! Integrated | Teleprocessing |
| toolkits | development |

systems

TheButler Coax Eandaticr
© Reproduction by any method is strictly prohibited

Albrecht, A. Therole of function point analysis in appli-
cation development and maintenance. Butler Cox
Foundation 1983 Study Tour, IBM Presentation Sum-
mary, October 1983.
Albrecht, A. and Gaffrey, J. Software function, source
lines of code and development effort prediction: a
software science validation. IEEE Transactions on
Software Engineering, Volume SE-9, Number6, 1983.

Anderson, S. M. Santa Fe Railway’s OX Project. Santa
Fe Railway, 1984.
Baxter, M. Automating the data processing office.
Butler Cox Foundation UK Management Conference,
Session Summaries, Cambridge, 30 September — 2
October 1984.
Boar, B. H. Application Prototyping: A Requirements
Definition Strategy for the 80s. Chichester: John
Wiley, 1984.
Boehm, B. W. Software Engineering Economics.
EnglewoodCliffs, N. J.: Prentice-Hall, 1981.
Dearnley, P. A. and Mayhew,P.J. In favour of sys-
tem prototypes andtheir integration into the systems
development cycle. Computer Journal, Volume 26
Number1, 1983, p36-42.
Drummond, S. Measuring applications development
performance. Datamation, 15 February 1985, p102-108.
Ehrman,J. R. The new towerof Babel. Datamation,
March 1980, p157-160.

 The Butler Cox Fo
© Reproduction by any methodisstrictly prohibited

BIBLIOGRAPHY

Hansen, H. D. Up and Running. New York: Yourdon
Press, 1984.
Hyldon, M. Adopting a fourth-generation language to
support prototyping. Butler Cox Foundation UK
ManagementConference, Session Summaries, Cam-
bridge, 30 September — 2 October 1984.
Jenkins, A. M. and Naumann,J. D. Prototyping: the
new paradigm for systems development. MIS Quart-
erly, September 1982.
Jones, T. C. The limits to programming productivity.
Proceedings SHARE Conference, New York, 1979.
Lansman, G. Banking on Innovation. Datamation,
15 August 1984, p114-122.
Martin, J. Application Development Without Program-
mers. EnglewoodCliffs, N. J.: Prentice-Hall, 1984.
McNurlin, B. C. Replacing old applications. EDP
Analyzer, Volume 21, Number 3, March 1983.
Read, N. S. and Harmon, D. L. Assuring MIS success.
Datamation, February 1981, p109-120.
Rudolph, E. C. Productivity in Computer Application
Development. University of Auckland Department of
Management Studies Working Paper 9, March 1983.
Sharples, T. Experiences using Application Program
Generators on a mainframe at Trafford MBC. NCC
Conference, 25 June 1984.
Xephon Buyers Guide. On-line Application Generators
Maidenhead: Xephon Technology Transfer Ltd, 1983.

4

 Butler Cox & Partners Limited
Butler Cox House,12 Bloomsbury Square,

London WCI1A 2LL, England@ +441 8310101, Telex 8813717 BUTCOXG
Belgium & TheNetherlands

SA Butler Cox NV
Avenue Louise - 479-Louizalaan,

Bte—47—Bus.
Bruxelles 1050 Brussel

‘© (02) 647 15 53, Telex 61963 BUTCOX

 France |Butler Cox SARL ||Tour Akzo, 164 Rue AmbroiseCroizat,
93204 St Denis-Cedex 1, France

 (1)820.61.64, Telex 630336 AKZOPLA
United States ofAmerica
OmniGroupLimited

115 East 57th Street, NY 10022, New York, USA
*®@ (212) 4861760

 Switzerlandand GermanyButler Cox & Partners Limited
Butler Cox House,12 Bloomsbury Square, London WC1A 2LL@ (London) 831 0101

 ItalySisdo BDAS1
20123 Milano — Via Caradosso 7- Italy
@ 498 4651, Telex 311250 PPF MI

TheNordicRegionStatskonsultAB
Stortarget 9, 5-21122 Malmo, Sweden
© 46-401 03 040, Telex 12754SINTAB

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47

