//////////

7/////////// :

THE BUTLER COX FOUNDATION
REPORT SERIES NO. 47

THEEFFECTIVEUSE OF SYSTEM

BUILDING TOOLS

ISSUED MAY 1985

Research Method

The research for this report was carried out in late
1984 and early 1985 by David Flint, a senior consul-
tant with Butler Cox who has a long-standing interest
in tools and methods for computer systems develop-
ment.

The work for this report built on previous Butler Cox
research, notably that for Foundation Report No. 36
(Cost-Effective Systems Development and Main-
tenance). The research was extended by a literature
search, and the published material that significantly
influenced the development of this report (including
that referred to explicitly) is listed in the Bibliogra-
phy at the end of the report.

The experience of Foundation members and other
organisations in using system building tools was
researched by means of focus groups, individual
interviews and analysis of published case histories.
Information was collected on more than 70 installa-
tions in France, the Netherlands, Sweden, the United
Kingdom and the United States which have, collec-
tively, hundreds of man-years’ experience of using
several dozen different system building tools.

Using information from about 30 installations, we
were able to calculate some representative produc-
tivity figures for some of the more commonly used
tools. We were also able to form views about the
applicability of different types of tools, the best ways
of using them and the consequences of using them

(or, in some cases, of not using them) both for users
and for information systems departments. The
overall picture was sufficiently clear to enable some
simple models to be built to demonstrate the finan-
cial implications of using system building tools.

Research Conclusion

The research showed that the use of advanced sys-
tem building tools, such as Mapper, Focus, Linc or
Gener/ol, could enable systems to be developed (and
maintained) between four and 20 times as fast as
is generally possible with Cobol and PL/1. The
research also identified the most common mistakes
that are made in the application of system building
tools. In particular, we found that the effective use
of system building tools requires a fundamental
change in the development approach.

The report is therefore structured as a methodology
for selecting and using system building tools. By
following this methodology, Foundation members
can avoid the mistakes and maximise the benefits
that are obtainable from system building tools.

The main findings of the research are highlighted in
the report synopsis.

Additional report copies

Normally members receive three copies of each
report as it is published. Additional copies of this or
any previous report (except those that have been
superseded) may be purchased from Butler Cox.

T B i P e g e s
| e Butler Lox Foundation

© Reproduction by any method is strictly prohibited

Photoset and printed in England by Flexiprint Ltd., Worthing, Sussex

THE BUTLER COX FOUNDATION
REPORT SERIES NO. 47

THE EFFECTIVE USE OF SYSTEM
BUILDING TOOLS

CONTENTS

REPORT SYNOPSIS i
1. UNDERSTAND THE VALUE OF SYSTEM BUILDING TOOLSooiiiiiiiiiieiiiiiciieiniee e 1
Impact on development ProduCTIVILYc.oocooioorii 1
Banehis forindVIAUa] SYSIEmMS . e i mn et b G s s s s e 1
Benefits for the information systems depamtment & o it i i e s e 2

2. DETERMINE THE OBJECTIVES FOR USING SYSTEM BUILDING TOOLScoociiiiiiiiiiiiiiiis 5
Suitability of existing Systems enVIrONMENTS ... 5
Soundness: of existing APPHCATIONS ..uo uuiimemiiiniiaiiiiit s srtonmesmsarasanaismss s sasssamss s oo ssssmns fre s ssesiosives 7
Rate of change to existing SYSIEMS ..o e b i
Additions 10 @XISING SYSIEIMS i ittt bbb 9
The demand fOr NEW SYSTEMSeeiiiiiiiiiiiiitii it s s e s e et 2o oo e 9
ST e e e e e 11

3. CHOQOSE THE APPROPRIATE SYSTEM BUILDING TOOLScooiiiiiiiiiiiiiis i snns s 12
Identify the tools that meet the constraints T L e e R e 2

N AT 17T TTTEH0] it e o e e e e S e e e et S 14
Evaluate the Shorthisted 100IS: .. ciieuuiiiieeieiieierummereneeireeeveeaairassasnsa e srssss s s e mean bbbt s E b e s i s eiis s 15
Select the MOSt APProPriate TO0IScooiiiiiiiiiiiiiai e b e 21

4 DEFINE THE NECESSARY CHANGES IN THE DEVELOPMENT ENVIRONMENTccccoiinnnnn 23
Abolish or reduce the programmer-analyst SPIt ... 23
VLG e110112107 o110 (o [VPREHISINE I RS RR S S R SR T 24
Provide good COMPULET SUPPOTEoiriiitirietiutesinisis et 24
Reduce the amount of dOCUMENTATION ... oo 25
Accept the limitations of the system building tOOIS ..ot 26
Deliver databases rather than SYSTEIMScii.iiiiiiiiiii i 26

A DAUSE TOF DIBATHoieuriuaieeisensosesisnrisos s s s oo 4 i s s e 26

5 BUILD THE PILOT APPLICATION oot simusinss i sos st s smasiaisoo1 33 sesnsamnsamnnss e h AR G4 5 27
Select the pilot APPHEATIONoiuiue it e 27
ESTablish the PHIOt TEAM wiriuwiumiusiiciasivinonsosoststssn st sosss e samansansans s 38455023 4 et s 27
BUIld the BPPHCAON ..vyeeiorvsisesiaeeriiiassinsanes s s csnes s e bbb e 28
EVAIUALE ThE EXPETIEMCE ..ucvevieiieeiuiiieiese et s 28

6. EXTEND THE USE OF SYSTEM BUILDING TOOLS ...coiiiiiiiiiiiiiiiiiiis s 29
Make the required Staffing ChANGESccocoriimiiim i 29
Provide adequate fACHTHIESieoueiiiiii oo 30
Update the standards and procedures e e A s R T 31
Manage the CRANGEOVET PETIOToowwiieseisiurimsirssis s b D2
CONCIUSION & ooeiicoi et iiassion soaiossisesion s s o= mam s e S5 50 L oS 2 a2 ot Soba i s anmi s 33
APPENDIX 1: MEASURING PRODUCTIVITY WITH FUNCTION POINTS ..o 34
APPENDIX 2: A GLASSIFICATION OF SYSTEM BUILDING TOOLSccccoiiiiiiiiniiisi s 37
APPENDIX 3: DEVELOPMENT PRODUCTIVITY IN PRACTICE ..o 39
BIBLIOGRAPHY. oo iirsrii i i e avsins et sstesuanesrssmmmsbsans s S5 dsses a0 55 b o 480w demas s ek e S B b e 41

ThaR "l'_‘f- e Emm d=hAm
| Ne pulier LoxX roundation
© Reproduction by any method is strictly prohibited

THE BUTLER COX FOUNDATION
REPORT SERIES NO. 47

THE EFFECTIVE USE OF SYSTEM

The construction of application systems is a central
and crucial activity for every information systems
department. In the past this activity has produced
severe problems for systems managers and, on
occasion, for the whole organisation. For example:
inadequate computer systems delayed Morgan Stan-
ley's entry into the gold market for several years; the
computer systems at the British Driver and Vehicle
Licensing Centre at Swansea have been much criti-
cised; and in May 1983, the Stockholm Stock
Exchange was totally shut down for about ten days
by an overload in its electronic system for register-
ing trades.

Probably every reader of this report will remember
systems that were very late, over-budget or that failed
to meet their objectives to such an extent that they
had to be abandoned.

Major disasters have become less common as the
information technology industry has matured and as
proper management disciplines have come into use.
In addition, some information systems departments
have introduced formal quality control and structured
analysis and design methods. These typically have
produced some increase in productivity together with
a more manageable development process. But the
main benefit arising from these methods has been
a greater degree of confidence in the system specifi-
cation and the avoidance of major errors in specifi-
cation and design.

Despite these improvements, system construction
remains a slow and expensive process in most large
organisations, and the delay between a user reguest
and the first live use of a system may still be several
years. The resulting impatience of users has to some
extent been contained by personal computing and in-
house timesharing (or information centres). Neverthe-
less, most organisations still have some form of
development backlog. Worse still, many users have
needs that they never put forward because they
believe that the information systems department will
be unable to meet them promptly and economically.

Since the beginnings of commercial computing, sys-
tem developers have sought aids and tools that would
speed-up and simplify the system development pro-

TheButler Cox Foundation

@© Reproduction by any method is strictly prohibited

BUILDING TOOLS

REPORT SYNOPSIS

Figure S.1

Representative sample of system building
tools

cess. Indeed, a Cobol compiler is just such a tool.
More recently, many suppliers have promoted
modern system building tools as the means of
increasing development productivity. There are now
hundreds of such tools, each claiming to solve the
users’ problems. A representative sample of these
tools is listed in Figure S.1. (Sometimes these tools
are known collectively as ‘fourth-generation lan-
guages’, but we do not use that term in this report
because we believe it is misleading.)

Many Foundation members now have substantial
experience of using modern system building tools.
Whilst some members are enthusiastic users, others
have rejected their use, or even abandoned them
after building several systems with them. The most
common objections to using system building tools
are: ;

—The need for excessive amounts of computer
pOWer.
—Lack of recovery features.

— Lack of security and integrity features.

REPORT SYNOPSIS

— Inability to cope with complex applications.

As a consequence, many organisations restrict the
use of system building tools to a narrow range of
applications — often to applications provided through
an information centre.

Despite the fact that some organisations find great
difficulties in using system building tools, others have
achieved remarkable successes. We believe that
most information systems departments can obtain
major benefits by introducing or extending the use
of system building tools. In this report we explain how
organisations can improve their effectiveness by
using these tools.

Our research has shown that introducing and mak-
ing effective use of system building tools reguires

management commitment and a disciplined
approach that has six main stages:

— Understand the value of system building tools.

— Determine the objectives for using system build-
ing tools.

—Select the appropriate system building tools.

— Define the necessary changes in the development
environment.

—Build the pilot application.
—Extend the use of the system building tools.

Each of these stages is the subject of one chapter
of this report.

[he Butler Cox Foundation

© Reproduction by any methed is stricily prohibited

|

CHAPTER 1

UNDERSTAND THE VALUE OF SYSTEM BUILDING TOOLS

System building tools can provide considerable
benefits both to the organisation and to the informa-
tion systems department. These benefits are widely
misunderstood because it is believed that they apply
only to the technical process of systems develop-
ment. The improvement in development productivity
is important and is often much greater than is gener-
ally recognised by systems staff. But improved
development productivity produces benefits for the
whole organisation, not only for the information sys-
tems department. These benefits are critical in plan-
ning for the future of information systems.

With the right system building tools, systems will be
better, will cost less, will be delivered sooner, and will
be easier and less expensive to maintain and
enhance. As a result, the information systems depart-
ment can build many more systems, cut costs, and
become more responsive to business needs. In this
chapter we explain how these benefits can follow
from the use of system building tools.

The benefits are of differing significance to different
organisations, and are provided to differing extents
(and sometimes not at all) by the various tools cur-
rently available. Thus, different organisations need to
set different objectives for using system building
tools. In Chapter 2 we explain how to identify the
objectives that are appropriate. Subsequent chapters
deal with selecting and installing system building tools
in order to realise the potential benefits.

IMPACT ON DEVELOPMENT PRODUCTIVITY

Improved development productivity is the key factor
in transforming the technology of system building
tools into benefits for the organisation. Lines-of-code
per man-day has been widely used in the past as a
measure of development productivity but, for reasons
given more fully in Appendix 1, we recommend that
development productivity should be measured in
function points delivered per development man-day.

The function point concept was devised by Allen
Albrecht of IBM as a measure of system size. Func-
tion points delivered per man-day is a good measure
of development productivity because:

Thal Hear A A At
ine B‘._!- £l CUX F’Dbl |dauen
© Reproduction by any method is strictly prohibited

— Function points measure function delivered, not
program size.

— Function points are independent of the language
and machine used.

—The function point concept is independent of
organisational structures.

As an example, a system with 1,000 function points
is equivalent to between 50,000 and 100,000 lines of
Cobol or PL/1. Our research has shown that, for a
range of organisations and over several years, the
productivity for development in PL/1 and Cobol ranges
pbetween 0.03 and 1.5 function points per man-day.
The mean value during the past six or seven years
has been about 0.2 function points per man-day (see
Appendix 3), but for the purposes of this report we
have assumed that the normal productivity today in
Cobol or PL/1 is 0.35 function points per man-day. On
this basis, a system comprising 30,000 lines of PL/1
would require about six man-years of effort.

When advanced system building tools are used the
productivity is usually between 1.5 and 7.5 function
points per man-day. For example:

— A United Kingdom manufacturer has increased
development productivity by a factor of seven by
using Focus.

—A Dutch insurance company has measured a
seven-fold increase in productivity through the use
of Mapper.

—_A French oil company estimates that Ramis has
provided a five-fold productivity improvement.

Much higher productivity can be obtained in special
cases or if prototyping is used. But, in general,
advanced system building tools enable development
productivity to be four to 20 times as great as with
Cobol and PL/A.

BENEFITS FOR INDIVIDUAL SYSTEMS

For individual systems, system building tools can
reduce the development cost, decrease the develop-
ment time, improve the quality and make the develop-
ment process more manageable.

CHAPTER 1 UNDERSTAND THE VALUE OF SYSTEM BUILDING TOOLS

System development costs will be reduced

The most advanced system building tools, used most
effectively, allow systems to be built with much less
labour and computer power than is required when
using conventional languages such as Cobol or PL/1.
In many quite ordinary organisations — local authori-
ties, banks and manufacturers — savings of more
than 75 per cent have been achieved. In a few excep-
tional cases the savings have been very much larger.

In the Santa Fe Railway, for instance, a team of four
people using Mapper built in 17 months a system that
included, as just one of its functions, a railway yard
system. Working in parallel, a team of up to 20
programmers built an equivalent system using IBM
Assembler. This system took two years to develop,
and was subsequently replaced by the more compre-
hensive Mapper system.

In the Corporation of Lloyds, the introduction of Focus
enabled the information systems department to quote
an acceptable price for a long-desired system for
which previous guotations (by the department and by
external suppliers) had been unacceptable.

Development times will be decreased

Because less effort is needed to complete a system,
it can be developed faster. In the Leamington Spa
Building Society a team of three people using Linc
developed and installed a system equivalent to about
70,000 lines of Cobol in just five months. (This sys-
tem was subsequently acquired by Burroughs who
have now sold systems based on it to other building
societies.)

Systems quality can be improved

The high productivity obtainable through the use of
system building tools makes it possible to build pro-
totypes before implementing the complete system.
Prototypes generally provide a better means of estab-
lishing the user requirements for systems than do
conventional analysis and design, and this leads to
better . designs and higher-quality systems. The
immediate benefit is a better solution to the business
problem. Other benefits include more user involve-
ment and less enhancement in the earlier years of
the project. (The value of prototyping is discussed at
greater length in Chapter 4, and the procedures for
using it are outlined in Chapter 6.)

The development process will be more
manageable

The reduced effort and time required by system build-
ing tools make the development process inherently
easier to manage. In addition, the use of these tools
provides a better base for estimates, since prototyp-
ing provides a more accurate specification and also
postpones the point at which it must be finalised. The

reduced overall duration of the development process
makes planning easier, whilst the shorter period
between finalising the specification and delivering the
system allows less time for changes in external cir-
cumstances to dictate changes in the system.

Prototyping also allows final estimates of develop-
ment and execution costs to be deferred until after
the prototype is complete, at which point more will
be known about the users’ needs and the computer
resource requirements.

BENEFITS FOR THE INFORMATION SYSTEMS
DEPARTMENT

The development improvements brought about by
system building tools also provide benefits for the
information systems department. Because the tools
reduce both the effort and the elapsed time needed
to build (or enhance) an application, the department
will be able to meet users’ requests more quickly and
the user will be able to pay for more enhancements
and systems. Thus, at one extreme, system building
tools allow more systems to be developed for the
same cost. Alternatively, the tools enable the same
number of systems to be developed at a reduced
cost. In reality, most organisations will make a trade-
off between these two options.

Figure 1.1 Growth in applications systems base due to

the use of system building tools

Systems base

measured in Using advanced

function points system building
A tools

50,000 -

Using Cobol

\j

o G B B 3
Fioter | ov oy mrancn
i DULIEL ULUX PO gt

© Reproduction by any method is strictly prohibited

CHAPTER 1

Developing more systems

If the number of development staff is held constant
then the use of system building tools allows the total
number of systems developed to be increased dra-
matically. Figure 1.1 shows for a hypothetical infor-
mation systems department the total systems inven-
tory (measured in function points) and its projected
growth over a five-year period.

We have assumed that in the base year (Year 0) the
department spends 36 per cent of its budget on sys-
tems development, 12 per cent on maintenance and
enhancements and 52 per cent on running installed
systems. If the department continues to develop sys-
tems in Cobol it would add 10 per cent to its systems
base in the first year and slightly smaller increments
in subsequent years as extra resources have to be
found for maintenance. (We have also assumed that
all systems are replaced after five years of service.)

Figure 1.1 also shows the growth in the base of
installed systems if the department builds all its new
systems with advanced system building tools. Over
five years, nearly four times as many systems are
developed — an impressive increase compared with
the continued use of Cobol or PL/1.

The cost of running the greater number of systems
made possible by system building tools will, of course,
increase the total cost of running the department.

UNDERSTAND THE VALUE OF SYSTEM BUILDING TOOLS

Figure 1.3 Impact of system building tools on

departmental cost-effectiveness

Installed function
points per

$1,000 spent
A
104
Using system
building tools
Using Cobol
5]
0 T T T T — >
0 1 2 3 4 5

Figure 1.2 Total departmental costs if system building
tools are used to build more systems

Cost ($M)
Using advanced
A system building
G tools
5
Using Cobol
0 2 = i T] 1 >
0 il 2 3 4 5

Years

The Butler Cox Foundatior

© Reproduction by any method is strictly prohibited

Figure 1.2 shows that the cost of the continued use
of Cobol reduces slightly over the five-year period
because of the improving price-performance of com-
puter hardware. The figure also shows that, if sys-
tem building tools are used for all new development,
the total departmental costs increase by a factor of
more than 2.5. This increase reflects the larger num-
ber of systems developed and their lower machine
efficiency.

Nevertheless, the overall cost-effectiveness of the
department improves because the total costs rise
more slowly than the increases in the systems base.
Figure 1.3 shows the improvement in departmental
cost-effectiveness obtained by using system building
tools, measured by the number of installed function
points per $1,000 of expenditure in each year. Sys-
tem building tools provide this improvement because,
for this hypothetical department, the savings in
development and maintenance outweigh the extra
operational costs. This might not be the case either
if transaction volumes were especially high, or if
maintenance levels were particularly low, or if sys-
tems lasted on average for more than five years.

CHAPTER 1 UNDERSTAND THE VALUE OF SYSTEM BUILDING TOOLS

Reducing information systems costs

In view of the rapid cost increases shown in Figure
1.2 it may seem strange to suggest that system build-
ing tools can reduce costs. Nevertheless, cost sav-
ings can be achieved, provided that the tools are used
to provide the same guantity of systems as would
have been developed with Cobol (and provided that
it is no longer necessary to pay for staff for whom
there is no longer any work).

Figure 1.4 shows the comparative costs over time for
the same hypothetical information systems depart-
ment, but assumes that the same number of systems
are built in each case. As before, the department
rebuilds all its systems after five years of operation
and increases its systems base by 10 per cent in the
first year. In this case, the tools produce a 24 per cent
reduction in total costs at the end of five years. This
reduction is due entirely to the need for fewer
development and maintenance staff.

Thus, system building tools can provide significant
benefits for individual systems and for the informa-
tion systems department. Nevertheless, to make the
most effective use of such tools, their selection and
introduction must be carefully planned and managed.

Figure 1.4 Total departmental costs if system building
tools are used to build the same number of

systems

Total costs
(8M)
\

5

Using Cobol

——

Using advanced
system building
tools

1

Years

L2 DUle! WUX H

© Reproduction by any method is strictly prohibited

CHAPTER 2

DETERMINE THE OBJECTIVES FOR USING SYSTEM BUILDING TOOLS

System building tools are often sold, and sometimes
even evaluated, in terms of their technical charac-
teristics rather than the benefits they can provide. In
order to ensure that the tools chosen will provide the
greatest benefits, each organisation must first estab-
lish its objectives for using them.

Different tools are designed for use with different
hardware and software environments and for
developing different types of application. Thus a tool
that is appropriate for developing a management
information system may not be suitable for reducing
the cost of mainstream transaction processing sys-
tems. It is therefore essential to determine the sys-
tems environments in which the tools will be used and
the types of applications that will be developed with
them.

System building tools also provide the option of
rebuilding existing systems at an acceptable cost.
Another key objective to be determined therefore, is
whether a tool will be used to build only new systems,
to rebuild existing systems, or to maintain (and/or
enhance) existing systems.

This chapter shows how the objectives for using sys-
tem building tools may be determined. The objectives
for using system building tools, and hence the deci-
sion as to which tools should be selected, will depend
on five factors:

— Whether the current systems environment is a
suitable basis for the future.

—Whether the existing applications are a sound
basis for the future.

—The rate at which existing systems are expected
to change.

—The likely demand for additions to existing
systems.

—The likely demand for new systems.

Consideration of these factors will clarify objectives,
and also identify the constraints that the tools will
have to satisfy. (In the next chapter we explain how
to select tools that meet the constraints and are likely,
if they are used effectively, to meet the objectives.)

TheButler Cox Foundation

© Reproduction by any method is strictly prohibited

SUITABILITY OF EXISTING SYSTEMS
ENVIRONMENTS

We define a systems environment as a specific com-
bination of hardware architecture, operating system,
file or database management system, teleprocess-
ing monitor (where relevant) and development
process. Most substantial organisations now have
several distinct systems environments, and some
have as many as 20. Different types of application
system (operational support systems and manage-
ment support systems, for example) often are run in
different systems environments, and are sometimes
developed with different tools and procedures.

Thus a confectionery manufacturer runs its long-
established order-entry systems under CICS but its
sales information system for managers under IMS
DB/DC. There is also a VSPC service in the informa-
tion centre.

There may also be different software environments
for batch and online systems. For example, several
public utilities process batch systems on ICL equip-
ment using the DME operating systems, but use VME
for their online systems.

If the existing systems environment is an unsuitable
basis for future developments, especially those that
provide business advantages, it may be desirable to
move the systems to a different environment. It may
also be necessary to redevelop the systems.

An organisation therefore might decide to select sys-
tem building tools for use in its existing systems
environments, or it might replace (or supplement)
them with new environments that make the best use
of modern system building tools. To determine
whether to continue using an existing environment,
two guestions must be answered:

—Can the existing systems environment support the
general direction for future systems?

—What are the constraints on choosing a new sys-
tems environment?

CHAPTER 2 DETERMINE THE OBJECTIVES FOR USING SYSTEM BUILDING TOOLS

Can the systems environment support future
systems?

Amongst the developments that are affecting the
nature of systems in many organisations are:

—The growth in end-user computing.

— The growth in online managerial access to opera-
tional data.

—The integration of systems across business
functions.

—The growth in the use of systems by customers
and suppliers.

—The integration of systems at the point of use.

— The growth of inter-business data communications.

The relative importance of these developments varies
between organisations but, in our view, the majority
of large organisations will feel the impact of most of
them within the next five years. Many have already
done so.

Some of these developments can provide advantages
to the business — for example, by locking customers
into the product ordering and delivery systems. It is
therefore critically important for the information sys-
tems department to be able to support these
developments.

In our view the growth of user access and manipula-
tion of data is the most important single trend in data
processing. In most organisations this is mainly con-
fined to distinct information centre environments,
based on copies of live databases and constrained
by resource problems. By 1990, in many organisa-
tions, these constraints will have ceased to be toler-
able. It will therefore be necessary for the same sys-
tems environment to support both operational
systems and user access and manipulation.

The importance of decision-support databases (that
is, systems optimised for flexibility and access rather
than machine efficiency) is already clear. And, in
some organisations, these databases are already
being used both for transaction processing and
management information systems. We expect this
trend to continue as machine efficiency is progres-
sively traded for human effectiveness, specifically the
effectiveness of users and application developers.
Decision-support databases will increasingly replace
older databases as the basis for operational systems
in the same way that those databases have replaced
serial files. ?

The systems environment may either assist or impede
the changes required in the nature of information sys-
tems. For example:

— Managerial access to operational data will be
eased if there is a suitable query facility, if data
structures correspond to managers’ views of the
business, if there is an online data dictionary and
if there is a facility to transfer data to a suitable
personal computer or workstation.

— Inter-business data communications will be eas-
ier to introduce if data complies with the relevant
industry-specific standards and if the telecommu-
nications software supports the appropriate pro-
tocols.

What are the constraints on choosing a new
systems environment?

The constraints on the choice of a new systems
environment may be due either to external policy or
to the need for compatibility with existing systems.
Moreover, an orderly move to a hew systems environ-
ment will usually require some applications to be
rebuilt in the new environment. Not only does this
requirement increase the cost of installing a new
environment, it may also require a temporary ban on
system enhancements. Because these issues relate
directly to applications we discuss them in the next
section (on page 7).

External policy constraints

Some information systems departments are freg, in
consultation with their immediate customers, to make
their own decisions on systems environments. Others
are subject to external controls. In the public sector
such restrictions usually originate with an elected
council or politically appointed board or with the
government. The restrictions are usually imposed in
an attempt to stimulate or support indigenous pro-
ducts and suppliers.

In the private sector the constraints are more often
due either to a central policy imposed by a corporate
head office or to the deep scepticism felt by many
senior managers of the ability of anyone except IBM
to build computers or manage ‘convergence’.

It is possible, if the arguments are really good, to get
such policy constraints changed, but this is always
a slow and laborious process. In general, it is prob-
ably best to accept the constraints unless it becomes
clear, after attempting to choose suitable system
building tools, that there is no suitable tool for the
prescribed systems environment.

Compatibility with existing systems

Although the new systems environment may be
greatly superior to the existing one, the present data-
bases and systems will continue to be used for some
time (possibly for several years). During the transi-
tion period there will be a need for some compatibil-
ity between the old and new environments, specifi-
cally in the areas of data access and/or terminal
communications.

© Reproduction by any method is strictly prohibited

CHAPTER 2 DETERMINE THE OBJECTIVES FOR USING SYSTEM BUILDING TOOLS

If the existing systems are large and monolithic it may
be necessary to phase the transfer to the new
environment, but impossible to transfer the old data-
base in parallel. In this situation, the new environment
will have to allow systems to access the old database.
At present this usually means using the same com-
puter, and this could restrict the choice of a new sys-
tems environment, which in turn could impose unac-
ceptable restrictions on the choice of system building
tools.

Ideally, the same terminal should be able to access
applications running in both the old and new environ-
ments. Thus, the old and new environments should
allow similar screen formats and function-key con-
ventions to be used.

SOUNDNESS OF EXISTING APPLICATIONS

If the existing applications are seriously unsound it
may be necessary to rebuild existing systems to new
designs. If systems have to be rebuilt, it will usually
be sensible to do so in a new systems environment
in order to obtain the benefits of increased produc-
tivity and greater flexibility.

The key questions to be considered are:

—Are the existing systems fit for their purpose?
—Can you afford the costs of rebuilding systems?

—Can you justify the time required to rebuild exist-
ing systems?

If the decision is taken to rebuild some (or all) of the
existing systems, high-productivity tools should be
chosen together with a systems environment that pro-
vides adequate flexibility for the future.

An element of risk is inevitable in any major systems
development, and the use of new development tools
in a new systems environment will certainly increase
the risk. It can be reduced by choosing products that
have been proven in organisations like your own but,
beyond that, the risk has to be balanced against the
costs and benefits.

Are the existing systems fit for their purpose?

Many organisations are still running systems that only -

partly meet the business needs, but which would
demand a prohibitive amount of time and effort to
rewrite. Of 20 senior systems executives from large
organisations who replied to a Butler Cox guestion-
naire in the autumn of 1984, two-thirds said that they
would make their systems “largely or radically differ-
ent” if they were able to start again from scratch.

If the systems are inadequate it is clearly desirable
to replace them with satisfactory ones. By reducing

Tha T Fen e T
| De puter Lox 0

©® Reproduction by any method is strictly prohibited

MNCalan

e

the time and effort required for systems development,
system building tools, used in a new systems environ-
ment, may make this possible.

Can you afford to rebuild existing systems?

Even if existing systems are clearly inadequate, the
costs of rebuilding them with conventional tools may
be prohibitive. But system building tools may make
it possible to rebuild systems at much lower costs.
Savings of 80 per cent or more compared with con-
ventional tools are quite possible, and can be
obtained for maintenance and enhancements as well
as for new developments.

No system lasts indefinitely, so the decision to rebuild
using system building tools may be seen as bringing
forward the rebuilding date, rather than as a com-
pletely new cost.

Even so, rebuilding substantial systems is a costly
undertaking, and the most important costs may be
lost opportunity costs. Separate decisions must there-
fore be made for each system or group of systems.

The expected rate of change to existing systems also
has a material effect on the decision whether to
rebuild (see below).

Overall, for most organisations, we believe that the
rebuilding of applications cannot usually be justified
on cost savings alone. The costs may be acceptable,
however, if there are other benefits such as greater
flexibility or ease of use.

Can you justify the time required to rebuild
existing systems?

Converting all the existing systems to a new systems
environment is a daunting prospect. Not only is it
expensive, it is also likely to require a temporary ban
on enhancements, which may be unacceptable to
users.

Using system building tools will often allow systems
of up to 1,000 function points to be rebuilt by five
people in six months. In many organisations a six-
month ban on amendments will be acceptable to
users, especially if the resulting system will include
some enhancements. The size of systems that can
be rebuilt is therefore related to the longest period
of time for which users can be persuaded to accept
a ban on enhancements. The larger the system,
the longer the ban, and the less likely users are to
accept it. -

RATE OF CHANGE TO EXISTING SYSTEMS

Maintaining and enhancing existing systems is a
major part of the work of almost every information

CHAPTER 2 DETERMINE THE OBJECTIVES FOR USING SYSTEM BUILDING TOOLS

systems department. The maintenance level usually
depends on the size of the system being maintained,
on its guality, and on the rate at which the users’
requirements change. Allen Albrecht provided
delegates on the 1983 Butler Cox Foundation Study
Tour with data that showed the annual maintenance
level in IBM in 1980 was about 30 minutes per func-
tion point.

Another measure, the one that we will use in this
report, is the ratio of annual maintenance cost to
development cost (ignoring inflation). The IBM figures
imply a ratio of about two per cent, much lower than
is usual in Europe, where five per cent and even 10
per cent are not uncommon. For the purpose of this
analysis the division between systems maintenance
and systems enhancement is not significant. We will
distinguish, however, between changes and additions
to existing systems. (Additions are discussed in the
next section, beginning on page 9.)

Changes may be required either to correct errors or
to amend the system to meet changed user require-
ments. Additions are almost always enhancements,
consisting of new reports and new transactions, but
not additional processing for existing transactions.
The reason for making this distinction is that it is
usually possible to find system development tools that
provide substantial benefits in adding new reports and
transactions to existing systems, but it is more difficult
to find tools that are effective for making changes to
systems originally developed with conventional tools.

In most organisations, corrections and small improve-
ments are subject to some kind of overall budget limit.
Larger improvements may be subject to separate
justification exercises. In general the rate at which
changes are made can, to a considerable extent, be
controlled by the information systems department.
The way in which this control is exercised reflects
the department’s priorities. Some departments dis-
courage changes in order to increase the resources
available for new development.

If the rate of change for a system is expected to be
high, it may be possible to reduce the cost of main-
tenance by rebuilding the system with advanced sys-
tem building tools. If a system is redeveloped using
advanced tools then the maintenance costs, includ-
ing the costs of changes, will be reduced as well, the
productivity improvement factor being similar to that
obtained for original development. Against this sav-
ing must be set both the cost of redevelopment and,
usually, additional operating costs.

Every organisation has its own rules for such evalu-
ations. We have performed some calculations to
investigate the trade-off between lower maintenance
costs and higher operational costs for tools giving a
four-fold productivity improvement.

Figure 2.1 Maintenance versus operating cost trade-off
for system rebuilding with a tool giving a

four-fold improvement in productivity

Annual maintenance
cost as a percentage
of original development
cost (assuming zero

inflation)
A
Rebuild using
30% tsg(os;tem bmld\mg

0/ -1
20% Keep the existing system

D . L
0 25I“/u 559/0 75—;) i

Annual operating cost as a percentage of development cost
(assuming conventional tools and methods)

The results are shown in Figure 2.1. In performing
the calculations, we have used discounted cashfiow
with a 10 per cent discount rate over five years. We
have assumed that operational costs fall by 10 per
cent per year, and that systems built with system
building tools cost 30 per cent more to run than those
built with Cobol.

Figure 2.1 shows that, even for a system with low run-
ning costs, rebuilding is only cost-justified for moder-
ately high maintenance levels (above about 10 per
cent). The implication is that, for typical levels of
change and operating costs, rebuilding systems will
not be cost-justified. (Rebuilding could be justified
over a longer period or if the tool gave either a greater
increase in productivity or a smaller increase in run-
ning costs.)

Nevertheless, there are organisations that have many
old systems and a high maintenance workload. In
April 1985, for example, the United States Office of
Manpower and Budget specified a 25 per cent reduc-
tion in government computing through the use of sys-
tem building tools. Departments were instructed to
replace old systems.

Where rebuilding is not justified, the maintenance
task may be eased somewhat by using a data dic-
tionary to identify where changes need to be made
and by using development workbenches. There may
also be scope for systematic improvement of the
existing systems by appropriate planned maintenance
and techniques such as structured retrofit. Because
our research has concentrated on development,
rather than maintenance, we will not discuss these
technigues further.

[he Butier Cox Foundation

@)

) Reproduction by any method is strictly prohibited

CHAPTER 2 DETERMINE THE OBJECTIVES FOR USING SYSTEM BUILDING TOOLS

ADDITIONS TO EXISTING SYSTEMS

In most organisations it is often necessary to extend
systems, in the existing systems environment, by
adding new transactions and reports. Tools that may
be used for such additions are available for most sys-
tems environments. Nevertheless, when deciding
whether to use advanced system building tools in this
way, a trade-off has to be made between the addi-
tional operational costs and the savings in develop-
ment effort. High development productivity and
acceptable operating costs are most usually achieved
with reports and online queries.

Figure 2.2 shows the circumstances in which extra
operational costs due to the use of advanced system
building tools will be less than the savings in develop-
ment costs. Again, we have used discounted cash-
flow over five years with a discount rate of 10 per
cent, and we have assumed that improved hardware
price/performance reduces operational costs by 10
per cent per year.

The figure clearly shows that system building tools
are usually appropriate for additions. Our analysis
indicates that it will almost always be less expensive
to use advanced system building tools for additions
to existing systems. Indeed, we regard the develop-
ment of queries and reports in conventional langu-
ages as now justified in only the most exceptional cir-
cumstances, where the function is used intensively
by many people, for example, or where highly com-
plex processing is essential.

Nevertheless, it is important to systems’ users that
existing transactions can be mixed with transactions
built with the new tools. Even if a system building tool

Figure 2.2 Trade-off curve for system enhancements

Relative increased
operational cost

incurred by using
advanced system

building tool
4\
2 -
Use conventional tools
1
Use advanced system
building tools
T T T T T T T | =
0 100% 200%

Annual operating cost as a percentage of development cost
(assuming conventional tools and methods)

Tha R tlor A BErmidstnm
| NE pUler LOX roundanc

© Reproduction by any method is stricily prohibited

can interface with the existing systems environment
(IBM’s CICS and DL/1, for example) it may not be
compatible with existing applications running in that
environment.

The new system building tool should also be able to
produce screen formats that comply with the stan-
dards used in existing systems, and should allow
function keys to be used in a uniform way across a
mixed set of transactions. It is also desirable that a
system built with the new tool should be able to use
existing modules and transactions.

System building tools may be used to increase the
number of additions to existing systems rather than
reduce the cost of making additions. In this situation
it will be necessary to consider whether the organi-
sation can assimilate and make good use of the new
functions at the rate at which they can be delivered.
We will return to this issue in the next section, where
we discuss the demand for new systems.

THE DEMAND FOR NEW SYSTEMS

System building tools are most effective when they
are used for developing new systems. In some organi-
sations the new systems required are not closely
linked with the existing systems base. In this situa-
tion it may be best to use a new systems environ-
ment with advanced system building tools for
developing the new systems. When deciding on which
systems environments to use, and in determining the
criteria for selecting tools for use within those environ-
ments, it is necessary to consider both the nature and
likely volume of new systems. The following questions
arise:

—How many new systems does the organisation
need during the next few years?

— Are the new systems closely related to existing
systems?

—Is the introduction of new systems likely to be seri-
ously constrained by budget limitations?

—Can the organisation assimilate and exploit new
systems as fast as system building tools enable
them to be produced?

How many new systems does the organisation
need?

Almost every organisation has a known backlog of
applications. In addition, there is usually a hidden
backlog of applications that managers would like but
which they do not request because they believe that
the information systems department cannot provide
them sufficiently quickly (or at a price) to make them
useful. If conventional development methods continue

CHAPTER 2 DETERMINE THE OBJECTIVES FOR USING SYSTEM BUILDING TOOLS

to be used, therefore, the amount of systems devel-
opment that needs to be done over the next few
years will continue to exceed the resources avail-
able to do it.

Are new systems closely related to existing
systems?

In some organisations all the systems use a few key
databases and any new systems must also access
those databases. In these cases new systems should
be considered in a similar way to additions; they may
be provided by using system building tools in the
current systems environment.

In other organisations systems are not closely linked,
and in most organisations there are some systems
that are not closely linked to the mainstream systems.
Examples include personnel systems in a retail
organisation and fixed asset systems in most organi-
sations. In selecting tools with which to build such
systems, the existing systems environment is not a
limiting factor.

Indeed, the mainstream systems environment may
have been chosen for its stability, network manage-
ment features and ability to handle large volumes of
data. If there are new systems that do not require
these features, but do need end-user computing facil-
ities and high development productivity, then a new
systems environment may be chosen. This approach
has been extremely successful for some organi-
sations:

—The Santa Fe Railway was an IBM user but used
Sperry's Mapper to build a real-time control sys-
tem for its operations. It still prefers IBM for some
corporate systems, however.

—A large retail organisation was an ICL user, but
now builds all its online systems on minicomputers
running the Pick operating system.

New systems environments will also usually be
preferable when developing new kinds of systems
such as computer integrated manufacturing,
decision-support systems and office systems.

Will the introduction of new systems be restricted
by budgetary limitations?

Some information systems departments can install
any systems environment and build any application
that the customer will accept and pay for. Others are
subject to overall budgetary constraints that are often
set by an essentially political process without refer-
ence to the value of particular systems. In many large
organisations, such limits are applied much. more
strictly to capital than to revenue budget items.

Though troublesome and frustrating to information
systems managers, such limitations may actually be

10

in the best interests of the business. Research in the
PIMS MPIT programme of the Strategic Planning
Institute shows that, for companies with an inferior
strategic position, additional expenditure on informa-
tion systems may reduce managerial productivity
and, hence, profits. (These results were given by Gus
van Nievelt at the Foundation conference held in The
Hague in May 1984.) We do not believe that such
counter-intuitive results are restricted to commercial
organisations — they doubtless also apply, with
appropriate modifications, in non-profit organisations.

In other organisations, however, it appears that
budget limitations come about because of a failure
of nerve. In essence, senior managers, and, some-
times, information systems managers, simply do not
believe the things they say about the benefits of com-
puter systems. If the information systems department
is competent, senior management should be pleased
to see its costs rise because the benefits to the
business will also be rising.

Can the organisation assimilate many more new
systems?

The ability to deliver many more new systems is only
valuable if the business needs, and can assimilate,
new systems. This is a question that must be
answered individually by each organisation. Neverthe-
less, our view is that most European businesses make
less use of computer systems than they should do,
because:

— Implementation lead-times discourage managers
from asking for systems.

— Development costs are too high.

— Business (and information systems) managers are
too preoccupied with introducing basic systems to
give attention to the strategic systems that could
really enhance their businesses.

Advanced system building tools can help to overcome
the difficulties of assimilating new systems, because:

— Many system building tools make it easy to build
prototypes that help business managers to con-
sider various options.

—Some system building tools can be used to pro-
vide end-user computing facilities. Accessing and
manipulating data makes managers more aware
of, and more able to utilise, the data that already
exists.

Information systems staff can also help by encourag-
ing new and more positive attitudes to systems, and
by providing appropriate training. Nonetheless, the
best way of developing the requisite awareness is by
involving users through prototypes and end-user
computing.

©) Reproduction by any method is strictly prohibited

CHAPTER 2 DETERMINE THE OBJECTIVES FOR USING SYSTEM BUILDING TOOLS

Another important factor in motivating the business
to make more (and better) use of systems is the
extent to which computer systems are used in run-
ning the information systems department. If the
department is seen to be making effective and
productive use of systems, then the rest of the busi-
ness will be more inclined to use systems as well.

SUMMARY

In this chapter we have discussed several options for
the future of information systems, some of them quite
radical. In so doing, we have considered issues rang-
ing from overall strategy to detailed cost accounting.

T T e
12 BUHED LOX FOUNd4alK

© Reproduction by any method is strictly prohibited

Although it is not usually possible to provide a direct
cost-justification either for a programme of system
replacement or for a move to a new systems environ-
ment, we believe that these are options that all com-
puter users should consider very seriously. Many of
the most successful computer systems, the kind that
people talk about at conferences, originated from a
change to a new systems environment.

Today, many installations are hemmed in by systems
and software that they feel obliged to keep but would
rather be without. Advanced system building tools
provide a way out of this dilemma. But it requires
determination to follow this route.

11

CHAPTER 3

CHOOSE THE APPROPRIATE SYSTEM BUILDING TOOLS

Having first determined the reguired system environ-
ments and the objectives for using system building
tools within those environments, the next stage is to
select the appropriate tools. Hundreds of system
building tools are now available from scores of sup-
pliers. Within the scope of this report it is not possi-
ble to discuss them all separately, and so we have
divided them into five types:

— Incremental aids.

— Data dictionaries.

— Development workbenches.
— Discrete tools.

—Integrated toolkits.

We use the term ‘advanced system building tools'
(ASBTs) to indicate discrete tools and integrated
toolkits. (Our rationale for this classification is given
in Appendix 2.) We now describe briefly each of the
five types.

Incremental aids

We describe tools that provide a single function as
‘incremental aids’. Examples include flowcharters
and test harnesses. Typically these tools are used in
only one stage of the development process and, by
themselves, would not be sufficient to develop a com-
plete system.

Data dictionaries

Data dictionaries are usually based on proprietary
software products and are used to provide a meas-
ure of consistency throughout the development
process. A typical example is MSP's Datamanager.

Development workbenches

Examples of development workbenches include
Philips Maestro, IBM’s CMS, ICL’s Program Master,
the Unix Programmers’ Workbench and Burroughs'
PROFS.

Discrete tools

Many system building tools have been desigried for
constructing only one or two specific types of pro-
gram, and we refer to these as discrete tools. We
identify four types of discrete tools, corresponding to

12

the four types of program that may be found in a data
processing system (batch updates, batch reports,
online updates and online reports). Thus discrete tools
are classified as:

— Batch update tools (although there are not many
of these).

—Report writers, such as Mark IV.

—Teleprocessing development systems, such as
Oxford Software’s UFO and Pansophic’s Gener/ol.

—Query processors, such as ASI’s Inquire.

Integrated toolkits

Integrated toolkits differ from discrete tools in hav-
ing their own file definition mechanisms (or data dic-
tionary) and often their own database management
systems as well. Also, they are usually applicable to
at least three of the four types of program mentioned
above. Examples include Cincom’s TIS, Microdata's
All, Burroughs’ Linc, Information Builders' Focus,
NCSS's Nomad and Mathematica's Ramis.

The process of selecting the appropriate tools is best
done by following four steps:

—Identify the tools that meet the constraints.
— Narrow the field.

—Evaluate the shortlisted tools.

—Select the most appropriate tools.

Initially, the best tools for a single systems environ-
ment are selected, but the final step also considers
the tools selected in the wider context of the whole
systems department.

IDENTIFY THE TOOLS THAT MEET THE
CONSTRAINTS

For many systems environments, only a few system
building tools are available but, in general, IBM users
have a much wider choice of system building tools
than users of other mainframe computers, and DEC
users have a wider choice than users of other
minicomputers.

ErE e CR R - LU
HHEDURED LUA TUUN Eatiol

© Reproduction by any method is strictly prohibited

CHAPTER 3

Figure 3.1 System building tools with a good reputation

Application area | Product

Operational systems | Linc

All

UFG - rd Software

Generfol |Pansophic
| Applications Master |ICL

Managerent infor-

Focus trfiiqrr:ﬁaﬁon’ﬁuildé’{s
mation and decision | Nomad NEBSIT
support systems Ramis | Mathematica
User-controlied Mapper

Sperry .

operational systems

The ideal starting point for a selection exercise is for
there to be no constraint, so that the system build-
ing tool that best meets the objectives can be chosen.
The ideal tool necessarily depends on the applications
requirements, making it impossible to generalise as
to what the best products are. Nevertheless, we have
several products that have recently won competitive
evaluations or helped specific users to achieve
impressive results. These systems are listed in Figure
H

It will usually not be possible to make a completely
unconstrained choice, however, because the tools
selected will need to meet at least one of the follow-
ing requirements:

—The tools must produce applications that can co-
exist with existing applications.

—The tools must run on existing computers.

— The tools must produce systems that can commu-
nicate with existing systems or terminals.

Compatibility with existing applications

The highest degree of compatibility with existing appli-
cations will be obtained by continuing to use the cur-
rent programming language. This has the further
advantage that operational efficiency need not be
reduced. In this case, the possible tools are develop-
ment workbenches, incremental aids and data dic-
tionaries. Some, at least, may already be in use in
the information systems depariment. Others, notably
workbenches, are compatible with several different
host computers.

A lesser, but often quite adequate, degree of com-
patibility may be obtained with discrete tools — that
is, tools that can be used with standard systems
environments. The range of discrete tools available
depends on the systems environments currently
being used. Many IBM mainframe users, for exam-
ple, run most of their online systems under CICS. For
CICS systems that are to access DL/1 databases
there are a variety of discrete tools available includ-
ing UFO, Mantis and Gener/ol.

TheButler Cox Foundation

© Reproduction by any method is strictly prohibited

CHOOSE THE APPROPRIATE SYSTEM BUILDING TOOLS

For IBM mainframe users with non-standard
teleprocessing monitors or database management
systems, or for users of non-IBM compatible main-
frames, the choice is much more restricted. Indeed,
there may be only one or two tools that are compati-
ble with the existing systems environment. In the case
of the ICL 2900, for example, the only teleprocess-
ing development systems appear to be ICL's Appli-
cations Master and Cincom’s Mantis. For some of the

more unusual systems environments there is no tool
at all.

For minicomputers there is a wide range of tools
for DEC machines and a much narrower range for
other minicomputers. Some minicomputer operating
systems have features that help with system con-
struction, however — the best known being the IBM
System 38 operating system, Unix and Pick. Develop-
ment with one of these operating systems will
typically be two or three times as fast as equivalent
mainframe developments in a standard language.

Suitable tools for microcomputers are even scarcer,
but the requirement for compatibility with existing
applications is also less common.

Compatibility with existing computers

The need for system building tools to be compatible
with existing computers imposes fewer constraints
than those discussed above because it does not
require compatibility with existing applications and
software. Thus, for example, an Adabas user with this
need might consider ADF and Mantis, though both
are incompatible with Adabas and hence with the
existing applications.

Also, once the requirement to run under a conven-
tional teleprocessing monitor and database manage-
ment system is removed, the integrated toolkits that
are available for the particular hardware environment
can also be considered (see Figure 3.2).

Figure 3.2 Some integrated toolkits available for
particular hardware environments

13

CHAPTER 3 CHOOSE THE APPROPRIATE SYSTEM BUILDING TOOLS

These toolkits often provide higher development
productivity than the discrete tools required for com-
patibility with existing applications. This is because
they address a wider range of systems and, usually,
more of the development stages. They also reduce
the effort involved in passing between development
stages or between batch and online operations — a
process that often requires great effort.

As with the discrete tools and incremental aids, the
choice of integrated toolkits is greatest for IBM and
DEC users.

Ability to communicate with existing systems or
terminals

Occasionally, system building tools will be used to
develop systems that are completely independent of
existing systems. More commonly, however, there will
be a need for the new systems to communicate with
existing systems or terminals, because:

—Developers may need to access both the old and
new systems environments, preferably using the
same terminals.

— Users may need to access both old and new sys-
tems and, again, they may need to use the same
terminals.

—Systems built with the new tools may need to
access existing systems, possibly to extract data.

A considerable degree of de facto terminal standardi-
sation now exists, and many computers support
ASCII, 2780 and 3270 terminal protocols. These pro-
tocols can therefore be used to provide systems run-
ning on a new computer with access to existing sys-
tems, provided that extra software is written to
interface with the existing applications. If this
approach is acceptable then the communications
requirement need not greatly restrict the choice of
tools. It will, for example, be possible to use a
minicomputer with, say, Pick in what is otherwise a
mainframe installation.

The need for terminals to access both old and new
systems environments can often be met by adopting
a standard terminal and using telecommunications
switching technigues (although protocol conversion
may also play a part).

In each case the constraint will not be too restrictive
if the existing system supports one of the standard
terminal protocols. If, however, the existing system
supports only some unusual, probably proprietary,
protocol then there may be few systems environ-
ments, except those provided by the original supplier,
that meet the constraint, and the choice of system
building tool will be restricted accordingly.

14

NARROW THE FIELD

The purpose of this second step is both to restrict
the number of potential products to be evaluated and
to provide information for the evaluation. We have
divided this step into two activities:

—The one-day test.
— Detailed study.

If only a few possible system building tools have been
identified in the first step then the first activity may
be omitted.

The one-day test

The one-day test was devised by Scaffolding (GB) to
enable a list of 20 possible system building tools to
be reduced to a shortlist of two for detailed
evaluation.

To carry out a one-day test, a specification for a small,
but real, system is prepared. Each supplier is then
challenged to implement as much of the system
as possible in a day whilst you observe. If any
specific facilities or kinds of complexity are of par-
ticular interest, these should be included in the
specification.

By focusing on the organisation’s needs, rather than
the strengths of the tool, you will rapidly come to
appreciate the real value and limitations of the tool.

Usually it will become apparent that some system
building tools are very unreliable, whilst others are
difficult to use for your applications. You should there-
fore be able to construct a shortlist for further study.
We recommend that the shortlist should contain no
more than four products.

Detailed study

Each of the shortlisted products wiil then be studied
in detail by:

— Arranging for the suppliers to make presentations
about the product.

—Allocating development staff to become thoroughly
familiar with the capabilities of the tools.

—Using the tools to construct further test systems.

— Simulating system maintenance and enhancement
activities.

— Considering the operational implications of adopt-
ing the tools.

For each tool you should seek to provide data for the
next stage — evaluation. Special attention should be
paid to the way in which the tool handles complex
situations, because this is the area in which many

| ne Butier Lox Houndation

© Reproduction by any method is strictly prohibited

CHAPTER 3 CHOOSE THE APPROPRIATE SYSTEM BUILDING TOOLS

otherwise valuable tools prove inadequate, or even
counter-productive.

EVALUATE THE SHORTLISTED TOOLS

Each of the shortlisted system building tools (or set
of tools) should now be evaluated under the follow-
ing four headings:

— Implications for systems development.
— Impact on systems lifecycle costs.

— Deficiencies of the tool.

— Future prospects for the tool and its supplier.

Implications for development

The implications of using a particular system build-
ing tool for systems development should be assessed
in five ways:

— Applicability: Can the tool be used to build the kind
of systems that are needed now and will be needed
in the future?

— Productivity: Is system development really faster
than with existing tools and techniques? |s main-
tenance faster? By how much?

— Usability: Who can use the tool? Does it provide
features for users, even end users, or is it usable
only by professional developers?

—Compatibility with the current development
process: Will the tool fit in with existing tools and
methods? Does the tool allow new methods to be
used?

— Impact on existing skills: Does the tool require
developers to acquire new skills? Does it make
existing skills obsolete?

In each case the assessment must be made on the
basis of the practical experience gained in the previ-
ous step, rather than on theories about which fea-
tures are the most valuable.

Applicability

Some system building tools can be used only for sim-
ple systems or for specific types of systems. The best
tools, however, can be used for almost as wide a
range of data processing systems as can Cobol and
PL/1. The following examples confirm that large, com-
plex and critical systems can be built using advanced
system building tools:

—The whole operation of the Santa Fe Railway is
controlled by a system developed with Mapper.
This system runs on four Sperry mainframes, has
67G bytes of storage and supports 2,200 terminals
and printers.

TheButler Cox Foundation

© Reproduction by any method is strictly prohibited

— At Morgan Stanley, New York, most of the tele-
processing systems on a multi-mainframe con-
figuration with 122G bytes of storage are deve-
loped in Natural.

—At Electricité de France no Cobol has been writ-
ten for several years, and all development is now

carried out using program generators developed
in-house.

Nevertheless, even the best system building tools
have their limitations. For example:

— ADF uses its own peculiar screen formats.

— Focus has no transaction or file recovery functions
(although these features are promised for
mid-1985).

—Gener/ol has no batch capability.

— Mapper is unsuitable for large and complex data-
bases, such as bill-of-materials.

__Powerhouse systems can be very inefficient.

—UFQO has poor security features.

But these limitations can be circumvented. Thus, ADF
can be modified to produce different screen formats,
a security system can be written in Cobol and called
from UFO, and recovery features can be added to
Focus systems. The costs of overcoming such limi-
tations must be included when calculating the over-
all productivity improvement provided by the tool. In
addition, the risks of using a non-standard version of
the tool must be considered.

Productivity

The productivity that can be obtained with various
system building tools varies greatly. Figure 3.3 gives
some of the values for productivity that we have
measured, or that have been published elsewhere,
for a selection of advanced system building tools.
Equivalent values are given for the more commonly

Figure 3.3 Productivity figures for some system building
tools

15

CHAPTER 3 CHOOSE THE APPROPRIATE SYSTEM BUILDING TOOLS

used programming languages. The figure illustrates
that the best integrated toolkits can be ten times as
productive as Cobol or PL/1.

It is more difficult to give productivity figures for work-
benches, partly because the relative improvements
are much smaller. For example, the experience of the
most advanced users of Maestro, some of whom now
have several years’ experience, indicates an improve-
ment of between 10 and 20 per cent. The improve-
ment would presumably be greater with a workbench
that, unlike Maestro, could support compilation and
interactive testing, in addition to providing good text
handling facilities. We are not aware of any such
product and, even if one existed, we would not expect
the improvement to exceed 25 per cent — thus,
productivity might be increased from 0.35 to 0.44
function points per man-day.

We believe that no single incremental aid is likely to
provide a productivity improvement of more than a
few per cent. Research by Barry Boehm at TRW sug-
gests that a set of such aids can increase develop-
ment productivity by no more than about 10 per cent.

The high productivity of integrated toolkits is due to
five key features:

—The languages used to describe data or define
processes are much less oriented to the computer
than are conventional programming languages.

— The developer has to deal only with a limited num-
ber of languages or subsystems, and these present
consistent human interfaces.

— Meta-data (descriptions of files, records and pro-
grams) can be defined once and are then automat-
ically passed between the various tools, usually via
a data dictionary.

— The tools operate interactively, both in helping the
user to define his needs and at the coding and test-
ing stages.

— Analysts can use the tools to develop programs,
and therefore no longer need to waste time in writ-
ing detailed specifications for programmers.

None of the other types of system building tools pro-
vides all of these five key features, as Figure 3.4
shows. Teleprocessing development tools usually do
not provide meta-data definitions, are not suitable for
use by analysts and may actually increase the num-
ber of languages a programmer must learn. Thus, if
a system has batch and online elements a program-
mer will probably be needed both to write the batch
parts and to link them with the online parts.

The relatively poor productivity improvement obtained
from the use of workbenches reflects the fact that
workbenches generally provide only one of the key
features — interactive operation. Nevertheless, they
do provide support for management activities and for
documentation. Although these features are useful,
they are secondary as far as improving development
productivity is concerned.

The limited value of workbenches was captured, inad-
vertently, by one workbench designer who described
programmers’ work as “‘essentially being concerned
with text handling”. This is rather like describing a
pianist as “essentially being concerned with pushing
piano keys''. Whilst true, it misses the point. The real
basis of programmers’ work is logical structures —
both for data and procedures. Substantial improve-
ments in development productivity will be produced
only by tools that assist in defining and manipulating
these logical structures.

An example of a development system that produces
program source code, but does not assist directly

Figure 3.4 System building tool features influencing productivity

Type of system building tool

Teleprocessing _ Line editor, Cobol
Feature Integrated toolkit development system Workbench compiler, JCL, ete.
High-level language Yes Yes No No
Limited set of languages Yes To some extent No No
Meta-data definitions Yes Usually no No Yes!
Interactive use by developers Yes Yes Yes No
Usable by analysts Yes No No No
Supports management activities No No Sometimes No
Supports documentation No No Yes No

1Only if data dictionary is used.

16

© Reproduction by any method is strictly prohibited

CHAPTER 3 CHOOSE THE APPROPRIATE SYSTEM BUILDING TOOLS

with logical structures, is the Delta toolkit. Its produc-
tivity approaches, but does not reach, that of the dis-
crete and integrated toolkits (see Figure 3.3).

Another reason for the relatively low productivity of
workbenches is that, because they are aimed prin-
cipally ‘at programmers, they have to be accommo-
dated within conventional development disciplines.
Thus, prototyping and integrated development are not
supported by workbenches, and the use of work-
benches may actually preclude the use of the
advanced tools needed for prototyping.

Usability

The range of people who can use a system building
tool depends both on the tool and on the function for
which it is to be used. Thus, managers can be taught
to use the reporting functions of Mapper or Focus in
a few hours, but may be unwilling to accept the longer
tuition needed to use the more sophisticated
functions.

In general, end users can master online query lan-
guages and report writers, whether provided as dis-
crete tools or as parts of integrated toolkits. But allow-
ing users access to these tools often generates
substantial, and largely unpredictable, machine loads.
Although technical solutions to this problem exist,
most tools do not use them.

Rather more training is required before end users can
define their own files and write their own applications
using integrated toolkits. Probably only a minority of
users will ever make the effort needed to master sys-
tems such as Mapper and Focus, but the develop-
ment of intelligent pre-processors (such as Informa-
tion Builders’ Fidel) is enabling users to achieve these
results without mastering the full toolkit.

In our view, it is unlikely that even the most advanced
system building tools will allow ordinary users 1o
develop substantial transaction processing systems.
Although users can be given the required skills, as
has been done extensively at Santa Fe Railway, what
this does is to convert them to programmers.

Discrete tools, such as UFO and Gener/ol are usually
too complex to be used effectively by anyone other
than a data processing professional, preferably a
programmer. Workbenches can generally be used
only by data processing professionals and are really
effective only when used by programmers.

Most incremental aids are aimed exclusively at data
processing professionals.

Compatibility with the current development
process

All types of system building tools can be used with
the conventional development process. Workbenches

TheB

= D
8 =2 D,

Ltler Cox Foundation

© Reproduction by any method is strictly prohibited
P y any y P

and incremental aids, however, can only be used in
this way, which presumably is the reason for the
recent popularity of development workbenches. In
general, workbenches emphasise the traditional divi-
sion between analysts and programmers.

Discrete tools can generally fit into the traditional
development process, but some of them also support
prototyping. Integrated toolkits can be used with a
conventional development process but they produce
better results with a new development process based
on prototyping, analyst-programmer teams and
reduced documentation levels. (We shall discuss this
further in Chapter 4.)

Impact on existing skills

The introduction of any new tool requires developers
to learn a new language, and often a new set
of underlying concepts. In the case of an inte-
grated toolkit it may be necessary to learn several
new languages — one for data definition, one for
online transactions, a variant for batch processes,
and a report writer. It is not unusual for conven-
tional programmers already to have to master eight,
or even a dozen, different computer languages. If the
new tool simply adds to this number it will increase
the dependence on technical skills and reduce
flexibility. The skills impact of a tool depends on
whether it can replace existing tools (at least for
most applications) and, if so, whether it will be used
in this way. The former will have been established
when the selection criteria were determined; the
latter depends on the way in which the introduction
of the new tool is managed. We shall return to this
topic in Chapter 6.

We expect that incremental aids and workbenches
will increase the technical content of the developer’s
job. Incremental aids are almost always used in addi-
tion to existing tools and, if several are to be used,
they generally do not use the same concepts or have
consistent user interfaces.

Discrete tools require developers to acquire new
skills, although these tools may mitigate the deficien-
cies of conventional interfaces to database manage-
ment systems and teleprocessing monitors. If a dis-
crete tool is well designed this may reduce the level
of technical knowledge required. Certainly CICS
development tools like UFO have often been used by
staff without CICS and DL/1 expertise to build online
database systems under CICS.

Integrated toolkits generally reduce the technical
complexity of the systems environment, aliowing less
technically skilled people to develop applications.
Thus systems can be developed by analysts and,
sometimes, by users.

17

CHAPTER 3 CHOOSE THE APPROPRIATE SYSTEM BUILDING TOOLS

Impact on systems lifecycle costs

To determine the total cost of a typical system over
its useful life it is necessary to consider development,
maintenance and operating costs and the likely life
of the system.

Development costs

The main elements of development costs are staff,
computer power and the cost of acquiring and
introducing the development tools.

We have already shown that system building tools
generally reduce the amount of manpower required
to develop systems. This element of development
costs will therefore fall, but the reduction may be
partly offset by a need for people with greater skills
and a need to retain people to ensure continuity with
previous methods.

Almost all system building tools require more com-
puter power than conventional tools. Thus, one Focus
user finds that its development staff are online for
twice as long and that each online session uses 50
per cent more cpu time. This increase is offset by
the productivity gains obtained from the tool,
however, and the same user estimates an overall
reduction of 50 per cent in development machine
costs. It is worth noting that development staff
(assuming their number stays constant) will need
additional computer resources in order to produce
more systems, once a new system building tool is
introduced.

The costs of acquiring and using a system building
tool include purchase, rental, service and training
costs and, sometimes, the costs of reduced produc-
tivity during the introductory period. If these costs are
capitalised and spread over the life of the tool they
will rarely amount to more than $1,000 per develop-
ment man-year (except for a development work-
bench, which might cost as much as $4,000 per
development man-year).

Maintenance and enhancement costs
Maintenance and enhancement costs are determined
by the level of maintenance, the rate of enhance-
ments, the productivity of the relevant staff, and com-
puter costs.

The maintenance level is the amount of work needed
simply to keep the system running. Ideally this should
be zero, but it rarely is. We find that systems
produced quickly and with high-productivity tools do
not usually contain hidden problems that will
adversely affect the maintenance level (certainly no
more than with conventional methods).

The rate of enhancements is determined by the vola-
tility of the business environment. It should not

18

depend on the development tool used but, if the tool
makes it less expensive to include enhancements,
users will usually ask for more to be done.

Most system building tools provide improvements in
maintenance productivity equivalent to that for
development productivity. The main exceptions are:

—Simple program generators. In this case main-
tenance productivity may be reduced.

— Libraries and data dictionaries, which provide
greater benefit for maintenance and enhancement
activities than for the initial development.

Operating costs

Tools that generate programs in conventional lan-
guages generally produce systems that are, at best,
as efficient as programs written directly in those lan-
guages. Beyond this type of tool it is not possible to
generalise about the impact of system building tools
on machine efficiency.

Some development tools — All, Gener/ol, Linc and
Protos, for example — produce more efficient sys-
tems than Cobol. Most tools, however, use substan-
tially more cpu time and memory. Figure 3.5 gives
comparative figures for cpu usage for several sys-
tem building tools.

Experience has shown that it is much harder to
predict the performance of systems developed with
advanced system building tools than of those deve-
loped with Cobol. This is especially so for integrated
toolkits, where optimising the procedures and data
structures may make enormous improvements. One
Focus user produced a 20-fold improvement in one
system by careful tuning.

Advanced tools often also require more main
memory, but the reguirements for disc storage,
peripherals, operator support and telecommunica-
tions are generally little different from those for con-
ventionally developed systems.

Figure 3.5 CPU efficiency of systems generated with
system building tools

(CPU usage relative

Tool . to Cobol

ADF - |o8t024

All less than 1
Focus 08103
Generlol not more than 1.1
Info ~ |stos

Mantis 2103

Line not more than 1
Protos - 08

Powerhouse 10

© Reproduction by any method is strictly prohibited

B—

CHAPTER 3 CHOOSE THE APPROPRIATE SYSTEM BUILDING TOOLS

Figure 3.6 System building tools used in calculating
relative life cycle costs

Life of the system

The typical lifetime of applications will have been
established earlier when the objectives for using sys-
tem building tools were determined. To illustrate the
relative lifecycle costs of four different tools we have
calculated the costs over time for two different types
of system. The four tools, and the assumptions made
about their productivity and operating costs (relative
to Cobol) are shown in Figure 3.6. Both types of sys-
tem are assumed to have maintenance costs of five
per cent per year of the original development cost.
One system has annual operating costs equivalent
to 20 per cent of the original development cost, and

Figure 3.7 Life cycle costs for four different development
tools

$200,000+

$100,000

v

Years

Assumptions:
Annual maintenance =5% of development cost
Annual operating cost=20% of Cobol development cost

The Butler Cox Foundation

© Reproduction by any method is strictly prohibited

Figure 3.8 Lifecycle costs for four different development

tools
$ Teleprocessing

j development
\ tool

$500,000 —

Development

// workbench

4

T T T

T
1 2 3 4 5 6
Years
Assumptions:

Annual maintenance =5% of development cost
Annual operating cost=80% of Cobol development cost

the other has annual operating costs equivalent to
80 per cent of the original development cost. The
lifecycle costs of developing, maintaining and oper-
ating these two types of system, using each of the
four development tools, are shown respectively in
Figures 3.7 and 3.8.

Figure 3.7 shows that for a system where annual
operating costs are relatively low (assumed to be 20
per cent of the Cobol development cost), the inte-
grated toolkit is the least expensive option over any
reasonable period of time.

On the other hand, Figure 3.8 shows that, for a sys-
tem with higher annual operating costs (assumed to
be 80 per cent of the Cobol development cost), using
Cobol becomes less expensive than the integrated
toolkit after three years and less expensive than the
teleprocessing development tool after four-and-a-half
years. After six years the total costs of using the
integrated toolkit are about seven per cent higher
than with any of the other three options. By this time
there is little difference between the lifecycle costs
of the other three, although assuming a different level
of maintenance would change their order.

19

CHAPTER 3 CHOOSE THE APPROPRIATE SYSTEM BUILDING TOOLS

Deficiencies of the tool

The deficiencies of many system building tools reflect
their origins and the fact that they are now used in
different ways, or for different purposes, from those
originally envisaged. It is useful to recognise the ori-
gins of the tools being considered because these will
suggest the kind of deficiencies that the tool may
have. It is then important to assess how far the sup-
plier has gone, or is likely to go, in correcting these
deficiencies.

All integrated toolkits consist of several components
that may be used separately. Often the components
have been developed separately, sometimes by differ-
ent companies, and only later ‘integrated’. The
process of integration always begins in the market-
ing literature (and sometimes finishes there), then pro-
ceeds to data structures and the data dictionary, and
may get as far as the user interface and the underly-
ing concepts. From the users’ point of view, the order
of importance is, generally:

—Common data.
—Common data and process concepts.
—Consistent human interfaces.

—Integrated documentation.

Deficiencies in system building tools are generally
caused either by an integrated toolkit having originally
been developed as a set of separate tools, or by the
tool having been built originally for use in a specific
environment such as a batch environment, or for use
by Assembler programmers, or for high-volume
teleprocessing systems, or for end-user timesharing.

In a batch environment, programs are treated as files
of static text and testing is based on the use of pro-
gram listings. Online operation requires the programs
to be treated as structures and, preferably, inter-
preted. It also requires testing aids that both relate
directly to the program and can benefit from the inter-
preter's knowledge of program structure and data
names. Cobol compilers usually show their batch, and
card-orientated, origins very clearly. It is extremely
difficult to modify a batch-based tool for interactive
use and this has rarely been done successfully.

Many of the older system building tools (such as
Cobol and PL/1) were conceived as a means of
producing Assembler programs. Debugging has
therefore required a knowledge of Assembler, and
again this deficiency is difficult to remedy.

In order to enable high-volume systems to be deve-
loped with reasonable operational performance,
some system building tools provide the developer with
a great deal of control over the management of sys-
tem resources. In many cases the use of these tools

20

absolutely requires the programmer to exercise such
control which, in turn, forces him to become an expert
in the internal operation of a teleprocessing monitor
or database management system.

Many integrated toolkits (Ramis, Nomad and Focus,
for example) were originally developed for end-user
timesharing. As a conseguence, these products have
deficiencies in the areas of security, integrity and effi-
ciency, especially for multi-access systems, and in
access by inexperienced users. They are also likely
to be very inefficient for any residual, but nonethe-
less necessary, batch applications.

Nevertheless, as the use of system building tools for
developing operational systems increases, the sup-
pliers are acting to remedy these deficiencies. For
example:

—Information Builders has added automatic recov-
ery and semi-tutorial facilities to Focus.

—Sperry has supplemented the Mapper interpreter
with a compiler that will generate more efficient
systems.

— Mathematica has added better security features,
and a compiler, to Ramis II.

Mest integrated toolkits use their own, private,
integral database management system, and originally
they could work only with this, or perhaps with con-
ventional files also. Some products (info, Mapper and,
to a lesser degree, Linc, for example) still operate in
closed environments but others, especially those that
run on IBM computers, have been extended to
access other suppliers’ databases. Figure 3.9 shows
some of the accesses that are now available.

Future prospects for the tool and its supplier

So far we have considered the way in which the sys-
tem building tool as it presently exists can be used
to develop the types of application currently foreseen.
It is necessary also to consider the likely future
developments of the tool and the future prospects of
its supplier.

Figure 3.9 Database systems that can be accessed by
some system building tools

Tool Database systems that can be accessed

Focus IMS, IDMS, Adabas, Systemn 2000, Vsam,

Isam, Osam, SQL/DS, Total, Model 204

Generlol |Adabas, IMS, Total, Vsam, Isam

Nomad Vsam, Qsam, IMS, IDMS, SQL, DB2, Focus
Natural Adabas, Vsam, DL/, IMS

Intellect ‘Adabas, IDMS, SQL, Focus, Vsam

© Reproduction by any method is strictly prohibited

CHAPTER 3 CHOOSE THE APPROPRIATE SYSTEM BUILDING TOOLS

The system building tool

In the longer term we expect the coverage, power
and usability of advanced system building tools to be
increased by their suppliers.

Most system building tools are presently aimed either
at end-user computing or at the professional develop-
ment of data processing systems. Suppliers will need
to address both these markets and they can do this
most effectively by developing a family of compati-
ble tools. Such families are already available from
suppliers such as Software AG, Burroughs, ICL, IBM
and Mathematica. Several suppliers have added
graphical, statistical and text facilities to their fami-
lies in the last few years, although these are often
rather primitive. In the future we expect to see these
additional features enhanced. Where appropriate,
suppliers will also add compatible products for areas
such as computer-integrated manufacturing and text
systems development. Communications support also
will be enhanced in the areas of microcomputer-
mainframe communications, videotex, electronic mail
and inter-business communications.

Report writers are now very powerful and so the
scope for improving them is limited to integrating the
output of data, text and image, and providing
assistance to the user. For online gquery processors
the next step will be the introduction of simple learn-
ing functions similar to those already available with
Intellect.

There remains considerable scope for improving the
tools used to build transaction processing systems.
Programs will be simplified by making data validation
non-procedural and by moving the validation rules to
the data dictionary. (Dictionaries themselves will be
made more powerful and usable.) There is also room
for considerable improvement in the way in which
logic is specified, though it is not clear how this should
best be done.

Improvements in usability will come in part through
improvements in the languages, but more significantly
from the addition of learning features and the greater
use of the data dictionary. Towards the end of the
decade we expect to see intelligent knowledge-based
systems intervening between the user and the basic
facilities. In many cases these subsystems will be
located in an intelligent workstation, through which

the user may, transparently, gain access to a variety

of hosts and applications.

The supplier

The future survival and, indeed, prosperity of the sup-
plier is of basic importance to a prospective user of
system building tools. Possible suppliers now fallinto
three groups: computer companies, major software
companies and independent developers.

The Butler Cox Foundaton

© Reproduction by any method is strictly prohibited

In general, computer companies are reasonably
secure (although the withdrawal of a major main-
frame company would surprise no one). Nevertheless,
it is not unknown for computer companies to fail to
deliver promised software or to cease to develop
products once described as ‘strategic’. Unfortunately,
and especially in the case of DEC and IBM, computer
companies rarely produce the best system building
tools, although they are sometimes able to buy them
from independent developers, as with IBM and
Intellect and Burroughs and Linc.

Major software companies such as Cullinet,
Mathematica and ADR are now well-established and
secure. Several are owned by large corporations. For
example, Martin Marietta owns both Oxford Software
(supplier of UFO) and Mathematica (supplier of
Ramis).

There are many independent developers and they
are, collectively, responsible for the best products.
Selecting a product from such a supplier does involve
a risk, however, and there does not seem to be any
way of controlling this risk.

For users of the less popular computers there may
be little choice other than to use the product of an
independent developer. In this case it is important to
discuss with the supplier the arrangements to be
made if support and maintenance of the product were
to be discontinued. For example, will the supplier pro-
vide the source code and all internal documentation,
and under what terms? It is also important to con-
sider whether the benefits from using the tool could
continue if it were not enhanced, because it may not
be.

As Figure 3.9 illustrated, the user of a popular sys-
tem building tool has a further line of defence. There
is an increasing tendency, especially in the 1BM
environment, for other suppliers to provide access
to the more popular tools. Some suppliers provide
conversion functions as well. If such a supplier should
withdraw from the market, or cease to enhance its
product, the user always has the option of moving
to a competitive product.

SELECT THE MOST APPROPRIATE TOOLS

At this final step of the selection stage the results of
the evaluations should be set against the objectives
established in the second stage for using system
building tools in each of the systems environments.

It is often quite easy to make a good choice, but hard
to identify the best choice. The standard methods of
weighted scores and risk analysis may be used to
resolve this difficulty. However, if there are now two
or three advanced system building tools that meet

21

e T

CHAPTER 3 CHOOSE THE APPROPRIATE SYSTEM BUILDING TOOLS

the criteria, it may not much matter which is chosen.
The best rule for breaking the tie is probably to
choose the tool with the largest number of European
users.

The selection should be carried out for each systems
environment. Here there is a danger that the desire
to start afresh with new tools in a new environment,
whilst still needing to maintain existing systems, will

22

lead to a proliferation of ‘best’ tools. There are,
however, good reasons for restricting the number of
system building tools in use in a particular organis-
ation, and therefore using tools other than the best
in some cases, in the interests of flexibility and
standardisation. Ideally the experienced developer
should be competent in using all of the selected tools
and should be able to choose the best one for any
particular purpose.

© Reproduction by any method Is strictly prohibited

CHAPTER 4

DEFINE THE NECESSARY CHANGES IN THE

The system building tools that we have called incre-
mental aids and workbenches fit naturally into con-
ventional systems development processes and are
compatible with traditional programmer and analyst
functions. These tools can therefore be used in con-
ventional development environments.

Advanced system building tools, which we have
divided into discrete tools and integrated toolkits,
generally provide greater benefits to their users. Many
organisations do not achieve the benefits because
the tools are used with inappropriate development
approaches and methods. In most installations, the
following changes in the development environment
will be needed before the benefits of using advanced
tools can be realised:

— Abolish or reduce the split between programmers
and analysts.

— Use prototyping wherever possible.

— Increase the amount of interactive computer sup-
port available to development staff.

—Reduce the amount of documentation.
— Accept the limitations of the system building tools.

— Deliver databases rather than systems.

ABOLISH OR REDUCE THE PROGRAMMER-
ANALYST SPLIT

The traditional division between programmers and
analysts should be reduced or, preferably, eliminated
in order to get the best value from advanced system
building tools and to match staff skills to developing
needs.

Traditional programming skills, and particularly
knowledge of complex systems software, are not
needed in order to use advanced system building
tools. This is especially true for integrated toolkits
because these products can shield the user from a
great deal of tedious and complex detail. The need
for specialised language-related knowledge has

TheButler Cox Foundation

© Reproduction by any method is strictly prohibited

DEVELOPMENT ENVIRONMENT

caused development staff to describe themselves in
terms of the software, as CICS-Cobol programmers
for example, rather than in relation to their organisa-
tion. The consequent high mobility of development
staff has been a great problem for many organi-
sations.

Most advanced system building tools can be used by
analysts and some even by users. Some organisa-
tions have found that analysts make better use of sys-
tem building tools than programmers because their
thinking is not constrained by their experience with
conventional languages. There are many examples
of inexperienced staff achieving remarkably high
productivity with advanced tools.

Where separate people perform the roles of analyst
and designer, considerable effort is required to trans-
fer knowledge between them. This process, which
often takes the form of writing and maintaining copi-
ous documentation, is very time-consuming and can
easily lead to errors.

Where a new development team is being established,
as will usually be the case if systems are being rebuilt,
we recommend that all staff should perform the full
range of development functions, though they may do
so with differing frequency. With system building
tools, many projects can be handled by only one or
two people carrying out all the development functions,
but for larger projects some form of team structure
may be needed.

If some systems have to meet strict performance
requirements, possibly because of high transaction
volumes, it may be necessary to use a less produc-
tive but operationally more efficient language. Such
requirements should be rare, and should be met by
concentrating expertise in a small conventional
programming team.

If there is a long-term commitment to the main-
tenance of old systems, this should be allocated to
a separate maintenance team. (In some organisations
the maintenance team consists largely of freelance
staff with traditional programming skills.)

23

e

CHAPTER 4 DEFINE THE NECESSARY CHANGES IN THE DEVELOPMENT ENVIRONMENT

USE PROTOTYPING

Prototyping is feasible only if it is very much faster
to build a prototype than a full system. The use of sys-
tem building tools enables prototypes to be built
guickly and inexpensively.

Wherever possible, prototyping should replace formal
specifications as the usual means of identifying
reguirements, because:

—Conventional methods are expensive and are
based on the false assumption that users can
relate to an abstract specification.

— Prototyping improves quality, increases user com-
mitment and reduces risk.

Prototypes are an excellent way of helping users to
clarify their requirements — and this is not confined
to cases where there is only a single ‘customer’ for
the system. Prototyping worked well at VP-Centralen,
where there were over 200 ‘customers’. (The
experience of VP-Centralen formed the case history
in Foundation Report No. 45 — Building Quality Sys-
tems.) Where there are many customers, however,
conilicts of requirements will arise, due both to tech-
nical disagreements and to vested interests. In this
situation an effective means of resolving disputes as
they arise is essential.

Conventional methods are expensive

In many organisations, producing system specifica-
tions consumes 30 per cent or more of the total
development effort. Thus it may take up to eight man-
hours to specify each function point for the desired
system. By contrast, it may take as little as 20
minutes per function point to build a prototype. Even
if several prototypes have to be built, there will still
be a substantial reduction in the overall development
effort.

Conventional methods are based on false
assumptions

Conventional development methods assume that
users can specify systems before they have any
experience of those systems and can relate effec-
tively to static, largely verbal, descriptions. Some
users are able to do this in some cases — when
specifying the replacement of a satisfactory system,
for example. In general, however, users find it very
much easier to see what is wrong with a system than
to visualise a complete new system. The conventional
assumption is even less valid for management infor-
mation systems and systems that support the
moment-to-moment operation of the business than it
has been for conventional 'back-office’ administra-
tive systems.

24

Conventional methods also assume that existing for-
mal methodologies are based on rigorous engineer-
ing principles, in that the correct use of the metho-
dology will necessarily produce the required system.
Anyone who has substantial experience of develop-
ing systems will know that this assumption is very
doubtful. This fact was recognised as long ago as
1947 by computer pioneer Alan Turing when he told
the London Mathematical Society that, based on his
own work, “up to a point it is better to let the
(programming) errors be there than to spend such
time in design that there are none”. We believe that
this remains true, at least for the process of estab-
lishing user requirements.

Conventional development approaches place a heavy
emphasis on pre-specifying all details because it is
very expensive to develop and modify systems with
conventional tools. Using advanced system building
tools, prototypes may be built at a rate of up to 20
function points per man-day, which is up to 100 times
as fast as conventional development. Changes to the
prototypes can also be made very quickly.

Prototyping improves systems quality

Users will review the prototype system and, if it fails
to meet their needs, will get it changed. Thus the
users' insights are brought to the problem at an early
stage, ensuring that the system provides the right
functions in a convenient way.

Prototyping increases user commitment

In reviewing a prototype, users are more intimately
involved in the specification process than is usual.
Apart from its value to the final specification, this
involvement encourages the user to feel that the sys-
tem being built belongs to him. In addition, users will
be able to consider, at an early stage, how the sys-
tem is to be introduced. Thus prototyping not only
improves the system but increases user commitment
both to the design and to the implementation of the
system.

Prototyping reduces risks

Prototyping reduces the risks both of total failure and
of costly overruns, because prototypes are an inex-
pensive means of detecting serious specification
errors and/or wrong business assumptions. Estimates
of development and operating costs will also be more
accurate if they are made at the end of the prototyp-
ing stage because, by then, more will be known about
the development and operational requirements.

PROVIDE GOOD COMPUTER SUPPORT

Unless advanced system building tools are being
used principally to reduce the number of development

© Reproduction by any method is sirictly prohibited

CHAPTER 4 DEFINE THE NECESSARY CHANGES IN THE DEVELOPMENT ENVIRONMENT

staff, their introduction will require substantial invest-
ments in development computer power.

In our view, computer support for advanced system
building tools requires personal terminals, response
times below two seconds, and access to computer
power at any reasonable time. Research by IBM,
TRW and others has confirmed that providing these
facilities significantly improves development produc-
tivity.

The use of advanced system building tools requires
that development staff be provided with good com-
puter support, because:

— A high proportion of development staff will use the
tools.

__Staff consume more computer resources when
using the advanced tools.

— Better machine support allows extra functions,
such as documentation, to be provided.

—Inadequate access to terminals or excessive
response times reduce the productivity of develop-
ment staff.

A higher proportion of development staff will use the
tools either because the programmer-analyst division
will have been abolished, or because analysts will use
the tools for prototyping.

Staff consume more computer resources with the
new tools because the tools have been designed to
take advantage of online operation. Machine effi-
ciency has, in effect, been traded for human effi-
ciency.

Many conventional information systems departments
are curiously ambivalent about their own use of com-
puters. Their staff program computers, but rarely use
them to support other activities. Development com-
puters can be used (but often are not) for preparing
and storing systems documentation, for electronic
mail, for budgeting and for project control purposes.

Development staff will not make full use of computer
facilities unless doing so is as easy as writing. They
therefore need their own terminals, just as they need
their own telephones and pens. When developing
teleprocessing systems, staff may need either two
terminals (one to show the screen and one to access
the development system) or a large-windowing sys-
tem such as the IBM Display Panel.

But merely providing a personal terminal is not suffi-
cient. Without adequate response times its use will
be inconvenient and staff will be obliged to fall back
on paper listings. Many useful facilities require the
computer to search a file and this in turn requires a

TheButler Cox Foundation

© Reproduction by any method is strictly prohibited

substantial amount of computer power if the search
is to be completed in an acceptable time.

The use of computerised development tools is still
inhibited in some organisations by restrictions on the
operating hours of the development computer, by the
times when compilations may be done or by the
amount of storage available to development staff.
Effective use of the tools certainly requires these con-
straints to be reduced or eliminated.

In most information systems departments, adequate
computer support for development staff can be
provided only through the use of a separate develop-
ment machine. Some organisations compromise by
locating the development machine in an operational
computer centre, remote from the development staff,
so that it can serve as a backup for an operational
machine. This approach should be discouraged
because it leads to excessive response times and
periodic loss of service during which the developers
are unable to work effectively.

REDUCE THE AMOUNT OF DOCUMENTATION

Most information systems departments have a great
deal of documentation for their systems. In the best-
run departments the documentation is comprehen-
sive and current, but in many organisations it is
neither. As a result it is rarely referred to, and the
considerable effort that goes into writing and revis-
ing it is largely wasted. Advanced system building
tools allow the amount of documentation, especially
design documentation, to be reduced substantially,
because:

— Prototyping is generally better and faster than
producing a detailed specification.

— Existing documentation is often out of date.

—Design documentation often encourages main-
tenance staff to make changes without thinking
through the implications for the application logic.

Advanced system building tools allow prototypes to
be built at a rate of up to 20 function points per man-
day (that is, each function point will take about 30
minutes to produce). By contrast, the effort required
to document a conventionally produced system is
typically in the range of two to six man-hours per func-
tion point.

It is not possible to eliminate documentation
altogether. Operating instructions and user guides
(where these are not provided online) are essential
parts of the delivered systems. Top-level documen-
tation, such as systems flowcharts, will be necessary
to provide users and maintenance staff with an over-
view of the system context. In maintaining complex

25

CHAPTER 4 DEFINE THE NECESSARY CHANGES IN THE DEVELOPMENT ENVIRONMENT

systems it is often difficult to locate all the places in
which a particular data item is used. The need to do
this may be reduced by a database management sys-
tem that provides users and programmers with a view
of the data that reflects their actual interests, rather
than the physical storage arrangements (a property
known as data independence). Alternatively (or addi-
tionally), a data dictionary can be employed.

Reducing the amount of documentation should not
be restricted to simple in-house systems. At VP-
Centralen, for example, data structure diagrams and
structure charts were not retained during the develop-
ment phase. At the end of the two-year project the
documentation consisted only of:

—The structured specification.
—Source code.
—Operating guidelines.

—The user manual.

In many cases the source code will be reasonably
self-explanatory, and its readability can be improved
by the use of meaningful data names and careful use
of indentation. Where the purpose of the code is not
immediately clear, annotation should be used.

ACCEPT THE LIMITATIONS OF THE SYSTEM
BUILDING TOOLS

Most system building tools have some limitations as
to the types of system that can be produced. The
most common limitations are restrictions on screen
and report formats and on the use of function keys.
These restrictions may be inherently obstructive (for
example, the inability to use the same function keys
in ADF and Cobol modules of a teleprocessing sys-
tem), or they may simply be incompatible with exist-
ing standards. Such restrictions may justify the rejec-
tion of the tool but, if the decision has been made
to use it, then the restrictions should be accepted and
compromises should be devised. Nevertheless, a
great deal of effort can be wasted in circumventing
irritating, but ultimately trivial, features of system
building tools.

Incremental aids, and workbenches such as Maes-

tro, allow the programmer to access all the features
of the chosen programming language, so that no

26

design compromise will be needed. However, the use
of such tools may require changes in the way in which
staff carry out their work. Maestro, for example,
requires the results of compilations to be transferred
to its own files for inspection rather than allowing the
IBM timesharing features to be used for this purpose.

The implication is that the necessary procedures and
support must be put in place to make the mode of
operation of a tool a productive and convenient one.
It may also be necessary to change the department’s
standards in order to obtain the greatest benefits from
the tools.

DELIVER DATABASES RATHER THAN SYSTEMS

An increasing proportion of information systems pro-
vide management information rather than automate
routine operations. Although these systems often
depend on basic business data, they need to meet
managerial requirements for information that may
change very rapidly.

In these situations, placing a systems development
professional between the user and the database may
only delay the production of the required information.
A reasonable approach, now being adopted by
several Foundation members, is for the information
systems department to provide suitably structured
databases together with tools for data retrieval,
analysis and reporting. Such systems are sometimes
referred to as ‘reportless systems' because no
reports need be defined in their specifications.

The tools provided to users may be statistical analy-
sis packages, such as SAS and SPSS, or integrated
toolkits such as Ramis and Nomad. In the latter case,
the same tools may be used both by development
staff and by users, and this may allow some flexibil-
ity in the allocation of work.

A PAUSE FOR BREATH

By the end of this stage, the system building tools
most appropriate for the organisation will have been
evaluated and selected, and the changes required in
the development environment to make the best use
of the tools will have been defined. The next stage
is to begin to use the tools.

[he Butier (ox Foundation
© Reproduction by any method is strictly prohibited

Once the tools have been selected and the changes
in the development environment have been defined,
it would be ideal to introduce the new tools and prac-
tices at once into all parts of the information systems
department. This is usually impractical because of:

—The number of people affected.

— The need to continue supporting existing systems,
tools and methods.

—The inevitable uncertainties about some of the pro-
posed practices.

It is therefore usually necessary to start with a pilot
system or set of systems.

The objectives of a pilot application are often misun-
derstood. A pilot should not, in general, be another
stage in the process of selecting system building
tools: it should be the first real application of the tools
and methods that have already been selected and
defined. The pilot may reveal some critical mistake
in the selection or definition of new methods, but this
should be regarded as a very unlikely outcome. If the
previous stages have been performed properly and
management is visibly committed to the new tools
and methods, there should be no last-minute surprise.

The objectives of a pilot application are to check that
the selected tools and new development methods will
work in the organisation and to begin the process of
converting from older tools and methods. The process
will normally proceed in four stages:

—Select the pilot application.
— Establish the pilot team.
— Build the application.

— Evaluate the experience.

SELECT THE PILOT APPLICATION

The pilot application selected should be reasonably
representative of the systems that will be built in the
future, and it should be capable of being implemented
within a few months — ideally, three or four. In addi-

The Butler Cox Foundation

© Reproduction by any method is strictly prohibited

CHAPTER 5

BUILD THE PILOT APPLICATION

tion, the application should be significant to the busi-
ness. The advantages of choosing a representative
application are two-fold. The lessons learnt will be of
general application and the success of the pilot will
be seen as being relevant to other systems. On the
other hand, choosing an atypical application will
encourage the sceptics and pessimists (who are
found in every information systems department) to
resist the further use of the new tools and methods.

The pilot application should be of modest size so that
the lessons can be learnt without undue delay and
management can retain control of the change
process. Experience has shown that it is all too easy
1o lose control. In one British company the first Focus
systems were so successful that users were demand-
ing that their systems should be developed in Focus
even before the systems department had evaluated
the pilot applications.

The application should be significant to the business
in order to maximise the benefits to the business and
to the information systems department, and to secure
any senior management support that may then be
needed — for training courses or new hardware, for
example.

ESTABLISH THE PILOT TEAM

Where possible, the members of the pilot team should
be chosen for their interest in business results rather
than in the technology of the new methods. They must
be people who can adapt the changed development
environment to the requirements of the project
without losing sight of the overall objectives.

Because of the high productivity of advanced system
building tools the pilot team can be quite small. In two
months a team of three should be able to complete
a system of between 200 and 300 function points
(equivalent to about 15,000 lines of PL/1). All mem-
bers of the team should be properly trained in the use
of the tools and should be committed to the new
development procedures.

|deally, the team should be given time to gain some
experience of using the tools before embarking on

27

CHAPTER 5 BUILD THE PILOT APPLICATION

the pilot. If this is not done the pilot experience will
not be fully representative of later project experience.

BUILD THE APPLICATION

When the team is ready, work can commence on the
pilot application.

The pilot project should operate in as normal a way
as the abnormal circumstances allow. However,
proper records should be kept of the effort expended
on the project and its progress even if this will not
usually be done. Problems, errors and solutions to
problems should also be carefully recorded.

EVALUATE THE EXPERIENCE

The main aim of the evaluation should be to deter-
mine whether the tools and new development proce-
dures will allow the department to meet its objectives
for the use of system building tools. The secondary
aim should be to identify any changes needed in the
tools or procedures to increase their effectiveness.

The evaluation should be conducted by someone who
was not personally involved with the pilot application
but who is familiar with the objectives, tools and
procedures concerned. Given the importance of the

28

consequent decisions, the systems development
manager will often be the best choice.

In addition to the project team, the evaluation should
involve users, technical support staff and operations
staff. The evaluation should assess the development
productivity actually achieved and the quality of the
systems delivered. It should also look carefully for any
unforeseen problems.

The results of the evaluation should be:

—A recommendation for the future use of the new
tools and procedures. Should the tools and proce-
dures be brought into general use and, if so, what
systems or functions should be excludad?

— Recommendations for any necessary changes or
extensions to the tools and procedures.

— Estimating guidelines for systems developed in the
new way.

— Any consequent recommendations for changes in
staffing, terms of employment and office organi-
sation that will be needed to exploit the new tools
and procedures.

The evaluation will show whether it is possible to meet
the objectives originally set, using the tools selected,
in the revised development environment. If the deci-
sion to proceed remains valid, the tools and pro-
cedures should be fully installed.

heBRiitHer w v mdahies

© Reproduction by any method is stnictly prohibited

CHAPTER 6

EXTEND THE USE OF SYSTEM BUILDING TOOLS

Peter Drucker has argued that the most important
management decisions are always negative ones —
decisions to stop doing things. That is certainly true
for the introduction of system building tools. The key
decision is to abandon the old methods of systems
development in favour of the new ones. Information
systems management should make this completely
clear and should express its commitment to the new
tools and methods by making appropriate changes
in staffing, facilities, standards and procedures. There
will also be a need to manage the changeover period.

MAKE THE REQUIRED STAFFING CHANGES

For most of the system building tools discussed in
this report, though not for incremental aids and
programmers’ workbenches, the new development
environment will require analysts to have much closer
contact with users and to perform much of the
development themselves. This will usually require:

— New criteria for staff selection.
__Business and technical training for existing staff.
— Reorganisation of development teams.

— New staff policies.

New criteria for staff selection

The new development environment will require rather
different people from those presently found in many
information systems departments. It is rarely possi-
ble, let alone desirable, to replace all of the existing
development staff. But it is desirable to rethink the
criteria for recruiting new staff. Analyst-programmers
should be recruited for their interest in results and
business knowledge, rather than for their technical
knowledge and experience. Indeed, some types of
experience — Cobol programming in a large conven-
tional development team, for example — will be a
definite disadvantage. The attitudes of such people
are unlikely to be compatible with the effective use
of system building tools.

Analyst-programmers should be self-motivating,
results-oriented and able to relate well to users. They
will need to operate in small teams, or even alone,

TR o S S et oot e e
The Butler Cox Foundation

© Reproduction by any method is strictly prohibited

and it will not be possible to manage them en masse.
They must be people who will set their own priorities
and who will gain satisfaction from the results they
achieve for their clients, rather than from technical
virtuosity for its own sake.

Analyst-programmers need skills in business, data
analysis and in the use of advanced system building
tools. That is also the skills priority order because it
is easier to learn to use a tool than it is to learn data
analysis, and it is easier to learn data analysis than
to learn business skills.

Business skills are needed to ease communication
with clients, to avoid ignorant mistakes and to secure
the respect of users. It is no accident that Morgan
Stanley Bank in New York obtains very high produc-
tivity from its development workforce, nearly half of
whom have banking qualifications.

Data analysis skills are needed to ensure that data
structures are not unduly tied to the requirements of
individual applications, but provide flexibility for user
access and future enhancements.

Skill in using the particular tools is needed to avoid
gross inefficiencies and to allow the rapid develop-
ment work on which prototyping, in particular,
depends.

Business and technical training for existing staff

Existing programmers will need some business and
systems training if they are to function effectively as
analyst-programmers. Regrettably, not all program-
mers will be willing, or able, to make this transition.

Existing analysts will need some technical training to
convert them to analyst-programmers. There should
be no serious difficulties in achieving this, but the
idea, found in some installations, that personal use
of a computer (or terminal) constitutes a loss of sta-
tus may have to be firmly repudiated.

Reorganisation of development teams

To exploit fully the opportunities provided by system
building tools it will be necessary to reorganise the
development staff. The best results will usually be

29

CHAPTER 6 EXTEND THE USE OF SYSTEM BUILDING TOOLS

achieved by small integrated teams that are allocated
to particular business areas. For many Foundation
members, existing systems teams may be used as
the basis for the new development teams by introduc-
ing retrained programmers and dividing the teams
into smaller units.

In the longer term, it is desirable that development
staff should rotate between business areas, but this
should be left until the staff have properly assimilated
the methodological changes.

New staff policies

Existing staff policies will reflect the existing develop-
ment environments. Introducing new development
environments based on system building tools may
require changes in remuneration and career
progression.

The skills needed by the new analyst-programmers
are greater than those of conventional analysts and
programmers. Although job satisfaction will be
greater for those using system building tools, the
organisation will probably need to increase salaries
and/or fringe benefits if it is to retain its increasingly
skilled and efiective development workforce.

The overall effect of these changes will be to distance
the new analyst-programmers from existing program-
mers and technical support staff. It will no longer be
possible to rotate staff either between applications
development and technical support functions, or
between maintenance of older systems and develop-
ment of new ones.

It will therefore be necessary to identify distinct
career paths for maintenance programmers, analyst-
programmers and technical support staff. Some
organisations may have to accept that they cannot
provide continuing career development for some
existing categories of staff, and should plan for them
to leave and be replaced through further recruitment.

PROVIDE ADEQUATE FACILITIES

For the reasons given in Chapter 4, every developer
should have his own terminal, and some may need
more than one. In many organisations this will require
a significant increase in the number of terminals
installed in the information systems department. In
turn, this will require sufficient computer power to pro-
vide the necessary support. The new way of working
may also require some changes in the working
environment. The necessary steps are to:

—Install extra computer capacity.

— Select software for additional support functions.

30

Figure 6.1 Growth in computer capacity at Morgan
Stanley
G bytes/
Mips

4

Disc storage
(G bytes)

100 A

Computer
power
(Mips)

50 A

1980 81 82 83 84 Time

—Consider a move away from open-plan offices.

—Provide adequate technical support for the tools.

Install extra computer capacity

Extra computer capacity will be needed both to sup-
port developers with their new tools and to run the
new applications that will be built. As an extreme
example, we show in Figure 6.1 the growth in com-
puter capacity at Morgan Stanley over the four-year
period since the decision was made to standardise
on Natural for applications development. Computer
power has increased at an annual compound rate of
more than 130 per cent during this period. Most of
the growth in capacity has been required to run new
applications and is thus a measure of the success
of the policy, not of its failure.

There may also be a need, as discussed in Founda-
fﬂpn Report No. 38 — Selecting Local Network Facil-
ities — to change the supporting network in order to

provide very fast, preferably subsecond, response
times.

Select software for additional support functions

Developers will benefit from computer support for
activities other than system development, including
document preparation and presentation, messaging,

€ Reproduclion by any method is strictly prohibited

CHAPTER 6 EXTEND THE USE OF SYSTEM BUILDING TOOLS

planning and modelling. Software for word process-
ing, graphics, electronic mail, project management,
estimating and systems modelling may therefore be
useful. Appropriate systems should be selected, or
developed, and installed on the development
computer.

Consider a move away from open-plan offices

Open-plan offices have become increasingly
fashionable since the 1960s for all kinds of office
work. The case for open-plan offices for systems
development staff has, in our view, never been made
convincingly. In general, systems development staff
differ from ordinary office staff because they are moti-
vated more by results and personal development and
less by social factors.

Inthe last three years, experiments at IBM and TRW
have shown that a move away from open-plan offices
to individual, or small-team, offices can help to make
substantial improvements in productivity, even when
conventional programming languages are used.

Some further physical facilities may also be needed
to make the best use of the prototyping opportuni-
ties provided by system building tools. The physical
facilities needed for effective prototyping have been
described in some detail by Bernard Boar of AT&T
in ““Application Prototyping”. He argues that a demon-
stration room with a large-screen projector driven
from a terminal is a valuable addition to project
rooms.

Provide adequate technical support for the tools

Any significant piece of software requires proper
technical support. This is especially true for advanced
system building tools, which are very complex and
which affect the integrity and efficiency of all the sys-
tems that are built with them. The technical support
staff should provide advice about using the tools as
well as maintaining them. They should also (probably)
provide a specialist service for tuning applications
where operational efficiency is a significant concern.

UPDATE THE STANDARDS AND PROCEDURES

The existing standards and procedures will have been
developed for the existing tools and methods. In revis-
ing the standards and procedures, changes will typi-
cally be needed to define:

—The rules for using the new tools.
—The procedures for prototyping.
— New technical standards.

— The procedures for regular monitoring of produc-
tivity.

T JI e e I o
L3 IS Bl

© Reproduction by any method is strictly prohibited

The revised standards and procedures should also
reinforce the view that systems are to be regarded
as corporate, rather than personal, property — an
attitude sometimes termed ‘egoless programming’.
This view is best encouraged by design and code
reviews, inspections or walkthroughs. These proce-
dures are especially valuable as a means of sharing
expertise when unfamiliar tools and methods are
being introduced.

Rules for using system building tools

To meet the objectives identified in Chapter 2, sys-
tem building tools must become the normal means
of systems development. Unless this is achieved the
systems department will not be able to make the
quantum jump in productivity that can be obtained.

Once the tools have been installed, exceptions to their
use should be permitted only when authorised by
senior management and should be carefully tracked.
In general, exceptions should be discouraged.

Procedures for prototyping

Prototyping requires its own six-stage development
cycle, as shown in Figure 6.2 overleatf.

Though prototyping in principle is very powerful, it
cannot be used in every case. The first stage (the
suitability review) therefore checks that the specific
application is suitable for the prototyping approach.
Prototyping is not appropriate for:

— Systems with a great deal of complex logic, espe-
cially in a batch system.

— Systems where the user is unwilling to play his part
in refining the prototype.

—Systems where the requirements are already
known in great detail.

— Systems where rapid completion is more impor-
tant than correct functioning.

The second stage (preliminary analysis) establishes
the aims of the application, the essential functions,
the main logical data structures and whether any of
the data needed already exists in machine-readable
form. This stage is similar to conventional systems
analysis, but is much shorter because it produces a
reasonable first approximation, not a perfect final
answer.

The third stage is to build the first prototype, which
should be sufficiently complete to allow meaningful
discussion with the user. The prototype should imple-
ment the essential functions identified by the prelimi-
nary analysis, though batch updating and system
security and integrity features can usually be omit-
ted. There is no need to spend too much time on the
details of screen and print layouts at this stage.

3

CHAPTER 6 EXTEND THE USE OF SYSTEM BUILDING TOOLS

Figure 6.2 Prototype cycle

Suitability
review

Do not use
prototyping

Preliminary
analysis

Y

Build
prototype

P

Demonstrate

No i
- Revise

Yes
Y
Implementation
review

Select
implementation
method

Extend the
prototype

Use ASBT

Use
conventional
tools

At Stage 4, the first prototype is demonstrated to the
prospective users. Discussion should concentrate on
the overall correctness of the model so that serious
errors and omissions can be detected. Discussion of
later versions should involve all those with any
interest in the system, and should focus on details
as well as on the overall structure.

Once a revised specification has emerged, the pro-
totype should be revised (Stage 5), although it is best
not to do this in the presence of the users. Additional
functions and improvements in screen and print for-
mats can be added, and the prototype is demon-
strated again.

The number of iterations of the demonstrate-revise
cycle should be controlled by keeping the user

32

informed of the costs of continued refinement ang
by setting some limits to the process of refinement.
The limit may be determined by a completion date
or by a predetermined number of iterations (some
organisations use three). Nevertheless, the option of
continuing beyond the limit must remain open if the
information systems department and the user judge
that further refinement is necessary.

Once the user has accepted that a system based on
the prototype will meet his requirements, an
implementation review (Stage 6) should be carried
out. This review decides whether the system should
be built by extending the prototype, by starting again
with advanced system building tools, or by using con-
ventional development tools. The review will also
produce accurate cost estimates for development
and operation.

New technical standards

Most of the changes in the systems environment
required to make the best use of system building tools
will be contrary to, or at least out of sympathy with,
existing technical standards. New standards and
procedures will therefore be needed for estimating,
documentation, program-structure and program-
coding conventions. These technical standards
should be reviewed periodically in the light of
experience and to take account of changes in the
tool.

Measures of the development productivity obtained
by using system building tools should be used for
estimating purposes. Feedback for the other items
may be obtained from inspections.

Regular monitoring of productivity

Development productivity is the key factor that links
development technology with business benefits. If the
initial gains in productivity are not maintained then
the benefits are lost; if the gains are exceeded, new
opportunities may be revealed.

Productivity monitoring requires that the time
expended on each project and the size of each sys-
tem delivered be recorded. It is also useful to record
the use of computer resources.

MANAGE THE CHANGEOVER PERIOD

Several transitional arrangements will be required to
accomplish the changeover from the old methods.
They concern users, development managers and
development staff.

Users will need to be educated about prototyping. The
need for them to play an active role should be
stressed. It must also be made clear to them that
prototyping does not produce a usable system but

© Reproduction by any method is strictly prohibited

CHAPTER 6 EXTEND THE USE OF SYSTEM BUILDING TOOLS

only a model. On occasion it may be possible to
derive a usable system directly from the prototype,
but that is a matter for the information systems
department to resolve.

Project development managers should not be
expected to carry the costs of training and of gain-
ing experience of the new tools, especially if they are
to be judged on their ability to meet timescales and
budgets. These costs should be carried as a depart-
mental overhead. It is, after all, the information sys-
tems department as a whole that benefits from the
increased skills and productivity.

Some development staff will probably be unable or
unwilling to become analyst-programmers. Many
programmers identify themselves with a particular
range of computers and see their personal develop-
ment in terms of an increasingly close involvement
with those computers, often as software support
specialists. Such staff will perceive the new focus on
business requirements and the preference for
integrated development as a distraction from their
preferred career paths, and may be concerned at the

e Buter (Lox Foundation
Reproduction by any method is strictly prohibited

Ti

prospect of learning new skills or the possibility of los-
ing their jobs.

It may be possible to transfer some of these staff to
maintenance, technical support or other specialist
roles. Others may prefer to leave, and this should be
acceptied and positively managed.

CONCLUSION

By following the six-stage process described in this
report, an organisation should find itself, having
installed the most appropriate system building tools
in the most appropriate systems environments, in a
position to begin to realise the substantial benefits
that such tools can offer.

We believe that the only way in which most systems
departments will be able to meet the future demands
that will be placed on them is to abandon traditional
methods of systems development in favour of the use
of advanced system building tools. Furthermore, we
would recommend that, in the process of making this
change, serious thought should be given to using the
new tools to redevelop the existing systems base.

APPENDIX 1

MEASURING PRODUCTIVITY WITH FUNCTION POINTS

Information systems departments need to measure
development productivity in order to manage
projects, monitor progress and measure the impact
of changes in the development process. It is helpful
if the measures used also allow objective compari-
sons to be made between organisations so that they
can benefit from each other's experiences.

Lines-of-code produced per man-day has been very
widely used as a measure of programming produc-
tivity. This measure breaks down, however, if the lan-
guage is changed, or if it is used in different ways.
Moreover, it does not measure the work of require-
ments analysis and systems design, which most
organisations now regard as more important than
programming.

Dr Allen Albrecht of IBM has devised ‘function points’
as a measure of system size. The number of func-
tion points produced per man-day is a good meas-
ure of development productivity because:

— Function points measure functions delivered, not
effort or program size.

—Function points are language and machine
independent.

— Function points are intelligible to users.

—The measure is independent of changes in infor-
mation systems and user organisation.

—Reference data is available from several sources.

FUNCTION POINTS MEASURE FUNCTION NOT
EFFORT

The biggest defect of measuring lines-of-code pro-
duced is that some lines are much more valuable than
others, either because of differences in the language
used or because of programming style. Some pro-
grammers write verbose programs that, though they
have more lines than terse ones, perform the same
functions and may be no easier to maintain.

Function points address this problem precisely
because they measure function, not programming

34

complexity. They are thus preferable both to lines-of-
code and to computer science measures such as
Halstead metrics.

The function point concept has been validated by a
study of 22 applications systems developed by IBM’s
DP Services organisation in the United States. Func-
tion points are counted by the process of function
point analysis (FPA), devised by Dr Albrecht and
described in a paper to a SHARE/GUIDE/IBM joint
symposium in 1979.

Detailed practical advice is available from IBM and
Burroughs. Briefly, the process comprises four
stages:

—Count and classify the functions.

—Calculate the ‘crude’ function points.

—Calculate the adjustment factor.

— Multiply the crude function points by the adjust-
ment factor.

FPA counts only functions that are available to Sys-
tem users. Functions used only in development, to
assist in computer operations or for the location of
system errors in normal operations are not counted.
Functions are divided into three types:

— Input transaction types, including reference files
maintained by other systems.

— Output transaction types.

— Inquiry types.

FPA counts files as they appear to the user. Thus

indexes required to support convenient and rapid

retrieval, and partial files required to circumvent the

addressing limits of the operating system, are not
counted. Files are classified either as:

— Master files, if they are maintained by this system,
or

—Interface files, if they are either transaction files
generated by another system but used in this sys-
tem or transaction files generated by this system.

© Reproduction by any method is strictly prohibited

APPENDIX 1

Figure A1.1 Points for functions and files
‘ . Comp!ex;ry
System attribute | Srmp!e ‘ :_Norm_a_vl»
Functions aa
input 3 4
Output: 4 B
Inquiry 8 s
Files L R e
- Master : e e
Interface 5 iE e

In analysing database systems it is currently neces-
sary to consider the equivalent set of files. This is a
drawback of FPA as it is currently defined.

Functions and files are then classified as simple, nor-
mal or complex, and each function and file is allo-
cated a number of points according to Figure A1.1.
The total of points for all the functions and files in the
system is the crude function point count for the
system.

Different implementations of the same function may
have different function points, depending on the type
of system and the way in which it will be used. (The
clearest example of this is illustrated by the differ-
ence between online and batch systems.) To allow
for this, the system must now be rated on each of
the 14 factors shown in Figure A1.2. For each factor
a rating of between 0 (no influence) and 5 (strong
influence throughout) is assigned. The sum of the
ratings is then used to calculate an adjustment factor,
by using the following formula:

Adjustment factor = 0.65 + 0.01 X (sum of ratings)

Figure A1.2 Function point analysis adjustment factors

Transactlcn voéume_
~ Online data entry
~ Interactive online z;ansactlom
~ Online upda’ie of master flles
Complex precessmg
: Desrgn for reusabzhty :
~ Ease of conversion aﬁd lnstallanon_

~ Ease of opeiatlon e
: _'Mui_npfe site lnstaliatlanf- =

Ease of chaﬁg"e-\épd'.use"f S

heButler Cox Foundatio

) Reproduction by any method is strictly prohibited

MEASURING PRODUCTIVITY WITH FUNCTION POINTS

The factor may therefore vary from 0.65 to 1.35, but
it is almost always in the range 0.85 to 1.15 for sub-
stantial business systems. The crude function point
count is then multiplied by the adjustment factor to
obtain the final function-point count.

FPA may be applied at any stage in a project and,
in particular, at a very early stage. If a complete
specification, or working system, is available a sys-
tem of up to 1,000 function points (equivalent to
between 50,000 and 100,000 lines of Cobol or PL/1)
may be analysed in just a few hours.

FUNCTION POINTS ARE LANGUAGE AND
MACHINE INDEPENDENT

Because FPA deals only with the system as seen by
the user, and with logical functions, rather than lines
of code or numbers of screen formats, it is indepen-
dent of the language or computer used to implement
the system. This enables function points to be used
to compare systems written in different languages,
to different standards and on different computers.

It also enables FPA to be used for purposes other
than assessing development productivity, including:

—Providing a measure of the overall effectiveness
of information systems.

— Monitoring maintenance levels.
— Planning system conversions.

— Evaluating packages.

FPA can provide a figure for the total amount of appli-
cation function installed in an organisation, whether
provided by users, system professionals or in the form
of packages. The ratio of this figure to total informa-
tion systems costs provides a crude measure of
effectiveness.

The ratio of function points altered to total function
points installed provides a measure of the level of
maintenance. Similarly, the effort expended per
installed function point may be used as a measure
of maintenance efficiency, provided that clear defi-
nitions of maintenance, excluding enhancements, are
used. In 1983 Dr Albrecht provided data of this type
to the Butler Cox Foundation Study Tour in which he
showed that maintenance efficiency at |IBM had
increased between 1970 and 1980.

In planning system conversions, FPA can be used to
measure the size of the required conversion work.
When evaluating packages, FPA can be used to count
the total ‘value’ of the functions required, provided
and likely to be used. These measures can be used

85

APPENDIX 1 MEASURING PRODUCTIVITY WITH FUNCTION POINTS

to supplement subjective judgements about how well
a package ‘fits’ the organisation’s needs.

FUNCTION POINTS ARE INTELLIGIBLE TO
USERS

The concepts of files and functions are readily under-
stood by users, who can also easily accept that some
functions and files are more complex than others.
Though they should not be expected to perform FPA,
users should have little difficulty in understanding siz-
ings or comparisons based on FPA.

The function point concept therefore enables users
to understand the relative complexity of their systems
without having to involve themselves with difficult
technicalities.

THE MEASURE IS INDEPENDENT OF CHANGES
IN SYSTEMS AND USER ORGANISATION

Because function points deal with system function-
ality, not with the way the functions are implemented,
they are equally applicable to any mixture of profes-
sional and user development, and to development
departments organised both with and without
separate programming teams. Nevertheless, to pro-
vide a basis for fair comparisons, all development
effort, whether expended by users, analysts, program-
mers or other staff must be counted. (Some of the
function point figures guoted by computer users or
in research papers do not include all of the develop-
ment effort, and care should be taken if these figures
are used for comparison purposes.)

A consistent basis for measurement of effort is also
necessary. Man-days, man-hours, man-months and
man-years are all in use but have different bases in
different organisations. For example:

—One Foundation member assumes 26 hours of

development work per week, but 52.14 weeks per
year (i.e. 1,356 hours per year).

36

—Another assumes 35 hours per week but only 42
weeks per year (i.e. 1,470 hours per year).

— One major research study was based on 168 hours
per man-month (presumably 22 days of seven-and-
a-half hours each).

In this report we have used man-days as our unit of
effort because:

—It is the shortest reasonable unit for allocating
development staff.

— It is, at least with the better tools, a sufficient
period for a useful result to be achieved.

— |t is easier to measure than man-hours.

— It allows periods of absence and training time to
be readily excluded.

Where necessary, we have assumed that a day com-
prises seven working hours and that there are 210
days available for project work in a year.

REFERENCE DATA IS AVAILABLE FROM
SEVERAL SOURCES

Many organisations collect data for lines-of-code
produced, including productivity rates. But this is
unsuitable as a basis for comparison and for future
planning.

After lines-of-code, function points is the measure for
which the most data is available. Papers have been
published in academic journals by researchers such
as Allen Albrecht of IBM and Rudolph Eberhard of the
University of Auckland. IBM and Burroughs now both
promote FPA. We have drawn on this work, as well
as on our own researches, for the productivity data
guoted in Chapters 1 and 3 (pages 1 and 15 respec-
tively) and in Appendix 3.

We do not know of any other measure of develop-
ment productivity for which comparable amounts of
data are available.

© Reproduction by any method is strictly prohibited

APPENDIX 2

A CLASSIFICATION OF SYSTEM BUILDING TOOLS

Many classifications of system building tools have
been suggested by consultants and other experts.
Unfortunately, these classifications are constantly
undermined by the suppliers, who:

—Constantly extend their products o provide new
features.

—Frequently lay claim to features that are thought

to be significant, even though their products lack
them.

Terms such as ‘relational’ and ‘non-procedural’ refer
to important specific concepts in software science,
but the terms have been applied to a wide variety of
products. Thus VisiCalc, Datastar, Querymaster, All
and Ramis have all been described as non-
procedural. Yet, clearly, they have little else in
common.

The term ‘fourth-generation language’ is now widely
used, most notably by James Martin, to indicate
advanced system building tools. This is a rather
unhelpful term because:

— It implies that the language is the most important
aspect of these products, whereas other aspects
(such as system software; methods for writing,
amending and compiling programs; and program
testing methods) are equally important.

— It groups together products such as Linc, Ramis,
Delta, UFO and Querymaster, which have little in
common.

The term ‘program generator’ is also widely used,
often as a synonym for ‘system building tool’. In this
report we use this term to describe tools that produce
programs in a high-level language, such as Cobol.
Some program generators (Linc, for example) are
very sophisticated and it is rarely necessary for a

programmer to change the generated code. Others,

(Microsoft's Sourcewriter, for example) can only
generate simple programs, and we call these ‘simple
program generators’.

Advanced system building tools have usually been
aimed at either professional development of large
systems or user development of small systems. Thus,

TheButler Cox Foumdation

© Reproduction by any method is strictly prohibited

some tools are too complex for anyone who is not
a system professional, whilst others can tackle only
simple systems or make very inefficient use of com-
puter resources. Within these categories many tools
are restricted to particular classes of problem, such
as financial or statistical applications, or to particu-
lar systems environments.

From the point of view of a potential user these
aspects are at least as important as the technologi-
cal factors — an excellent solution to the wrong
problem is of little use.

OUR CLASSIFICATION

We have divided system building into five main (and
several subsidiary) categories:

—Incremental aids.

— Data dictionaries.

— Development workbenches.

— Discrete tools.

—Integrated toolkits.

In addition, we describe discrete tools and integrated

toolkits collectively as advanced system building tools
(ASBTSs).

Incremental aids

We use the term incremental aids to describe tools
that provide a single function, generally usable at only
one stage of the development process. Examples
include flowcharters and test harnesses, editors and
program library systems.

Data dictionaries

A data dictionary holds in a single place all the data
definitions used in a set of applications. Some data
dictionaries provide online support to system build-
ing tools and support to analysts.

Development workbenches

The best known development workbench is Philips’
Maestro which consists of Softlab software running

37

APPENDIX 2 A CLASSIFICATION OF SYSTEM BUILDING TOOLS

on a Philips minicomputer. There are several other
hardware-software workbench products, including
one based on an IBM-compatible computer (and thus
able to compile and run programs).

The most significant competition comes from the edi-
tars, compilers, filing systems and utilities provided
by computer manufacturers — for example IBM's
CMS, ICL’s MAC and the Unix Programmers’ Work-
bench.

Despite the name, then, workbenches are primarily
software. Recognising this, some computer suppliers
have recently improved the quality of their work-
benches, announcing such products as Program
Master (ICL) and PROFS (Burroughs).

Discrete tools

The development of a substantial system generally
involves the definition of files and the construction
of four kinds of program: batch updates, batch
reports, online updates and online reports (though not
all systems include all of these). Many system build-
ing tools have been designed to construct only one
or two kinds of program. We refer to these products
as discrete tools.

38

Thus, there are four kinds of discrete tools, cor-
responding to the four kinds of program:

— Batch update tools, though there are rather few
of these.

—Report writers, such as Mark V.

—Teleprocessing development systems, such as
UFO and Generlol.

—Query processors, such as ASI's Inquire.

Integrated toolkits

Integrated toolkits differ from discrete tools in hav-
ing their own file definition mechanisms, and often
their own database management system, and by
addressing three or four of the four kinds of program.
However, they vary considerably in the types of sys-
tems and users for whom they are mainly intended.
For example: TIS, All and Linc are intended for the
professional development of transaction processing
systems; Focus, Nomad and Ramis are intended for
the development of management information systems
by users or business analysts.

© Reproduction by any method is strictly prohibited

APPENDIX 3

DEVELOPMENT PRODUCTIVITY IN PRACTICE

Our research has established that development and
maintenance productivity are the key factors that link
system building tool technology with business
benefits. We have found that effective tools (and
especially advanced system building tools) can make
a major contribution to improving development
productivity.

In this appendix we present our detailed findings of
the productivity obtained with Cobol or PL/1 and with
system building tools.

We have measured the size of systems in function
points and have included all development activity,
whoever performs it. We are aware, however, that
the function point approach does have limitations.
Skill and experience are needed to apply it, and differ-
ent estimators may produce values that differ by 20
per cent. But function points are preferable to lines-
of-code, at least for this purpose, because they are
a measure (albeit imprecise) of the right thing rather
than a precise measure of the wrong thing. (We gave
our reasons for preferring function points in more
detail in Appendix 1.)

COBOL AND PL/1 DEVELOPMENT
PRODUCTIVITY

Figure A3.1 shows productivity data published by Dr
Allen Albrecht of IBM and Dr Rudolph Eberhard of
the University of Auckland, or collected during the
research for this report. The data relates to system
development in Cobol and PL/1 during the period 1977
to 1983. Though the precision of the data is not high,
the figure highlights several features:

— Most systems have less than 800 function points

(that is, about 50,000 lines of Cobol). In some cases .

larger systems have been divided to ease the
management problems.

— Development productivity varies over a very wide
range, from as much as 1.0 function points per
man-day to as little as 0.05 function points per
man-day. The variations are almost as large within
one organisation as between organisations.

[heButler Cox Foundat

© Reproduction by any method is strictly prohibited

Figure A3.1 Cobol and PL/1 development productivity

Function points
per man-day

A

°
U5

0.2 § xe :

0.1 % .

005 o

T T o=
1,000 2,000
Number of function points

Note: Each point represents the development productivity achieved
(function points per man-day) in developing a system with the
specified number of function points.

—The average productivity for systems of less than
800 function points is about 0.2 function points per
man-day.

DEVELOPMENT PRODUCTIVITY WITH
ADVANCED SYSTEM BUILDING TOOLS

Figure A3.2 overleaf shows development productivity
data for six advanced system building tools. The
choice of tools reflects the availability of data rather
than the merits of the individual tools.

APPENDIX 3 DEVELOPMENT PRODUCTIVITY IN PRACTICE

Each bar on the diagram represents an actual level
of development productivity achieved with the par-
ticular tool.

As with Cobol and PL/1 the data shows considerable
variations — from 1.5 to 9 function points per man-
day for Focus and from 0.2 to 15 function points per
man-day for ADF, for example. (We believe that the
very high productivity values for ADF may relate to
applications that have been carefully selected to be
suitable for ADF, whilst the lowest value is for a highly
unsuitable system.)

Despite the variability, it is clear that advanced sys-
tem building tools provide much higher development
productivity than can usually be achieved with Cobol
and PL/. In almost all cases the productivity
achieved with the advanced tools exceeds the best
that can be achieved with Cobol and PL/.

If we assume that Cobol productivity is 0.35 function
points per man-day, then the advanced system build-
ing tools provide a productivity improvement of
between four and 20.

Furthermore, our research suggests that, for com-

plete systems, integrated toolkits provide higher
development productivity than discrete tools.

40

4
, Productivity 20

Figure A3.2 Productivity obtained with advanced system
building tools

in function
points per
man-day 10 1
5 —
2 t
Bestthat 7]

can be obtained
with Cobol 1= [F
or PL/1 j

Average for
Cobel == 0.24
and PL/

Yo e

Linc RAM\S| ADF UFO Mantis |

| Focus
| Integrated | Teleprocessing |
| toolkits] development |
systems
TheButer Cox Famdatinn

© Reproduction by any method is strictly prohibited

Alorecht, A. The role of function point analysis in appli-
cation development and maintenance. Butler Cox
Foundation 1983 Study Tour, IBM Presentation Sum-
mary, October 1983.

Albrecht, A. and Gaffrey, J. Software function, source
lines of code and development effort prediction: a
software science validation. IEEE Transactions on
Software Engineering, Volume SE-9, Number 6, 1983.

Anderson, S. M. Santa Fe Railway’s OX Project. Santa
Fe Railway, 1984,

Baxter, M. Automating the data processing office.
Butler Cox Foundation UK Management Conference,
Session Summaries, Cambridge, 30 September — 2
October 1984.

Boar, B. H. Application Prototyping: A Reguirements
Definition Strategy for the 80s. Chichester: John
Wiley, 1984.

Boehm, B. W. Software Engineering Economics.
Englewood Cliffs, N. J.: Prentice-Hall, 1981.

Dearnley, P. A. and Mayhew, P. J. In favour of sys-
tem prototypes and their integration into the systems
development cycle. Computer Journal, Volume 26
Number 1, 1983, p36-42.

Drummond, S. Measuring applications development
performance. Datamation,15 February 1985, p102-108.

Ehrman, J. R. The new tower of Babel. Datamation,
March 1980, p157-160.

e Butler Cox Foundation

© Reproduction by any method is strictly prohibited

BIBLIOGRAPHY

Hansen, H. D. Up and Running. New York: Yourdon
Press, 1984.

Hyldon, M. Adopting a fourth-generation language to
support prototyping. Butler Cox Foundation UK
Management Conference, Session Summaries, Cam-
bridge, 30 September — 2 October 1984,

Jenkins, A. M. and Naumann, J. D. Prototyping: the
new paradigm for systems development. MIS Quart-
erly, September 1982.

Jones, T. C. The limits to programming productivity.
Proceedings SHARE Conference, New York, 1979.

Lansman, G. Banking on Innovation. Datamation,
15 August 1984, p114-122.

Martin, J. Application Development Without Program-
mers. Englewood Cliffs, N. J.: Prentice-Hall, 1984.

McNurlin, B. C. Replacing old applications. EDP
Analyzer, Volume 21, Number 3, March 1983.

Read, N. S. and Harmon, D. L. Assuring MIS success.
Datamation, February 1981, p109-120.

Rudolph, E. C. Productivity in Computer Application
Development. University of Auckland Department of
Management Studies Working Paper 9, March 1983.

Sharples, T. Experiences using Application Program
Generators on a mainframe at Trafford MBC. NCC
Conference, 25 June 1984.

Xephon Buyers Guide. On-line Application Generators
Maidenhead: Xephon Technology Transfer Ltd, 1983.

41

Butler Cox & Partners Limited
Butler Cox House, 12 Bloomsbury Square,
London WCI1A 2LL, England
= +4418310101, Telex 8813717 BUTCOX G

Belgium & The Netherlands
SA Butler Cox NV
Avenue Louise - 479 - Louizalaan,
Bte—47—-Bus.
Bruxelles 1050 Brussel
= (02)647 15 53, Telex 61963 BUTCOX

France
Butler Cox SARL
Tour Akzo, 164 Rue Ambroise Croizat,
93204 St Denis-Cedex 1, France
= (1)820.61.64, Telex 630336 AKZOPLA

United States of America
Omni Group Limited
115 East 5Tth Street, NY 10022, New York, USA
= (212)486 1760

Switzerland and Germany
Butler Cox & Partners Limited
Butler Cox House, 12 Bloomsbury Square, London WC1 A 2LL
% (London) 8310101

ltaly
Sisdo BDAST]
20123 Milano — Via Caradosso 7-Italy
2 4984651, Telex 311250 PPFMI

The Nordic Region
Statskonsult AB
Stortarget 9, 5-21122 Malmo, Sweden
& 46-401 03040, Telex 127 54 SINTAB

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47

