

 m oA m I3
2 m o2 1a wm owms
= % o= ‘& = w
= = = = W
= = = = m
s e ®m oim om o im
B B amR & mowmi w s w4 4B

FOUNDATIO

Software Strategy

Research Report 69, May 1989

Butler Cox & Partners Limited

LONDON

AMSTERDAM MUNICH

NEW YORK PARIS

Published by Butler Cox & Partners Limited
Butler Cox House
12 Bloomsbury Square
London WCI1A 2LL
England

Copyright © Butler Cox & Partners Limited 1989

All rights reserved. No part of this publication may be reproduced by any method
without the prior consent of Butler Cox.

Availability of reports
Members of the Butler Cox Foundation receive three copies of each report upon publication;
additional copies and copies of earlier reports may be purchased by members from Butler Cox,

Photoset and printed in Great Britain by Flexiprint Ltd., Lancing, Sussex.

|

;
S
N

FOUNDATION

Software Strategy

v
l"“"'l

Research Report 69, May 1989

Contents

1 The need for a strategy 1

The importance of software strategy 1

The benefits of a software strategy 2

The need for business, rather than technical, goals 4

The elements of a software strategy 6

2 Defining and implementing the software infrastructure 7

New developments are making the infrastructure approach possible 7

The infrastructure approach provides significant benefits 9

A software infrastructure has five main components 10

The number of software infrastructures should be limited 12

Implementing a new software infrastructure requires a migration plan 138
The main applications-software role of the systems department will be

to manage the software infrastructure 16

3 Forming a policy for software standards 19

The benefits sought from setting standards should be defined 19

Progress in public, open standards remain slow 24

Unix-based open standards are becoming viable 24

IBM’s de facto standards will remain important 27

Organisations will need to choose a subset of an appropriate family

of standards 30

4 Procuring new software 33

There are four main options for procuring applications software 33

Benefits, not requirements, should be the basis for software procurement 34

Packages will usually be a better investment than bespoke development 36

Responsibilities should be allocated for software procurement 38
User departments should be encouraged to construct more applications

themselves 40

Report conclusion 41

A Management Swmmary of this report has been published separately and distributed
to all Foundation members. Additional copies of the Management Summary are available
from Butler Cox.

FOUNDATION

© Butler Cox & Partners Limited 1883

Report Synopsis

Investing in new software and managing existing software are important management
concerns. This report highlights the benefits of 2 software strategy and identifies the
three main elements — the software infrastructure, software standards, and the
software-procurement policy. An appropriate software infrastructure reduces the need
forbespoke development because it recognises that the boundary between system and
application software is changing. Many of the traditional applications functions are
now available within ‘infrastructure’ software, which can be used by the user
community to construct more of its own applications. In time, the main applications-
software role of the systems department will be to manage the software infrastructure.

Originally, the word ‘strategy’ was used to
describe the management and deployment of
armies and other resources so as to win a war.
In business today, however, the word has a
variety of meanings, ranging from an approach
to solving a problem, to a detailed plan for
achieving certain objectives. In this report on
software strategy, we use the word ‘strategy’
in a way that is closer to its original meaning.
By ‘software strategy’, we mean the use and
management of software by an organisation to
achieve its desired goals in a changing and
competitive business environment.

The purpose of this report is to describe the
elements of a software strategy, the benefits
that can be gained by defining and imple-
menting the strategy, and the factors that have
to be taken into account as decisions are made
about the strategy. Formulating a software
strategy includes making decisions about which
software functions are needed by the organi-
sation to help achieve its goals, how the
organisation should migrate from its existing
software base, what standards are needed, and
how the functions should be procured. It does
not, however, include detailed plans for
installing new items of system software nor for
developing new applications software.

We have not included application-development
priorities in our definition of a software strategy
because we believe that, in the long term,
application-development skills will be spread
throughout the organisation. Decisions about
which applications to develop or enhance next
will therefore be taken by individual business
managers, not by the systems department.
Ultimately, most applications will be developed
(or, more likely, constructed) by the business
departments themselves. The main role of the
systems department will be to develop and
maintain the ‘software infrastructure’ (this term

. FOUNDATION

Cox & Partners Limited 1989

Chapter 1

The need for a strategy

is explained later in the report) that allows these
developments to occur.

Nevertheless, an agreed set of application
priorities will be a necessary input to developing
a software strategy. The priorities should be set
as a result of a strategic systems planning
process. An approach to strategic systems plan-
ning was described in Foundation Report 49,
Developing and Implementing a Systems
Strategy, which was published in October 1985.
In that report, we stressed the importance of
relating systems strategy closely to business
strategy, and described several tools that could
be used to do this. (We know that, in the inter-
vening period, several Foundation members
have used the tools with considerable success.)
In particular, competitive-impact analysis and
critical success factors can help to determine
which applications will provide the greatest
business benefits. The decision-conferencing
technique, which was also described in
Report 49, can be used to arrive at a consensus
about application priorities.

The importance of software
strategy

Other Foundation Reports have covered specific
software issues, but this is the first time we have
researched software strategy in its entirety.
(The research team, and the scope of the
research, are described in Figure 1.1, overleaf.)
Without doubt, Foundation members regard
software strategy as an important topic. The
response to the annual poll of members showed
clearly that this topic was by far the most
important of those suggested for 1989. We
believe that there are three main reasons for
this.

First, business managers are demanding a much
faster response to their needs either for new

Chapter 1 The need for a strategy

Figure 1.1 Research team and scope of the research

This report was written under the direction of Andrew
Milner, Director of Butler Cox’s Productivity
Enhancement Programme. The conclusions and
recommendations of the report are derived from an
international research programme carried out during the
second half of 1988. The research was led by Jenny
Clayton and Michael Lloyd, consultants based in Butler
Cox’s Londan office and specialising in systems
strategy. They were assisted by Onno Schroder
(Amsterdam), Lothar Schmidt (Munich), Michel
Lederman (Paris), and John Cooper (Sydney).

In order to understand recent developments in the
software industry fully, we conducted an extensive
review of the published literature, We also conducted
detailed interviews with software suppliers and with
standards-setting organisations, including X/Open and
the Open Software Foundation (OSF). The views of 170
Foundation members were gathered through the
guestionnaire sent out at the beginning of the study. In
addition, the experiences of members were sought in
telephone and face-to-face interviews in Australia,
France, Iitaly, Scandinavia, the Netherlands, and the
United Kingdom. Three focus groups were held in
Germany, the Netherlands, and the United Kingdom,
attended by a total of 18 organisations. In total,

research was carried out in eight countries.

software applications or for enhancements to
existing applications. In addition to providing
administrative support, computer applications
are now essential for the day-to-day operation
of most organisations, and have a direct effect
on their business goals. They can also be the key
to achieving a competitive advantage. The
growing importance of applications software
means that changes in business strategy now
have a far greater impact on the software
needed to support the business. As g result,
systems departments are expected to be able to
react much more quickly to new requirements.
A two-year lead time for a new application, for
example, is now regarded as unacceptable by
most business managers.

Second, expenditure on software (especially on
commercially available software products) con-
tinues to account for a large part of the overall
IT budget. Typically, the market for software
products and services is growing at more than
20 per cent, whereas expenditure on in-house
IT staff (a large proportion of whom are in-
volved in developing, installing, and supporting
software) is growing at less than 10 per cent.
We believe that the different growth rates are
due partly to the fact that organisations are
developing their own software infrastructures,

a concept that is discussed in more detail in
Chapter 2.

The third reason for the growing importance of
software strategy is that interworking between
software applications is seen as a major problem
that prevents organisations from making best
use of their software investments.

The benefits of a software
strategy

A software strategy provides benefits in many
areas, the most important of which are:

— Business demands will be responded to
Jaster because a strategy helps to minimise
the variety of software being used, which
means that the systems department can
concentrate its software skills onto a smaller
number of areas. In turn, this means that
development staff can work on a greater
variety of business applications. Hence,
projects are less likely to be delayed because
staff with the required skills are working on
other projects.

— Expenditure on software will be reduced by
minimising the need for different software
products that perform basically the same
function, by minimising the costs of re-
placing (or renewing) applications, and by
allowing bulk discounts to be obtained
wherever possible. One Foundation member
told us that his organisation had saved
$5 million by standardising the software-
infrastructure products used throughout all
its offices worldwide. Buying the software
licences centrally enabled substantial dis-
counts to be obtained.

— Training costs may also be reduced, both for
systems staff and for the business users of
the software. Training costs usually rep-
resent a greater investment than the cost of
the software itself. In particular, a lack of
standardisation can result in very high
training costs when staff are moved from
one development environment to another.
Training costs in the user community can
also be minimised if all applications use the
same user-interface conventions. In this
way, staff moving from one department to
another will not have to undergo extensive
retraining before they can use the appli-
cations in their new department.

X FOUNDATION

& Partners Limited 1989

Chapter 1 The need for a strategy

_ Interworking between applications s facili-
tated by a software strategy because the
strategy will ensure that the software pro-
ducts selected can be interlinked. Often, the

It may be argued that in a rapidly changing
business and technical environment, it is better
not to have a software strategy. Inevitably, a

Ifter software strategy will be based on predictions
full extent of the need for an application to about future business and technical develop-

interwork with other applications is not ments, some of which will turn out to be
apparent when the application is designed. incorrect. This means that some of the
Using software products that conform with ‘strategic’ investments will be a waste of money.
the strategy ensures that, when future Perhaps it would be less expensive in the long
requirements for interlinking arise, an appli- term just to respond to specific software needs

cation will not require major modifications as they arise?
and that the need to create a bespoke
interface between two applications is mini- We do not believe this to be the case. Indeed,

mised. One organisation we spoke to during ~ the need to respond rapidly to new business
the research told us that the lack of a requirements is the main reason for developing
software strategy in the past meant that it a software strategy. This view was supported

was now faced with the problem of sup- by the results of our survey of Foundation
porting three mainframe environments. members carried out at the beginning of the
Integrating the applications will be impos- research (see Figure 1.2). Without a software

sible until the software infrastructure has strategy that includes a flexible software
been rationalised. Interfaces to external infrastructure, there will inevitably be delays
systems may also present a problem. (The
problems of managing multiple hardware

: . . | Figure 1.2 The ability to respond more quickly to
environments will be addressed in Foun blieinbis. neadh Is Soun dd the mest

: 7 integration 28
different suppliers’ hardware (or even on - K

different-sized hardware from the same
supplier) requires the systems department
to think ahead and choose the right appli-

45

dation Report 72, Managing Multivendor important reason for having a software
Systems.) strategy
— A more flexible choice of hardware will be Numbe:‘ of
possible with a defined software strategy. ::fi'r’l';“th‘:"ts
Few large organisations have a single- benefit as
vendor policy for computer hardware. Even Bangit !“OStrt i
those that use one vendor’s equipment for il Impofan x "e’"‘“:e 5°°“; A=)
their mainstream computing find that they ‘
need other suppliers for scientific, technical, Respond more quickly =
g 3 . to business needs 70
or manufacturing applications. Others, such = ;
as Aachener und Minchener (a German improve development 1
insurance company), have a business policy productivity g
to reduce their reliance on a single hardware Rl
Facilitate systems
vendor. To run the same software on =

' ﬁfnt_egi iﬁi)ésxtﬂmeritw

ok b =

Improve the ability to

cations packages or system-software transfer to a different =
products. hardware environment 10
! i ; Frovi;i:igzrholr@ fl':gf'bflity n
— Staff commitment will improve if a clearly the choice of hardware
defined software strategy is in place. If st s i
systems staff believe that no attempt Is Minimise training needs 7 =
being made to improve the development
environment or use up-to-date techniques, Respondents weare asked to rate the importance of each
they may feel that their career objectives benefit on a scale of 0 to 3
would be better served in a more forward- _
: : . (Source: Survey of 170 Foundation members)
looking organisation.

FOUNDATION

ox & Partners Limited 1989 i2]

Chapter 1 The need for a strategy

in implementing applications to meet new
business requirements.

The consequences of an inappropriate software
infrastructure are illustrated by the experience
of an insurance company that was unable to
obtain new business because it did not have the
appropriate videotex software in place. This
company wanted to obtain a place on the ‘panel’
of insurance companies with whom a particular
building society (building societies are UK
savings and home-loans institutions) placed its
business. On approaching the building society,
the insurance company was told that it could
be put on the panel within two months, pro-
vided that it could send and receive data via a
videotex-based value-added network service.
Unfortunately, the lead time required to con-
nect to this service was six months, and the
insurance company believes that it lost a
significant amount of business in the interim.

The need for business, rather
than technical, goals

The aim of a software strategy, as for any other
business strategy, is to create a long-term plan
for achieving success. This implies that the
strategy must be aimed at achieving well-
defined goals. The strategy is then implemented
by managing all of the organisation’s software
resources (systems software, applications
developed in-house, application packages,
bought-in software services, in-house software
support, and so on) to achieve those aims in a
changing and competitive business environ-
ment.

The terms in which software-strategy goals are
expressed are determined largely by the way in
which a systems department perceives its basic
mission. An inward-looking department is more
likely to express software-strategy goals in
technical terms, and will aim to achieve those
goals by managing its own resources (hardware,
systems staff, existing software, and so on). The
main barrier that has to be overcome in order
to achieve the goals is perceived to be the
department’s users, who, in the eyes of the
department,. are continually complaining about
the service they receive and are often trying to
find ways of breaking the department’s
monopoly-supply position. Hardware vendors
are seen as another significant barrier, because

of their efforts to lock their customers into their
own range of products. Software vendors are
perceived as yet another barrier; their products
never seem to be able to interface to other
systems that have already been developed.
Finally, top management is seen by the systems
department as a barrier to achieving the
technically based software-strategy goals,
because senior Inanagers are perceived as not
providing the commitment to the systems
department to allow it to do the professional job
that it would like to do. It is no surprise,
therefore, that if software-strategy goals are
expressed in technical terms, the link between
business strategy and software strategy is at best
tenuous, if it exists at all.

It was clear from our research, however, that
many systems departments defined their
software goals purely in technical terms. Typical
goals of this type are to convert all major
software applications from IMS to DB2, to use
fourth-generation languages for all new
development work, and to phase out the use of
VM. While these types of goal may well
represent sensible technical decisions, there are
serious dangers in using them as a basis for a
software strategy.

The problems that can result from basing a
software strategy purely on technical goals are
illustrated by the experience of an insurance
company, which is summarised in Figure 1.3.
By failing to develop a close relationship with
its users, the systems department of this
organisation was unaware of the business goals,
and thus directed all its attention to achieving
its own technical goal of providing a sound
software base. Although this may well have
been needed, the user community could not
relate the large expenditure on software to any
direct benefits in terms of its own business
strategy. The result was that the systems
department’s budget was reduced substantially,
and its only possible goal was then to con-
centrate on surviving.

Another example is provided by the UK division
of a European bank. Before the crash in the
world’s financial markets in 1987, the systems
department had embarked on ambitious plans
for developing completely new systems to
support the bank’s trading operations. A very
large, complex, and expensive software infra-
structure was being developed, and attention

Figure 1.3 Defining software strategy in terms of
technical goals, rather than business goals,
can lead to serious problems for the
systems department

An insurance company

This insurance company (which wishes to remain
anonymeous) employs about 7,000 people, 350 of whom
work in the information systems department. All of the
computing resources are supplied by IBM, and the
software strategy is technology-driven, being determined
largely by IBM's current products and future product
developments. Most development work is done in-
house, using IBM products for the software

infrastructure. The systems department is not
represented at main-board level, and communication
between the department and top management is poor.
There is no mechanism for systems staff to feed ideas
upwards and, although there is some downward
communication of business strategy, many of the most
important business decisions are not relayed to the
systems department.

As a conseguence, the systems department is not well
regarded by the user community, which feels that its
needs are not understood and not being properly met.
Not surprisingly, user departments are beginning to
acquire their own computing resources, and are
increasingly reluctant to pay for the systems
department's services. As a result, the department's
budget has been severely cut, and its staff has been
reduced by about 25 per cent. These reductions mean
that the systems department is now able to operate only
in ‘firefighting’ mode, and its ability to support users
properly is declining still further. The department is
caught in a vicious circle from which it can see no

means of escape.

was focused mainly on acquiring and using
state-of-the-art development tools, rather than
on ensuring that the new systems provided
business benefits. After the crash, the large
development costs being incurred every month
became the focus of senior-management
attention in the drive to cut costs. In the ensuing
cutbacks, the systems department was forced
to abandon its technical objectives and to
concentrate instead on delivering real business
benefits as early as possible. An important point,
which we discuss in more detail in Chapter 4,
is that expenditure on software should be in line
with the business benefits that will be achieved.
For this reason, many financial-services orga-
nisations have had to rethink their software
strategies as a consequence of the low trading
volumes after the crash.

The situation is very different if the software-
strategy goals are expressed in business terms.
In this case, the systems department is outward-
looking, perceiving its main mission to be that

FOUNDATION

@ Butler Cox & Partners Limited 1989

Chapter 1 The need for a strategy

of helping the organisation achieve its business
goals. In turn, the organisation perceives IT as
just one of the business resources that needs to
be managed in order to achieve those goals. The
barriers to achieving the goals are determined
by the business and commercial environment in
which the organisation operates — its com-
petitors, the political and economic environ-
ment, legal and regulatory constraints, and so
on. Thus, IT is perceived as making a real
contribution to achieving business goals, and the
software strategy is an integral part of the
business strategy. Users are no longer perceived
as a barrier to achieving the software-strategy
goals, but as one of the resources to be used in
achieving them. In this way, the increasing
ability of users to take respomnsibility for pro-
viding their own computing needs is explicitly
recognised. An added advantage is that business
managers will no longer think of the systems
function as an expensive overhead.

In general, software-strategy goals should there-
fore be expressed in terms of helping other
business functions achieve the organisation’s
business goals. For example, online-ordering
and stock-availability systems can help the sales
department of a distribution company to
provide a better service to customers and thus
increase sales. Similarly, in a large multinational
.group, a corporate-wide personnel system can
help the organisation make the best use of its
human resources.

In some organisations, the use of software is
essential to achieving the business goals. A good
example is Lloyd’s of London, which provides
services to the members of the Lloyd’s insurance
market in London. The systems department
realised that, along with other financial
markets, Lloyd’s could not survive in its
traditional form. Huge benefits could be gained
by creating an electronic market, and if Lloyd’s
did not move in this direction, its members
would do so themselves, in a less controlled
way. By understanding the business environ-
ment, the systems department was able to
convince top management at Lloyd’'s that
investment was needed for a network and
networked applications to serve the market.
The Lloyd's Market Network is now in operation
and the corporation’s current business strategy
is dominated by the opportunities to be gained
from this network and the applications

Chapter 1 The need for a strategy

supported on it. It is clear that, in future,
software will be a critical business resource for
Lloyd’s. :

Another example, also from the financial-
services industry, illustrates how the right soft-
ware strategy can help achieve business goals.
The Woolwich Building Society, one of the
United Kingdom’s largest savings and home-
loans institutions, decided to enter the insur-
ance market. When this was made known to the
systems department, it investigated the use of
IT in the insurance industry and found that
extensive use was made of videotex. As a result,
the systems department decided that videotex
software should be incorporated into the
society’s software infrastructure. This software
was available for use 12 months before the
society launched its insurance services, and is
now used for several applications.

The elements of a software
strategy

A complete software strategy has three main
elements:

6

— The software infrastructure. This is the base
of software on which new applications are
built. It includes system software such as a
database management system, as well ag
core applications. In Chapter 2, we discuss
the components of software infrastructure,
and describe how to implement and manage
them.

— Software standards. Software standards
need to be specified by the software
strategy. Decisions need to be made about
whether open or pbroprietary standards
should be adopted, and which internal
standards should be specified. We discuss
standards (including developments in Unix-
based standards and IBM's Systems
Application Architecture) in Chapter 3.

— Software procurement policies. The

software strategy needs to specify the
policies for procuring new software,
whether it be system software, application
packages, or bespoke software developed in-
house. We discuss the most important
policies in Chapter 4.

. FOUNDATION

ox & Partners Limited 1989

Chapter 2

Defining and implementing the

A software infrastructure comprises a coherent
set of software tools and building blocks that
is used as the basis for developing specific
applications. An infrastructure should include
as many as possible of the common functions
that will be needed to build new applications,
so that bespoke development is reduced to a
minimum. Some of the functions will be low-
level, general-purpose facilities, such as those
provided by the operating system, or machine
utilities supplied by the hardware vendor (in
other words, all the software that used to be
known as system software). Other functions will
be core applications that are specific to the
business, but that are used by many software
applications within the business. In general
terms, core applications either store or modify
data held in corporate databases. In other
words, the data generated or modified by core
applications will be accessed by other appli-
cations. An application that accesses corporate
data, but that creates data only for its own use,
will usually be a non-core application and is
therefore not part of a software infrastructure.

We are concerned, in this chapter, with the
developments in software products that are
making it possible to create a software infra-
structure, and to use it as the basis for a
software strategy. There may, in fact, be a need
for more than one such infrastructure, but it is
important to limit the number if the greatest
benefits are to be realised. Organisations will
need to devise a plan for the gradual imple-
mentation of the five main components of the
infrastructure approach because it is a com-
plex task, with significant implications for the
systems department, in particular.

New developments are making the
infrastructure approach possible

In the early days of commercial computing, it
was necessary to start from first principles when

. FOUNDATION

software infrastructure

programming a new application. Programming
languages and the early operating systems were
simple and provided little functionality, so that
application programmers typically had to code
their own sort routines and input/output
routines. As a consequence, applications were
highly machine-dependent. In time, operating
systems and other system software supplied by
the hardware vendor provided more and more
prepackaged functions that could be used by
application programmers. Languages became
more sophisticated, so that a single line of code
generated a complex function that would have
required many assembler-language instructions.
The use of standard languages and other system-
software interfaces meant that, in theory, it
became possible to transfer an application
written for one hardware environment to
another machine.

Today, by choosing appropriate system building
tools, most of the standard programming
functions can be generated automatically. Appli-
cation developers can therefore concentrate on
providing application-specific functions and on
building links between different applications
and systems and between different parts of
systems. Figure 2.1, overleaf, illustrates how
more of the functions that formerly had to be
coded specifically for an individual application
are now available within system-software pro-
ducts. During the 1970s, for example, database
management systems and communications soft-
ware were developed, and provided functions
that, hitherto, had to be written by application
programmers. During the 1980s, products such
as fourth-generation languages, expert-system
shells, and CASE tools have continued this
trend and have extended the scope of the
software infrastructure. We expect to see the
scope extended further during the 1990s,
by developments in integrated CASE tools, data
dictionaries, and dialogue-management
products.

Chapter 2 Defining and implementing the software infrastructure

An increasing proportion of the software
functions required by an application is
provided by the software infrastructure
rather than by specific code

Figure 2.1

Software application
functions

100% . X
Infrastructure.
software '

Specific code
50% |~

0%

1960s 1970s 1980s 1990s

Developments in infrastructure software are not
confined to application-independent system
software, however. Some of the major suppliers
of system-software products (Oracle, for
example) have developed application skeletons
(or templates) that can be used as a basis for
developing a specific application. Other soft-
ware suppliers, such as Cullinet and Cincom,
who have hitherto provided database manage-
ment systems and development tools, now also
provide application packages that are built on
top of their existing system-software products.
These packages are purchased for the appli-
cation functionality they provide, rather than
for the quality of the system software on which
they are based. Others (Digital, for example) are
encouraging value-added resellers to build and
market application packages on top of their
system-software products.

As a consequence, traditional system-software
suppliers are busy repositioning themselves in
the marketplace so that their customers will also
perceive them as suppliers of application soft-
ware. This is an important trend because it
shows that the traditional distinction between
system and application software is breaking
down, and that system-software vendors are
encroaching.on the domain of specific appli-
cations software suppliers.

The result is that it is increasingly difficult to
delineate the boundary between system soft-

ware and application packages. In the past,
packages were inseparable from most of the
software infrastructure on which they were
based. For example, a stock-control package
would need database (or at least file-manage-
ment) facilities to store records of items, stock
levels, and so on. However, as often as not,
these facilities would not be based on a standard
database management system, and the data
would not be easily accessible by other systems;
it was therefore difficult for the package to
interwork with other systems or to generate
additional reports. Purchasers of such 2 package
had to accept it as it Wwas, or perhaps pay the
package vendor to develop minor enhance-
ments. Any significant tailoring of the package
Wwas uneconomic. As a consequence, packages
came to be regarded as cheap solutions used
either by small companies that could not afford
to develop their own bespoke systems, or by
larger organisations for unimportant appli-
cations.

Today, however, the use of advanced develop-
ment tools in conjunction with an existing
database management system has led to the
development of ‘soft’ packages than can easily
be tailored to create a bespoke application. (Soft
packages are described in more detail in
Chapter 4.) This means that it is also increasingly
difficult to classify suppliers as either system-
software suppliers or application-package sup-
pliers. Traditional package suppliers have
become aware that advanced development tools
are a threat to their market, and have responded
by using proprietary development tools and
database management systems to develop their
packages. The resulting soft packages provide
in-built tools for screen formatting, report
generation, and other functions. In some cases,
package suppliers have even developed their
own system-software tools for application-
package development.

The importance of a common and stable soft-
ware infrastructure for all of an organisation’s
applications has also been recognised by the
many package suppliers who are now building
new products that can be used in conjunction
with the most popular system-software
products. For example, the French software
house, SOPRA, markets a leading European
human-resources package, called PACHA,
which is available for a wide variety of

{ FOUNDATION

utler Cox & #

riners Limited 7989

Chapter 2 Defining and implementing the software infrastructure

hardware environments. SOPRA has now recog-
nised that making its product available for a
range of different hardware is not sufficient.
The company has decided to launch a new IBM
version of the package that uses DB2, and to
follow this with a version that can use Oracle’s
database management system. In one of our
focus groups, several of the participants
mentioned the availability of application
packages as a reason for choosing a particular
system-software product.

Figure 2.2 illustrates how the boundary between
applications and system software is being
breached. System-software suppliers are ex-
tending their product ranges to provide appli-
cation templates, or even complete application
packages, and package suppliers are extending
their products to create general-purpose soft
packages that can be tailored to meet an
organisation’s specific requirements. The result
is that organisations now have the chance to
build a coherent software infrastructure that
can support both in-house development and
bought-in application packages.

The infrastructure approach
provides significant benefits

The infrastructure approach to software strategy
has three main benefits: it provides the flexi-
bility to respond quickly to changing business
requirements; it helps reduce the variety of
software in use and thus reduces costs; it makes
it easier to integrate applications.

It provides the flexibility to respond
quickly to changing business requirements

In a rapidly changing business environment, it
may be difficult, or impossible, to forecast new
application requirements even as far as six
months ahead. However, it is often in precisely
this type of environment that a rapid response
to new business needs is vital for survival. The
systems department in a major Australian oil
company found that the decision to standardise
on IBM’'s CSP and DB2 products for new systems
has led to improvements in its ability to deliver
on time and within budget. Systems integration
has also become easier. The systems department
can now respond more quickly to changing busi-
ness requirements and, in particular, facilitate
a move to a centralised marketing approach.

FOUNDATION

ox & Partners Limited 1982

Figure 2.2 The line between system software and

application software products is being
bridged

System software
products

Application software
products

System software suppliers

<: Package suppliers

This could not have been achieved 10 years ago
when there was no software strategy.

By making sure that as many as possible of the
functions that are likely to be needed are
incorporated into the software infrastructure,
the development time for new applications can
be minimised, even when the likely require-
ments are not well understood at the time the
infrastructure is defined. Figure 2.3, overleaf,
describes an extreme case of an organisation
that found that the only way to cope with the
uncertainty about the application requirements
was to adopt the infrastructure approach to
software strategy.

Reduced variety leads to reduced costs

By standardising on a specific software infra-
structure, it is possible to reduce support costs,
training costs, and in some cases, the costs of
the software itself. Training costs, in particular,
should not be underestimated. One focus group
participant had recently conducted a review of
his organisation’s total expenditure on an
analysis tool. This amounted to around $135,000
for software licences and $270,000 for hard-
ware, but more than $850,000 for training.
(Foundation Report 67, Computer-Aided Soft-
ware Engineering, showed how training and
support costs for CASE tools often exceed the
cost of purchasing the tool itself.)

By reducing the variety of software in use
throughout an organisation, it may also be
possible to widen the choice of development
teams able to undertake new projects. A major
oil company uses a standardised software

Chapter 2 Defining and implementing the software infrastructure

infrastructure from Software AG in all of its
offices throughout the world. The infrastructure
includes a common development environment
(based on products from Software AG). This
enables the company to move development staff
from one site to another, to carry out develop-
ment work using team members from different
countries, and to allocate work to countries
where the software development staff are less
heavily loaded.

It is easier to integrate applications

By choosing application packages that are based
on the same infrastructure products, and by
standardising on the development environment
for new software, it will be easier to exchange
data between applications and to build links
between systems. One Foundation member told

Figure 2.3 A flexible infrastructure is essential when
information systems requirements are
unclear

The Securities and Investments Board

The Securities and Investments Board (SIB) was set up
as a result of the UK Financial Services Act. which
became law in 1986, and is designed to protect
investors. The SIB monitors and regulates the activities
of all the types of financial-services organisations
recognised by the act. At the time the SIB was set up, it

was not clearly understood how it should monitor the
activities of the financial-services industry, Obviously,
information systems had to play a central role, but it
was by no means clear what the requirements for such
systems were, or what the scale of the software
development effort was likely to be. Given the very short
timescales for developing the required systems, the SIB
had no choice but to use a bureau, Because of the
nature of the regulations, there were no packages that
could meet the requirements, so it was necessary to
develop bespoke applications. In order to deal with the
uncertain and changing requirements, the SIB chose a
software infrastructure that would enable it to respond to
users’ requests quickly and effectively, To minimise the
risks, the infrastructure was based on a tried and tested
IBM hardware and software environment.

The infrastructure included a relational database, a
fourth-generation language, and networking facilities for
connection to the bureau. A core set of enquiry and
reporting functions was developed initially, with no
attempt being made to develop a comprehensive
system. Facilities were gradually added as users needed
them. The need for these additions had to be fully
justified because all development was done by the
bureau. After two years of operation, the SIB is now
reviewing its software strategy and considering ways in
which it can respond even better to the volatile business
environment. The software infrastructure is unlikely to

change, however,

us that his organisation was in the process of
rationalising its software infrastructure in order
to achieve these benefits. This organisation
operates in a business sector where recent
deregulation has led to huge growth in new
demands for applications from the business
managers. To meet this demand, the systems
department had been forced into buying
packages that did not fit into its chosen infra-
structure. Moreover, a recent merger had
further complicated the situation. With the
pbrospect of further mergers in the near future,
the systems department is anxious to have a
consistent and comprehensive software infra-
structure in place before it has to cope with the
need to integrate the different systems.

A software infrastructure has
five main components

In essence, a software infrastructure consists
of a list of software functions and a description
of how they are to be provided. The majority
of these functions will be purchased as
packages, often from the hardware vendor,
although some of them may be acquired from
other software vendors. The remaining infra-
structure functions have to be written in-house,
especially industry-dependent software (core
applications) and gateway, conversion, or inter-
facing software, to enable different parts of the
infrastructure to be interlinked. The com-
ponents of the software infrastructure will vary
according to the type of business and the role
that IT plays in the business. Figure 2.4 shows
the five main software components that make
up the infrastructure. Each is discussed in more
detail below.

Figure 2.4 The software infrastructure has five main
components

Core applications

User i'nte}""facé

Data Development Communi-
management and operating cations
environment

10

FOUNDATION

Chapter 2 Defining and implementing the software infrastructure

Development and operating environment

The development and operating environment
includes the operating system, machine utilities,
language support, CASE tools, performance
tools, and any other functions needed to
develop, implement, and run software efficiently
in the chosen hardware environment. Choosing
the right products for this part of the infra-
structure is possibly the most difficult decision
the systems director has to make on soft-
ware strategy. As we discussed in Foundation
Report 67, Computer-Aided Software Engi-
neering, there is, as yet, no integrated set of
development tools that adequately covers the
whole of the development life cycle. Indeed,
those tools with the greatest life-cycle coverage
may not be the most cost-effective because they
may be expensive to implement and they may
necessitate extensive training. Report 67 lists
the criteria to use for selecting the most
appropriate development tools.

Data management

The main element of the data management
component of the software infrastructure is a
database management system. In Foundation
Report 64, Managing the Evolution of Corporate
Databases, we showed that most Foundation
members are implementing, or plan to
implement, relational database management
systems. The development environment should
therefore include tools that use SQL (the de facto
standard for accessing relational databases) to
create and manipulate the database, and a data
dictionary (or data repository) to describe the
information held in the database. These tools
and products should, of course, be chosen so
they can interwork with the database manage-
ment system. One of the common problems
mentioned by those participants in our focus
groups who had chosen IBM’s DB2 as their
relational database management system was
that IBM does not yet have a comprehensive
data-dictionary product that works with DB2.

Communications

The communications component of the infra-
structure should include software functions for
both internal and external communications.
Software support for local and wide-area net-
working is not difficult to achieve. The problems
arise mainly in the area of conflicting standards

FOUNDATION

r Cox artners Limited 1989

and in interworking between different infra-
structures. One organisation in the chemicals
industry, for example, uses an IBM-based infra-
structure (including SNA communications) for
some sites, and a DEC-based infrastructure
(including DECnet communications) for other
sites. Within either infrastructure, it would not
be difficult to choose a coherent set of com-
munications products for applications such as
electronic mail and file transfer. However, it is
far from simple to choose the communications
components of one of the infrastructures to
facilitate interworking with the other.

User interface

Very few products are currently available to use
within the user-interface component of the
software infrastructure. As we discuss in
Chapter 3, there is a need for common user-
interface standards and products to support
those standards. IBM’s Presentation Manager
will go some way towards establishing de facto
standards for the user-interface component in
the personal-computer environment, but pro-
ducts are needed to support cooperative pro-
cessing (where two or more processors need to
interwork) and dialogue management. At the
moment, the main choices to be made are
concerned with which in-house standards to set
rather than which products to buy. However,
it is worthwhile creating re-usable modules that
implement an organisation’s chosen standards
for the user interface. These are routines de-
veloped in-house (usually in the course of
developing a specific application) that are
designed in such a way that they can be re-used
in other applications.

Core applications

The final component of the software infra-
structure is the organisation’s set of core appli-
cations. These are applications that are essential
to the day-to-day operation of the business.
Different business sectors will have different
core applications (some examples are listed in
Figure 2.5, overleaf). Moreover, an application
that is a core application for one business may
not necessarily be a core application in another.
Similarly, a non-core application for one busi-
ness may be a core application for another.
Although non-core applications may be essential
to run the business efficiently and to remain

11

Chapter 2 Defining and implementing the software infrastructure

Figure 2.5 Different businesses have different core
applications

Business Example of core application

Tour operator Holiday reservation system

Distribution company

Jrder prf:;;_;essit:[gl;c;g{a;:’k-= - s :
sentigll 2 2 o

Insurance company Palicy database

Retail bank ATM systems

Manufacturing company Process control

Bomien 1 - = Pomtofsalesystems

Customer billing

Public utility

within the law, they do not normally affect the
day-to-day operations of other departments, and
the software itself does not form a building
block for other departments’ applications.

Nevertheless, non-core applications should,
wherever possible, comply with the other
components of the software infrastructure, par-
ticularly the user-interface component. How-
€ver, a non-core application that does not
conform with the infrastructure but that
provides a good business solution is preferable
to one that conforms with the infrastructure but
that is inferior in business terms. The infra-
structure should not be modified to accom-
modate a non-core application, however.

Managing core applications as part of the soft-
ware infrastructure ensures that they are
designed so that they can provide a flexible basis
for developing non-core applications. In par-
ticular, the database used by a core application,
such as order processing, will often form the
basis for other non-core applications. In making
the distinction between core and non-core
applications, we are not Implying that the
former are more Important than the latter. In
fact, competitive advantage gained as a result
of using IT is more often derived from non-core
applications. The purpose of the distinetion is
to emphasise the need to manage core
applications as part of a coherent software
infrastructure.

A common problem now faces the many large
financial-services organisations that have not,
in the past, managed their customer-account
applications as core applications. Each financial-
services ‘product’ (such as current-account
banking, life insurance, and savings accounts)
typically had its own set of applications software
based on a sales database accessed by account
numbers or policy numbers. From the product
managers’ perspective, this was the most
convenient and efficient system design.
However, now that large financial organisations
have diversified into a wide range of products,
they would like to be able to exploit the
opportunities for cross-marketing. The problem
is that there is no efficient and easy way of
finding out which products have been supplied
to an individual customer because all the
databases are organised around products. Worse
still, many of the applications are based on
different underlying software infrastructures.
These organisations now have a difficult
strategic choice to make: either they accept the
business limitations imposed by their present
software base, or they embark on a massive
redevelopment programme.

The number of software infra-
structures should be limited

Most organisations will need two, or even three,
infrastructures to ensure that the best technical
solution can be chosen for different types of
application. There are several situations in
which this need may arise:

— Different hardware environments, and
hence different software infrastructures,
may be necessary for applications with
special requirements. Thus, specialised
scientific computing (such as finite-element
analysis) needs high-speed processing
capacity but a very simple and efficient
software infrastructure; high-performance,
free-text retrieval applications may require
parallel-processing capabilities and very-
high-speed disc access and data retrieval.

— The hardware and software suppliers used

for an organisation’s mainstream com-
mercial applications may not be able to
provide the most appropriate hardware
environment and software infrastructure
to support certain types of business

Chapter 2 Defining and implemen‘ting the software infrastructure

applications. Office system and point-of-
sale applications are typical examples.

— The ideal package for a particular appli-
cation may not be available for the main-
stream hardware or software infrastructure.
Several Foundation members told us that
they had purchased a personnel-manage-
ment package that runs on McDonnell
Douglas equipment for this reason.

— Some organisations may have several soft-
ware infrastructures for historic reasons. It
is not usually possible to transfer all systems
to a new infrastructure at once; for a time,
it is therefore necessary to support appli-
cations using both the new and old infra-
structures.

Wherever possible, however, organisations
should avoid having more than one software
infrastructure. Multiple infrastructures mean
that integration of applications implemented
in different infrastructures is difficult, sup-
port costs are increased, and systems staff and
users have to be trained in how to develop and
use applications in each of the environments.
We recommend that an additional software
infrastructure should be implemented only
where at least one of the following situations
exists:

— The additional infrastructure is completely
separate, with no requirement to link
systems to the main infrastructure.

— The additional infrastructure, and the appli-
cations within it, can be managed by a third
party (a computer bureau, for example).

— The infrastructure supports just one appli-
cation and can easily be maintained by the
users or by the software supplier.

— The problems of interconnecting applica-
tions supported by different infrastructures
can be minimised by using simple file-
transfer and conversion facilities. This
could ocecur, for example, with a point-of-
sale system where an in-store processor
provides all the detailed information
required by the store managers, and trans-
nits files of consolidated data to the head
office for processing on a central main-
frame.

. FOUNDATION

er Cox & Partners Limited 1988

Implementing a new software
infrastructure requires a
migration plan

Few Foundation members are able to start with
a blank sheet when designing and implementing
a new software infrastructure. Their existing
applications, some of which may be 10 or even
20 years old, are based on a range of infra-
structure products, each of which may have
been installed over the years to meet a specific
need. Mergers and acquisitions may have com-
plicated the problem by adding further suppliers
and software infrastructures. In the long term,
the main options are either to scrap old appli-
cations or convert them to run on the new
infrastructure. We describe here the best way
of migrating to the new infrastructure.

Add infrastructure components as
new applications are developed

The first step in migrating to a new software
infrastructure is to define and agree on the
infrastructure that the organisation wants to
end up with. Doing this will limit the migration
difficulties because new systems can be
procured to conform with the desired infra-
structure. It is unlikely to be cost-effective to
implement all of the infrastructure at once. This
would require a large capital expenditure on
items that would not be used fully for some
time, until new applications have been built or
old ones converted. It would also impose an
unacceptable load on the systems department.

The most cost-effective way of migrating to the
new infrastructure is to take a series of small
steps based on the infrastructure needs of new
applications as they occur within the develop-
ment plan. The application priorities should be
derived from established business needs and the
corresponding business benefits that the appli-
cations will provide. For example, a major life
assurance company told us that it is redevelop-
ing its 15-year-old policy and customer appli-
cations to use a relational database management
system because of the marketing department’s
business requirement for information to support
the company’s cross-selling initiatives. This
project provides an excellent opportunity to
begin to migrate to a more modern software
infrastructure that will provide business
benefits for most departments within the

13

Chapter 2 Defining and implementing the software infrastructure

company. The systems department realises that
several other steps need to be taken before the
new infrastructure is fully in place. These
include implementing improved document-
handling and other office systems functions.
However, these functions will not be added to
the software infrastructure until they can be
properly justified in business terms, and until
systems resources are available to implement
them.

In summary, the new software infrastructure
should not be implemented all at once. Infra-
structure components should be acquired to
meet the needs of new applications as they
are developed. The development priorities
should be set according to the size of the
benefit that each application will provide to the
business.

Consider the possibility of bringing
forward the systems replacement point

As the components of the infrastructure are
implemented, it may well be possible to bring
forward the point at which it is cost-effective
to replace existing applications with new
systems that conform with the new infra-
structure. The portfolio of existing applications
should therefore be reviewed at regular
intervals to see if the infrastructure functions
already available make it cost-effective to
rebuild existing applications earlier than was
originally planned. The case for doing this will
be even stronger if the rebuilt applications
require further components to be added to the
new infrastructure. (The type of calculation
required to determine whether an application
can be rebuilt earlier than planned is the same
as that set out in Figure 3.3 of Foundation
Report 67, Computer-Aided Software Engineer-
ing; in that report, we showed how the use
of CASE tools can bring forward the date when
it is cost-effective to redevelop existing
systems.)

Foundation Report 64, Managing the Evolution
of Corporate Databases, gives several examples
of tools that can help in migrating to the
database components of the new infrastructure.
These include fourth-generation languages,
application generators, and database trans-
parency software. It is therefore important to
keep abreast of developments in software
products that may significantly reduce re-

development costs or provide significantly
greater business benefits. Figure 2.6 gives some
examples of developments that are likely to
occur in the next five to ten years. Once a new
infrastructure product that could be of benefit
has been identified, it may be necessary tg
redefine part of the infrastructure to incor-
porate the product and to re-assess whether
ageing applications should be replaced, making
use of the new product.

Sometimes, however, components of the new
infrastructure can be used to extend the life of
old- applications, but in a way that will make
their conversion to the new infrastructure easier
at a later date. The Swiss Bank Corporation, for
example, has used the Telon application
generator in this way. Existing applications
were written in Cobol and use the IDMS
database management system. This is out of line
with the bank’s new software infrastructure,
which uses the DB2 relational database
management system and Telon as the develop-
ment language. Although the existing appli-
cations will eventually need to be converted,
the bank has neither the resources nor the
business justification for embarking on the
conversion exercise now, because there are
other more urgent requirements. However,
some changes and enhancements to the existing
systems are essential, and these are being
developed as new functions written in Telon.
Since Telon can generate different versions of
Cobol programs that can be used with either
IDMS or DB2, conversion of these enhance-
ments will be relatively simple.

Figure 2.6 Developments in software infrastructure
products may bring forward the systems
replacement point

New industry-specific soft packages.

Full -CASE products.

Distributed databases,

Graphics interfaces and windowing systems.

New distributed architecture (leading to a reduced
requirement for mainframe systems).

Voice input.

Butier Cox & Parine ted 1989

FOUNDATION

Chapter 2 Defining and implementing the software infrastructure

Formalise the maintain-or-replace
decision

The migration to a new software infrastructure
will not be complete until all the existing
applications have been replaced by applications
that conform with the new infrastructure. It is
therefore essential to formalise the procedure
for deciding whether existing applications
should continue to be maintained, or whether
they should be rewritten using (and perhaps
adding to) the new infrastructure. The purpose
is to identify the best time to redevelop an
application. This means comparing the costs of
continuing to maintain and run an application
with the cost of rewriting it for the new
infrastructure. The costs of maintaining both the
old and new infrastructures also need to be
considered.

It is well known that many organisations spend
about 65 per cent of all their analysis and
programming effort on software maintenance.
The purpose of maintenance is to protect the
organisation’s investment in systems by pro-
longing their useful life and by improving the
benefits they bring to the business. There are
three categories of maintenance:

— Corrective maintenance, which is
concerned with resolving errors.

— Adaptive maintenance, which involves
enhancing and modifying systems in line
with the needs of the business.

— Perfective maintenance, which consists of
changes to the application structure and
coding to improve performance and
maintainability, and to reduce the likeli-
hood of errors.

As software ages, the workload in all three
categories of maintenance tends to increase.
The business environment changes, creating a
need for software enhancements, which gives
rise to adaptive maintenance. These enhance-
ments introduce more software errors, requiring
corrective maintenance. Eventually, the soft-
ware reaches a point where it has been changed
so often that the original structure is lost, and
making further changes increases the proba-
bility of introducing more errors. At this point,
perfective maintenance is needed if the soft-
ware is to be upgraded to a state where further
maintenance can be carried out.

. FOUNDATION

© Butler Cox & Partners Limited 1988

It is easy to continue maintaining old systems
without appreciating that costs are escalating
and that it would be less expensive to redevelop
the applications. The best time to replace an
application can be chosen by keeping track of
the effort spent on maintaining each application
and subjecting every system to a regular formal
review. It is helpful to keep detailed records of
the effort spent on each category of main-
tenance for each module of the system. As well
as helping to identify when the system as a
whole should be replaced, such records can also
indicate the need for perfective maintenance.

The formal review of systems should be carried
out at least annually to assess:

— The extent to which the application
currently meets users’ requirements.

— The risk and impact of a system failure.

— The effort required to maintain the system
adequately.

— New requirements, or growth in the pro-
cessing load, that may force the application
to be redeveloped.

In the United Kingdom, the Central Computer
and Telecommunications Agency (CCTA), which
helps central government departments to make
the best use of information technology, has
developed a ‘system-maintenance profile’ that
helps to identify the point at which a system
should be replaced. There are nine criteria in
the system-maintenance profile and a total of
16 measures (between one and three measures
for each criterion), as shown in Figure 2.7,
overleaf. Each measure provides a score. The
scores are totalled for each system, and systems
scoring 100 or more are candidates for renewal.

Some organisations restrict maintenance effort
to a predefined percentage (typically 30 to 50
per cent) of the systems development depart-
ment’s budget. Such a policy can be useful
because it ensures that an adequate proportion
of development resources is assigned to new
applications. However, this type of control is
less effective than a formal evaluation of the
type advocated by the CCTA because it focuses
on the problems of the systems development
department and largely ignores the needs of the
business. In particular, it may encourage the
systems department to carry out more
development work (which systems staff tend to

15

Chapter 2 Defining and implementing the software infrastructure

prefer), when the real need is to provide a stable
and reliable base of existing systems.

Formalising maintain-or-replace decisions is not
only essential for ensuring that the migration
to a new software infrastructure proceeds as

Figure 2.7 There are nine criteria in the CCTA’s
system-maintenance profile
Category Criteria Measures
Adeguacy Desirable —(Man-days per annum on
o user changes desirable changes/thousand
lines of code) + 1.

—Degree to which desirable
changes are being blocked
(1=not at all, 5=completely).

Changes —(Estimated man-days to

backlog clear backlog of
changes/thousand lines of
code) + 1.

—Degree to which system is
failing to meet requirements
(1=tully, 5 marginally),

Risk to Stafing —Degres to which staffing is a
business - e Doblemlnope. e
—Quality of documentation
- (1=excellent, 5=no
e - existent).
‘Change
control _ od, "
! —Testing procedures
- (1=good, 5=non-existent).
Etrorsl —(Errors per annum/thousand
lines of code) + 1.
Impact of —Rating of effect of errors on
errors the business (1 =nil, Ll
5=significant). -
State of —System age (1=11t07
code years, 2=8 to 14 years,
3=>14). : -

—Structure (1 =good, 5= bad).

—Program size (thousand lines
of code/number of
praograms).

Support Staffing —(Maintenance effort per
effort annum/thousand lines of
code) + 1.
Mandatory —(Annual effort on mandatory
changes changes/thousand lines of
code) + 1.

—Reduction in mandatory
changes if system
redesigned (1 = ni,

5 =substantial).
Each measure provides a score. Systems scoring a total of
100 or more are candidates for renewal.
(Source: Managing Software Maintenance, CCTA,
October 1987) _J
16

smoothly as possible. Once the new infra-
structure has been implemented fully, it is stil]
nhecessary to review applications at regular
intervals to determine whether the software-
strategy goals will be better met by continuing
to maintain them, or by rewriting them,

The main applications-software
role of the systems department
will be to manage the soft-
ware infrastructure

The infrastructure approach to software
strategy will change the roles and responsi-
bilities of the systems department with respect
to applications software. In particular, systems
staff will be less concerned with developing and
implementing applications, and more concerned
with defining and managing the software infra-
structure. These changes are consistent with the
results of other recent work carried out by the
Butler Cox Foundation. For example, we
pointed out in the first Directors’ Briefing Paper
(Managing Information Systems in a
Decentralised Business, published in March
1989) that there is an established trend towards
devolving responsibility for the information
systems function to business units.

The impact of this trend on the role of the
systems department can already be seen in the
way software suppliers are now selling their
products. For example, Management Science
America (MSA) Inc, the world’s largest supplier
of applications for mainframe computers, has
moved the emphasis of its selling effort from the
systems department to user departments. In
general, MSA now puts about three times as
much sales effort into convincing users that a
package can meet their business requirements
as it does discussing technical issues with Sys-
tems staff. MSA’s experience is that the role of
the systems department is typically to develop
a ‘long list’ of potential suppliers, and to give
a final technical endorsement after the users
have made their choice. This is a logical division
of responsibilities because users are in a far
better position than systems staff to decide
whether an application package provides the
required facilities and whether it will fit in with
existing working methods.

The developments being made in software-
infrastructure products will, in the future, also

FOUNDATION

& Pariners Limited 1989

Chapter 2 Defining and implementing the software infrastructure

have an impact on the systems department’s
role in creating bespoke applications. Because
most of the standard functions will be provided
from within the infrastructure, the main skill
required to develop an application will be
business analysis, not the ability to generate
program code. By using the building blocks
provided by the infrastructure, users will
therefore be able to construct their own
applications.

The need for technical skills will not, however,
disappear. In several previous Foundation
studies (Report 64, The Evolution of Corporate
Databases, Report 65, Network Management,
and Report 67, Computer-Aided Software Engi-
neering), we discussed specific components of
the software infrastructure in detail. They have
all emphasised that managing and choosing a
comprehensive infrastructure are difficult tasks
that require highly specialised technical skills.
These tasks cannot be left to non-systems staff
to perform. Thus, the need for user organi-
sations to employ programmers is not about to
disappear. We believe that, even in the long
term, when most applications development may
well be carried out by user departments,
programmers will still be needed to develop
interfaces and conversion software that will
enable different parts of the infrastructure to
interwork. The skills needed in future will
principally be those of systems integration,
analogous to the skills found among the current
generation of systems programmers.

To ensure that the software infrastructure is
fully defined and properly managed, the
systems department will need to be responsible
for:

— Defining and managing the procedures for
implementing the infrastructure and for
converting existing applications to conform
to it. In particular, there is a need to ensure
that new core applications conform to all
aspects of the software infrastructure, and
that software-infrastructure products pro-
vide adequate capacity, performance,
reliability, and availability. This applies to
all the components of the infrastructure,
whether they be networking software,
development tools, or applications, which,
in turn, may either be bought-in or con-
structed in-house.

. FOUNDATION

er Cox & Pariners Limited 1988

— Defining rules and guidelines for using the

software infrastructure to build new
applications or enhance existing ones.
Standards must be defined for carrying out
feasibility studies, requirements analyses,
system designs, system constructions, and
systems testing, and for producing docu-
mentation. These standards should specify
both the best practices and the methods to
be used, to ensure that each stage of the
development cycle is completed satis-
factorily before progressing to the next.

— Charging users for systems services in a way
that ensures that the best use is made of
the software infrastructure. There is a
danger that flexible and easily used infra-
structure facilities could be used in
situations where a simpler, possibly manual,
approach would be more cost-effective.
The systems department should therefore
operate a chargeback mechanism that
encourages the user community to use the
corporate software infrastructure in the
most effective way. (Foundation Report 66,
Marketing the Systems Department, pro-
vides detailed advice about chargeback
schemes.)

— Resolving difficulties that might arise from
allowing user departments to make their
own software-procurement decisions. In
particular, there is a need to ensure that
systems built by different departments can,
where necessary, interwork, and that de-
velopment effort is not duplicated. This
responsibility can be discharged by
providing high-level consultancy advice on
the best technical solution to meet
functional, user-interface, performance,
reliability, and maintainability require-
ments, and by providing a help-desk service
to handle ad hoc requests for assistance
about using the infrastructure.

— Planning the future evolution of the soft-
ware infrastructure. This means evaluating
new technologies to assess how they could
support the business better than the com-
ponents of the existing software infra-
structure.

However, the most important decision that the
systems department has to make when defining
a software infrastructure is to decide on the set

17

Chapter 2 Defining and implementing the software infrastructure

of software standards to which the infra- proprietary software standards, and identify the
structure products must conform. In the next main options for the standards element of the
chapter, we discuss developments in open and software strategy.

18

Chapter 3

Forming a policy for software standards

In the previous chapter, we discussed the need
for a software infrastructure that can provide
the building blocks for new applications. The
software products that comprise the infra-
structure will, of course, need to conform to an
agreed set of standards, and a policy on
standards is a necessary component of a soft-
ware strategy. In general, a separate set of
standards will be required for each software
infrastructure, although, as we emphasised in
Chapter 2, the number of infrastructures should
be limited.

In this chapter, we identify the benefits that a
well-thought-out set of software standards will
bring to an organisation. There are several
choices available, the main ones being open
standards defined by standards-making bodies
such as the International Standards Organisation
(ISO), open standards based on the Unix
operating system, and IBM’s de facto proprietary
standards. Our discussion of proprietary
standards is limited to IBM’s because standards
developed by other hardware or software
vendors have not been widely adopted, except
in a few specialised application areas. Indeed,
many vendors have abandoned their proprietary
standards in favour of open standards. More-
over, the importance of IBM standards is well
recognised in the marketplace — some vendors
are even migrating their own standards to make
them compatible with IBM’s de facto standards.

Although developments are continuing to take
place in proprietary standards, recent develop-
ments in open standards mean that the latter
are becoming an increasingly viable choice,
particularly for intelligent workstations and
minicomputers. In time, open standards also
have the potential to become a genuine alter-
native for mainstream (mainframe) computing.
However, it will not be possible just to
standardise on open standards or a proprietary

% FOUNDATION

% & Paririers Limited 1989

architecture like IBM’s SAA. These standards
and architectures are defined in such wide
terms that it will be necessary for an
organisation to choose a subset (or ‘profile’) on
which to base its software standards. In the final
section of the chapter, we provide advice on
how to choose the appropriate subset.

The benefits sought from setting
standards should be defined

By specifying the standards that its software
must comply with, an organisation is essentially
setting out to simplify the technical environ-
ment in which its application systems are
developed and operated. Software standards
may also be used as a means of breaking free
from a dominant hardware supplier. Many
organisations have based their mainstream
hardware environments on the architectures
and standards of a single supplier and have
allowed this supplier’s development plans to set
the pattern for their own computing strategy,
even when they have been able to buy com-
patible products from other suppliers. This
approach has, in some cases, worked well. More
often than not, though, the reasons for
originally choosing the now dominant supplier
have been eroded by time and by the advances
made by other, more innovative, suppliers. As
a result, many organisations find themselves in
a situation where the single supplier is, in effect,
a monopoly supplier and is able to charge high
prices and impose strict contract conditions.

Different conditions have developed in the
personal-computer and engineering-workstation
markets, however. In both cases, de facto
standards (based on MS-DOS and Unix
respectively) have emerged which, although not
strictly non-proprietary, have been sufficiently
open, and sufficiently stable, to allow intense

19

Chapter 3 Forming é policy for software standards

competition to develop in the supply of hard-
ware and software. New companies, some of
which have grown quickly to the stage where
their annual turnover exceeds one billion
dollars, have emerged from this competitive
market, while established suppliers have been
subject to unprecedented, and very desirable,
competition. As a consequence, users of
personal computers and specialised work-
stations have benefited from increased inno-
vation, greater choice, and lower prices. |

As we explain more fully later in this chapter,
developments in non-proprietary standards
(particularly those based on Unix) have reached
the stage where the standards can be used as
the basis for competitive general-purpose mini-
computers. Within the next few years, there will
also be general-purpose mainframes based on
the same standards. When this happens, user
organisations will, for the first time, have the
option of adopting non-proprietary standards for
the whole range of their computing require-
ments, and will be able to enjoy the benefits of
a fully competitive marketplace.

The advantages of such a policy are con-
siderable, and have led many public-sector (and
some private) organisations in Europe and North
America to specify that products must comply
with non-proprietary standards. There are also
disadvantages, of which the largest are the cost
and timescale required to transfer a large port-
folio of existing applications to the software
infrastructure implied by the standards. Any
decision about whether to change from pro-
prietary to hon-proprietary standards must be
based on a wide range of business and technical
considerations, including hardware issues, and
we shall not attempt to resolve it in this report.
(We intend to address this question more fully
in a Foundation Technology Briefing to be pub-
lished later in 1989.)

It is essential, however to identify the benefits
sought from software standards before deciding
which standards to set, because each type of
benefit requires different kinds of standard, and
different degrees of compliance with the stan-
dards. In general, software standards make it
easier to plan and manage the technical environ-
ment, and provide specific benefits in the
following five areas:

20

— Software interworking. The standards may
be required for exchanging data between
applications, for implementing distributeq
systems, or for establishing cooperative.-
brocessing systems. Interworking between
software systems requires standards both
for the format and interpretation of
information, and for transferring the in-
formation between the systems, often vig
4 communications network. For software
interworking to take place, the communi-
cating systems must comply precisely with

- the standards.

— Software portability. Many organisations
would like to be able to run the same
application systems on different ranges of
hardware without having to rewrite the
application to suit the new hardware
environment. To be able to achieve this
requires standards for the interfaces
between applications and infrastructure-
software components such as operating
Systems, database mmanagement systems,
communications packages, and perhaps, a
user-interface package. Again, software
portability will be achieved only if the
applications comply precisely with the
standards.

— Development staff Jlexibility. User organi-
sations often want the flexibility to assign
individual development staff according to
business priorities, not according to the
specialist language or machine skills that a
person has. Although the implementation
of a common software infrastructure will
help, it is not sufficient. To have complete
freedom in assigning staff to development
teams, computer sites, and development
projects, it is hecessary to have standards
for development methods and tools,
programming languages, data-naming con-
ventions, data access, communications, and
user-interaction methods. In this case, pre-
cise compliance with the standards is not
necessary because, to some extent,
development staff can adapt to local
variations.

— User-training requirements. By adopting

a standard style of user interface for all
Systems, it is possible to reduce the training
needed by users and to improve the
efficiency with which they use the systems.

- FOUNDATION

Chapter 3 Forming a policy for software standards

This is more likely to be the case if the
chosen interface style is a modern, user-
friendly one, such as the window-icon-
mouse-pulldown-menu (WIMP) style,
pioneered by Xerox.

— Communications belween organisations. In
Foundation Report 59, we showed that
electronic data interchange (EDI) is be-
coming increasingly important for many
organisations. Communications between
organisations require standards for the
format and interpretation of business data,
and sometimes of graphics. Standards for
the EDI communications network are
necessary in some cases, although protocol-
and format-conversion services may some-
times be used instead. It is not essential to
use the same standards for the organi-
sation’s in-house systems, but there may be
advantages if this is done. There is, un-
fortunately, no comprehensive, inter-
national standard for EDI. In some
countries, however, and in industries such
as retail, banking, insurance, and chemicals,
interim de facto standards have been
developed or set by early EDI systems.

The relative importance of these benefits will
vary between organisations, and even between
different parts of the same organisation. For
most Foundation members, the ability to deploy
systems development staff according to business
priorities, and the reduced need to retrain users
when they begin to use a new application will
be more important than software portability.
For some organisations, software interworking
is increasingly important, although for others,
communications with other organisations may
be more important than any of the other
benefits.

While the benefits from setting software
standards are considerable, there are dis-
advantages as well. In particular, an organi-
sation will not be able to consider any software
product that does not conform with its
standards, even though that product may in all
other respects match its requirements. The more
rigid the standards are, the smaller will be the
list of products that meet the standards. More-
over, products complying with the standards
may have fewer functions or be less easy to use
than non-standard ones. Another disadvantage
is that products complying with all the functions

FOUNDATION

© Butler Cox & Partners Limited 1989

of an all-embracing standard are likely to be
more complex, more expensive, and less
efficient than those that have been optimised
for a narrower range of functions.

Progress in public, open standards
remains slow

The need for open standards that facilitate
interconnection between systems based on
different hardware was recognised in the early
1970s. This led to the formulation by the ISO
of the seven-layer ‘open systems intercon-
nection reference model’, known as the OSI
model. Although this model is defined in an
international standard, it is a framework into
which more specific public international
standards for interconnection should fit, rather
than a specification with which products must
comply. (Suppliers’ claims to have products that
comply with OSI should therefore always be
treated with caution.) Thus, the X.25 packet-
switching standard fits into the lowest three
layers of the OSI model, the Ethernet standard
into the lowest two layers, and the FTAM (file
transfer, access, and manipulation) standard
into the uppermost layer. To achieve full inter-
working between systems, it is necessary to use
appropriate standards for each layer of the
model.

The scope of the OSI model
is being broadened

The initial set of standards (or protocols)
conforming with the OSI model were concerned
with the basic functions required to provide
communications paths between applications,
and between terminals and a remote operating
system. However, the OSI model did not origi-
nally address either network management or
cooperative processing (although it did envisage
an FTAM protocol, which enables files to be
accessed and manipulated over a communi-
cations network). Under pressure from smaller
vendors, from users, and from governments, the
scope of OSI (and of public standards generally)
has been significantly widened to include the
concept of systems interworking, in which appli-
cations running on different machines interact
with each other.

This has led to new standards initiatives in the
areas of data access and operating systems. For

2l

Chapter 3 Forming a policy for software standards

example, the SQL standard for database access
(which was discussed in Foundation Report 64,
Managing the Evolution of Corporate Data-
bases) is now well established as an international
standard, and standards for data dictionaries
(the Information Resource Dictionary System,
or IRDS), are being developed, albeit slowly. The
newly defined Posix standard, which specifies
a standard programming interface to Unix
operating systems, is the first venture of the
international standards-making organisations
into the standardisation of operating systems.

A disadvantage of the wider scope of public
standards is that, because so many interested
parties have contributed to the standards-
making process, the final version often includes
S0 many options that it is no longer really a
single standard. This is precisely what has
happened with many of the OSI standards. As
a result, users and suppliers wishing to imple-
ment communications software conforming to
OSI standards have been forced to choose
subsets of the standards within each layer of the
model to form ‘protocol stacks’ or ‘functional
profiles’ that are specific to that organisation
or to the type of application that the communi-
cations facilities are to support. Thus, the US
and UK governments have each developed, for
brocurement purposes, functional profiles called
the Government Open Systems Interconnection
Profile, or Gosip. The US and UK Gosips are,
inevitably, different, but there are moves to
develop a common Gosip. Internationally,
Government buying power is immense and will
continue to be a strong influence on suppliers’
adoption of standards.

Public standards usually lag behind
product developments

The main international standards-making body
is the ISO, but there are, as shown in Figure 3. i
many other organisations with an interest in
standards representing national interests,
computer manufacturers, the PTTs, and user
groups. With so many interested parties in-
volved in standards-making, it seems inevitable
that progress will be slow. Figure 3.2 (on
page 24) outlines the procedure for gaining
approval for a new ISO standard. Although this
process can be completed quickly if everything
goes smoothly, the opportunities for delay are
considerable, and it usually takes four to five

years. It is not surprising, therefore, that
suppliers have been hesitant to design products
that conform to emerging internationa
standards. Long before standards have become
established, suppliers have marketed products
that embody proprietary standards.

Figure 3.3 (on page 24) illustrates the typical
relationship between the development of
standards and the development of technology.
It shows that, usually, standards are fully
established only once a technology is in wide-
spread use. During the early stages of develop-
ment, standards are non-existent, or just
emerging. Because the development of stan-
dards lags behind the development of the
technology, suppliers are either reluctant to
accept an emerging standard, or they insist on
providing their own ‘added value’ features not
included in the standard. SQL is a typical
example of this. In theory, if database-access
code is written in SQL, it should be possible to
replace the underlying relational database
Mmanagement system without having to change
the application software. However, virtually all
relational database management systems have
non-standard features that system developers
are reluctant to forego. In practice, therefore,
SQL applications are not fully portable.

Frustration with the usual timescale for defining
an international standard, and pressure from
users (particularly governments), has led to the
development of standards by industry bodies,
and their subsequent transfer, in largely com-
plete form, into the formal standards-making
process. In several cases (the ANSI standard for
the Fibre Distributed Data Interface, or FDDI,
for instance), this has resulted in standards that
are ahead of the technology that they relate to.
Sometimes, even the OSI brocedures can be
speeded up. In the case of the EDIFACT
standard for electronic document interchange,
the draft proposal was approved by the ISO in
Just 12 weeks.

Once the formal standards-making process is
complete, there is, however, no gnarantee that
suppliers will implement the standards in
compatible ways. Thus, X.25 implementations
by European PTTs are often incompatible,
because they comply with different subsets of
the same overall standard. There is, in fact, no
guarantee that the standards will be imple-
mented at all. At bresent, for instance, hardly

FOUNDATION

@ Butier Cox & Partners Limited 1989

Chapter 3 Forming a policy for software standards

any products comply with the OSI Virtual
Terminal Protocol (VTP). The functions that
VTP provides are appropriate only for dumb
terminals, for which good de facto standards

already exist. Moreover, as we explained in
Foundation Report 63, The Future of the
Personal Workstation, dumb terminals are
being superseded by intelligent workstations.

function

International standards organisations

ISO — Iniernational Standards Organisation
Part of the United Nations, based in Geneva.

CCITT — International Telegraph and Telephone
Consultative Committee

Geneva-based arm of the International
Telecommunications Union.

National standards organisations

AFNOR — Association Francaise de Normalisation
French national standards association.

ANSI — American National Standards [nstitution

A non-profit US organisation founded by manufacturers.
Does not produce standards itself — documents are fed
to ANSI from over 250 organisations.

Professional and industry bodies

ECMA — European Computer Manufacturers’ Association
A vendor consortium that develops specifications that are
often incorporated into the final OSI standards.

EIA — Electronic Industries Association

EWOS — European Workshop for Open Systems
Established in 1988 to develop profiles based on the OSI
model. Aims to coordinate European activity and liaise

with groups in the United States and Japan. The output
will be documents in a form that is directly usable for rapid
standardisation both by CEN/CENELEC and ISO.

IEC — International Electrotechnical Commission
US organisation that produces world standards for
electrical and electronic engineering.

Bodies that promote functional standards

COS — Corporation for Open Systems ‘

Non-profit organisation, based in Washington DC. Aims to
promote inter-operable, multivendor products and services
operating under agreed-to OSl, ISDN, and related
international standards. : :

OSF — Open Software Foundation

A US non-profit, industry-supported organisation founded
in 1988, which is developing preducts around Posix and
IBM’s version of Unix, AlX. .

0SITOP — Open Systers Interconnection Technical and
Office Protocol ;

A European user association with the objective of
including users’ requirements in the standardisation
process by promoting 0OSl-based standards and
international standardised profiles. Has over 120
members, both users and vendors.

SPAG — Standards Promotion and Applications Group
European equivalent to COS, based in Brussels. Formed

Figure 3.1 Standards-making organisations may be international or national, or they may specialise in an industry or a

CEN — European Committee for Standardization
Work is dictated by the European Commission and driven

by the perceived need to harmonise IT standards by
1992,

BSI — British Standards Institution
British national standards body.

DIN — Deutsches Institut fir Normung
West German national standards organisation.

IEE — Institution of Electrical Engineers
UK arm of |IEEE.

IEEE — Institute of Electrical and Electronic Engineers
US learned institute. An independent professional body
that creates public standards that are subsequently
adopted by such bodies as ANSI and 1SO.

NBS — National Bureau of Standards

Recently renamed the National Institute of Standards and
Technology (NIST). Works on behalf of the US government
to establish specifications that have to be satisfied by
manufacturers bidding for government computer contracts.

from major i'E"com;)e{hies.ih'the EC to advise on
implementing policy dg_cisiq_r-]s' on standards.

Unix International . -
Comprises vendors supporting System V, Release 4, the
latest version of AT&T’s Unix operating system. Aims {0
work closely with X/Open, and will conform with the Posix
standard. ! : 4
X/Open : - - -
A non-profit, Europe-based, independent consortium of
international computer-systems vendors who are
promoting the development of an open, multivendor
Common Applications Environment based on de facio and
international standards. Founded in 1984. Liaising closely
with |EEE to keep the Common Applications Environment
in line with Posix and other |EEE work aimed at providing

a complete operating environment. ,

X FOUNDATION

© Butler Cox-& Partners

23

Chapter 3 Forming a policy for software standards

Figure 3.2 Developing a new ISO standard is a long
procedure

The following procedure is followed, assuming that each
step Is successfully completed. The whole process may take
upwards of two years.

1. Proposal is drafted and agreed by ISO member (for
example BSI, DIN).

2. Proposal is submitted to 1SO. 0

3. IS0 technical committee votes on draft proposal.

4. Draft proposal is passed to appropriate §§Of"’
subcommittee as work item.

5. Subcommittee produces working draft of ISO standards.

6. Postal ballot is_}h__efd:ibn vﬁorkingfdra@fﬁ

7. Draft International Standard (DIS) is formulated.

8. Vote is held on DIS.

9. DIS is elevated to full international standard. -

Unix-based open standards are
becoming viable

Unlike proprietary operating systems such as
IBM’s MVS and DEC’s VMS, Unix was not
designed by a hardware vendor. It was, in fact,
developed by two researchers at Bell Labora-
tories. For nearly 20 years, Unix advocates have
claimed that it is the vehicle for providing
machine—independent, and vendor-inde-
pendent, applications. In theory, it should be
possible to take a Unix application written for
one environment and run it in any other Unix
environment. In practice, that has not happened
because there have been (and still are) several
Unix ‘standards’.

Originally, major hardware vendors did not take
Unix very seriously. Today, however, most
major suppliers offer Unix and Unix-based appli-
cations on all types of hardware, from work-
stations to mainframes. In addition, software
houses are increasingly making their products
available for a Unix environment. In Germany,
for example, the ISIS catalogue (which lists all
the software products in that country) contains
1,300 Unix applications.

Figure 3.3 Standards usually lag behind technology, as the following examples show
Competing proprietary
No standards (proprietary products (standards Established standards
Technology solutions only) emerging) (commodity products)
Data management Hypertext IDMS
IMS Cobol data division
Total SaL
Natural
User interface X-Windows
Common user access
Open Look
Business programming Expert systems Focus
languages Nomad Cobol
Mapper
Line
dBASE Ii
Realtime language Coral ADA
RTL/2
Operating system Proprietary operating Posix
interface systems CPIM
MS-DOS

24

'X FOUNDATION

ox & Pg

Chapter 3

Unix is now well established

Unix systems are now well established in the
networked-workstation environment and are
increasingly being used for ‘niche’ applications
such as front-office support in financial-services
companies, computer-aided design and manu-
facturing, and process control. Because of the
highly competitive nature of the Unix market,
the price-performance of Unix systems is
generally better than that of systems based on
proprietary architectures. In some cases, this
advantage is a factor of 10 or more and is likely
to be sustained, and even increased, as Unix
benefits from the impact of new computing
technologies such as reduced-instruction-set
computers (RISC) and parallel processing.
Within a few years, it will be technically feasible
to use Unix for the whole of a major organi-
sation’s computing.

There is no doubt, therefore, that Unix and
other open standards are here to stay. Suppliers
such as Apollo, Datapoint, and Norsk Data have
lost business because of the closed natures of
their proprietary standards and have been
obliged to move towards open standards.

Supplier groups have been formed
to promote Unix

As a consequence, most of the major suppliers
now see Unix as a good basis for software-
infrastructure standards. Three organisations —
X/Open, OSF, and Unix International — have
therefore been formed by various groups of
suppliers to develop and promote open soft-
ware-infrastructure standards based on Unix.
Two of these groups — OSF and Unix
International — are working hard to make their
particular version of Unix the de facto standard.
Regretfully, it is too early to advise Foundation
members as to which group, if either, will
succeed in this aim.

The membership of the three groups is
compared in Figure 3.4, overleaf, which shows
that several of the leading hardware vendors
belong to two of them. IBM and DEC, for
example, belong to OSF and X/Open, and AT&T
belongs to X/Open and Unix International.
Membership of X/Open is restricted to hardware
vendors, whereas membership of OSF is open
to any organisation with an interest in software.
Unix International comprises vendors who

¥ FOUNDATION

artners Limited 1989

Forming a policy for software standards

support AT&T's latest version of the Unix
operating system, System V, Release 4.

We believe that the formation of these organi-
sations is a significant step forward in the
development of open software standards. The
fact that IBM and DEC are members of both
X/Open and OSF, and are both making positive
contributions to the development of open
standards, indicates their acceptance of the
market demand for software-infrastructure
standards. In addition, the activities of these
three open standards organisations have con-
tributed to the increasing viability of Unix in the
marketplace.

X/Open

X/Open is an independent non-profit consortium
of hardware vendors whose principal activity
is the development of a comprehensive set of
standards for an open, multivendor, software
infrastructure known as the Common Appli-
cations Environment (CAE). CAE is a
consciously created alternative to the IBM
software environments. It is intended to boost
sales of the members’ equipment by attracting
software developers and reassuring users that
they will not be locked in to a single supplier.

X/Open operates in the field of emerging
standards, selecting those de facto and
international standards that are thought to be
the most practical and technically acceptable for
the CAE. The consortium aims to publish
standards covering operating systems, pro-
gramming languages, data management, the
user interface, transaction processing, and com-
munications. The standards are intended to be
internationally acceptable. X/Open has already
published a ‘portability guide’ and recently
announced a ‘branding programme’ that will
indicate which software products have passed
the compliance tests for the X/Open interfaces.
Standards are agreed in the conventional way,
with all members evaluating proposals and
arriving at a consensus.

Open Software Foundation

The Open Software Foundation (OSF) is a
direct response to AT&T’s dominance of Unix
standards. The founders, who are major sup-
pliers of Unix systems, seek to wrest control of
the standards from AT&T and place it in the
hands of an independent body. OSF describes
itself as a software house whose aim is to
construct and license an Open Applications

25

Chapter 3 Forming a policy for software standards

Figure 3.4 Groups of suppliers have established three organisations to develop and promote Unix-based open
software infrastructure standards
X/Open®
AT&T IBM Philips
Bull ICL Siemens
DEC NCR Sun Microsysiems
Ericsson Nixdorf Unisys
Fujitsu Nokia Data
Hewlett-Packard Olivetti
osF?
Apollo e Hewlett-Packard = Software AG
Boeing Computer Services Hiaghi = seny
Bull S BM - - - Sumitomo Electric Industries
Canon - = - MIT's Information Systems Texas Instruments
Carnegie Mellon University Nixdorroai- o0 0 = University of Guelph - oI
CETIA - Norsk Data University of Maryland, Department of
CSK Corporation Philps . = - Computer Science '
Data General Project Athena at MIT ‘Wang i
Bzl A S . Oughitim - Xerox Corporation
Dell Corporate Services Corporation Siemens |
: ; 3
Unix International
Addamax ICL Prisma
Alcatel-SMH Informix Pyramid
Amdahl Intel Ricoh
Arix Interactive Systems Sony
AT&T Lachman Associates Stellar Computer
Computer Consoles Locus Stratus
Concurrent Micro Focus Sun Microsystems
Control Data MODCOMP Texas Instruments
Convergent - Motorola Tolerant
Data General NCR Toshiba
Dupont Fibre Division NEC UniSoft
Ericsson OKki Electric Industry Unisys
FP Computing Olivetti Wang
Fujitsu Omron Xerox
Fuji-Xerox Oracle 880pen
Gould Phoenix Technologies
HCL Prime
1 All the members as of January 1989
2 Not the total membership; there are now over 90 members
3 All the members as of March 1989

Environment. Eventually, this will comprise an
operating system, user-interface software, a
database management system, communications
software, and software-engineering tools. All
of the members of OSF have committed
themselves to provide the Open Applications
Environment for their Unix products.

OSF believes that the most effective standards
are those embodied in existing software pro-
ducts, and is therefore basing its own develop-

ments on existing products. The OSF operating
system will be based on a future version of AIX,
IBM’s version of Unix, and will comply with the
Posix standard. The user-interface software
(known as OSF/Motif) will comply with the X-
Windows protocol. OSF invites submissions of
software products from its members or, in
theory, from any other organisation. Products
are evaluated technically by an OSF team and
the final choice is made by the Board. This
procedure is different from that used by X/Open

FOUNDATION

Chapter 3 Forming a policy for software standards

and reflects the different nature of the two
organisations; OSF is a software house and
X/Open is a standards-promotion body.

Unix International

Unix International, which was announced
towards the end of 1988, is AT&T's response
to OSF. The aim is to align other major Unix
suppliers with AT&T’s new version of the Unix
standard, System V, Release 4, which con-
solidates the three most important commercial
variants of Unix (Berkeley, System V, and
Xenix). The group will not write any software
itself, but the members will be provided with
early (and simultaneous) access to Unix source
code. Unix International will work closely with
X/Open.

Unix will not supersede mainstream
operating systems in the near future

Despite the growing success of Unix in the
marketplace, and despite the activities of
X/Open, OSF, and Unix International, many
Foundation members are sceptical about Unix,
and question whether it will ever supersede
established mainstream operating systems like
IBM’s MVS and DEC’s VMS. In our view, Unix-
based operating systems will evolve quite
quickly to the stage where they could be used
for mainstream corporate computing, but it is
unrealistic to expect major users to switch to
Unix in the foreseeable future. Their existing
applications portfolios make it difficult for them
to migrate away from their existing software
infrastructures. Both users and suppliers have
immense investments of hardware, software,
and skills in the established proprietary systems,
and the cost, time, and effort involved. in
migrating away from these systems are 5o high
that many organisations will not be prepared to
contemplate such a move. Furthermore, the
range of application packages that is compatible
with proprietary systems and suitable for use
by large organisations is greater than for Unix.

The major suppliers of proprietary operating
systems are, of course, anxious to prevent their
customers from migrating to open standards,
and go to great lengths fto emphasise the
superiority of their proprietary products com-
pared with those based on open standards, even
when they offer both. Thus, IBM and DEC have
restated their commitments to MVS and VMS

. FOUNDATION

© Butler Cox & Pariners Limited 1989

respectively, and they are particularly con-
cerned to position Unix as an unsuitable base
for large-scale commercial applications.

There is a fair degree of truth in this view. Unix
was not designed as a comprehensive operating
system and it has several major limitations,
especially in the security, integrity, and per-
formance it provides. Until recently, for
example, there were no in-built file-locking
facilities, a fundamental requirement of any
mainstream operating system. Its resilience and
recovery features are still weak, as are job
scheduling and access control. As commercial
interest grows, suppliers will address these
deficiencies, and some progress has already
been made. However, some of the deficiencies,
notably those concerned with system security,
are rooted in the fundamental design of Unix,
and will be very difficult to remedy. It will
therefore be some time before Unix will reach
the stage of being a genuine alternative to
mainstream operating systems.

Unix will not, therefore, supersede the main-
stream proprietary operating systems for large-
scale systems in the short to medium term. It
will, however, be increasingly marketed and
seen as a valid alternative to them. There may
also be further moves to converge Unix and
proprietary environments. DEC, for instance,
has announced Posix support for VMS, allowing
Unix applications to run alongside VMS
applications.

An organisation that chooses to base its main-
stream software infrastructure on Unix will
have to look carefully at the limitations of
today’s Unix systems in deciding on the
migration plan, and will need to invest a higher
than usual level of effort in tracking standards
developments. It may even have to play a part
in advancing those standards. In return, it will
obtain a very wide choice of supplier, and
excellent price-performance from its hardware
and software products.

IBM'’s de facto standards
will remain important

While Unix is set to become an important force
in certain well-defined areas, proprietary soft-
ware standards will remain important in the
area of computing that is of most significance

27

Chapter 3 Forming a policy for software standards

to the majority of Foundation members — large-
scale corporate data processing systems based
on mainframes. In most countries where there
are significant numbers of Foundation members,
the dominant mainframe supplier is IBM. Even
in France, where Bull is the market leader, it
is not possible to ignore IBM and the importance
of its de facto standards to the IT industry as a
whole.

In the past, IBM has not hesitated to introduce

new hardware architectures and its associated
software standards, as it has enhanced its hard-
ware ranges and introduced new ones for
specific purposes. Even in the communications
area, where SNA was intended to provide a
universal solution, there has been a proliferation
of incompatible ‘logical units’ within the SNA
architecture, and IBM has also adopted some
public communications standards, such as X.25.

IBM is now making a determined effort to
rationalise its standards. Progress has already
been made in the communications area, with
the announcement of the Advanced Program to
Program Communications (APPC) protocol. This
Is intended to be a universal solution to SNA
communications interworking, defining a single,
standard unit. IBM has now begun to provide
products that implement the APPC protocol. A
second initiative has resulted in the transfer of
established products from one systems environ-
ment to others. For instance, following the
release of CICS for 0S/2, IBM indicated that
CICS might also be offered for the AS/400 and
AIX environments in the future.

Systems Applications Architecture
is a significant initiative

The most important standards initiative from
IBM, however, is Systems Applications Archi-
tecture (SAA). In the two years since IBM
announced the SAA concept, there has been
intense speculation about IBM’s motivations.
Some see SAA as an attempt by IBM to pull
together its three main product lines — the
System/370 and successor mainframes, the mid-
range AS/400s, and the PS/2 range of personal
computers. Others see SAA as a competitive
response to DEC, aimed at achieving the appli-
cations portability already available to VMS
users. Yet others see it as a competitive response
to Apple, providing IBM users with the type of
user-friendly graphical interface already

28

available to Macintosh users. More sceptical
observers believe that SAA is little more than
a smokescreen, designed to divert attention
away from IBM’s real product-development
intentions. These sceptics question IBM’s rea]
commitment to SAA and claim that their view
is based on informed comment from within IBM.

In our view, there is no doubt that IBM is fully
committed to SAA. It should be seen as nothing
less than IBM’s grand design for the future of
commercial information systems. The original
initiative came from IBM’s Corporate Manage-
ment Committee (CMC), which is chaired by
John Akers, IBM’s chief executive. At the
beginning of 1986, the CMC set up a special task
force to draw up a plan for bringing the com-
pany’s different operating environments closer
together. The result was SAA.

Systems Applications Architecture
has four main elements

SAA has four main elements — common pro-
gramming interface, common user access,
common communications support, and common
applications. The SAA architecture is illustrated
in Figure 3.5. Three of these elements are based
firmly on existing IBM products and standards.
Common communications support provides a
standards framework for a subset of IBM’s
existing communications products; much of the
common programming interface is defined in
terms of existing products or IBM (or inter-
national) standards; the common applications
concept extends an idea first applied to IBM’s
office systems products. Only the common user
access element is genuinely new, although that
part of the common programming interface
which relates to it is also new.

It is important to realise that SAA is not a set
of product specifications; it is a collection of
selected software interfaces, conventions, and
protocols that will provide the framework for
developing consistent applications that can
operate in the three main IBM computing
environments — System/370 and its successors
(TSO/E running under MVS/XA, and CMS
running under VM), AS/400 (running under the
0S/400 operating system), and PS/2 (running
under the 0S/2 Extended Edition operating
system).

S Buller Cox & Partners Limited 1988

Chapter

provided that they use no features outside the
interface definitions, applications written to
comply with the common programming inter-
face will be able to run in any SAA environ-
ment. As a consequence, applications de-
velopment staff will also be more easily able to
transfer between computing environments, as
the business demands. Applications that use
common communications support will be able
to interwork with one another, even if they are
running in different hardware environments.

Users will more easily be able to learn how to
use a new application that implements the

3 Forming a policy for software standards

common user access standards, making it easier
to move staff from one department to another.
In short, SAA provides all the benefits of
software standards identified at the start of this
chapter, except those associated with inter-
organisational communications (which is largely
outside the scope of an initiative from a single
vendor).

Systems Applications Architecture has
implications for user organisations

The original IBM personal computer rapidly
became the de facto standard for business

Figure 3.5 SAA is not a set of products; it is a collection of conventions, interfaces, and protocols

‘ Programmer

Common
programming
interface

Programming support

Communi-

System/2

s cations —
To other
d us
T SAA systems
System
control
Personal AS/400 | System/370

(Source: IBM)

FOUNDATION

9 Butler Cox & Partners Limited 1989

29

Chapter 3 Forming a policy for software standards

microcomputers. In time, the PS/2 running SAA
applications will do the same, and this will mean
that applications written for one vendor’s
personal computer will also be able to run on
equipment from other vendors. Thus, in the
personal-computer marketplace, SAA looks set
to provide genuine applications portability. It
is not yet clear whether SAA can also do this
in the minicomputer and mainframe market-

places. As we explained earlier in this chapter,.

open standards, particularly Unix-based
standards, are strong contenders to achieve this
for minicomputers, and possibly for mainframes
as well.

Nevertheless, SAA is a significant development,
not just for IBM, but for the whole of the IT
industry, and it cannot be ignored by either
users or suppliers. Like SNA 15 years ago, how-
ever, SAA is a proprietary architecture; it is a
set of standards, not a set of products. User
organisations will be able to obtain the benefits
promised by SAA only when a full set of
supporting software products is available, and
this will take several years to achieve. Indeed,
SAA will not be fully complete until well into
the 1990s. Although major software companies
such as MSA say that they have already begun
developing SAA applications, most software
suppliers will not be able to begin this task until
the reference manuals and tools become
generally available. Such companies are there-
fore unlikely to bring SAA products to the
market before 1991, except for personal com-
puters. User organisations will probably wait
until after 1991 before they are prepared to
commit to SAA.

Even if a full range of SAA products were
available today, many organisations would not
be able to move quickly to a new SAA environ-
ment. SAA excludes several significant TBM
hardware ranges and standards that are in
widespread use today, and because of these
investments, user organisations will need to
migrate to SAA over an extended period of time.
Thus, many organisations will continue to be
dependent on SAA ‘orphans’ for many years,
so that SAA will not achieve, for IBM users, the
degree of consistency and simplicity that is
already enjoyed by, for instance, DEC VMS
users.

In the short term, the main benefits of SAA for
user organisations will be derived from the

30

common user access standards. Until now, user-
interface standards have been a significant gap
in the standards field. IBM’s Presentation
Manager for the OS/2 operating system supports
SAA’s common user access. The standards and
conventions of this element of SAA are designed
to make applications look and feel the same,
irrespective of the hardware on which they are
running. This can be achieved only if appli-
cations conform to the same user-interface
standards and conventions, or if front-end
workstation programs are written to provide
common user access interfaces. This latter
approach can be used for applications running
in non-SAA environments such as CICS, 1MS,
and AIX.

In general, SAA standards are already very
broad, and are getting broader as IBM customers
demand the incorporation of their favourite
software products within SAA. There is also
likely to be pressure to include public standards.
This has two important implications for user
organisations. First, it is not possible to
standardise on SAA per se; it will be necessary
to choose a subset of the SAA standards. In
particular, users will be no more able to switch
between systems environments than they are
at present, if every available feature included
in the common user access is used. Second, the
effort involved in converting existing software
products to SAA, or even developing new
products that fully support all the features of
SAA, would be immense. Tt is most unlikely that
either IBM or independent software vendors will
do this. More probably, they, too, will design
their products to conform to a subset of SAA.
There will still be considerable scope for in-
compatibilities between products that imple-
ment different SAA subsets. User organisations
will therefore need to investigate very carefully
exactly what is meant by a software vendor who
claims SAA compatibility, and whether the
product fits in with the organisation’s own
software standards.

Organisations will need to choose
a subset of an appropriate
family of standards

An organisation’s software standards need to
cover all the components of the software
infrastructure — communications, database,

FOUNDATION

ox & Pariners Limiied 1989

Chapter 3

programming, user interface, and so on. Un-
fortunately, it is not possible to choose standards
for each of the components independently
because application systems will make use of
each of the components. It is therefore
necessary to choose a family of standards. The
earlier sections of this chapter have shown that
there are a bewildering number and variety of
standards families, which have evolved, and are
continuing to evolve, in several different ways.
Some, such as SNA (and more latterly, SAA),
are proprietary, being developed and promoted
by hardware vendors. Others, such as Posix, are
open standards that have evolved from
successful products. Yet others are created by
standards-making bodies.

In choosing which family of standards to adopt,
organisations will usually find that their choice
is constrained by the existing installed bases of
hardware and software, particularly for main-
frames. In other cases, however, there will be
greater freedom to choose the most appropriate
architecture. Thus, a business-needs study
might show that a requirement for greater
responsiveness and flexibility can best be met
by implementing a relational database and
advanced system building tools. Such a study
would not determine which of several pro-
prietary environments provided by suppliers
such as Bull, DEC, IBM, ICL, Siemens, or Unisys
was the most appropriate.

However, there are disadvantages with choos-
ing any one of these types of families of
standards. The main problems with proprietary
standards are that the vendors may choose not
to disclose details of the standards, may change
them at will, may charge for use of the under-
lying technology, and may exert a restrictive
influence on the market for software that
conforms to the standards. These problems may
persist even after control of the standard has
passed to an independent standards body, if the
vendor has a dominant position in the relevant
part of the market.

The major drawback of standards developed by
standards-making bodies is the slow pace of
development, both of the standards themselves
and of software products that conform to them.
The software-supply industry is still hesitant to
commit to open-standards products, even though
the standards may be more balanced and more
comprehensive than proprietary standards. The

. FOUNDATION

© Butler Cox & Pariners Limited 1989

Forming a policy for software standards

all-embracing nature of these standards (and of
proprietary architectures like SAA) means that
user organisations must select a subset of the
facilities relevant to their own needs. Un-
restricted use of all the facilities would largely
negate the benefits of software standards,
because the large number of options and the
flexibility provided by the standards would
make it impossible to ensure that applications
could interwork, that user interfaces were con-
sistent, and that development staff could move
freely between different hardware environ-
ments. Moreover, product support is available
only for certain combinations of the standards
defined by the overall family.

The need to select a subset of the facilities is
already evident in the OSI functional profiles
defined by the UK and US governments. Com-
mercial organisations will need to do the same,
particularly for open standards that have been
defined by starting with a clean sheet of paper.
Neither will choosing an all-embracing archi-
tecture like SAA solve the problem completely.
User organisations will still need to create their
own equivalents of functional profiles for SAA.

Software standards should be based
on software-infrastructure
products

In practice, however, open standards, even
those created by standards-making bodies, are
often developed from concepts embodied in
existing products. Standards based on successful
products, especially de facto standards, tend not
to suffer to the same extent from the problems
outlined above. (A good example of a successful
de facto ‘open’ standard is the Postscript page-
description language used by many personal-
computer packages to enable the data from the
package to be passed to a laser printer.)

We recommend, therefore, that once a family
of standards has been chosen, Foundation
members base their software standards on the
products in their software infrastructure. This
would mean, for example, standardising on a
particular database management system, rather
than standardising on SQL and then allowing a
free choice of database management system.

For most purposes, the most effective types of
standards are those that are encapsulated in
the products that make up the infrastructure.

31

Chapter 3 Forming a policy for software standards

Unlike standards that are defined by means of
formal specifications, product-based standards
are clearly defined by the way the product
behaves. In addition, it is much easier to test
whether new software conforms to a product-
based standard: if it cannot interwork with the
main product that defines the standard, it does
not meet the standard.

In deciding which products to include in the
software infrastructure, and hence the product-
based standards that will be adopted, the needs
of the business should be the paramount
concern. Thus, an oil company has made a
particular distribution package a central
element of its software infrastructure, and this
has required it to adopt IBM technical standards
for a wide range of data processing and office
systems within the company. This particular
company happens to have chosen to base its
software infrastructure on a product that
requires a proprietary architecture. While we
believe that such infrastructure products should
form the basis for selecting software standards,
there is increasing scope for these products to
be based on open, rather than on proprietary
standards.

User organisations need to specify their
own rules for using the standards

Choosing a subset of an appropriate family of
standards is not sufficient, however. It will still
be necessary to provide detailed house rules

32

describing precisely how the chosen Products
and facilities will be used. Allowing develop-
ment staff free reign in the way they use 3
programming language, or construct the user
interface for an application, is a recipe for
disaster. For example, detailed rules and guide-
lines are required for the Programming style that
will be used, and for the conventions to be used
for naming data items and procedures. Most
organisations, of course, already have standards
manuals that cover these aspects of software
standards.

Similar, though less familiar, problems arise in
setting user-interface standards. User-interface
packages, such as DECWindows, Microsoft’s
OS/2 Presentation Manager, and the Macintosh
Toolbox, allow development staff considerable
freedom in designing both screen layouts and
the dialogue between the application and the
user. Although suppliers of such packages
produce useful style guides, they are unlikely
to be sufficiently specific for a particular organi-
sation. User organisations will therefore need
to create their own in-house style guides that
define the user interface in specific terms.

Although a standards policy is a necessary and
essential component of a software strategy,
it is not sufficient by itself. The strategy must
also specify the policy for acquiring new
software. We address the issues associated with
the software-procurement policy in the next
chapter.

. FOUNDATION

In this chapter, we discuss the third element of
a software strategy — the policy for procuring
new software. We have deliberately used the
word ‘procuring’ to indicate that there are
several options for obtaining software. Usually,
the lower-level components of the software
infrastructure, such as language compilers, data-
base management systems, and communications
software will be software packages purchased
from hardware or software suppliers. Some
smaller components, typically ‘bridgeware’
(special software used to link applications) or
conversion software, may need to be written
specially, but these components should form
only a very small proportion of the total infra-
structure. However, there are a greater number
of options for procuring applications software.

For most organisations, the choice is usually
between using a package or developing a
bespoke application. We provide guidelines on
how to decide whether a packaged solution or
bespoke development is the best option. In a
surprisingly high number of cases, packages will
be preferable to bespoke development if
business benefits, rather than users’ require-
ments, are the main criterion. The chapter
concludes by showing how certain types of
software-procurement decisions can be de-
centralised, and how an appropriate software
infrastructure can allow user departments to
procure their own applications by constructing
them themselves.

There are four main options
for procuring applications
software

The four main options for procuring applications
software are:

— To use an application package.

¥ FOUNDATION

® Butler Cox & Parfiners Limited 1389

Chapter 4

Procuring new software

— To develop bespoke software in-house.

— To employ a software house or a bureau to
develop the application.

— To set up an industry consortium to develop
applications software that will be used by
all members of the consortium.

Often, the decision about which option to
choose is made automatically, based on the
policy of the organisation, rather than by
formally evaluating each option. For example,
some organisations will always develop their
own applications, whereas others have a policy
of first looking to see if there is a package that
meets the requirements.

Schering, the worldwide pharmaceutical com-
pany with its headquarters in Germany, has
adopted an interesting variation of the appli-
cation package option. Having failed to find a
suitable package for a particular application
requirement, Schering identified a US software
house that it felt would be well placed to
develop such a package and sell it. The company
persuaded the software house to fund some of
the development costs of a package that met
Schering’s own requirements. So far, several
dozen copies of the package have been sold. This
experience has led Schering to recognise the
value of the company’s knowledge to software
houses, and it has decided to use this approach
wherever it is practical. It points out, however,
that the risks are higher than for buying
established packages, and that a very close
working relationship must be maintained with
the software house throughout the development
of the package.

The consortium option for developing appli-
cation software has been used successfully by
public-sector organisations that have similar
(maybe identical) requirements. For them, the

33

Chapter 4 Procuring new software

attraction of this option is the ability to share
development costs between the members of the
consortium. In the private sector, however,
where organisations in the same business sector
are likely to be competitors, consortium de-
velopments have not been so successful. For
example, an organisation called London Clear
was established to provide an electronic-clearing
service for the London money markets. Un-

fortunately, when the costs of developing the -

specialised applications software began to
escalate during the early system-specification
stages, the consortium members withdrew their
funding, and London Clear collapsed. Strong
leadership, tight project management, and full
commitment from the partners are needed to
make a consortium project successful.

For most organisations, however, the main
choice for procuring new application software
is either to use a package or to develop a
bespoke application.

Benefits, not requirements,
should be the basis for
software procurement

In deciding whether to use a package or to
develop a bespoke application, it is important
to make a clear distinction between the essential
and non-essential application requirements.
Unless this is done, the bespoke-development
option will invariably be preferred, and oppor-
tunities for using packaged software will be
missed. Most organisations start a requirements-
definition exercise by carrying out a detailed
survey to find out what users would ideally like.
Much less attention is devoted to determining
the business benefits that the organisation
expects to gain from the new application. This
approach almost inevitably leads to the con-
clusion that there are no packages that meet all
of the users’ requirements. As a consequence,
the systems department, under pressure from
the users, falls into the trap of trying to develop
a comprehensive bespoke system.

More often than not, however, there will be an
application package that meets most (if not all)
of the essential requirements and provides
most of the business benefits. Moreover, the
additional business benefits (in terms of
increased profitability, reduced costs, and so on)
provided by a bespoke system are unlikely to

justify the additional costs and time required to
develop the system. Figure 4.1 describes the
experience of one organisation that abandoneq
a major bespoke development project in favour
of a package because it realised that the
development costs could not be justified in
business terms. We believe that paying greater
attention to the business benefits obtained from
computer applications would mean that, in
many cases, application packages would be seen
to be a better investment than bespoke in-house
developments.

Although most organisations will analyse
carefully the costs and benefits of purchasing
new plant, opening new retail outlets, or
launching new products, very few will conduct
the same analysis for software investments,
Figure 4.2 shows how the Net Present Value
(NPV) technique can be used to analyse and
compare the return on investment from two
options for implementing a new application. The
idea behind NPV is that future benefit values
(increased profits, for example) are worth less
than the same benefit obtained today. The
difference is measured by considering the ‘rate

Figure 4.1 Application packages can meet most
essential business requirements

A fund-management organisation

This fund-management organisation used to obtain all its
IT services (apart from minor PC-based systems and
direct input from financial-information services) from a
bureau. The applications were mainly batch-based
systems. The organisation realised that in view of the
changes that were likely to occur as a result of the
deregulation of London’s financial markets in October
1987, its survival would be in jeopardy if it did not have
in-house online systems to enable fund managers to
react more quickly to changes in the market, and to
meet new regulatory reporting requirements. A software
house was commissioned to develop new bespoke
systems from scratch,

After a year of development work, it became apparent
that progress was much too slow and that the final cost
would be exceptionally high. With the deregulation
deadline approaching, the only other choice was to see
if there was a package that could meet the require-
ments. There was considerable resistance 1o this
approach from one principal user who wanted an all-
embracing bespoke system that could handle every
type of financial instrument automatically. However, the
finance director realised that the cost of such a system
was out of line with the fees that the organisation could
expect to earn over the next five years. A package
capable of meeting more than 80 per cent of the
reguirements was identified, and the recommendation to

buy this package was accepted.

« FOUNDATION

s Limited 1989

Chapter 4 Procuring new software

of return’ that an organisation might expect to
achieve by investing the money in a different
way. For example, $1 million deposited in the
pank at an annual interest rate of 10 per cent
will grow to $1.1 million after one year. Thus,
at a rate of return of 10 per cent, $1 million
obtained in one year's time would be worth
$1 million divided by 1.1, or $909,091, today. The example NPV calculation in Figure 4.2
One million dollars obtained in fwo years’ time shows that a package is by far the better
would be worth still less today. Thus, an all- investment, even though the benefit value it

embracing comprehensive bespoke develop-
ment that takes a long time to implement (and
to start producing benefits) may have a lower
NPV than a package-based solution that can be
implemented immediately, even though the
package does not meet all the requirements.

Figure 4.2 The Net Present Value technique can be used to compare two options for implementing a new application

An organisation has a choice of buying a package which, after some tailoring, will meet most, but not all, of its
requirements, or developing a bespoke system from scratch. The package will cost $125,000 to purchase and a further
$175,000 to tailor. It will take one year to implement, and at present values, will then produce a net benefit of $400,000 a

year. The bespoke system will cost $1.5 million. spread equally over three years. Once it is implemented, it will produce a
net benefit of $600,000 a year.

Assuming ‘a return on investment of 25 per cent, the package approach produces a cumulative benefit after two years,
whereas the bespoke system does not produce a cumulative benefit until the eleventh year (see the table below). By the
sleventh year, the package approach will have produced a cumulative benefit of more than £1.1 million, even though its
annual benefit is one-third less than that of the bespoke system.

Sq
N
3
= S& 5 5
& =6 o 9
& £ $9 &
& e& & &
Present value 2 %Q§ L &
factor at 25% & Ll @9 @

1 1,000 (300,000) (300,000) (300,000) (500,000)
2 0800 | 400000 820000 . 20000 (500000})
3 0.640 400,000 256,000 276,000 (500,000) (320,000)
4 0512 400000 204000 | 480,000 . 600000)
5 0.410 400,000 164,000 644,800 600,000 246,000 (666.800)
6 0.328 400000 131200 776000 600000 196,800 (470.000)
7 0.262 400,000 104,800 880,000 600,000 157,200 (312,800)
8 0.210 400,000 84000 964000 . 600000 126000 (186,800)
9 0.168 400,000 67.200 1,032,000 600,000 100,800 (86.000)
10 g 400000 53600 1085000 600000 80400 . (5600)
11 0.107 400,000 42,800 1,128,400 600,000 64,200 58,600

Net present values are calculated by multiplying the expected benefit or cost by the present value factor. The factor for
year n+1= 1+ (1+1)", where r is the expected rate of return on investment. In this example, r is assumed to be 0.25,

Note that the above example is highly simplified because no account is taken of the fact that cosis and payments are
likely to be spread throughout the year, rather than accounted for once, at the end of the year. Nor is any variation in
maintenance costs after implementation taken into account, and the example is based on the assumption that subsequent
benefits are net of these costs.

FOUNDATION

ox & Partners Limited 1982 35

Chapter 4 Procuring new software

provides each year is only two-thirds of the
benefit value provided by a bespoke system.
The reason for this is that, in the example, the
package is implemented two years earlier and
costs substantially less to implement. Thus,
instead of using a comprehensive study of
requirements as the basis for deciding which
option to pursue for procuring the application
software, we believe that it makes more sense

to concentrate on the business benefits that will .

result from the application. The following
procedure should be adopted:

— Identify, and as far as possible, quantify all
the benefits expected from the application.

— Identify the basic functions that it is
absolutely essential for the application to
perform.

— Determine which benefits are achieved by
these essential functions.

— Determine the additional costs of increasing
the functionality to achieve the remaining
benefits.

— Use the NPV technique to analyse the rate
of return expected from these additional
investments.

This procedure concentrates users’ attention on
the full implications of insisting that the system
includes special or expensive requirements —
in other words, the type of requirements that
may rule out the use of packages. Some of the
benefits may not, of course, be quantifiable, and
it may be worth going ahead with a bespoke
application even if the NPV calculations show
a net cost. However, by explicitly listing the
unquantifiable benefits and calculating the cost
of achieving them, it is much easier for user
managers to make informed decisions. A similar
approach to that shown in Figure 4.2 can be
used to compare different methods of imple-
mentation.

Packages will usually be a
better investment than
bespoke development

When the NPV technique is used to compare a
package with bespoke development, the
package will nearly always prove to be a better
investment, provided, of course, that it meets
the essential requirements. This is not just

36

because it is less expensive, but also because it
can be implemented more quickly so that the
benefits can be achieved earlier. .

Two arguments have traditionally been used
against the use of packages. The first is their
lack of flexibility, which has made systems
departments reluctant to advocate the use of
packages. If new requirements emerge after a
package has been implemented, and the
package is unable to handle them, the systems
department can be accused of a lack of
foresight. The second argument is that it is not
possible to achieve a competitive advantage by
using a package because the same capabilities
will be available to all users of the package.

The advent of ‘soft’ packages has weakened
both of these arguments. A soft package is one
that can be tailored to meet an organisation’s
specific application requirements. Such
packages may include report-generation and
screen-formatting facilities, and a fourth-
generation language. Furthermore, a soft
package is usually based on a well known
database management system, which means
that the database and associated system
software on which the package is based can be
used to extend the scope of the package or to
develop interfaces to other software. Figure 4.3
describes a soft package produced by SAP, a
German software house.

Several Foundation members told us that,
because of the increasing availability of soft
packages, they now intend to use packages
much more and they believe that products such
as SAP will have a major impact on the
development of the package market. The
description in Figure 4.3 shows that the SAP
package provides considerable flexibility to
meet new requirements — more, in fact, than
would usually be achieved with a bespoke
application. Each organisation implementing
SAP selects those parts of the package that suit
its own requirements, so that there is
considerable scope for using a product like SAP
to achieve a competitive advantage.

The one drawback of soft packages is, of course,
the cost of implementing them. For an
extremely flexible package that provides a wide
variety of tailoring options, the implementation
cost may be several times more than the
purchase price of the package. Nevertheless, the

total cost will still be substantially less than the

cost of developing an equivalent bespoke
application.

Some software suppliers have recognised the
need for tools that will help user organisations
to tailor soft packages to their specific
requirements. For example, Cullinet and SAP
both provide a personal-computer-based
implementation workbench to assist in this task.
This type of product provides facilities for

Chapter 4 Procuring new software

storing project plans and monitoring progress
against the plans, for producing online
documentation (using graphics and text) that
shows a top-down representation of the package
functions selected, for training users, based on
a question-and-answer format, and for
converting existing data so that it can be used
with the package.

Once a package has been tailored and
implemented, customisation workbenches can

Figure 4.3 System R/2 is a highly integrated, yet extremely flexible, ‘soft’ package

SAP is a software house based in Germany, and with
several offices in other countries. It was formed in 1972,
now employs more than 900 staff, and has a turnover of
about DM240 million ($135 million). Its main product is a
highly integrated, yet extremely flexible, application
package, called System R/2. This product contains many
of the features that we expect to see in a ‘soft’ package.

System R/2 was designed to enable user organisations to
select and combine the applications and functions they
need at several different levels. SAP considers this facility
to be unique to System R/2. The functions provided cover
the following main application areas:

Sales.

Production control.

Materials requirements planning.
Planned maintenance.

Personnel.

Project planning and accounting.
Cost accounting.

Financial accounting.

Assets register management.

These application areas can be used individually or they
can be integrated. They are grouped around a core
system that contains operating system interfaces, modules
for accessing the data communications facilities, database
and table-handling modules, a fourth-generation language,
and other routines common to all applications. The core
system is supplied regardiess of which combination of
application areas is implemented.

Within each application area, user organisations can
choose which individual functions to use. Within the
materials-planning application, for example, users can
choose to use only a very limited range of functions to
create a basic inventory-control system, or they can use
all the functions necessary to create a complete materials-
planning system that is integrated with a production-
control system (including bill-of-materials processing,
purchasing, and so on). In addition, many functions
provide options — different ways of calculating costs, for
example. Some of the options can be defined by the user.
Other functions permit ‘what-f’ simulations.

Additional tailoring facilities are provided by allowing many
of the application details to be defined as the package is
implemented. This is achieved through:

— Extensive use of tables and table-driven processing (for
defining depreciation rules, planned maintenance, the
execution sequence in which programs will be run,
and so forth).

— Use of parameters to tailor individual functions.
— An adaptable, user-dependent menu system.

— Modifiable screen fields (controlled through the data
dictionary).

— A menu-driven query system.
— User definition of calculation routines.

— User-definable report layouts to fit in with preprinted
stationery, for example.

— Use of a database and a data dictionary, allowing
users to specify the format of data items.

The system has also been structured so that it can be

extended easily by user organisations, and linked to other

applications. This is achieved by using the following

facilities:

_ A database that can be extended by user-defined
fields.

— A user-accessible data dictionary that can store
descriptions of user-defined data.

— Input and output interfaces to other application
systems.

_ Interfaces to computer-aided design and factory data-
collection systems.

__ Source code that is available to user organisations.
A fourth-generation language (ABAP).

— The ability for user organisations to add their own
code, either using Cobol or ABAP.

— The ability to access user-defined DB2 tables, as well
as System R/2 internal data.

— The ability to add user-defined reports to the standard
reports.

With this amount of flexibility, implementing the package is
not a trivial task; it requires the user organisation to carry
out a significant amount of analysis to define the functions
needed. and the way in which they should work. The
implementors also need to have a good understanding of
the capabilities of the package. SAP therefore provides
consulting and training services to help its customers to
make the best use of the package.

FOUNDATION

37

Chapter 4 Procuring new software

be used by the package users to make changes
to the application. Cullinet also provides this
type of product, as does Hewlett-Packard,
whose Customizer can be used in this way. Such
workbenches allow package users to switch
smoothly from operational to development
mode so that simple changes can be made to the
way in which the package operates.

SAP’s package is an example of the type of

facilities that will increasingly be provided by

soft packages. Other packages provide less
flexibility, however, and this may mean that a
package that can meet an organisation’s
essential requirements may not fit in with its
current working methods. When evaluating a
package, Foundation members should therefore
consider the possibility of adapting working
practices to fit in with the package, rather than
vice versa. Doing this is likely to meet resistance
from users, but will be much easier to achieve
if user departments have to pay directly for
their use of IT facilities. One organisation that
recently introduced a recharging system found
that user departments were suddenly very keen
to reduce costs and to cooperate in adapting
their working practices to fit in with the most
cost-efficient application-software solution.

In selecting a package, either for core or non-
core applications, care should be taken to ensure
that the product conforms with the chosen soft-
ware infrastructure. Compatibility with other
infrastructure components is Just as important
as the ability to provide the basis for further
developments. During the research, we met a
German manufacturing company that had
decided to install a wide-ranging production-
control package covering a large part of its
business operations. The company had to write
a large number of bridging programs to interface
the package to its existing applications because
the package did not interface fully with the
relational database management system already
installed as part of the software infrastructure.
A similar situation had arisen with other
packages, with the result that this company now
has four different and incompatible infra-
structures —a central mainframe environment,
a distributed systems environment, and separate
infrastructures for warehouse systems and
production control. Although it is clear that
more than one infrastructure may be needed,
this company is finding it difficult and expensive
to manage four.

38

A package that is used for a core application
may itself become part of the software infra-
structure. When Rumbelows (a UK electrical
retail chain) decided to replace its 16-year-¢ld
applications that had become unmaintainable,
it first looked to see if there were any packages
available that could meet its needs. As a result,
a credit-management package and a package for
automating Rumbelows’ back-office procedures
now form the basis for software infrastructures
for the two halves of its business (credit and
retail). The credit-management package has
enabled the credit function (now known as
Trinity House Finance) to provide similar
services both for other parts of Rumbelows’
parent group and for third parties.

Responsibilities should be
allocated for software
procurement

In a large organisation, it is unusual for all
software to be developed or procured centrally,
and an important prerequisite to developing a
software strategy is to decide on the most
appropriate organisational level for making
various types of decisions about software. For
example, many organisations need to consider
variations in requirements between different
parts of their organisations, and variations in
the availability of products (and the quality of
support for them) in different countries. Busi-
ness departments also now expect to be able to
buy software for their own personal computers.
The same type of trend is evident for depart-
mental minicomputers and even for mainframe
software.

In addition, the management style of many
organisations encourages the devolution to
business units of the responsibility for the
systems function and this means that some
decisions about software procurement will be
made on a decentralised basis. It is therefore
generally impractical for a single software-
procurement policy to be imposed by a central
Systems function on the rest of the business. A
critical issue in developing a software strategy,
therefore, is to decide which software-procure-
ment decisions should be made centrally, which
should be left to local discretion, and what
restrictions, if any, should be placed upon the
local systems function.

FOUNDATION

S Batler Cox & Part

Centralising all procurement decisions
can cause difficulties

If the business itself is decentralised, resisting
the pressure to decentralise the systems
function can present major problems. In our
research, we interviewed systems staff from
both the parent company and a national com-
pany of a major European manufacturing group.
The business strategy for the group as a whole
was to become much more decentralised, giving
more autonomy both to national companies and
to individual business units. However, the
central systems department still maintained
complete control over all the major applications
software used throughout the group.

The central systems staff believed that major
benefits were gained by making all decisions
about software at the corporate level. The
systems staff from the national company were
not satisfied with this arrangement, however.

Their users, with their newly obtained autono- '

mous responsibility, were complaining bitterly
about the inadequacy of the standard corporate
software to meet their business needs, and the
slow response of the central department to
requests for changes. At the same time, the
corporate systems staff were complaining about
the number of requests for changes and the lack
of support for standard applications. ‘“We are
just the ‘piggy in the middle’ and there is not
much we can do about it’”’, commented an
interviewee from the national systems function.

Sometimes, it is preferable to
decentralise software decisions

In contrast, a Dutch company, Wavin, has
adopted a novel approach to decentralising soft-
ware decisions. The corporate systems manager
wanted to achieve a degree of standardisation
for certain types of software, but without
alienating the national systems managers. He
achieved this by delegating corporate responsi-

bility for each of these types of software to an

individual national systems manager. Thus, one
manager was given the responsibility for in-
vestigating electronic mail products and for
defining corporate standards for electronic mail.

In deciding which software decisions should be
made centrally, and which should be devolved,
it is crucial to take into account the nature of

X FOUNDATION

Cox & Pariners Limited 1989

Chapter 4 Procuring new software

the organisation’s style. A spectrum of pos-
sibilities exists, from full control of the operating
companies by head office at one end, to full
decentralisation at the other. The organisation
of the systems department will itself take
account of the organisation’s management style,
ranging from fully centralised at one end of the
spectrum, to devolved, with only a vestigial
central function, at the other.

Figure 4.4 shows which types of software
decisions should be centralised and which
should be decentralised in systems departments
organised in each of four ways: centralised,
coordinating, guiding, and devolved. For sim-
plicity, the figure identifies four types of soft-
ware decision: those concerned with standards
and policies, those concerned with the software
infrastructure (including core applications),
those concerned with software procurement,

- and those concerned with non-core applications.

(The concept of core and non-core applications
was explained in Chapter 2.)

Where the systems department is centralised,
all software decisions are taken centrally.
Where it is devolved, all software decisions,
except those to do with standards and policies,

Figure 4.4 Decisions on software should be
centralised or decentralised, depending
on organisational style

=
2)
S
=
& &
) =0)
§ S §F
Q §-’ @ 3
&
L) o
s £& ¢
£ o
2] <~ O Q &
K3 oL < 2.0
L A Ly A
> & $ T O&
L & S Oy
& §F& 5 S8
Organisational style 2 o e R
Centralised C C c c
Coordinating - B
Guiding C C D D
Devolved

centralised
decentralised

()
{1

39

Chapter 4 Procuring new software

should be taken at the operating-company level.
Between these two extremes, decision-making
should be divided between the centre and the
operating-company level, as shown by
Figure 4.4. -

Where the responsibility for software procure-
ment is devolved to the local level, there may
still be a need for some central control of the
way in which the responsibility is discharged.

This might take the form of a checklist of items

to be considered when a product is evaluated,
or the level of financial return required to justify
a departure from corporate guidelines for soft-
ware standards.

User departments should be
encouraged to construct more
applications themselves

In the long term, user departments will there-
fore be responsible for constructing the majority
of their non-core applications. Increasingly,
younger staff in organisations will have received
some training in computing during their formal
education or as part of their technical training.
As a consequence, user departments will
become more self-sufficient in their use of IT
and in the construction of applications. In the
short to medium term, however, the systems
department will continue to be responsible for
constructing many of the non-core applications.
In particular, high-volume, online transaction-
processing systems require specialist skills, and
In many areas, system-software products have
not yet reached the stage where users can (or
want to) use them.

Nevertheless, systems departments cannot
ignore the trend towards user departments
wanting, and being able, to take on more
responsibility for constructing their own appli-
cations. If they do ignore this trend, systems
departments will be perceived as constraining
business development in the interests of pro-
tecting their own roles. Software products,
whether application packages or lower-level
infrastructure components, should therefore be
chosen with this trend in mind. This means that
the chosen products should provide facilities
such as the ability to generate customised
reports, to add new transaction types, and to
define data and tables that allow the product
to be customised. Furthermore, the user

40

interface to these facilities should be simple anq
well-documented, and should insulate the user
from the technical features and eccentricities
of the operating system and other lower-leve]
infrastructure components. If necessary, the
infrastructure should be extended to include
skeleton functions and application templates
that business staff can use as the basis for
constructing applications. Figure 4.5 lists some
examples of applications that are particularly
suited to user development, given a suitable
software infrastructure.

The systems department can help to promote
the construction of applications by users by
seconding or transferring systems staff to user
departments. In the long term, however, organi-
sations should recognise that experience in
systems analysis and applications construction
should form part of graduate-training and
management-development programmes for
business staff. These are skills that will, in the
future, be needed in most user departments,
particularly when the software infrastructure
has developed to the point where users (who
best understand their own needs) no longer
need professional systems staff to construct the
majority of their non-core applications.

The shift towards the construction of appli-
cations by wusers should be encouraged to
develop in a gradual and controlled way. If
Systems departments resist this trend, users will
be encouraged to ‘go it alone’ without adequate
professional advice, standards, and controls.
The systems department should therefore
provide a consultancy service to help users

Figure 4.5 User departments can implement a variety
of applications

Sales and marketing systems (based on the customer/
product database).

Management information (extracted from corporate
databases).

Personnel management,
Project conirol.
Communication with the sales force.

Electronic data interchange

choose appropriate packages and construct their
applications. It should also set standards and
guidelines for the user community, and provide
a quality-assurance function whose role is to
assist users in conforming with the standards.

Many systems staff have a natural tendency to
believe that, because of their lack of pro-
fessional systems training, users are not capable
of designing, constructing, and documenting
software to the professional standards
demanded by the systems department. This
view is not borne out in practice by many of the
engineering and actuarial departments that
have been developing their own software for
many years. When problems do occur, they are
more often caused by lack of standards and
guidelines than by lack of ability. The need for
specialists to set corporate standards is not a
new concept; indeed, in many organisations,
professional staff in one department set
standards that must be followed by other
departments. For example, in most organi-

Chapter 4 Procuring new software

sations, there are standards for handling cash,
keeping adequate financial records, talking to
the press, and so on. A professional accountant
or lawyer may well be needed to set these
standards, but professional training in the

particular discipline is not needed to follow
them.

In conclusion, systems departments must accept
as a fact of life that business staff will
increasingly have the skills, and the access to
the tools that they need to construct more of
their own applications. Systems departments
should therefore start planning for and
encouraging user involvement in software
selection and construction. The first step is to
ensure that the organisation has an appropriate
software infrastructure that is backed up by
professional standards for using it to construct
new applications. This will ensure that the user
community adopts good practices and does not
repeat the mistakes made by the systems
comminity during the past 20 or 30 years.

Report conclusion

In this report, we have shown that software
strategy should be directed at achieving busi-
ness goals, not at achieving technology-related
goals specific to the systems department. As
computer applications become more firmly
embedded in the day-to-day operations of
the business, it becomes more and more
important to be able to adapt the software to
reflect changes in the business environment
and in business strategy. A software infra-
structure is needed to enable systems to be
adapted more quickly in response to new
business needs.

Developments in software products have
enabled more and more software functions to
be included within a software infrastructure
that forms the basis for constructing new
applications. This, in turn, has reinforced the
trend to devolving the responsibility for con-
structing applications to user departments, so
that, in the future, the main applications-soft-
ware role of the systems function will be to
define and support the software infrastructure.

The standards will ensure that different
applications use the same style of user interface,

7% FOUNDATION

2 Butler Cox & Partners Limited 1989

so that business users can move from one
department to another and immediately feel
comfortable with the applications used by the
new department. At a different level, the
standards will allow development staff to move
freely between different development environ-
ments, providing greater flexibility in the use
of this scarce resource. The need for standardi-
sation arises particularly in those organisations
that use different computer architectures, and
in those that need to communicate with the
outside world. Progress has been slow in
developing open standards (although Unix-
based developments are now showing great
promise), and IBM’s SAA will not provide all the
answers. We have provided guidance on how
Foundation members can identify and select the
appropriate subset of those standards that are
likely to succeed in the IT industry in general,
or in their own industry.

The trend towards soft packages has meant that
in many areas where, in the past, bespoke
software would have been developed, a package
is now the most cost-effective option. Formal
evaluation of options for new developments
should be carried out. Similarly, a formal

41

Chapter 4 Procuring new software

method is needed to determine the point at
which ageing systems should be replaced.

We have stressed the need to focus software
decisions on business needs and benefits. This
has been said many times before, but few
systems departments have embraced this idea
fully, tending instead to concentrate on the
technical issues. Unless this situation changes,
user departments will increasingly take the

42

Initiative by developing their own systems
without regard for the information needs of the
organisation as a whole. By developing a stable
and consistent software infrastructure, the
systems department can retain control over
those software assets that rightfully belong to
the organisation as a whole, while allowing users
the freedom they need to construct and manage
their own applications.

FOUNDATION

utier Cox & Partners Limited 1989

Butler Cox

Butler Cox is an independent management consul-
tancy and research organisation, specialising in the
application of information technology within com-
merce, government, and industry. The company
offers a wide range of services both to suppliers and
users of this technology. The Butler Cox Foundation
is a service operated by Butler Cox on behalf of sub-
scribing members.

Objectives of the Foundation
The Butler Cox Foundation sets out to study on behalf
of subscribing members the opportunities and possible

threats arising from developments in the field of
information systems.

The Foundation not only provides access to an
extensive and coherent programme of continuous
research, it also provides an opportunity for
widespread exchange of experience and views
between its members.

Membership of the Foundation

The majority of organisations participating in the
Butler Cox Foundation are large organisations seeking
to exploit to the full the most recent developmentsin
information systems technology. An important
minority of the membership is formed by suppliers
of the technology. The membership is international,
with participants from Australia, Belgium, France,
Germany, Italy, the Netherlands, Sweden, Switzer-
land, the United Kingdom, and elsewhere.

The Foundation research programme

The research programme is planned jointly by Butler
Cox and by the member organisations. Half of the
research topics are selected by Butler Cox and half by
preferences expressed by the membership. Each year
a shortlist of topics is circulated for consideration by
the members. Member organisations rank the topics
according to their own requirements and as a result
of this process, members’ preferences are determined.

Before each research project starts there is a further
opportunity for members to influence the direction of
the research. A detailed description of the project
definingits scope and the issues to be addressed is sent
to all members for comment.

The report series

The Foundation publishes six reports each year. The
reports are intended to be read primarily by senior and
middle managers who are concerned with the
planning of information systems. They are, however,
written in a style that makes them suitable to beread
both by line managers and functional managers. The
reports concentrate on defining key management
issues and on offering advice and guidance on how and
when to address those issues.

FOUNDATION

@ Butler Cox & Partners Limited 1989

Selected reports
8 Project Management

20 The Interface Between People and Equipment

24 Investment in Systems

25 System Development Methods

27 Developments in Videotex

28 User Experience with Data Networks

29 Implementing Office Systems

30 End-User Computing

31 A Director’s Guide to Information Technology

32 Data Management

33 Managing Operational Computer Services

34 Strategic Systems Planning

35 Multifunction Equipment

36 Cost-effective Systems Development and Maintenance

37 Expert Systems

38 Selecting Local Network Facilities

39 Trends in Information Technology

40 Presenting Information to Managers

41 Managing the Human Aspects of Change

42 Value Added Network Services

43 Managing the Microcomputer in Business

44 Office Systems: Applications and Organisational Impact

45 Building Quality Systems

46 Network Architectures for Interconnecting Systems

47 The Effective Use of System Building Tools

48 Measuring the Performance of the Information Systems
Function

49 Developing and Implementing a Systems Strategy

50 Unlocking the Corporate Data Resource

51 Threats to Computer Systems

52 Organising the Systems Department

53 Using Information Technology to Improve Decision
Making

54 Integrated Networks

55 Planning the Corporate Data Centre

56 The Impact of Information Technology on Corporate
Organisation Structure

57 Using System Development Methods

58 Senior Management IT Education

59 Electronic Data Interchange

60 Expert Systems in Business

61 Competitive-Edge Applications: Myths and Reality

62 Communications Infrastructure for Buildings

63 The Future of the Personal Workstation

64 Managing the Evolution of Corporate Databases

65 Network Management

66 Marketing the Systems Department

67 Computer-Aided Software Engineering (CASE)

68 Mobile Communications

Forthcoming reports
Electronic Document Management
Staffing the Systems Function
Managing Multivendor Systems
Future Information Technologies

Availability of reports

Members of the Butler Cox Foundation receive three
copies of each report upon publication; additional
copies and copies of earlier reports may be purchased
by members from Butler Cox.

Butler Cox & Partners Limited
Butler Cox House, 12 Bloomsbury Square,
London WCILA ZLL, England
= (01}831 0101, Telex 8813717 BUTCOX G
Fax (01)831 6250

Belgiwm and the Netheviands
Butler Cox BV
Burg Hogguerstraat 791,
1064 EB Amsterdam, the Netherlands
= (020) 139955, Fax (020) 131157

Franee
Butler Cox SARL
Tour Akzo, 164 Rue Ambroise Crojzat,
93204 St Denis-Cédex 1, France
= (1)48.20.61.64, Télécopieur(1)48.20.72.58

Gevmany (FR)
Butler Cox GmbH
Richard-Wagner-Str. 13, 8000 Miinchen 2, West Germany
T (OSD) 5234001, Fax (089)523 35 15

United States of Amervica
Butler Cox Inc,
150 East 58th Street, New York, NY 10155, USA
T(212)89]1 8188

Austvalio and New Zealand
MrJ Cooper
Butler Cox Foundation
drd Floor, 275 George Street, Sydney 2000, Australia
T (02) 236 6161, Fax (02) 236 G199

Finlawd
TT-Innovation Oy
Meritullinkatu 33, SF-00170 Helsinki. Finland
(0] 135 1533, Fax (90) 135 1001

Ireland
S Consulting
72 Merrion Square, Dublin 2, Ireland
T (01) THOO88 TH2501, Telex 31077 EL
Fax (01)767945

Ttaly
RSO Futura Sl
Via Leopardi 1, 20123 Milano, Italy
| (02) 72000 583, Fax (02) 806 500

The Nordie Region
Statskonsalt AR
Stora Varvsgatan 1, 21120 Malmo, Sweden
T (040) 1030 40, Telex 12754 SINTABS

Spwrin
Associated Management Consultants Spain SA
Rosalia de Castro, 84-2°D, 28065 Madrid. Spain
&) TS

B = S ——

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49

