

 FOUNDATION

Software Strategy
Research Report 69, May 1989

Butler Cox & Partners Limited
LONDON

AMSTERDAM MUNICH NEW YORK PARIS

Published by Butler Cox & Partners LimitedButler Cox House12 Bloomsbury SquareLondon WC1A 2LLEngland

Copyright © Butler Cox & Partners Limited 1989
All rights reserved. No part of this publication maybe reproduced by any methodwithoutthe prior consent of Butler Cox.

Availability of reportsMembers ofthe Butler Cox Foundation receive three copies of each report upon publication;additional copies and copies of earlier reports may be purchased by members from Butler Cox.

Photoset and printed in Great Britain by FlexiprintLtd., Lancing, Sussex.

 FOUNDATION
Software Strategy

Research Report 69, May 1989

Contents

1 Theneedfor a strategy 1
The importance of software strategy 1
The benefits of a software strategy 2:
The need for business, rather than technical, goals 4
The elements of a softwarestrategy 6

2 Defining and implementing the software infrastructure 7
New developments are makingthe infrastructure approach possible 7
The infrastructure approach providessignificant benefits 9
A software infrastructure has five main components 10
The numberof software infrastructures should be limited 12
Implementing a new software infrastructure requires a migration plan 13
The main applications-software role of the systems department will be

to manage the software infrastructure 16

3 Forming a policy for software standards 19
The benefits sought from setting standards should be defined 19
Progress in public, open standards remain slow 21
Unix-based open standards are becoming viable 24
IBM’s defacto standards will remain important 27
Organisations will need to choose a subset of an appropriate family
of standards 30

4 Procuring new software 33
There are four main options for procuring applications software 33
Benefits, not requirements, should bethe basis for software procurement 34
Packages will usually be a better investment than bespoke development 36
Responsibilities should be allocated for software procurement 38
User departments should be encouraged to construct more applications
themselves 40

Report conclusion Al

AManagement Summary ofthis report has beenpublished separately and distributed
toallFoundationmembers. Additionalcopies oftheManagementSummary are available
from Butler Cox.

FOUNDATION
© Butler Cox & Partners Limited 1989

Report synopsis
Investing in new software and managing existingsoftware are important managementconcerns.This report highlights the benefits of a softwarestrategy andidentifies thethree main elements — the software infrastructure, software standards, and thesoftware-procurementpolicy. An appropriate softwareinfrastructure reduces the needforbespoke developmentbecauseit recognises that the boundary between system andapplication softwareis changing. Manyofthe traditional applications functions arenow available within ‘infrastructure’ software, which can be used by the usercommunity to construct moreofitsown applications. In time, the main applications-softwarerole ofthe systems departmentwill be to managethe softwareinfrastructure.

Originally, the word ‘strategy’ was used to
describe the management and deployment of
armies and other resources so as to win a war.
In business today, however, the word has a
variety of meanings, ranging from an approach
to solving a problem, to a detailed plan for
achieving certain objectives. In this report on
software strategy, we use the word ‘strategy’
in a way that is closer to its original meaning.
By‘software strategy’, we mean the use and
management of software by an organisation to
achieve its desired goals in a changing and
competitive business environment.
The purpose of this report is to describe the
elements of a software strategy, the benefits
that can be gained by defining and imple-
menting the strategy, and the factors that have
to be taken into accountas decisions are made
about the strategy. Formulating a software
strategy includes making decisions about which
software functions are needed by the organi-
sation to help achieve its goals, how the
organisation should migrate from its existing
software base, what standards are needed, and
how the functions should be procured. It does
not, however, include detailed plans for
installing new items of system software nor for
developing new applications software.
We havenot included application-development
priorities in our definition of a software strategy
because we believe that, in the long term,
application-development skills will be spread
throughout the organisation. Decisions about
which applications to develop or enhance next
will therefore be taken by individual business
managers, not by the systems department.
Ultimately, most applications will be developed
(or, more likely, constructed) by the business
departments themselves. The mainrole of the
systems department will be to develop and
maintain the ‘software infrastructure’ (this term

FOUNDATION
Limited 1989

Chapter 1
The need for a strategy

is explained later in the report) that allows these
developments to occur.
Nevertheless, an agreed set of application
priorities will be a necessary input to developing
a software strategy. The priorities should be set
as a result of a strategic systems planning
process. An approachto strategic systems plan-
ning was described in Foundation Report 49,
Developing and Implementing a Systems
Strategy, which was published in October 1985.
In that report, we stressed the importance of
relating systems strategy closely to business
strategy, and described severaltools that could
be used to do this. (We knowthat,in the inter-
vening period, several Foundation members
have used the tools with considerable success.)
In particular, competitive-impact analysis and
critical success factors can help to determine
which applications will provide the greatest
business benefits. The decision-conferencing
technique, which was also described in
Report 49, can be usedto arrive at a consensus
about application priorities.

The importance of software
strategy
Other Foundation Reports have coveredspecific
softwareissues, butthis is the first time we have
researched software strategy in its entirety.
(The research team, and the scope of the
research,are described in Figure 1.1, overleaf.)
Without doubt, Foundation members regard
software strategy as an important topic. The
responseto the annualpoll of members showed
clearly that this topic was by far the most
important of those suggested for 1989. We
believe that there are three main reasons for
this.
First, business managers are demanding a much
faster response to their needs either for new

Chapter 1 The need for a strategy

 Figure 1.1 Research team and scopeof the research

This report was written under the direction of AndrewMilner, Director of Butler Cox’s Productivity
Enhancement Programme. The conclusions andrecommendations of the report are derived from aninternational’ research programmecarried out during thesecond half of 1988. The research was led by JennyClayton and Michael Lloyd, consultants based in ButlerCox's London office and specialising in systemsstrategy. They were assisted by Onno Schroder(Amsterdam), Lothar Schmidi (Munich), MichelLederman(Paris), and John Cooper (Sydney).
In order to understand recent developments in thesoftware industry fully, we conducted an extensivereview of the publishedliterature. We also conducteddetailed interviews with software suppliers and withstandards-setting organisations, including X/Open andthe Open Software Foundation (OSF), The views of 170Foundation members were gathered through thequestionnaire sent out at the beginning of the study. Inaddition, the experiences of members were sought intelephone and face-to-face interviews in Australia,France, Italy, Scandinavia, the Netherlands, and theUnited Kingdom. Three focus groups were held inGermany, the Netherlands, and the United Kingdom,attended by

a

total of 18 organisations. In total, research was carried outin eight countries.

software applications or for enhancements toexisting applications. In addition to providingadministrative support, computer applicationsare now essential for the day-to-day operationof most organisations, and have a direct effecton their business goals. Theycan also be the keyto achieving a competitive advantage. Thegrowing importance of applications softwaremeans that changes in business strategy nowhave a far greater impact on the softwareneeded to support the business. As a result,systems departments are expected to be able toreact much more quickly to new requirements.A two-yearlead time for a new application, forexample, is now regarded as unacceptable bymost business managers.
Second, expenditure on software (especially oncommercially available software products) con-tinues to account fora large part of the overallIT budget. Typically, the market for softwareproducts andservicesis growing at more than20 per cent, whereas expenditure on in-houseIT staff (a large proportion of whom are in-volved in developing, installing, and supportingsoftware) is growing at less than 10 percent.Webelieve that the different growthrates aredue partly to the fact that organisations aredeveloping their own software infrastructures,

a concept that is discussed in more detail inChapter 2.
The third reason for the growing importance ofsoftware strategy is that interworking betweensoftware applications is seen as a major problemthat prevents organisations from making bestuse of their software investments.
The benefits of a softwarestrategy
A software strategy provides benefits in manyareas, the most important of which are:
— Business demands will be responded tofaster because a strategy helps to minimisethe variety of software being used, whichmeans that the systems department canconcentrate its software skills onto a smallernumberofareas. In turn, this means thatdevelopment staff can work on a greatervariety of business applications. Hence,projects areless likely to be delayed becausestaff with the required skills are working onother projects.
— Expenditure on software will be reduced byminimising the need for different softwareproducts that perform basically the samefunction, by minimising the costs of re-placing (or renewing) applications, and byallowing bulk discounts to be obtainedwhereverpossible. One Foundation membertold us that his organisation had saved$5 million by standardising the software-infrastructure products used throughoutallits offices worldwide. Buying the softwarelicences centrally enabled substantial dis-counts to be obtained.
— Training costs may also be reduced, both forsystemsstaff and for the business users ofthe software. Training costs usually rep-resent a greater investmentthan thecost ofthe softwareitself. In particular, a lack ofstandardisation can result in very hightraining costs when staff are moved fromone development environment to another.Training costs in the user community canalso be minimisedif all applications use theSame user-interface conventions. In thisway, staff moving from one department toanotherwill not have to undergo extensiveretraining before they can use the appli-cations in their new department.

FOUNDATION
Cox'& Pe 9

Chapter 1 The need for a strategy

— Interworking between applications isfacili-
tated by a software strategy because the
strategy will ensure that the software pro-
ducts selected can beinterlinked. Often, the
full extent of the need for an application to
interwork with other applications is not
apparent whenthe applicationis designed.
Using software products that conform with
the strategy ensures that, when future
requirements for interlinkingarise, an appli-

It may be argued that in a rapidly changing
business and technical environment,it is better
not to have a software strategy. Inevitably, a
software strategy will be based on predictions
about future business and technical develop-
ments, some of which will turn out to be
incorrect. This means that some of the
‘strategic’ investments will be a waste of money.
Perhaps it would be less expensive in the long
term just to respondto specific software needs

cation will not require major modifications as they arise?
and that the need to create a bespoke
interface between two applications is mini- We do not believe this to be the case. Indeed,
mised. One organisation we spoke to during the need to respond rapidly to new business
the research told us that the lack of a requirements is the main reason for developing
software strategy in the past meant that it a software strategy. This view was supported
was now faced with the problem of sup- by the results of our survey of Foundation
porting three mainframe environments. members carried out at the beginning of the
Integrating the applications will be impos-

_

research (see Figure 1.2). Without a software
sible until the software infrastructure has strategy that includes a flexible software
been rationalised. Interfaces to external infrastructure, there will inevitably be delays
systems may also present a problem. (The
problems of managing multiple hardware
environments will be addressed in Foun- Figuvent2 Theauntyieeeeey©
dation Report 72, Managing Multivendor important reason for having a software
Systems.) strategy

— Amoreflexible choice of hardware will be Numberof
possible with a defined software strategy. eee
Few large organisations have a single- benefit as
vendorpolicy for computer hardware. Even a most
those that use one vendor’s equipment for poner Important

yy

Averagerscore (0/3)
their mainstream computing find that they f i a
need othersuppliersfor scientific, technical, Respond more quickly aa
or manufacturing applications. Others, such
as Aachener und Miinchener (a German
insurance company), have a business policy
to reduce their reliance on a single hardware
vendor. To run the same software on
different suppliers’ hardware (or even on
different-sized hardware from the same
supplier) requires the systems department
to think ahead and choose the right appli- improve the abil 0
cations packages or system-software transfer to a different
products. hardware environment

to business needs 70

Facilitate systems
integration

— Staffcommitment will improve if a clearly
defined software strategy is in place. If
systems staff believe that no attempt is Minimisetraining needs 7 =
being made to improve the development
environmentor use up-to-date techniques, Respondents were asked to rate the importance of each
they may feel that their career objectives benefit on a scale of 0 to 3
would be better served in a more forward- i
looking organisation. (Source: Survey of 170 Foundation members)

FOUNDATION
© Butler Cox & Partners Limited 1989 3

Chapter 1 The need for a strategy

in implementing applications to meet newbusiness requirements.
The consequencesof an inappropriate softwareinfrastructureareillustrated by the experienceof an insurance company that was unable toobtain new business becauseit did not have theappropriate videotex software in place. Thiscompany wantedto obtain a place on the ‘panel’of insurance companies with whom a particularbuilding society (building societies are UKsavings and home-loans institutions) placeditsbusiness. On approaching the building society,the insurance company wastold that it couldbe put on the panel within two months, pro-vided that it could send and receive data via avideotex-based value-added network service.Unfortunately, the lead time required to con-nect to this service was six months, and theinsurance company believes that it lost asignificant amount of business in the interim.

The need for business, ratherthan technical, goals
The aim of a software strategy, as for any otherbusinessstrategy, is to create a long-term planfor achieving success. This implies that thestrategy must be aimed at achieving well-defined goals. The strategy is then implementedby managingall of the organisation’s softwareresources (systems software, applicationsdeveloped in-house, application packages,bought-in software services, in-house softwaresupport, and so on) to achieve those aims in achanging and competitive business environ-ment.
The termsin which software-strategy goals areexpressed are determined largely by the way inwhich a systems department perceivesits basicmission. An inward-looking departmentis morelikely to express software-strategy goals intechnical terms, and will aim to achieve thosegoals by managingits own resources (hardware,systemsstaff, existing software, and so on). Themain barrier that has to be overcomein orderto achieve the goals is perceived to be thedepartment’s users, who, in the eyes of thedepartment, are continually complaining aboutthe service theyreceive and are often trying tofind ways of breaking the department’smonopoly-supply position. Hardware vendorsare seen as anothersignificant barrier, because

of their efforts to lock their customers into theirown range of products. Software vendors areperceived as yet another barrier; their productsnever seem to be able to interface to othersystems that have already been developed.Finally, top managementis seen by the systemsdepartment as a barrier to achieving thetechnically based software-strategy goals,because senior managers are perceived as notproviding the commitment to the systemsdepartmenttoallow it to do the professionaljobthat it would like to do. It is no surprise,therefore, that if software-strategy goals areexpressedin technical terms,the link betweenbusiness strategy and software strategy is at besttenuous,if it exists at all.
Tt was clear from our research, however, thatmany systems departments defined theirsoftware goals purely in technical terms. Typicalgoals of this type are to convert all majorsoftware applications from IMS to DB2, to usefourth-generation languages for all newdevelopment work, and to phase outthe use ofVM. While these types of goal may wellrepresent sensible technical decisions, there areserious dangers in using them asa basis for asoftware strategy.
The problems that can result from basing asoftware strategy purely on technical goals areillustrated by the experience of an insurancecompany, which is summarised in Figure 1.3.Byfailing to develop a close relationship withits users, the systems department of thisorganisation was unawareof the businessgoals,and thusdirectedall its attention to achievingits own technical goal of providing a soundsoftware base. Although this may well havebeen needed, the user community could notrelate the large expenditure on software to anydirect benefits in terms of its own businessstrategy. The result was that the systemsdepartment’s budget was reduced substantially,and its only possible goal was then to con-centrate on surviving.

Another example is provided by the UKdivisionof a European bank. Before the crash in theworld’s financial markets in 1987, the systemsdepartment had embarked on ambitious plansfor developing completely new systems tosupport the bank’s trading operations. A verylarge, complex, and expensive software infra-structure was being developed, and attention

FOUNDATION
& Partners Limited 1989

=

Figure 1.3 Defining software strategy in terms of
technical goals, rather than business goals,
can lead to serious problemsfor the
systems department

An insurance company
This insurance company (which wishes to remain
anonymous) employs about 7,000 people, 350 of whom
work in the information systems department. All of the
computing resources are supplied by IBM, and the
software strategy is technology-driven, being determined
largely by IBM's current products and future product
developments. Most development work is done in-
house, using |BM productsfor the software
infrastructure. The systems departmentis not
represented at main-board level, and communication
between the department and top managementis poor.
There is no mechanism for systemsstaff to feed ideas
upwards and, although there is some downward
communication of business strategy, many of the most
important business decisions are not relayed to the
systems department.
As a consequence, the systems departmentis not well
regarded by the user community, which feels thatits
needs are not understood and not being properly met.
Not surprisingly, user departments are beginning to
acquire their own computing resources, and are
increasingly reluctant to pay for the systems
department's services. As a result, the department's
budget has been severely cut, andits staff has been
reduced by about 25 per cent. These reductions mean
that the systems departmentis now able to operate only
in ‘firefighting’ mode,andits ability to support users
properlyis declining still further. The departmentis
caughtin a viciouscircle from whichit can see no
means of escape.

was focused mainly on acquiring and using
state-of-the-art developmenttools, rather than
on ensuring that the new systems provided
business benefits. After the crash, the large
development costs being incurred every month
became the focus of senior-management
attentionin the drive to cut costs. In the ensuing
cutbacks, the systems department was forced
to abandon its technical objectives and to
concentrate instead on delivering real business
benefits as early as possible. An importantpoint,
which we discuss in more detail in Chapter 4,
is that expenditure on software should bein line
with the business benefits that will be achieved.
For this reason, many financial-services orga-
nisations have had to rethink their software
strategies as a consequence of the low trading
volumes after the crash.

Thesituation is very different if the software-
strategy goals are expressedin business terms.
In this case, the systems departmentis outward-
looking, perceiving its main mission to be that

FOUNDATION

© Butler Cox & Partners Limited 1989

Chapter 1 The needfor a strategy

of helping the organisation achieveits business
goals. In turn, the organisation perceivesIT as
just one of the businessresourcesthat needs to
be managedin orderto achieve those goals. The
barriers to achieving the goals are determined
by the business and commercial environmentin
which the organisation operates — its com-
petitors, the political and economic environ-
ment, legal and regulatory constraints, and so
on. Thus, IT is perceived as making real
contribution to achieving business goals, and the
software strategy is an integral part of the
business strategy. Users are no longer perceived
as a barrier to achieving the software-strategy
goals, but as one of the resources to be used in
achieving them. In this way, the increasing
ability of users to take responsibility for pro-
viding their own computing needsis explicitly
recognised. An added advantageis that business
managers will no longer think of the systems
function as an expensive overhead.

In general, software-strategy goals should there-
fore be expressed in terms of helping other
business functions achieve the organisation’s
business goals. For example, online-ordering
and stock-availability systems can help the sales
department of a distribution company to
provide a better service to customers and thus
increase sales. Similarly, in a large multinational
-group, a corporate-wide personnel system can
help the organisation make the best use of its
human resources.

In someorganisations, the use of software is
essential to achieving the business goals. A good
example is Lloyd’s of London, which provides
services to the members of the Lloyd’s insurance
market in London. The systems department
realised that, along with other financial
markets, Lloyd’s could not survive in its
traditional form. Huge benefits could be gained
by creating an electronic market, andif Lloyd’s
did not move in this direction, its members
would do so themselves, in a less controlled
way. By understanding the business environ-
ment, the systems department was able to
convince top management at Lloyd’s that
investment was needed for a network and
networked applications to serve the market.
The Lloyd’s Market Networkis now in operation
and the corporation’s current businessstrategy
is dominated by the opportunities to be gained
from this network and the applications

Chapter 1 The need for a strategy

supported on it. It is clear that, in future,
software will be a critical business resource for
Lloyd’s.
Another example, also from the financial-
services industry, illustrates how theright soft-
warestrategy can help achieve business goals.
The Woolwich Building Society, one of theUnited Kingdom’s largest savings and home-
loans institutions, decided to enter the insur-ance market. When this was made known to thesystems department, it investigated the use ofIT in the insurance industry and found thatextensive use was madeof videotex. Asa result,the systems department decided that videotexsoftware should be incorporated into thesociety’s softwareinfrastructure. This softwarewas available for use 12 months before thesociety launchedits insurance services, and isnow used for several applications.

The elements of a software
strategy
A complete software strategy has three mainelements:

— The software infrastructure. This is the baseof software on which new applicationsarebuilt. It includes system software such asadatabase management system, as well ascore applications. In Chapter 2, we discussthe components of software infrastructure,and describe how to implement and managethem.
— Software. standards. Software standardsneed to be specified by the softwarestrategy. Decisions need to be made aboutwhether open or proprietary standardsshould be adopted, and which internalstandards should be specified. We discussstandards(including developmentsin Unix-based standards and IBM’s SystemsApplication Architecture) in Chapter3.
— Software procurement policies. Thesoftware strategy needs to specify thepolicies for procuring new software,whetherit be system software, applicationpackages, or bespoke software developedin-house. We discuss the most importantpolicies in Chapter 4.

‘ FOUNDATION
sd 1989 ler Cox & Partners Lin

Chapter 2
Defining and implementing the

A software infrastructure comprises a coherent
set of software tools and building blocks that
is used as the basis for developing specific
applications. An infrastructure should include
as many as possible of the common functions
that will be needed to build new applications,
so that bespoke development is reduced to a
minimum. Someof the functions will be low-
level, general-purposefacilities, such as those
provided by the operating system, or machine
utilities supplied by the hardware vendor(in
other words, all the software that used to be
knownas systemsoftware). Other functions will
be core applications that are specific to the
business, but that are used by many software
applications within the business. In general
terms, core applications either store or modify
data held in corporate databases. In other
words, the data generated or modified by core
applications will be accessed by other appli-
cations. An application that accesses corporate
data, but that creates data only for its own use,
will usually be a non-core application and is
therefore not part of a softwareinfrastructure.

We are concerned, in this chapter, with the
developments in software products that are
making it possible to create a software infra-
structure, and to use it as the basis for a
software strategy. There may,in fact, be a need
for more than onesuchinfrastructure, butit is
important to limit the numberif the greatest
benefits are to be realised. Organisations will
need to devise a plan for the gradual imple-
mentation of the five main componentsof the
infrastructure approach because it is a com-
plex task, with significant implications for the
systems department, in particular.

New developments are making the
infrastructure approach possible
In the early days of commercial computing, it
was necessary to start from first principles when

FOUNDATION
Cox & Partners Limited 1989

software infrastructure

programming a new application. Programming
languages and the early operating systems were
simple and providedlittle functionality, so that
application programmers typically had to code
their own sort routines and input/output
routines. As a consequence, applications were
highly machine-dependent.In time, operating
systems and other system software supplied by
the hardware vendor provided more and more
prepackaged functions that could be used by
application programmers. Languages became
more sophisticated, so that a single line of code
generated a complex function that would have
required many assembler-language instructions.
Theuse of standard languages and other system-
software interfaces meant that, in theory, it
became possible to transfer an application
written for one hardware environment to
another machine.

Today, by choosing appropriate system building
tools, most of the standard programming
functions can be generated automatically. Appli-
cation developers can therefore concentrate on
providing application-specific functions and on
building links between different applications
and systems and between different parts of
systems. Figure 2.1, overleaf, illustrates how
more of the functions that formerly had to be
codedspecifically for an individual application
are now available within system-software pro-
ducts. During the 1970s, for example, database
management systems and communications soft-
ware were developed, and provided functions
that, hitherto, had to be written by application
programmers. During the 1980s, products such
as fourth-generation languages, expert-system
shells, and CASE tools have continued this
trend and have extended the scope of the
software infrastructure. We expect to see the
scope extended further during the 1990s,
by developmentsin integrated CASEtools, data
dictionaries, and dialogue-management
products.

Chapter 2 Defining and implementing the softwareinfrastructure

Anincreasing proportion of the software
functions required by an application is
provided bythe software infrastructure
rather than by specific code

Figure 2.1

Software application
functions

100%

Specific code50%|-

 oe 1980s 1990s1960s 1970s

Developmentsin infrastructure software are notconfined to application-independent systemsoftware, however. Someof the major suppliersof system-software products (Oracle, forexample) have developed application skeletons(or templates) that can be used as a basis fordeveloping a specific application. Other soft-ware suppliers, such as Cullinet and Cincom,whohavehitherto provided database manage-ment systems and development tools, now alsoprovide application packagesthat are built ontop oftheir existing system-software products.These packages are purchased for the appli-cation functionality they provide, rather thanfor the quality of the system software on whichthey are based. Others (Digital, for example) areencouraging value-addedresellers to build andmarket application packages on top of theirsystem-software products.
As a consequence,traditional system-softwaresuppliers are busy repositioning themselves inthe marketplaceso that their customers will alsoperceive them as suppliers of application soft-ware. This is an important trend because itshowsthat thetraditional distinction betweensystem and application software is breakingdown, and that system-software vendors areencroaching.on the domain of specific appli-cations software suppliers.
The result is that it is increasingly difficult todelineate the boundary between system soft-

ware and application packages. In the past,packages were inseparable from most of thesoftware infrastructure on which they werebased. For example, a stock-control packagewould need database(or at least file-manage-ment)facilities to store records of items, stocklevels, and so on. However, as often as not,thesefacilities would not be based on a standarddatabase management system, and the datawould not be easily accessible by other systems;it was therefore difficult for the package tointerwork with other systems or to generateadditional reports. Purchasers of such a packagehad to acceptit as it was, or perhaps pay thepackage vendor to develop minor enhance-ments. Anysignificant tailoring of the packagewas uneconomic. As a consequence, packagescame to be regarded as cheap solutions usedeither by small companies that could not affordto develop their own bespoke systems, or bylarger organisations for unimportant appli-cations.

Today, however,the use of advanced develop-ment tools in conjunction with an existingdatabase management system has led to thedevelopmentof‘soft’ packages than caneasilybe tailored to create a bespokeapplication.(Softpackages are described in more detail inChapter 4.) This meansthatit is also increasinglydifficult to classify suppliers as either system-software suppliers or application-package sup-pliers. Traditional package suppliers havebecomeaware that advanced developmenttoolsare a threat to their market, and have respondedby using proprietary development tools anddatabase management systemsto develop theirpackages. The resulting soft packages providein-built tools for screen formatting, reportgeneration, and other functions. In some cases,package suppliers have even developed theirOwn system-software tools for application-package development.
The importance of a common andstable soft-wareinfrastructure for all of an organisation’sapplications has also been recognised by themany package suppliers who are now buildingnew products that can be used in conjunctionwith the most popular system-softwareproducts. For example, the French softwarehouse, SOPRA, markets a leading Europeanhuman-resources package, called PACHA,which is available for a wide variety of

OUNDATION
utler Cox & Partners Limited 1989

Chapter 2 Defining and implementing the software infrastructure

hardware environments. SOPRA has now recog-
nised that making its product available for a
range of different hardware is not sufficient.
The company has decided to launch a new IBM
yersion of the package that uses DB2, and to
follow this with a version that can use Oracle’s
database management system. In one of our
focus groups, several of the participants
mentioned the availability of application
packages as a reason for choosing a particular
system-software product.
Figure 2.2 illustrates how the boundary between
applications and system software is being
breached. System-software suppliers are ex-
tending their product ranges to provide appli-
cation templates, or even complete application
packages, and package suppliers are extending
their products to create general-purpose soft
packages that can be tailored to meet an
organisation’s specific requirements. The result
is that organisations now have the chance to
build a coherent software infrastructure that
can support both in-house development and
bought-in application packages.

The infrastructure approach
provides significant benefits
The infrastructure approach to software strategy
has three main benefits: it provides the flexi-
bility to respond quickly to changing business
requirements; it helps reduce the variety of
software in use and thus reducescosts; it makes
it easier to integrate applications.

It provides the flexibility to respond
quickly to changing business requirements
Ina rapidly changing business environment,it
may be difficult, or impossible, to forecast new
application requirements even as far as six
months ahead. However,it is often in precisely
this type of environmentthat a rapid response
to new business needsis vital for survival. The
systems department in a major Australian oil
company foundthat the decision to standardise
on IBM’s CSP and DB2 products for new systems
has led to improvementsinits ability to deliver
on time and within budget. Systems integration
has also becomeeasier. The systems department
can now respond more quickly to changing busi-
ness requirements and, in particular, facilitate
a move to a centralised marketing approach.

FOUNDATION
© Butler Cox &Partners Limited 1989

Figure 2.2 The line between system software and
application software products is being
bridged

System software
products

Application software

System software suppliers

This could not have been achieved 10 years ago
when there was no software strategy.
By making sure that as manyaspossible of the
functions that are likely to be needed are
incorporated into the software infrastructure,
the developmenttime for new applications can
be minimised, even when thelikely require-
ments are not well understood at the time the
infrastructure is defined. Figure 2.3, overleaf,
describes an extreme case of an organisation
that found that the only way to cope with the
uncertainty about the application requirements
was to adopt the infrastructure approach to
software strategy.

Reduced variety leads to reduced costs
By standardising on a specific software infra-
structure,it is possible to reduce support costs,
training costs, and in somecases, the costs of
the softwareitself. Training costs,in particular,
should not be underestimated. One focus group
participant had recently conducted a review of
his organisation’s total expenditure on an
analysis tool. This amounted to around $135,000
for software licences and $270,000 for hard-
ware, but more than $850,000 for training.
(Foundation Report 67, Computer-Aided Soft-
ware Engineering, showed how training and
support costs for CASE tools often exceed the
cost of purchasing the tool itself.)
By reducing the variety of software in use
throughout an organisation, it may also be
possible to widen the choice of development
teams able to undertake new projects. A major
oil company uses a standardised software

Chapter 2 Defining and implementing the software infrastructure

infrastructure from Software AG in all ofits
offices throughoutthe world. Theinfrastructure
includes a common development environment
(based on products from Software AG). Thisenables the company to move developmentstafffrom onesite to another,to carry out develop-
ment work using team membersfrom differentcountries, and to allocate work to countrieswherethe software developmentstaff are lessheavily loaded.

It is easier to integrate applications
By choosing application packagesthat are basedon the sameinfrastructure products, and bystandardising on the development environmentfor new software,it will be easier to exchangedata between applications and to build linksbetween systems. One Foundation member told

Figure 2.3

A

flexible infrastructure is essential wheninformation systems requirements areunclear

The Securities and Investments BoardThe Securities and Investments Board (SIB) was set upas a result of the UK Financial Services Act, whichbecamelaw in 1986, and is designed to protectinvestors. The SIB monitors and regulates the activitiesofall the types offinancial-services organisationsrecognised by the act. At the time the SIB was set up,itwasnotclearly understood howit should monitor theactivities of the financial-services industry. Obviously,information systems had to play a central role, butitwas by no meansclear whatthe requirements for suchsystems were, or what the scale of the softwaredevelopmenteffort was likely to be. Given the very shorttimescales for developing the required systems, the SIBhad no choice but to use a bureau. Because of thenature of the regulations, there were no Packages thatcould meet the requirements, so it was necessary todevelop bespoke applications. In order to deal with theuncertain and changing requirements, the SIB chose asoftware infrastructure that would enable it to respond tousers’ requests quickly and effectively. To minimise therisks, the infrastructure was based on a tried and testedBM hardware and software environment.Theinfrastructure included a relational database, afourth-generation language, and networking facilities forconnection to the bureau. A core set of enquiry andreporting functions was developedinitially, with noattempt being made to develop a comprehensivesystem. Facilities were gradually added as users neededthem. The need for these additions had to be fullyjustified becauseall development was done by thebureau. After two years of operation, the SIB is nowreviewingits software strategy and considering ways inwhichit can respond even better to the volatile businessenvironment. The software infrastructure is unlikely tochange, however.

us that his organisation was in the process ofrationalising its software infrastructure in orderto achieve these benefits. This organisationoperates in a business sector where recentderegulation has led to huge growth in newdemands for applications from the businessmanagers. To meet this demand, the systemsdepartment had been forced into buyingpackages that did not fit into its choseninfra-structure. Moreover, a recent merger hadfurther complicated the situation. With theprospectof further mergersin the near future,the systems departmentis anxious to have aconsistent and comprehensive software infra-structurein place beforeit has to cope with theneed to integrate the different systems.

A software infrastructure hasfive main components
In essence, a software infrastructure consistsofa list of software functions and a descriptionof how they are to be provided. The majorityof these functions will be purchased aspackages, often from the hardware vendor,although some of them may be acquired fromother software vendors. The remaining infra-structure functions have to be written in-house,especially industry-dependent software (coreapplications) and gateway, conversion,or inter-facing software, to enable different parts of theinfrastructure to be interlinked. The com-ponentsof the software infrastructure will varyaccording to the type of business and the rolethat IT plays in the business. Figure 2.4 showsthe five main software components that makeup the infrastructure. Each is discussed in moredetail below.

10

Figure 2.4 The software infrastructure has five maincomponents

Core applications

 Data Development ~ Communi-Management and operating Cationsenvironment

FOUNDATION Cox & Partners Limited 1

Chapter 2 Defining and implementing the software infrastructure

Development and operating environment
The development and operating environment
includes the operating system, machineutilities,
language support, CASE tools, performance
tools, and any other functions needed to
develop, implement, and run software efficiently
in the chosen hardware environment. Choosing
the right products for this part of the infra-
structureis possibly the most difficult decision
the systems director has to make on soft-
ware strategy. As we discussed in Foundation
Report 67, Computer-Aided Software Engi-
neering, there is, as yet, no integrated set of
development tools that adequately covers the
whole of the development life cycle. Indeed,
those tools with the greatest life-cycle coverage
may not be the mostcost-effective because they
may be expensive to implement and they may
necessitate extensive training. Report 67 lists
the criteria to use for selecting the most
appropriate developmenttools.

Data management
The main element of the data management
componentof the software infrastructure is a
database management system. In Foundation
Report 64, Managing the Evolution of Corporate
Databases, we showed that most Foundation
members are implementing, or plan to
implement, relational database management
systems. The development environment should
therefore includetools that use SQL (the defacto
standard for accessing relational databases) to
create and manipulate the database, and a data
dictionary (or data repository) to describe the
information held in the database. These tools
and products should, of course, be chosen so
they can interwork with the database manage-
ment system. One of the common problems
mentioned by those participants in our focus
groups who had chosen IBM’s DB2 as their
relational database management system was
that IBM does not yet have a comprehensive
data-dictionary product that works with DB2.

Communications
The communications component of the infra-
structure should include software functions for
both internal and external communications.
Software support for local and wide-area net-
workingis not difficult to achieve. The problems
arise mainly in the area of conflicting standards

FOUNDATION
artners Limited 1989

© Bu

and in interworking between different infra-
structures. One organisation in the chemicals
industry, for example, uses an IBM-basedinfra-
structure (including SNA communications) for
some sites, and a DEC-based infrastructure
(including DECnet communications) for other
sites. Within either infrastructure, it would not
be difficult to choose a coherent set of com-
munications products for applications such as
electronic mail andfile transfer. However,it is
far from simple to choose the communications
components of one of the infrastructures to
facilitate interworking with the other.

User interface
Very few products are currently available to use
within the user-interface component of the
software infrastructure. As we discuss in
Chapter 3, there is a need for commonuser-
interface standards and products to support
those standards. IBM’s Presentation Manager
will go some way towards establishing defacto
standards for the user-interface componentin
the personal-computer environment, but pro-
ducts are needed to support cooperative pro-
cessing (where two or more processors need to
interwork) and dialogue management. At the
moment, the main choices to be made are
concerned with which in-house standardsto set
rather than which products to buy. However,
it is worthwhile creating re-usable modules that
implement an organisation’s chosen standards
for the user interface. These are routines de-
veloped in-house (usually in the course of
developing a specific application) that are
designedin such a way that they can be re-used
in other applications.

Core applications
The final component of the software infra-
structure is the organisation’s set of core appli-
cations. These are applications that are essential
to the day-to-day operation of the business.
Different business sectors will have different
core applications (some examplesarelisted in
Figure 2.5, overleaf). Moreover, an application
that is a core application for one business may
not necessarily be a core application in another.
Similarly, a non-core application for one busi-
ness may be a core application for another.
Although non-core applications may be essential
to run the business efficiently and to remain

Jal

Chapter 2 Defining and implementing the software infrastructure

 Figure 2.5 Different businesses have different coreapplications

Business Example of core application
Tour operator Holiday reservation system

Orderprocessir f istcont)

Distribution company

_

Insurance company

Retail bank—=
Manufacturing company

Retailer
CustomerbillingPublic utility

within the law, they do not normally affect theday-to-day operations of other departments, andthe software itself does not form a buildingblock for other departments’ applications.
Nevertheless, non-core applications should,wherever possible, comply with the othercomponents of the software infrastructure, par-ticularly the user-interface component. How-ever, a non-core application that does notconform with the infrastructure but thatprovides a good businesssolutionis preferableto one that conforms with the infrastructure butthat is inferior in business terms. Theinfra-structure should not be modified to accom-modate a non-core application, however.
Managing core applicationsas part of the soft-ware infrastructure ensures that they aredesignedso that they can provide a flexible basisfor developing non-core applications. In par-ticular, the database used by a core application,such as order processing, will often form thebasis for other non-core applications. In makingthe distinction between core and non-coreapplications, we are not implying that theformer are more important than the latter. Infact, competitive advantage gained as a resultof using IT is more often derived from non-coreapplications. The purposeof the distinction isto emphasise the need to manage coreapplications as part of a coherent softwareinfrastructure.

A commonproblem now faces the manylargefinancial-services organisations that have not,in the past, managed their customer-accountapplicationsas core applications. Each financial-services ‘product’ (such as current-accountbanking,life insurance, and savings accounts)typically had its own set of applications softwarebased on a sales database accessed by accountnumbersor policy numbers. From the productmanagers’ perspective, this was the mostconvenient and efficient system design.However, now that large financial organisationshavediversified into a wide range of products,they would like to be able to exploit theopportunities for cross-marketing. The problemis that there is no efficient and easy way offinding out which products have been suppliedto an individual customer because all thedatabases are organised around products. Worsestill, many of the applications are based ondifferent underlying software infrastructures.These organisations now have a difficultstrategic choice to make:either they accept thebusiness limitations imposed by their presentsoftware base, or they embark on a massiveredevelopment programme.

The numberof software infra-structures should be limited
Most organisations will need two,or even three,infrastructures to ensure that the best technicalsolution can be chosen for different types ofapplication. There are several situations inwhich this need may arise:
— Different hardware environments, andhence different software infrastructures,may be necessary for applications withspecial requirements. Thus, specialisedscientific computing(such as finite-elementanalysis) needs high-speed processingcapacity but a very simple and efficientsoftware infrastructure; high-performance,free-text retrieval applications may requireparallel-processing capabilities and very-high-speed disc access and data retrieval.
— The hardware and software suppliers usedfor an organisation’s mainstream com-mercial applications may not be able toprovide the most appropriate hardwareenvironment and software infrastructureto support certain types of business

FOUNDATION
tler Cox & Partners Limited 1989

Chapter 2 Defining and implementing the software infrastructure

applications. Office system and point-of-
sale applications are typical examples.

— The ideal package for a particular appli-
cation may not be available for the main-
stream hardware or softwareinfrastructure.
Several Foundation memberstold us that
they had purchased a personnel-manage-
ment package that runs on McDonnell
Douglas equipmentfor this reason.

— Someorganisations may have severalsoft-
ware infrastructures for historic reasons.It
is not usually possible to transfer all systems
to anew infrastructure at once; for a time,
it is therefore necessary to support appli-
cations using both the new andold infra-
structures.

Wherever possible, however, organisations
should avoid having more than one software
infrastructure. Multiple infrastructures mean
that integration of applications implemented
in different infrastructures is difficult, sup-
port costs are increased, and systemsstaff and
users have to be trained in how to develop and
use applications in each of the environments.
We recommend that an additional software
infrastructure should be implemented only
where at least one of the following situations
exists:
— Theadditionalinfrastructure is completely

separate, with no requirement to link
systems to the main infrastructure.

— The additional infrastructure, and the appli-
cations within it, can be managedby a third
party (a computer bureau, for example).

— The infrastructure supports just one appli-
cation and can easily be maintained by the
users or by the software supplier.

— Theproblemsof interconnecting applica-
tions supported by different infrastructures
can be minimised by using simple file-
transfer and conversion facilities. This
could occur, for example, with a point-of-
sale system where an in-store processor
provides all the detailed information
required by the store managers, and trans-
mits files of consolidated data to the head
office for processing on a central main-
frame.

FOUNDATION
r Cox & Partners Limited 1989

Implementing a new software
infrastructure requires a
migration plan
Few Foundation membersare able to start with
a blank sheet whendesigning and implementing
a new software infrastructure. Their existing
applications, some of which maybe 10 or even
20 years old, are based on a range of infra-
structure products, each of which may have
been installed over the years to meet a specific
need. Mergers and acquisitions may have com-
plicated the problem by adding further suppliers
and software infrastructures. In the long term,
the main options are either to scrap old appli-
cations or convert them to run on the new
infrastructure. We describe here the best way
of migrating to the new infrastructure.

Add infrastructure components as
new applications are developed
The first step in migrating to a new software
infrastructure is to define and agree on the
infrastructure that the organisation wants to
end up with. Doingthis will limit the migration
difficulties because new systems can be
procured to conform with the desired infra-
structure. It is unlikely to be cost-effective to
implementall of the infrastructure at once. This
would require a large capital expenditure on
items that would not be used fully for some
time, until new applications have been built or
old ones converted. It would also impose an
unacceptable load on the systems department.
The most cost-effective way of migrating to the
new infrastructure is to take a series of small
steps based on the infrastructure needs of new
applications as they occur within the develop-
mentplan. The application priorities should be
derived from established business needs and the
corresponding business benefits that the appli-
cations will provide. For example, a majorlife
assurance companytold us thatit is redevelop-
ing its 15-year-old policy and customer appli-
cations to use a relational database management
system because of the marketing department’s
business requirementfor information to support
the company’s cross-selling initiatives. This
project provides an excellent opportunity to
begin to migrate to a more modern software
infrastructure that will provide business
benefits for most departments within the

13

Chapter 2 Defining and implementing the software infrastructure

company. The systems department realises that
several other steps need to be taken before the
new infrastructure is fully in place. These
include implementing improved document-
handling and other office systems functions.
However,these functions will not be added tothe software infrastructure until they can beproperly justified in business terms, and untilsystems resources are available to implementthem.
In summary, the new software infrastructureshould not be implementedall at once. Infra-structure components should be acquired tomeet the needs of new applications as theyare developed. The development prioritiesshould be set according to the size of thebenefit that each application will provide to thebusiness.
Consider the possibility of bringingforward the systems replacement point
As the components of the infrastructure areimplemented, it may well be possible to bringforward the point at which it is cost-effectiveto replace existing applications with newsystems that conform with the new infra-structure. The portfolio of existing applicationsshould therefore be reviewed at regularintervals to see if the infrastructure functionsalready available make it cost-effective torebuild existing applications earlier than wasoriginally planned. The case for doing this willbe even stronger if the rebuilt applicationsrequire further components to be added to thenew infrastructure. (The type of calculationrequired to determine whether an applicationcan be rebuilt earlier than plannedis the sameas that set out in Figure 3.3 of FoundationReport 67, Computer-Aided Software Engineer-ing; in that report, we showed how the useof CASEtools can bring forward the date whenit is cost-effective to redevelop existingsystems.)

Foundation Report 64, Managing the Evolutionof Corporate Databases, gives several examplesof tools that can help in migrating to thedatabase componentsof the new infrastructure.These include fourth-generation languages,application generators, and database trans-parency software. It is therefore important tokeep abreast of developments in softwareproducts that may significantly reduce re-

development costs or provide significantlygreater business benefits. Figure 2.6 gives someexamples of developments that are likely tooccurin the nextfive to ten years. Once a newinfrastructure product that could be of benefithas been identified, it may be necessary toredefine part of the infrastructure to incor-porate the product and to re-assess whetherageing applications should be replaced, makinguse of the new product.
Sometimes, however, componentsof the newinfrastructure can be used to extend thelife ofold- applications, but in a way that will maketheir conversion to the new infrastructure easierat a later date. The Swiss Bank Corporation,forexample, has used the Telon applicationgenerator in this way. Existing applicationswere written in Cobol and use the IDMSdatabase managementsystem. Thisis outoflinewith the bank’s new software infrastructure,which uses the DB2 relational databasemanagement system and Telon as the develop-ment language. Although the existing appli-cations will eventually need to be converted,the bank has neither the resources nor thebusiness justification for embarking on theconversion exercise now, because there areother more urgent requirements. However,some changes and enhancements to the existingsystems are essential, and these are beingdeveloped as new functions written in Telon.Since Telon can generate different versions ofCobol programs that can be used with eitherIDMS or DB2, conversion of these enhance-ments will be relatively simple.
 Figure 2.6 Developmentsin software infrastructureProducts may bring forward the systemsreplacementpoint

New industry-specific soft packages.

FullCASE products, =
Distributed databases.

Graphicsinterfaces and windowing systems.
Newdistributed architecture (leading to a reducedrequirement for mainframe systems).
Voice input.

Chapter 2 Defining and implementing the software infrastructure

Formalise the maintain-or-replace
decision
The migration to a new softwareinfrastructure
will not be complete until all the existing
applications have been replaced by applications
that conform with the new infrastructure. It is
therefore essential to formalise the procedure
for deciding whether existing applications
should continue to be maintained, or whether
they should be rewritten using (and perhaps
addingto) the new infrastructure. The purpose
is to identify the best time to redevelop an
application. This means comparingthe costs of
continuing to maintain and runan application
with the cost of rewriting it for the new
infrastructure. The costs of maintaining both the
old and new infrastructures also need to be
considered.
It is well known that many organisations spend
about 65 per cent of all their analysis and
programming effort on software maintenance.
The purpose of maintenanceis to protect the
organisation’s investment in systems by pro-
longing their useful life and by improving the
benefits they bring to the business. There are
three categories of maintenance:
— Corrective maintenance, which is

concerned with resolving errors.
— Adaptive maintenance, which involves

enhancing and modifying systemsin line
with the needs of the business.

— Perfective maintenance, which consists of
changes to the application structure and
coding to improve performance and
maintainability, and to reduce thelikeli-
hood of errors.

As software ages, the workload in all three
categories of maintenance tends to increase.
The business environment changes, creating a
need for software enhancements, which gives
rise to adaptive maintenance. These enhance-
ments introduce more software errors, requiring
corrective maintenance. Eventually, the soft-
ware reaches a point whereit has been changed
so often that the original structureis lost, and
making further changes increases the proba-
bility of introducing more errors. At this point,
perfective maintenance is needed if the soft-
ware is to be upgraded to a state where further
maintenance can be carried out.

FOUNDATION
ox & Partners Limited 1989

It is easy to continue maintaining old systems
without appreciating that costs are escalating
andthat it would be less expensive to redevelop
the applications. The best time to replace an
application can be chosen by keeping track of
the effort spent on maintaining each application
and subjecting every system to a regular formal
review. It is helpful to keep detailed records of
the effort spent on each category of main-
tenance for each module of the system. As well
as helping to identify when the system as a
whole should be replaced, such records can also
indicate the need for perfective maintenance.
The formal review of systems should be carried
out at least annually to assess:
— The extent to which the application

currently meets users’ requirements.
— The risk and impact of a system failure.
— The effort required to maintain the system

adequately.
— New requirements, or growth in the pro-

cessing load, that may force the application
to be redeveloped.

In the United Kingdom, the Central Computer
and Telecommunications Agency (CCTA), which
helps central government departments to make
the best use of information technology, has
developed a ‘system-maintenanceprofile’ that
helps to identify the point at which a system
should be replaced. There are nine criteria in
the system-maintenance profile and a total of
16 measures (between one and three measures
for each criterion), as shown in Figure 2.7,
overleaf. Each measure provides a score. The
scores are totalled for each system, and systems
scoring 100 or more are candidates for renewal.
Someorganisations restrict maintenance effort
to a predefined percentage (typically 30 to 50
per cent) of the systems development depart-
ment’s budget. Such a policy can be useful
becauseit ensures that an adequate proportion
of development resources is assigned to new
applications. However, this type of controlis
less effective than a formal evaluation of the
type advocated by the CCTA becauseit focuses
on the problems of the systems development
departmentandlargely ignores the needsof the
business. In particular, it may encourage the
systems department to carry out more
development work (which systemsstaff tend to

15

Chapter 2 Defining and implementing the software infrastructure

prefer), when thereal needis to provide a stableand reliable base of existing systems.
Formalising maintain-or-replace decisions is notonly essential for ensuring that the migrationto a new softwareinfrastructure proceeds as

Figure 2.7 There are nine criteria in the CCTA’ssystem-maintenanceprofile

Category Criteria Measures
Adequacy Desirable —(Man-days per annum onto user changes desirable changes/thousandlines of code) + 1.

—Degreeto which desirablechangesare being blocked(1 =notat all, 5=completely).Changes —(Estimated man-days tobacklog clear backlog ofchanges/thousandlines ofcode) + 1.
—Degree to which system isfailing to meet requirements(1=fully, 5 marginally).

Riskto gre which stbusiness

Impact of
errors

‘S=significant).State of —System age (1code years, 2=
3=>14). :

Structure (1 = good, 5 =| 4—Programsize (thousandlinesOf codé/number of :Programs). :
Support Staffing —(Maintenanceeffort pereffort annum/thousandlines ofcode) + 1.

Mandatory ——(Annual effort on mandatorychanges changes/thousandlines ofcode) + 1.
—Reduction in mandatorychangesif system
redesigned (1 =nil,5 =substantial).

Each measure provides a score. Systems scoring

a

total of100 or more are candidates for renewal
(Source: Managing Software Maintenance, CCTA,October 1987) _|

smoothly as possible. Once the new infra-structure has been implemented fully,it is stilnecessary to review applications at regularintervals to determine whether the software-strategy goals will be better met by continuingto maintain them, or by rewriting them.

The main applications-softwarerole of the systems departmentwill be to managethesoft-ware infrastructure
The infrastructure approach to softwarestrategy will change the roles and responsi-bilities of the systems department with respectto applications software. In particular, systemsstaff will be less concerned with developing andimplementing applications, and more concernedwith defining and managing the software infra-structure. These changesare consistent with theresults of other recent work carried out by theButler Cox Foundation. For example, wepointedoutin the first Directors’ Briefing Paper(Managing Information Systems in aDecentralised Business, published in March1989) that thereis an established trend towardsdevolving responsibility for the informationsystems function to business units.
The impact of this trend on the role of thesystems department can already be seen in theWay software suppliers are now selling theirproducts. For example, ManagementScienceAmerica (MSA) Inc, the world’s largest supplierof applications for mainframe computers, hasmovedthe emphasis of its selling effort from thesystems department to user departments. Ingeneral, MSA now puts about three times asmuchsales effort into convincing users that apackage can meettheir business requirementsas it does discussing technical issues with sys-temsstaff. MSA’s experienceis that the role ofthe systems departmentis typically to developa ‘longlist’ of potential suppliers, and to givea final technical endorsement after the usershave made their choice. Thisis a logical divisionof responsibilities because users are in a farbetter position than systems staff to decidewhether an application package provides therequiredfacilities and whetherit will fit in withexisting working methods.

The developments being made in software-infrastructure productswill, in the future, also

Chapter 2 Defining and implementing the software infrastructure

have an impact on the systems department’s
role in creating bespoke applications. Because
most of the standard functions will be provided
from within the infrastructure, the main skill
required to develop an application will be
business analysis, not the ability to generate
program code. By using the building blocks
provided by the infrastructure, users will
therefore be able to construct their own
applications.

The need for technical skills will not, however,
disappear. In several previous Foundation
studies (Report 64, The Evolution of Corporate
Databases, Report 65, Network Management,
and Report 67, Computer-Aided Software Engi-
neering), we discussed specific components of
the software infrastructure in detail. They have
all emphasised that managing and choosing a
comprehensive infrastructure are difficult tasks
that require highly specialised technicalskills.
These tasks cannot be left to non-systemsstaff
to perform. Thus, the need for user organi-
sations to employ programmersis not about to
disappear. We believe that, even in the long
term, when most applications development may
well be carried out by user departments,
programmers will still be needed to develop
interfaces and conversion software that will
enable different parts of the infrastructure to
interwork. The skills needed in future will
principally be those of systems integration,
analogousto the skills found among the current
generation of systems programmers.

To ensure that the software infrastructure is
fully defined and properly managed, the
systems departmentwill need to be responsible
for:

— Defining and managing the proceduresfor
implementing the infrastructure and for
converting existing applications to conform
to it. In particular, there is a need to ensure
that new core applications conform to all
aspects of the software infrastructure, and
that software-infrastructure products pro-
vide adequate capacity, performance,
reliability, and availability. This applies to
all the components of the infrastructure,
whether they be networking software,
developmenttools, or applications, which,
in turn, may either be bought-in or con-
structed in-house.

FOUNDATION
Butler Cox & Partners Limited 1989

— Defining rules and guidelines for using the
software infrastructure to build new
applications or enhance existing ones.
Standards must be defined for carrying out
feasibility studies, requirements analyses,
system designs, system constructions, and
systems testing, and for producing docu-
mentation. These standards should specify
both the best practices and the methods to
be used, to ensure that each stage of the
development cycle is completed satis-
factorily before progressing to the next.
Charging users for systemsservices in a way
that ensures that the best use is made of
the software infrastructure. There is a
dangerthat flexible and easily used infra-
structure facilities could be used in
situations where a simpler, possibly manual,
approach would be more cost-effective.
The systems department should therefore
operate a chargeback mechanism that
encourages the user community to use the
corporate software infrastructure in the
most effective way. (Foundation Report 66,
Marketing the Systems Department, pro-
vides detailed advice about chargeback
schemes.)

— Resolvingdifficulties that might arise from
allowing user departments to make their
own software-procurement decisions. In
particular, there is a need to ensure that
systemsbuilt by different departments can,
where necessary, interwork, and that de-
velopment effort is not duplicated. This
responsibility can be discharged by
providing high-level consultancy advice on
the best technical solution to meet
functional, user-interface, performance,
reliability, and maintainability require-
ments, and by providing a help-desk service
to handle ad hoc requests for assistance
about using the infrastructure.

— Planning the future evolution of the soft-
ware infrastructure. This means evaluating
new technologies to assess how they could
support the business better than the com-
ponents of the existing software infra-
structure.

However,the most important decision that the
systems department has to make whendefining
asoftwareinfrastructure is to decide on the set

ny

Chapter 2 Defining and implementing the software infrastructure

of software standards to which the infra- proprietary software standards, and identify thestructure products must conform. In the next main options for the standards elementof thechapter, we discuss developments in open and software strategy.

FOUNDATIO.
Butler Cox & Part

N

Chapter 3
Forming a policy for software standards

Inthe previous chapter, we discussed the need
for a software infrastructure that can provide
the building blocks for new applications. The
software products that comprise the infra-
structure will, of course, need to conform to an
agreed set of standards, and a policy on
standards is a necessary componentof a soft-
ware strategy. In general, a separate set of
standards will be required for each software
infrastructure, although, as we emphasised in
Chapter 2, the numberof infrastructures should
be limited.
In this chapter, we identify the benefits that a
well-thought-out set of software standards will
bring to an organisation. There are several
choices available, the main ones being open
standards defined by standards-making bodies
such as the International Standards Organisation
(ISO), open standards based on the Unix
operating system, and IBM’s defacto proprietary
standards. Our discussion of proprietary
standardsis limited to IBM’s because standards
developed by other hardware or software
vendors have not been widely adopted, except
in a few specialised application areas. Indeed,
many vendors have abandonedtheir proprietary
standards in favour of open standards. More-
over, the importance of IBM standardsis well
recognised in the marketplace — some vendors
are even migrating their own standards to make
them compatible with IBM’s defacto standards.

Although developments are continuing to take
place in proprietary standards, recent develop-
ments in open standards mean that the latter
are becoming an increasingly viable choice,
particularly for intelligent workstations and
minicomputers. In time, open standards also
have the potential to become a genuinealter-
native for mainstream (mainframe) computing.
However, it will not be possible just to
standardise on open standardsor a proprietary

FOUNDATION
Limited 1989

architecture like IBM’s SAA. These standards
and architectures are defined in such wide
terms that it will be necessary for an
organisation to choose a subset(or‘profile’) on
whichto baseits software standards. In the final
section of the chapter, we provide advice on
how to choose the appropriate subset.

The benefits sought from setting
standards should be defined
By specifying the standards that its software
must comply with, an organisation is essentially
setting out to simplify the technical environ-
ment in which its application systems are
developed and operated. Software standards
may also be used as a meansof breaking free
from a dominant hardware supplier. Many
organisations have based their mainstream
hardware environments on the architectures
and standards of a single supplier and have
allowed this supplier’s developmentplansto set
the pattern for their own computingstrategy,
even when they have been able to buy com-
patible products from other suppliers. This
approachhas, in somecases, worked well. More
often than not, though, the reasons for
originally choosing the now dominantsupplier
havebeen erodedby time and by the advances
made by other, more innovative, suppliers. As
aresult, many organisations find themselves in
asituation wherethesingle supplieris, in effect,
a monopoly supplier andis able to charge high
prices and imposestrict contract conditions.
Different conditions have developed in the
personal-computer and engineering-workstation
markets, however. In both cases, de facto
standards (based on MS-DOS and Unix
respectively) have emerged which,although not
strictly non-proprietary, have been sufficiently
open, andsufficiently stable, to allow intense

19

Chapter 3 Forming a policy for software standards

competition to develop in the supply of hard-
ware and software. New companies, some ofwhich have grown quickly to the stage wheretheir annual turnover exceeds one billiondollars, have emerged from this competitivemarket, while established suppliers have beensubject to unprecedented, and very desirable,competition. As a consequence, users ofpersonal computers and specialised work-stations have benefited from increased inno-vation, greater choice, and lower prices.

As we explain morefully later in this chapter,developments in non-proprietary standards(particularly those based on Unix) have reachedthe stage wherethe standards can be used asthe basis for competitive general-purpose mini-computers. Within the next few years, there willalso be general-purpose mainframes based onthe same standards. Whenthis happens, userorganisations will, for the first time, have theoption of adopting non-proprietary standardsforthe whole range of their computing require-ments, and will be able to enjoy the benefits ofa fully competitive marketplace.

The advantages of such a policy are con-siderable, and have led many public-sector (andsomeprivate) organisations in Europe and NorthAmerica to specify that products must complywith non-proprietary standards. There are alsodisadvantages, of which the largest are the costand timescale required to transfera large port-folio of existing applications to the softwareinfrastructure implied by the standards. Anydecision about whether to change from pro-prietary to non-proprietary standards must bebased on a wide rangeof business and technicalconsiderations, including hardware issues, andweshall not attempt to resolve it in this report.(Weintend to addressthis question more fullyin a Foundation Technology Briefing to be pub-lished later in 1989.)

It is essential, howeverto identify the benefitssought from software standards before decidingwhich standards to set, because each type ofbenefit requires different kinds of standard, anddifferent degrees of compliance with the stan-dards. In general, software standards makeiteasier to plan and managethe technical environ-ment, and provide specific benefits in thefollowing five areas:

— Software interworking. The standards maybe required for exchanging data betweenapplications, for implementing distributeqsystems, or for establishing cooperative-processing systems. Interworking betweensoftware systems requires standardsbothfor the format and interpretation ofinformation, and for transferring the in-formation between the systems, often viaa communications network. For softwareinterworking to take place, the communi-cating systems must comply precisely with- the standards.
— Software portability. Many organisationswould like to be able to run the sameapplication systems on different ranges ofhardware without having to rewrite theapplication to suit the new hardwareenvironment. To be able to achieve thisrequires standards for the interfacesbetween applications and infrastructure-software components such as operatingsystems, database management systems,communications packages, and perhaps, auser-interface package. Again, softwareportability will be achieved only if theapplications comply precisely with thestandards.
— DevelopmentstaffSlexibility. User organi-sations often want the flexibility to assignindividual developmentstaff according tobusiness priorities, not according to thespecialist language or machine skills that aperson has. Although the implementationof a commonsoftware infrastructure willhelp,it is not sufficient. To have completefreedom in assigningstaff to developmentteams, computer sites, and developmentprojects,it is necessary to have standardsfor development methods and tools,programming languages, data-namingcon-ventions, data access, communications, anduser-interaction methods. In this case, pre-cise compliance with the standardsis notnecessary because, to some extent,development staff can adapt to localvariations.
— User-training requirements. By adoptinga standard style of user interface for allsystems,it is possible to reduce the trainingneeded by users and to improve theefficiency with which theyuse the systems.

FOUNDATION
© Butler Cox & Partners Limited 1989

Chapter 3 Forming a policy for software standards

This is more likely to be the case if the
chosen interface style is a modern, user-
friendly one, such as the window-icon-
mouse-pulldown-menu (WIMP) style,
pioneered by Xerox.

— Communications between organisations. In
Foundation Report 59, we showed that
electronic data interchange (EDI) is be-
coming increasingly important for many
organisations. Communications between
organisations require standards for the
format and interpretation of business data,
and sometimesof graphics. Standards for
the EDI communications network are
necessary in some cases, although protocol-
and format-conversion services may some-
times be usedinstead.It is not essential to
use the same standards for the organi-
sation’s in-house systems, but there may be
advantages if this is done. There is, un-
fortunately, no comprehensive, inter-
national standard for EDI. In some
countries, however, and in industries such
as retail, banking, insurance, and chemicals,
interim de facto standards have been
developed or set by early EDI systems.

The relative importance of these benefits will
vary between organisations, and even between
different parts of the same organisation. For
most Foundation members,theability to deploy
systems developmentstaff according to business
priorities, and the reduced need toretrain users
when they begin to use a new application will
be more important than software portability.
For some organisations, software interworking
is increasingly important, although for others,
communications with other organisations may
be more important than any of the other
benefits.
While the benefits from setting software
standards are considerable, there are dis-
advantages as well. In particular, an organi-
sation will not be able to consider any software
product that does not conform with its
standards, even though that product may in all
other respects matchits requirements. The more
rigid the standardsare, the smaller will be the
list of products that meet the standards. More-
over, products complying with the standards
may have fewerfunctionsorbe less easy to use
than non-standard ones. Another disadvantage
is that products complying with all the functions

FOUNDATION

© Butler Cox & Partners Limited 1989

of an all-embracing standard are likely to be
more complex, more expensive, and less
efficient than those that have been optimised
for a narrower range of functions.

Progress in public, open standards
remains slow
The need for open standards that facilitate
interconnection between systems based on
different hardware wasrecognisedin the early
1970s. This led to the formulation by the ISO
of the seven-layer ‘open systems intercon-
nection reference model’, known as the OSI
model. Although this model is defined in an
international standard, it is a framework into
which more specific public international
standardsfor interconnection shouldfit, rather
than a specification with which products must
comply. (Suppliers’ claims to have products that
comply with OSI should therefore always be
treated with caution.) Thus, the X.25 packet-
switching standard fits into the lowest three
layers of the OSI model, the Ethernet standard
into the lowest two layers, and the FTAM(file
transfer, access, and manipulation) standard
into the uppermostlayer. To achieve full inter-
working betweensystems,it is necessary to use
appropriate standards for each layer of the
model.
The scope of the OSI model
is being broadened
The initial set of standards (or protocols)
conforming with the OSI model were concerned
with the basic functions required to provide
communications paths between applications,
and between terminals and a remote operating
system. However, the OSI modeldid not origi-
nally address either network management or
cooperative processing (although it did envisage
an FTAM protocol, which enables files to be
accessed and manipulated over a communi-
cations network). Under pressure from smaller
vendors, from users, and from governments, the
scope of OSI (andof public standards generally)
has been significantly widened to include the
conceptof systems interworking, in which appli-
cations running on different machinesinteract
with each other.
This has led to new standardsinitiatives in the
areas of data access and operating systems. For

21

Chapter 3 Forming a policy for software standards

example, the SQL standard for database access
(which wasdiscussed in Foundation Report 64,
Managing the Evolution of Corporate Data-
bases) is now well established as an international
standard, and standards for data dictionaries(the Information Resource Dictionary System,
or IRDS), are being developed,albeit slowly. Thenewly defined Posix standard, which specifiesa standard programming interface to Unixoperating systems,is the first venture of theinternational standards-making organisationsinto the standardisation of operating systems.
A disadvantage of the wider scope of publicstandardsis that, because so many interestedparties have contributed to the standards-making process, the final version often includesso many options that it is no longer really asingle standard. This is precisely what hashappened with many of the OSI standards. Asa result, users and suppliers wishing to imple-ment communications software conforming toOSI standards have been forced to choosesubsets of the standards within each layer of themodel to form ‘protocol stacks’ or ‘functionalprofiles’ that are specific to that organisationor to the type of application that the communi-cationsfacilities are to support. Thus, the USand UK governments have each developed,forprocurement purposes,functionalprofiles calledthe Government Open Systems InterconnectionProfile, or Gosip. The US and UK Gosips are,inevitably, different, but there are moves todevelop a common Gosip. Internationally,Government buying poweris immense and willcontinue to be a strong influence on suppliers’adoption of standards.

Public standards usually lag behindproduct developments
The main international standards-making bodyis the ISO, but there are, as shownin Figure 3. Aemany otherorganisations with an interest instandards representing national interests,computer manufacturers, the PTTs, and usergroups. With so many interested parties in-volvedin standards-making,it seems inevitablethat progress will be slow. Figure 3.2 (onpage 24) outlines the procedure for gainingapprovalfor a newISO standard. Althoughthisprocess can be completed quickly if everythinggoes smoothly, the opportunities for delay areconsiderable, andit usually takes four to five

years. It is not surprising, therefore, thatsuppliers have been hesitant to design productsthat conform to emerging internationalstandards. Long before standards have becomeestablished,suppliers have marketed productsthat embody proprietary standards.
Figure 3.3 (on page 24)illustrates the typicalrelationship between the development ofstandards and the developmentof technology,It shows that, usually, standards are fullyestablished only once a technology is in wide-spreaduse. During the early stages of develop-ment, standards are non-existent, or justemerging. Because the development of stan-dards lags behind the development of thetechnology, suppliers are either reluctant toaccept an emerging standard,ortheyinsist onproviding their own ‘added value’ features notincluded in the standard. SQL is a typicalexample ofthis. In theory, if database-accesscodeis written in SQL,it should be possible toreplace the underlying relational databasemanagement system without having to changethe application software. However,virtually allrelational database managementsystems havenon-standard features that system developersare reluctant to forego. In practice, therefore,SQL applications are not fully portable.

Frustration with the usual timescale for definingan international standard, and pressure fromusers(particularly governments), has led to thedevelopmentof standards by industry bodies,and their subsequent transfer, in largely com-plete form, into the formal standards-makingprocess. In several cases (the ANSI standard forthe Fibre Distributed Data Interface, or FDDI,for instance), this has resulted in standards thatare aheadof the technology that theyrelate to.Sometimes, even the OSI procedures can bespeeded up. In the case of the EDIFACTstandard for electronic document interchange,the draft proposal was approvedby the ISO inJust 12 weeks.
Once the formal standards-making process iscomplete, thereis, however, no guarantee thatsuppliers will implement the standards incompatible ways. Thus, X.25 implementationsby European PTTs are often incompatible,because they comply with different subsets ofthe same overall standard. Thereis, in fact, noguarantee that the standards will be imple-mented at all. At present, for instance, hardly

FOUNDATION
© Butler Cox & Partners Limited 1989

Chapter 3 Forming a policy for software standards

any products comply with the OSI Virtual
Terminal Protocol (VTP). The functions that
VTP provides are appropriate only for dumb
terminals, for which good de facto standards

already exist. Moreover, as we explained in
Foundation Report 63, The Future of the
Personal Workstation, dumb terminals are
being superseded byintelligent workstations.

function

International standards organisations
ISO — International Standards Organisation
Part of the United Nations, based in Geneva.
CCITT — International Telegraph and Telephone
Consultative Committee
Geneva-based arm of the International
Telecommunications Union.
National standards organisations
AFNOR — Association Francaise de Normalisation
French national standards association.
ANSI — American National StandardsInstitution
A non-profit US organisation founded by manufacturers.
Does not produce standardsitself — documents are fed
to ANSI from over 250 organisations.
Professional and industry bodies
ECMA — European Computer Manufacturers’ Association
A vendor consortium that develops specifications that are
often incorporatedinto the final OSI standards.
EIA — Electronic Industries Association
EWOS — European Workshop for Open Systems
Established in 1988 to develop profiles based on the OSI
model. Aims to coordinate European activity andliaise
with groups in the United States and Japan. The output
will be documents in a form thatis directly usable for rapid
standardisation both by CEN/CENELECand |SO.
IEC — International Electrotechnical Commission
US organisation that produces world standards for
electrical and electronic engineering.
Bodies that promote functional standards
COS — Corporation for Open Systems 5
Non-profit organisation, based in Washington DC. Aims to
promote inter-operable, multivendor products and services
operating under agreed-to OSI, ISDN, andrelated
international standards. é
OSF — Open Software Foundation : ae
A US non-profit, industry-supported organisation founded
in 1988, which is developing products around Posix and
IBM’s version of Unix, AIX. : a
OSITOP — Open Systems Interconnection Technical and
Office Protocol 2 :
A European user association with the ‘objective of
including users’ requirements inthe standardisation —
process by promoting OSl-based standards and
international standardised profiles. Has over 120
members, both users and vendors.
SPAG — Standards Promotion and Applications Group
European equivalent to COS, based in Brussels. Formed

Figure 3.1 Standards-making organisations may be international or national, or they may specialise in an industry or a

CEN — European Committee for Standardization
Workis dictated by the European Commission and driven
by the perceived need to harmoniseIT standards by
19928

BSI — British Standards Institution — :
British national standards body.
DIN — Deutsches Institut fur Normung -
West German national standardsorganisation. = -

IEE — Institution of Electrical Engineers
UK arm of IEEE.
IEEE — Institute of Electrical and Electronic Engineers
US learnedinstitute. An independent professional body
that creates public standards that are subsequently
adopted by such bodies as ANSIandISO.
NBS — National Bureau of Standards
Recently renamed the NationalInstitute of Standards and
Technology (NIST). Works on behalf of the US government
to establish specifications that have to be satisfied by
manufacturers bidding for government computercontracts.

from major IT companiesin the EC to advise on
implementing policy decisionson standards.
Unix International = : ae
Comprises vendors supportingSystem V, Release4, the
latest version of AT&T’s Unix operating system. Aims to
work closely with X/Open, and will conform with the Posix
standard. =

X/Open, a : : :
A non-profit, Europe-based, independent consortiumof
international computer-systems vendors who are
promoting the development of anopen, multivendor —
CommonApplications Environment based on de facto and
international standards. Foundedin 1984. Liaising closely |
with IEEE to keep theCommon Applications Environment
in line with Posix and other IEEE work aimedat providing
a complete operating environment. =

FOUNDATION
‘ox & Partners Limit 8: wo

|

23

Chapter 3 Forming a policy for software standards

 Figure 3.2 Developing a new ISO standard is a longprocedure

The following procedureis followed, assuming that eachstep is successfully completed. The whole process may takeupwards of two years.

1, Proposalis drafted and agreed by ISO member (forexample BSI, DIN). 2. Proposal issubmitted to Is

4. Drait proposal is passedtoasubcommitteeas workitem.

7. Draft International Standard (DIS) is formulated.

8. Voteis held on DIS.
9. DISis elevated tofull international standard.

Unix-based open standards arebecoming viable
Unlike proprietary operating systems such asIBM’s MVS and DEC’s VMS, Unix was notdesignedby a hardware vendor. It was, in fact,developed by two researchers at Bell Labora-tories. For nearly 20 years, Unix advocates haveclaimed that it is the vehicle for providingmachine-independent, and vendor-inde-pendent, applications. In theory, it should bepossible to take a Unix application written forone environment and runit in any other Unixenvironment. In practice, that has not happenedbecause there have been (andstill are) severalUnix ‘standards’.

Originally, major hardware vendors did not takeUnix very seriously. Today, however, mostmajor suppliers offer Unix and Unix-based appli-cations on all types of hardware, from work-stations to mainframes. In addition, softwarehouses are increasingly making their productsavailable for a Unix environment. In Germany,for example, the ISIS catalogue (which lists allthe software products in that country) contains1,300 Unix applications.

No standards (proprietaryTechnology solutions only)
Data management Hypertext

Userinterface

Business programminglanguages Expert systems

Figure 3.3 Standards usually lag behind technology, as the following examples show

Competing proprietaryproducts (standards Established standards

Realtime language

Operating system
interface Proprietary operatingsystems

emerging) (commodity products)
IDMS
IMS Coboldata division
Total SQL
Natural
X-Windows : : - 4 at
Common user access ’ :
Open Look - it ¥
Focus
Nomad Cobol
Mapper
Line
dBASEII
Coral ADA
RTL/2

Posix
CP/M
MS-DOS

< FOUNDATION

Chapter 3

Unix is now well established
Unix systems are now well established in the
networked-workstation environment and are
increasingly being used for ‘niche’ applications
such as front-office support in financial-services
companies, computer-aided design and manu-
facturing, and process control. Because of the
highly competitive nature of the Unix market,
the price-performance of Unix systems is
generally better than that of systems based on
proprietary architectures. In somecases, this
advantageis a factor of 10 or more andislikely
to be sustained, and even increased, as Unix
benefits from the impact of new computing
technologies such as reduced-instruction-set
computers (RISC) and parallel processing.
Within a few years,it will be technically feasible
to use Unix for the whole of a major organi-
sation’s computing.
There is no doubt, therefore, that Unix and
other open standardsare here to stay. Suppliers
such as Apollo, Datapoint, and Norsk Data have
lost business because of the closed natures of
their proprietary standards and have been
obliged to move towards open standards.

Supplier groups have been formed
to promote Unix
Asa consequence, most of the major suppliers
now see Unix as a good basis for software-
infrastructure standards. Three organisations —
X/Open, OSF, and Unix International — have
therefore been formed by various groups of
suppliers to develop and promote open soft-
ware-infrastructure standards based on Unix.
Two of these groups — OSF and Unix
International — are working hard to maketheir
particular version of Unix the defacto standard.
Regretfully, it is too early to advise Foundation
members as to which group, if either, will
succeed in this aim.
The membership of the three groups is
compared in Figure 3.4, overleaf, which shows
that several of the leading hardware vendors
belong to two of them. IBM and DEC, for
example, belong to OSF and X/Open, and AT&T
belongs to X/Open and Unix International.
Membership of X/Openis restricted to hardware
vendors, whereas membership of OSF is open
to any organisation with an interest in software.
Unix International comprises vendors who

FOUNDATION
Cox & Partners Limited 1989

Forming a policy for software standards

support AT&T’s latest version of the Unix
operating system, System V, Release 4.
Webelieve that the formation of these organi-
sations is a significant step forward in the
development of open software standards. The
fact that IBM and DEC are members of both
X/Open and OSF,andare both makingpositive
contributions to the development of open
standards, indicates their acceptance of the
market demand for software-infrastructure
standards. In addition, the activities of these
three open standards organisations have con-
tributed to the increasingviability of Unix in the
marketplace.
X/Open
X/Openis an independent non-profit consortium
of hardware vendors whoseprincipal activity
is the development of a comprehensiveset of
standards for an open, multivendor, software
infrastructure known as the Common Appli-
cations Environment (CAE). CAE is a
consciously created alternative to the IBM
software environments. It is intended to boost
sales of the members’ equipment by attracting
software developers and reassuring users that
they will not be locked in to a single supplier.
X/Open operates in the field of emerging
standards, selecting those de facto and
international standards that are thought to be
the mostpractical and technically acceptable for
the CAE. The consortium aims to publish
standards covering operating systems, pro-
gramming languages, data management, the
user interface, transaction processing, and com-
munications. The standardsare intended to be
internationally acceptable. X/Open has already
published a ‘portability guide’ and recently
announced a ‘branding programme’ that will
indicate which software products have passed
the compliance tests for the X/Openinterfaces.
Standardsare agreed in the conventional way,
with all members evaluating proposals and
arriving at a consensus.
Open Software Foundation
The Open Software Foundation (OSF) is a
direct response to AT&T’s dominance of Unix
standards. The founders, who are major sup-
pliers of Unix systems, seek to wrest control of
the standards from AT&Tand place it in the
hands of an independent body. OSF describes
itself as a software house whose aim is to
construct and license an Open Applications

25

Chapter 3 Forming a policy for software standards

 Figure 3.4 Groupsof suppliers have established three orsoftware infrastructure standards

X/Open”
AT&T IBM
Bull ICLDEC NCREricsson NixdorfFujitsu Nokia DataHewlett-Packard Olivetti
osr”
Apollo — : a
Boeing Computer Sen ices”Bull 2 au
Canon Carnegie MellonUniversity
CETIA :
CSK Corporation |
Data General
DEC :
Dell Corporate Se

 oe
rvices Corporation|

3)Unix International o

1 All the members as of January 1989
2 Notthetotal membership; there are now over 90 members$ All the members as of March 1989

ganisations to develop and promote Unix-based open

Philips
Siemens
Sun Microsystems
Unisys

Addamax ICL PrismaAlcatel-SMH Informix PyramidAmdahl Intel RicohArix Interactive Systems SonyAT&T Lachman Associates Stellar ComputerComputer Consoles Locus StratusConcurrent Micro Focus Sun MicrosystemsControl Data MODCOMP Texas InstrumentsConvergent Motorola TolerantData General NCR ToshibaDupontFibre Division NEC. UniSoftEricsson OkiElectric Industry UnisysFP Computing Olivetti WangFujitsu Omron XeroxFuji-Xerox Oracle 880penGould Phoenix TechnologiesHCL Prime

Environment. Eventually, this will comprise anoperating system, user-interface software, adatabase management system, communicationssoftware, and software-engineering tools. Allof the members of OSF have committedthemselves to provide the Open ApplicationsEnvironment for their Unix products.
OSFbelieves that the mosteffective standardsare those embodied in existing software pro-ducts, andis therefore basing its own develop-

ments on existing products. The OSF operatingsystem will be based on a future version of AIX,IBM’sversion of Unix, and will comply with thePosix standard. The user-interface software(known as OSF/Motif) will comply with the X-Windowsprotocol. OSF invites submissions ofsoftware products from its members or, intheory, from any other organisation. Productsare evaluated technically by an OSF team andthe final choice is made by the Board. Thisprocedureis different from that used by X/Open

FO UNDATION

Chapter 3 Forming a policy for software standards

and reflects the different nature of the two
organisations; OSF is a software house and
X/Openis a standards-promotion body.

Unix International
Unix International, which was announced
towards the end of 1988, is AT&T’s response
to OSF. The aimis to align other major Unix
suppliers with AT&T’s new version of the Unix
standard, System V, Release 4, which con-
solidates the three most important commercial
variants of Unix (Berkeley, System V, and
Xenix). The group will not write any software
itself, but the members will be provided with
early (and simultaneous) access to Unix source
code, Unix International will work closely with
X/Open.

Unix will not supersede mainstream
operating systemsin the near future
Despite the growing success of Unix in the
marketplace, and despite the activities of
X/Open, OSF, and Unix International, many
Foundation membersare sceptical about Unix,
and question whetherit will ever supersede
established mainstream operating systemslike
IBM’s MVS and DEC’s VMS.In our view, Unix-
based operating systems will evolve quite
quickly to the stage where they could be used
for mainstream corporate computing, butit is
unrealistic to expect major users to switch to
Unix in the foreseeable future. Their existing
applications portfolios make it difficult for them
to migrate away from their existing software
infrastructures. Both users and suppliers have
immense investments of hardware, software,
andskills in the established proprietary systems,
and the cost, time, and effort involved in
migrating away from these systemsare so high
that many organisations will not be prepared to
contemplate such a move. Furthermore, the
range of application packages thatis compatible
with proprietary systems and suitable for use
by large organisationsis greater than for Unix.

The major suppliers of proprietary operating
systemsare, of course, anxious to prevent their
customers from migrating to open standards,
and go to great lengths to emphasise the
superiority of their proprietary products com-
pared with those based on open standards, even
whenthey offer both. Thus, IBM and DEC have
restated their commitments to MVS and VMS

FOUNDATION
ler Cox & Partners Limited 1989

respectively, and they are particularly con-
cerned to position Unix as an unsuitable base
for large-scale commercial applications.
Thereis a fair degree of truth in this view. Unix
was not designed as a comprehensive operating
system and it has several major limitations,
especially in the security, integrity, and per-
formance it provides. Until recently, for
example, there were no in-built file-locking
facilities, a fundamental requirement of any
mainstream operating system.Its resilience and
recovery features are still weak, as are job
scheduling and access control. As commercial
interest grows, suppliers will address these
deficiencies, and some progress has already
been made. However, someof the deficiencies,
notably those concerned with system security,
are rooted in the fundamental design of Unix,
and will be very difficult to remedy. It will
therefore be some time before Unix will reach
the stage of being a genuine alternative to
mainstream operating systems.

Unix will not, therefore, supersede the main-
stream proprietary operating systemsfor large-
scale systems in the short to medium term. It
will, however, be increasingly marketed and
seen as a valid alternative to them. There may
also be further moves to converge Unix and
proprietary environments. DEC, for instance,
has announced Posix support for VMS,allowing
Unix applications to run alongside VMS
applications.
An organisation that chooses to baseits main-
stream software infrastructure on Unix will
have to look carefully at the limitations of
today’s Unix systems in deciding on the
migrationplan, and will needto invest a higher
than usuallevelof effort in tracking standards
developments. It may even havetoplay a part
in advancing those standards. In return,it will
obtain a very wide choice of supplier, and
excellent price-performance fromits hardware
and software products.

IBM’s de facto standards
will remain important
While Unixis set to become an important force
in certain well-defined areas, proprietary soft-
ware standards will remain important in the
area of computing that is of most significance

27

Chapter 3 Forminga policy for software standards

to the majority of Foundation members — large-scale corporate data processing systems basedon mainframes. In most countries where thereare significant numbers of Foundation members,the dominant mainframesupplier is IBM. Evenin France, where Bull is the market leader, itis not possible to ignore IBM and the importanceof its defacto standardsto the IT industry as awhole.
In the past, IBM hasnothesitated to introducenew hardwarearchitectures andits associatedsoftware standards,as it has enhancedits hard-ware ranges and introduced new ones forspecific purposes. Even in the communicationsarea, where SNA wasintended to provide auniversalsolution, there has been a proliferationof incompatible‘logical units’ within the SNAarchitecture, and IBM has also adopted somepublic communications standards, such as X.25.
IBM is now making a determined effort torationalise its standards. Progress has alreadybeen made in the communications area, withthe announcementof the Advanced Program toProgram Communications (APPC)protocol. Thisis intended to be a universal solution to SNAcommunications interworking, defining

a

single,standard unit. IBM has now begun to provideproducts that implement the APPC protocol. Asecondinitiative has resulted in the transfer ofestablished products from one systems environ-ment to others. For instance, following therelease of CICS for OS/2, IBM indicated thatCICS might also be offered for the AS/400 andAIX environments in the future.
Systems Applications Architectureis a significant initiative
The most important standards initiative fromIBM, however, is Systems Applications Archi-tecture (SAA). In the two years since IBMannounced the SAA concept, there has beenintense speculation about IBM’s motivations.Some see SAA as an attempt by IBM to pulltogether its three main product lines — theSystem/370 and successor mainframes, the mid-range AS/400s, and the PS/2 range of personalcomputers. Others see SAA as a competitiveresponse to DEC,aimed at achieving the appli-cations portability already available to VMSusers. Yet otherssee it as a competitive responseto Apple, providing IBM users with the type ofuser-friendly graphical interface already

28

available to Macintosh users. More scepticalobservers believe that SAAis little more thana smokescreen, designed to divert attentionaway from IBM’s real product-developmentintentions. These sceptics question IBM’s realcommitment to SAA andclaim that their viewis based on informed commentfrom within IBM.
In ourview,thereis no doubt that IBM is fullycommitted to SAA. It should be seen as nothingless than IBM’s grand design for the future ofcommercial information systems. The originalinitiative came from IBM’s Corporate Manage-ment Committee (CMC), which is chaired byJohn Akers, IBM’s chief executive. At thebeginning of 1986, the CMC set up a special taskforce to draw up a plan for bringing the com-pany’s different operating environments closertogether. The result was SAA.

Systems Applications Architecturehas four main elements
SAA has four main elements — common pro-gramming interface, common user access,common communications support, and commonapplications. The SAA architecture is illustratedin Figure 3.5. Three of these elements are basedfirmly on existing IBM products and standards.Common communications support provides astandards framework for a subset of IBM’sexisting communications products; much of thecommon programming interface is defined interms of existing products or IBM (or inter-national) standards; the common applicationsconcept extendsan idea first applied to IBM’soffice systems products. Only the common useraccess elementis genuinely new,although thatpart of the common programming interfacewhich relates to it is also new.

It is important to realise that SAAis not a setof product specifications; it is a collection ofselected software interfaces, conventions, andprotocols that will provide the framework fordeveloping consistent applications that canOperate in the three main IBM computingenvironments — System/370 and its successors(TSO/E running under MVS/XA, and CMSrunning under VM), AS/400 (running undertheOS/400 operating system), and PS/2 (runningunder the OS/2 Extended Edition operatingsystem).

FOUNDATION
ter Cox & Partners Limited 1989

Chapter 3 Forming a policy for software standards

Provided that they use no features outside the
interface definitions, applications written to
comply with the common programminginter-
face will be able to run in any SAA environ-
ment. As a consequence, applications de-
velopment staff will also be moreeasily able to
transfer between computing environments, as
the business demands. Applications that use
common communications support will be able
to interwork with one another, even if they are
running in different hardware environments.

Users will more easily be able to learn how to
use a new application that implements the

commonuseraccess standards, makingit easier
to move staff from one department to another.
In short, SAA provides all the benefits of
software standardsidentified at the start of this
chapter, except those associated with inter-
organisational communications (whichis largely
outside the scope of an initiative from a single
vendor).

Systems Applications Architecture has
implications for user organisations
The original IBM personal computer rapidly
became the de facto standard for business

Figure 3.5 SAAis not a set of products;it is a collection of conventions, interfaces, and protocols

| Programmer

 Common
programming
interface

Programming support

=>
 End user
 Communi-

cations

— To other
SAAsystems

 System

control

Personal
System/2

AS/400

| |System/370

(Source: IBM)

FOUNDATION
© Butler Cox & Partners Limited 1989 29

Chapter 3 Forming a policy for software standards

microcomputers.In time, the PS/2 running SAA
applications will do the same, andthis will mean
that applications written for one vendor’spersonal computer will also be able to run onequipment from other vendors. Thus, in thepersonal-computer marketplace, SAA looks setto provide genuine applications portability. Itis not yet clear whether SAA can also dothisin the minicomputer and mainframe market-places. As we explainedearlier in this chapter,open standards, particularly Unix-basedstandards, are strong contenders to achieve thisfor minicomputers, and possibly for mainframesas well.
Nevertheless, SAA is a significant development,not just for IBM, but for the whole of the ITindustry, and it cannot be ignored by eitherusers or suppliers. Like SNA 15 years ago, how-ever, SAAis a proprietary architecture; it is aset of standards, not a set of products. Userorganisations will be able to obtain the benefitspromised by SAA only when a full set ofsupporting software products is available, andthis will take several years to achieve. Indeed,SAA will not be fully complete until well intothe 1990s. Although major software companiessuch as MSAsaythat they have already begundeveloping SAA applications, most softwaresuppliers will not be able to begin this task untilthe reference manuals and_ tools becomegenerally available. Such companiesare there-fore unlikely to bring SAA products to themarket before 1991, except for personal com-puters. User organisations will probably waituntil after 1991 before they are prepared tocommit to SAA.
Even if a full range of SAA products wereavailable today, many organisations would notbe able to move quickly to anew SAA environ-ment. SAA excludes several significant IBMhardware ranges and standards that are inwidespread use today, and because of theseinvestments, user organisations will need tomigrate to SAA over an extended period of time.Thus, many organisations will continue to bedependent on SAA ‘orphans’ for many years,so that SAA will not achieve, for IBM users, thedegree of consistency and simplicity that isalready enjoyed by, for instance, DEC VMSusers.
In the short term, the main benefits of SAA foruser organisations will be derived from the

30

commonuseraccess standards. Until now,user-interface standards have beena significant gapin the standards field. IBM’s PresentationManagerfor the OS/2 operating system supportsSAA’s commonuseraccess. The standards andconventionsof this element of SAA are designedto make applications look and feel the same,irrespective of the hardware on which they arerunning. This can be achieved only if appli-cations conform to the same user-interfacestandards and conventions, or if front-endworkstation programs are written to providecommon user access interfaces. This latterapproachcanbeusedfor applications runningin non-SAA environments such as CICS, IMS,and AIX.
In general, SAA standards are already verybroad, and are getting broader as IBM customersdemand the incorporation of their favouritesoftware products within SAA. There is alsolikely to be pressure to include public standards.This has two important implications for userorganisations. First, it is not possible tostandardise on SAA perse; it will be necessaryto choose a subset of the SAA standards. Inparticular, users will be no more able to switchbetween systems environments than they areat present, if every available feature includedin the commonuseraccessis used. Second,theeffort involved in converting existing softwareproducts to SAA, or even developing newproducts that fully support all the features ofSAA, would be immense.It is most unlikely thateither IBM or independent software vendors willdo this. More probably, they, too, will designtheir products to conform to a subset of SAA.There will still be considerable scope for in-compatibilities between products that imple-mentdifferent SAA subsets. User organisationswill therefore need to investigate very carefullyexactly what is meant by a software vendor whoclaims SAA compatibility, and whether theproduct fits in with the organisation’s ownsoftware standards.

Organisations will need to choosea subset of an appropriatefamily of standards
An organisation’s software standards need tocover all the components of the softwareinfrastructure — communications, database,

FOUNDATION
s Limited 1989

Chapter 3 Forming a policy for software standards

programming, user interface, and so on. Un-
fortunately,it is not possible to choose standards
for each of the components independently
because application systems will make use of
each of the components. It is therefore
necessary to choose a family of standards. The
earlier sections of this chapter have shown that
there are a bewildering numberand variety of
standards families, which have evolved, and are
continuing to evolve, in several different ways.
Some, such as SNA (and morelatterly, SAA),
are proprietary, being developed and promoted
by hardware vendors. Others, such as Posix, are
open standards that have evolved from
successful products. Yet others are created by
standards-making bodies.
In choosing which family of standards to adopt,
organisationswill usually find that their choice
is constrained by the existing installed bases of
hardware and software, particularly for main-
frames. In other cases, however, there will be
greater freedom to choose the most appropriate
architecture. Thus, a business-needs study
might show that a requirement for greater
responsiveness andflexibility can best be met
by implementing a relational database and
advanced system building tools. Such a study
would not determine which of several pro-
prietary environments provided by suppliers
such as Bull, DEC, IBM, ICL, Siemens, or Unisys
was the most appropriate.
However, there are disadvantages with choos-
ing any one of these types of families of
standards. The main problems with proprietary
standards are that the vendors may choose not
to disclose details of the standards, may change
them at will, may charge for use of the under-
lying technology, and may exert a restrictive
influence on the market for software that
conformsto the standards. These problems may
persist even after control of the standard has
passed to an independent standards body, if the
vendorhas a dominantposition in the relevant
part of the market.
The major drawback of standards developed by
standards-making bodies is the slow pace of
development, both of the standards themselves
and of software products that conform to them.
The software-supply industryisstill hesitant to
commit to open-standards products, even though
the standards may be more balanced and more
comprehensive than proprietary standards. The

FOUNDATION
© Butler Cox & Pariners Limited 1989

all-embracing nature of these standards(and of
proprietary architectures like SAA) meansthat
user organisations must select a subset of the
facilities relevant to their own needs. Un-
restricted use of all the facilities would largely
negate the benefits of software standards,
because the large number of options and the
flexibility provided by the standards would
make it impossible to ensure that applications
could interwork,that user interfaces were con-
sistent, and that developmentstaff could move
freely between different hardware environ-
ments. Moreover, product support is available
only for certain combinationsof the standards
defined by the overall family.
The needto select a subset of the facilities is
already evident in the OSI functional profiles
defined by the UK and US governments. Com-
mercial organisations will need to do the same,
particularly for open standards that have been
defined by starting with a clean sheetof paper.
Neither will choosing an all-embracing archi-
tecture like SAA solve the problem completely.
User organisationswillstill need to create their
own equivalents of functional profiles for SAA.

Software standards should be based
on software-infrastructure
products
In practice, however, open standards, even
those created by standards-making bodies, are
often developed from concepts embodied in
existing products. Standards based on successful
products, especially defacto standards, tend not
to suffer to the same extent from the problems
outlined above. (A good example of a successful
defacto ‘open’ standardis the Postscript page-
description language used by many personal-
computer packagesto enable the data from the
package to be passed to a laser printer.)

We recommend,therefore, that once a family
of standards has been chosen, Foundation
members base their software standards on the
products in their software infrastructure. This
would mean, for example, standardising on a
particular database managementsystem, rather
than standardising on SQL and then allowing a
free choice of database management system.

For most purposes, the most effective types of
standards are those that are encapsulated in
the products that make up the infrastructure.

31

Chapter 3 Forming a policy for software standards

Unlike standards that are defined by means of
formal specifications, product-based standards
are clearly defined by the way the product
behaves. In addition, it is much easier to testwhether new software conforms to a product-based standard: if it cannot interwork with themain product that defines the standard, it does
not meet the standard.

In deciding which products to include in thesoftware infrastructure, and hence the product-based standards thatwill be adopted, the needsof the business should be the paramountconcern. Thus, an oil company has made aparticular distribution package a centralelementof its software infrastructure, and thishas required it to adopt IBM technical standardsfor a wide rangeof data processing and officesystems within the company. This particularcompany happens to have chosento baseitssoftware infrastructure on a product thatrequires a proprietary architecture. While webelieve that such infrastructure products shouldform thebasis for selecting software standards,there is increasing scope for these products tobe based on open, rather than on proprietarystandards.

User organisations need to specify theirownrules for using the standards
Choosing a subset of an appropriate family ofstandardsis not sufficient, however.It will stillbe necessary to provide detailed house rules

32

describing precisely how the chosen productsand facilities will be used. Allowing develop-ment staff free reign in the way they use aprogramming language, or construct the userinterface for an application, is a recipe fordisaster. For example, detailed rules and guide-lines are required for the programmingstyle thatwill be used,andfor the conventionsto be usedfor naming data items and procedures. Mostorganisations, of course, already have standardsmanuals that cover these aspects of softwarestandards.
Similar, thoughless familiar, problemsarise insetting user-interface standards. User-interfacepackages, such as DECWindows, Microsoft’sOS/2 Presentation Manager, and the MacintoshToolbox, allow developmentstaff considerablefreedom in designing both screen layouts andthe dialogue between the application and theuser. Although suppliers of such packagesproduceuseful style guides, they are unlikelyto besufficiently specific for a particular organi-sation. User organisations will therefore needto create their own in-house style guides thatdefine the user interface in specific terms.
Although a standards policy is a necessary andessential component of a software strategy,it is not sufficient by itself. The strategy mustalso specify the policy for acquiring newsoftware. We addresstheissues associated withthe software-procurement policy in the nextchapter.

FOUNDATION
Ox & Part

iIners Limited 1989

In this chapter, we discuss the third elementof
asoftware strategy — the policy for procuring
new software. We have deliberately used the
word ‘procuring’ to indicate that there are
several options for obtaining software. Usually,
the lower-level components of the software
infrastructure, such as language compilers, data-
base management systems, and communications
software will be software packages purchased
from hardware or software suppliers. Some
smaller components, typically ‘bridgeware’
(special software used to link applications) or
conversion software, may need to be written
specially, but these components should form
only a very small proportionof the total infra-
structure. However,there are a greater number
of options for procuring applications software.

For most organisations, the choice is usually
between using a package or developing a
bespoke application. We provide guidelines on
how to decide whether a packaged solution or
bespoke developmentis the best option. Ina
surprisingly high number ofcases, packages will
be preferable to bespoke development if
business benefits, rather than users’ require-
ments, are the main criterion. The chapter
concludes by showing how certain types of
software-procurement decisions can be de-
centralised, and how an appropriate software
infrastructure can allow user departments to
procure their own applications by constructing
them themselves.

There are four main options
for procuring applications
software
The four main options for procuring applications
software are:
— To use an application package.

FOUNDATION
© Butler Cox & Partners Limited 1989

Chapter 4
Procuring new software

— To develop bespoke software in-house.
— Toemploy a software house or a bureau to

develop the application.
— Toset up an industry consortium to develop

applications software that will be used by
all membersof the consortium.

Often, the decision about which option to
choose is made automatically, based on the
policy of the organisation, rather than by
formally evaluating each option. For example,
some organisations will always develop their
ownapplications, whereasothers have a policy
of first looking to see if there is a package that
meets the requirements.

Schering, the worldwide pharmaceutical com-
pany with its headquarters in Germany, has
adopted an interesting variation of the appli-
cation package option. Havingfailed to find a
suitable package for a particular application
requirement, Scheringidentified a US software
house that it felt would be well placed to
develop such a package andsell it. The company
persuaded the software house to fund some of
the development costs of a package that met
Schering’s own requirements. So far, several
dozen copies of the package have beensold. This
experience has led Schering to recognise the
value of the company’s knowledgeto software
houses, andit has decidedto use this approach
whereverit is practical. It points out, however,
that the risks are higher than for buying
established packages, and that a very close
working relationship must be maintained with
the software house throughout the development
of the package.
The consortium option for developing appli-
cation software has been used successfully by
public-sector organisations that have similar
(maybeidentical) requirements. For them, the

33

Chapter 4 Procuring new software

attraction of this option is the ability to share
developmentcosts between the members of the
consortium. In the private sector, however,
where organisations in the same business sector
are likely to be competitors, consortium de-
velopments have not been so successful. For
example, an organisation called London Clear
was establishedto provide an electronic-clearing
service for the London money markets. Un-fortunately, when the costs of developing the
specialised applications software began toescalate during the early system-specification
stages, the consortium members withdrew their
funding, and London Clear collapsed. Strongleadership, tight project management, and fullcommitment from the partners are needed tomakea consortium project successful.
For most organisations, however, the mainchoice for procuring new application softwareis either to use a package or to develop a
bespokeapplication.

Benefits, not requirements,should be the basis forsoftware procurement
In deciding whether to use a package or todevelop a bespoke application, it is importantto makea clear distinction betweenthe essentialand non-essential application requirements.Unless this is done, the bespoke-developmentoption will invariably be preferred, and oppor-tunities for using packaged software will bemissed. Most organisations start a requirements-definition exercise by carrying out a detailedsurvey to find out what users would ideally like.Muchless attention is devoted to determiningthe business benefits that the organisationexpects to gain from the new application. Thisapproach almost inevitably leads to the con-clusion that there are no packages that meetallof the users’ requirements. As a consequence,the systems department, under pressure fromthe users,falls into the trap of trying to developa comprehensive bespoke system.
More often than not, however,there will be anapplication package that meets most (if notall)of the essential requirements and providesmost of the business benefits. Moreover, theadditional business benefits (in terms ofincreasedprofitability, reduced costs, and so on)provided by a bespoke system are unlikely to

34

justify the additionalcosts andtime required todevelop the system. Figure 4.1 describes theexperienceof one organisation that abandoneda major bespoke developmentproject in favourof a package because it realised that thedevelopment costs could not be justified inbusiness terms. We believe that paying greaterattention to the business benefits obtained fromcomputer applications would mean that, inmany cases, application packages would be seento be a better investment than bespoke in-housedevelopments.
Although most organisations will analysecarefully the costs and benefits of purchasingnew plant, opening new retail outlets, orlaunching new products, very few will conductthe same analysis for software investments.Figure 4.2 shows how the Net Present Value(NPV) technique can be used to analyse andcompare the return on investment from twooptions for implementing a new application. Theidea behind NPVis that future benefit values(increasedprofits, for example) are worthlessthan the same benefit obtained today. Thedifference is measured by considering the ‘rate

Figure 4.1 Application packages can meet mostessential business requirements

A fund-managementorganisationThis fund-managementorganisation used to obtain all itsIT services (apart from minor PC-based systems anddirect input from financial-information services) from abureau. The applications were mainly batch-basedsystems. The organisation realised that in view of thechangesthat werelikely to occur as a result of thederegulation of London's financial markets in October1987,its survival would bein jeopardyif it did not havein-house online systems to enable fund managers toreact more quickly to changes in the market, and tomeet new regulatory reporting requirements. A softwarehouse was commissioned to develop new bespokesystems from scratch.
After a year of development work, it became apparentthat progress was muchtoo slow and that the final costwould be exceptionally high. With the deregulationdeadline approaching, the only other choice was to seeif there was a packagethat could meet the require-ments. There was considerable resistance to thisapproach from oneprincipal user who wanted an all-embracing bespoke system that could handle everytype offinancial instrument automatically. However, thefinance director realised that the cost of such a systemwas outofline with the fees that the organisation couldexpect to earn over the next five years. A packageCapable of meeting more than 80 per centof therequirements was identified, and the recommendation to buythis Package was accepted.

FOUNDATION
Cox & Pe S Limited 1989

 © Buti

Chapter 4 Procuring new software

of return’ that an organisation might expect to
achieve by investing the money in a different
way. For example, $1 million deposited in the
bank at an annualinterest rate of 10 per cent
will grow to $1.1 million after one year. Thus,
at a rate of return of 10 per cent, $1 million
obtained in one year’s time would be worth
$1 million divided by 1.1, or $909,091, today.
One million dollars obtained in two years’ time
would be worthstill less today. Thus, an all-

embracing comprehensive bespoke develop-
ment that takes a long time to implement (and
to start producing benefits) may have a lower
NPV than a package-based solution that can be
implemented immediately, even though the
package does not meetall the requirements.

The example NPV calculation in Figure 4.2
shows that a package is by far the better
investment, even though the benefit value it
 Figure 4.2 The Net Present Value technique can be used to compare two options for implementing a new application

An organisation has a choice of buying a package which, after sometailoring, will meet most, but notall, ofits
requirements, or developing a bespoke system from scratch. The package will cost $125,000 to purchase and

a

further
$175,000to tailor. It will take one year to implement, and at present values, will then produce a net benefit of $400,000 a
year. The bespoke system will cost $1.5 million, spread equally over three years. Onceit is implemented, it will produce a
net benefit of $600,000 a year.
Assuming ’a return on investment of 25 per cent, the package approach produces a cumulative benefit after two years,
whereas the bespoke system does not produce a cumulative benefit until the eleventh year(see the table below). By the
eleventh year, the package approachwill have produced a cumulative benefit of more than £1.1 million, even though its
annual benefit is one-third less than that of the bespoke system.

&

¢ x5 a &é FS so S

factor at 25% E Ls on eS
1 4.000 (300,000) (00,000) (300,000) (00,000)
2 0.800 400,000 320,000 =. 20,000
3 0.640 400,000 256,000 276,000 (600,000)
4 0.512 400.000 204,000 | 600,000_ -(@12,800
5 0.410 400,000 464,000 644,800 600,000 (686,800)
6 ; 0.328 400,000 131,200 776,000 600,000 ~ (470,000)
7 0.262 400,000 104,800 880,000 600,000 (812,800)
8 “oziow

|

400,000 84,000 _ “|600,000 186,800) |
9 0,168 400,000 67,200 600,000 (86,000)
40 isa ==40g000-s—(iti« 600,000 6.600)
Ww 0.107 400,000 42,800 1,128,400 600,000 64,200 58,600

Net present values are calculated by multiplying the expected benefit or cost by the present value factor. The factor for
yearn+1= 1+ (1+1)", where r is the expected rate of return on investment. In this example, r is assumed to be 0.25.
Note that the above example is highly simplified because no accountis taken of the fact that costs and payments are
likely to be spread throughout the year, rather than accounted for once, at the end of the year. Nor is any variation in benefits are net of these costs.maintenance costs after implementation taken into account, and the example is based on the assumption that subsequent

< FOUNDATION
‘ox & Partners Limited 1989

35

Chapter 4 Procuring new software

provides each year is only two-thirds of the
benefit value provided by a bespoke system.
The reasonfor this is that, in the example, the
packageis implemented two years earlier and
costs substantially less to implement. Thus,
instead of using a comprehensive study of
requirements as the basis for deciding which
option to pursue for procuring the application
software, we believe that it makes more senseto concentrate on the business benefits that will
result from the application. The following
procedure should be adopted:
— Identify, and asfar aspossible, quantify allthe benefits expected from the application.
— Identify the basic functions that it isabsolutely essential for the application toperform.
— Determine which benefits are achieved bythese essential functions.
— Determinethe additional costs of increasingthe functionality to achieve the remainingbenefits.
— Use the NPV technique to analysethe rateof return expected from these additionalinvestments.
This procedure concentrates users’ attention onthe full implications of insisting that the systemincludes special or expensive requirements —in other words, the type of requirements thatmay rule out the use of packages. Some of thebenefits may not, of course, be quantifiable, andit may be worth going ahead with a bespokeapplication even if the NPV calculations showa net cost. However, by explicitly listing theunquantifiable benefits and calculating the costof achieving them, it is much easier for usermanagers to make informeddecisions. A similarapproach to that shownin Figure 4.2 can beused to compare different methods of imple-mentation.

Packages will usually be abetter investment than
bespoke development
Whenthe NPV techniqueis used to compare apackage with bespoke development, thepackagewill nearly always prove to be a betterinvestment, provided, of course, that it meetsthe essential requirements. This is not just

36

becauseit is less expensive, but also becauseitcan be implemented more quickly so that thebenefits can be achieved earlier. :
Two arguments have traditionally been usedagainst the use of packages. Thefirst is theirlack of flexibility, which has made systemsdepartments reluctant to advocate the use ofpackages. If new requirements emerge after apackage has been implemented, and thepackageis unable to handle them, the systemsdepartment can be accused of a lack offoresight. The second argumentis thatit is notpossible to achieve a competitive advantage byusing a package because the same capabilitieswill be available to all users of the package.
The advent of ‘soft’ packages has weakenedboth of these arguments. A soft packageis onethat can betailored to meet an organisation’sspecific application requirements. Suchpackages may include report-generation andscreen-formatting facilities, and a fourth-generation language. Furthermore, a softpackage is usually based on a well knowndatabase management system, which meansthat the database and associated systemsoftware on which the packageis based can beused to extend the scope of the package ortodevelop interfaces to other software. Figure 4.3describes a soft package produced by SAP, aGerman software house.
Several Foundation members told us that,because of the increasing availability of softpackages, they now intend to use packagesmuch moreandthey believe that products suchas SAP will have a major impact on thedevelopment of the package market. Thedescription in Figure 4.3 shows that the SAPpackage provides considerable flexibility tomeet new requirements — more,in fact, thanwould usually be achieved with a bespokeapplication. Each organisation implementingSAPselects those partsof the package that suitits own requirements, so that there isconsiderable scope for using a product like SAPto achieve a competitive advantage.
The one drawbackof soft packagesis, of course,the cost of implementing them. For anextremely flexible package that provides a widevarietyoftailoring options, the implementationcost may be several times more than thepurchaseprice of the package. Nevertheless, the

FOUNDATION
© Butler Cox & Partner

Limited 1989

total cost will still be substantially less than the
cost of developing an equivalent bespoke
application.
Some software suppliers have recognised the
need for tools that will help user organisations
to tailor soft packages to their specific
requirements. For example, Cullinet and SAP
both provide a personal-computer-based
implementation workbenchto assist in this task.
This type of product provides facilities for

Chapter 4 Procuring new software

storing project plans and monitoring progress
against the plans, for producing online
documentation (using graphics and text) that
showsa top-downrepresentation of the package
functionsselected, for training users, based on
a question-and-answer format, and for
converting existing data so that it can be used
with the package.
Once a package has been tailored and
implemented, customisation workbenches can

SAP is a software house based in Germany, and with
several offices in other countries. It was formed in 1972,
now employs more than 900staff, and has a turnoverof
about DM240 million ($135 million). Its main product is a
highly integrated, yet extremelyflexible, application
package, called System R/2. This product contains many
of the features that we expect to see in a ‘soft’ package.
System R/2 was designed to enable user organisations to
select and combine the applications and functions they
needat severaldifferent levels. SAP considersthis facility
to be unique to System R/2. The functions provided cover
the following main application areas:
— Sales.
— Production control.
— Materials requirements planning.
— Planned maintenance.
— Personnel.

Project planning and accounting.
— Cost accounting.

Financial accounting.
Assets register management.

These application areas can be used individually or they
can be integrated. They are grouped around a core
system that contains operating system interfaces, modules
for accessing the data communications facilities, database
and table-handling modules, a fourth-generation language,
and other routines commontoall applications. The core
system is supplied regardless of which combination of
application areas is implemented.
Within each application area, user organisations can
choose whichindividual functions to use. Within the
materials-planning application, for example, users can
chooseto use only a very limited range of functions to
create a basic inventory-control system, or they can use
all the functions necessary to create a complete materials-
planning system thatis integrated with a production-
control system (including bill-of-materials processing,
purchasing, and so on). In addition, many functions
provide options — different ways of calculating costs, for
example. Some of the options can be defined by the user.
Otherfunctions permit ‘what-if’ simulations.
Additionaltailoring facilities are provided by allowing many
of the application details to be defined as the packageis
implemented. This is achieved through:

Figure 4.3 System R/2 is a highly integrated, yet extremely flexible, ‘soft’ package

Extensive use of tables and table-driven processing (for
defining depreciation rules, planned maintenance, the
execution sequence in which programswill be run,
and soforth).

— Use of parameters to tailor individual functions.
— An adaptable, user-dependent menu system
— Modifiable screen fields (controlled through the data

dictionary).
— A menu-driven query system.
— Userdefinition of calculation routines.

User-definable report layouts to fit in with preprinted
stationery, for example.
Use of a database and a data dictionary, allowing
users to specify the format of data items.

The system has also beenstructured so that it can be
extended easily by user organisations, and linked to other
applications. This is achieved by using the following
facilities:
— A database that can be extended by user-defined

fields.
A user-accessible data dictionary that can store
descriptions of user-defined data.

— Input and output interfaces to other application
systems.
Interfaces to computer-aided design andfactory data-
collection systems.

— Source codethatis available to user organisations.
—

A

fourth-generation language (ABAP).
— Theability for user organisations to add their own

code, either using Cobol or ABAP
— Theability to access user-defined DB2 tables, as well

as System R/2 internal data.
— Theability to add user-defined reports to the standard

reports.
With this amountofflexibility, implementing the packageis
not a trivial task; it requires the user organisation to carry
out a significant amountof analysis to define the functions
needed, and the way in which they should work. The
implementors also need to have a good understanding of
the capabilities of the package. SAP therefore provides
consulting and training services to help its customers to
make the best use of the package.

FOUNDATION
tler Cox & Partners Limited 1989

37

Chapter 4 Procuring new software

be used by the packageusers to make changes
to the application. Cullinet also provides this
type of product, as does Hewlett-Packard,
whose Customizer can be usedin this way. Such
workbenches allow package users to switch
smoothly from operational to development
modeso that simple changes can be made to the
way in which the package operates.

SAP’s package is an example of the type offacilities that will increasingly be provided by
soft packages. Other packages provide less
flexibility, however, and this may mean that a
package that can meet an organisation’s
essential requirements may not fit in with itscurrent working methods. When evaluating apackage, Foundation members should thereforeconsider the possibility of adapting workingpractices to fit in with the package, rather thanvice versa. Doingthis is likely to meet resistancefrom users, but will be much easier to achieveif user departments have to pay directly fortheir useof IT facilities. One organisation thatrecently introduceda recharging system foundthat user departments were suddenly very keento reduce costs and to cooperate in adaptingtheir working practices to fit in with the mostcost-efficient application-software solution.
In selecting a package, either for core or non-core applications, care should be taken to ensurethat the product conforms with the chosen soft-ware infrastructure. Compatibility with otherinfrastructure componentsis just as importantas the ability to provide the basis for furtherdevelopments. During the research, we met aGerman manufacturing company that haddecided to install a wide-ranging production-control package covering a large part of itsbusiness operations. The company hadto writea large numberofbridging programsto interfacethe packageto its existing applications becausethe package did not interface fully with therelational database management system alreadyinstalled as part of the software infrastructure.A similar situation had arisen with otherpackages, with theresult that this company nowhas four different and incompatible infra-structures —a central mainframe environment,a distributed systems environment, and separateinfrastructures for warehouse systems andproduction control. Although it is clear thatmore than oneinfrastructure may be needed,this companyis finding it difficult and expensive
to manage four.

38

A package that is used for a core applicationmayitself become part of the software infra-structure. When Rumbelows (a UK electricalretail chain) decided to replace its 16-year-oldapplications that had become unmaintainable,it first looked to see if there were any packagesavailable that could meetits needs. Asa result,a credit-management package and a packageforautomating Rumbelows’ back-office proceduresnow form the basis for software infrastructuresfor the two halves of its business (credit andretail). The credit-management package hasenabled the credit function (now known asTrinity House Finance) to provide similarservices both for other parts of Rumbelows’parent group andforthird parties.

Responsibilities should beallocated for software
procurement
In a large organisation, it is unusual forallsoftwareto be developed or procured centrally,and an important prerequisite to developing asoftware strategy is to decide on the mostappropriate organisational level for makingvarious types of decisions about software. Forexample, manyorganisations need to considervariations in requirements between differentparts of their organisations, and variations inthe availability of products (and the quality ofsupport for them)in different countries. Busi-ness departments also now expectto be able tobuy softwarefor their own personal computers.The sametype of trend is evident for depart-mental minicomputers and even for mainframesoftware.

In addition, the management style of manyorganisations encourages the devolution tobusiness units of the responsibility for thesystems function and this means that somedecisions about software procurementwill bemade on a decentralised basis. It is thereforegenerally impractical for a single software-procurementpolicy to be imposed by a centralsystemsfunction on therest of the business. ACritical issue in developing a software strategy,therefore, is to decide which software-procure-mentdecisions should be made centrally, whichshould be left to local discretion, and whatrestrictions, if any, should be placed upon thelocal systems function.

OUNDATION

Butler Cox & Partners Limited 1989

Centralising all procurement decisions
can cause difficulties
If the businessitself is decentralised, resisting
the pressure to decentralise the systems
function can present major problems. In our
research, we interviewed systems staff from
both the parent company and a national com-
pany of a major European manufacturing group.
The business strategy for the group as a whole
was to become much more decentralised, giving
more autonomy both to national companies and
to individual business units. However, the
central systems department still maintained
complete control overall the major applications
software used throughout the group.

The central systemsstaff believed that major
benefits were gained by making all decisions
about software at the corporate level. The
systemsstaff from the national company were
not satisfied with this arrangement, however.
Their users, with their newly obtained autono-
mousresponsibility, were complaining bitterly
about the inadequacyof the standard corporate
software to meet their business needs, and the
slow response of the central department to
requests for changes. At the same time, the
corporate systemsstaff were complaining about
the numberof requests for changes and the lack
of support for standard applications. ‘‘We are
just the ‘piggy in the middle’ and there is not
much we can do about it’’, commented an
interviewee from the national systems function.

Sometimes, it is preferable to
decentralise software decisions

In contrast, a Dutch company, Wavin, has
adopted a novel approach to decentralising soft-
ware decisions. The corporate systems manager
wanted to achieve a degree of standardisation
for certain types of software, but without
alienating the national systems managers. He
achieved this by delegating corporate responsi-
bility for each of these types of software to an
individual national systems manager. Thus, one
manager was given the responsibility for in-
vestigating electronic mail products and for
defining corporate standards for electronic mail.

In deciding which software decisions should be
made centrally, and which should be devolved,
it is crucial to take into account the nature of

FOUNDATION
1ers Limited 1989

Chapter 4 Procuring new software

the organisation’s style. A spectrum of pos-
sibilities exists, from full control of the operating
companies by head office at one end,to full
decentralisation at the other. The organisation
of the systems department will itself take
accountof the organisation’s managementstyle,
ranging from fully centralised at one end of the
spectrum, to devolved, with only a vestigial
central function, at the other.
Figure 4.4 shows which types of software
decisions should be centralised and which
should be decentralised in systems departments
organised in each of four ways: centralised,
coordinating, guiding, and devolved. For sim-
plicity, the figure identifies four types of soft-
waredecision: those concerned with standards
and policies, those concerned with the software
infrastructure (including core applications),
those concerned with software procurement,
and those concerned with non-core applications.
(The concept of core and non-core applications
was explained in Chapter 2.)
Where the systems departmentis centralised,
all software decisions are taken centrally.
Whereit is devolved, all software decisions,
except those to do with standards and policies,

Figure 4.4 Decisions on software should be

centralised or decentralised, depending
on organisational style

Organisational style

Centralised Cc Cc Cc Cc

centralised
decentralised

39

Chapter 4 Procuring new software

should be taken at the operating-companylevel.
Betweenthese two extremes, decision-making
should be divided between the centre and the
operating-company level, as shown byFigure 4.4.
Wherethe responsibility for software procure-
mentis devolvedto thelocal level, there maystill be a need for some central control of theway in which the responsibility is discharged.
This might take the form of a checklist of items-
to be considered when a productis evaluated,
or the levelof financial return required to justifya departure from corporate guidelinesfor soft-
ware standards.

User departments should beencouraged to construct more
applications themselves
In the long term, user departments will there-fore be responsible for constructing the majorityof their non-core applications. Increasingly,youngerstaff in organisations will have receivedsometraining in computing during their formaleducationoras part of their technical training.As a consequence, user departments willbecome moreself-sufficient in their use of ITand in the construction of applications. In theshort to medium term, however, the systemsdepartmentwill continue to be responsible forconstructing many of the non-core applications.In particular, high-volume,online transaction-processing systems require specialist skills, andin manyareas, system-software products havenot yet reached the stage where users can (orwant to) use them.
Nevertheless, systems departments cannotignore the trend towards user departmentswanting, and being able, to take on moreresponsibility for constructing their own appli-cations. If they do ignore this trend, systemsdepartments will be perceived as constrainingbusiness developmentin the interests of pro-tecting their own roles. Software products,
whether application packages or lower-levelinfrastructure components, should therefore bechosen with this trend in mind. This means that
the chosen products should provide facilities
such as the ability to generate customised
reports, to add new transaction types, and to
define data and tables that allow the product
to be customised. Furthermore, the user

40

interfaceto thesefacilities should be simple andwell-documented, and shouldinsulate the userfrom the technical features and eccentricitiesof the operating system and other lower-levelinfrastructure components. If necessary, the
infrastructure should be extended to includeskeleton functions and application templatesthat business staff can use as the basis forconstructing applications. Figure 4.5 lists someexamples of applications that are particularlysuited to user development, given a suitable
software infrastructure.
The systems department can help to promotethe construction of applications by users bysecondingor transferring systemsstaff to userdepartments. In the long term, however,organi-sations should recognise that experience insystems analysis and applications constructionshould form part of graduate-training andmanagement-development programmes forbusiness staff. These areskills that will, in thefuture, be needed in most user departments,particularly whenthe software infrastructurehas developed to the point where users (whobest understand their own needs) no longerneed professional systemsstaff to construct themajority of their non-core applications.
The shift towards the construction of appli-cations by users should be encouraged todevelop in a gradual and controlled way. Ifsystems departmentsresist this trend,users willbe encouragedto ‘goit alone’ without adequateprofessional advice, standards, and controls.The systems department should thereforeprovide a consultancy service to help users

Figure 4.5 User departments can implementa varietyof applications

Sales and marketing systems (based on the customer/product database).
Managementinformation (extracted from corporatedatabases). :
Personnel management.

Project control.

Communication with the sales force.

Electronic data interchange

OUNDATION
Butler Cox & Partners L imited 1989

choose appropriate packages and construct their
applications. It should also set standards and
guidelines for the user community, and provide
a quality-assurance function whose role is to
assist users in conforming with the standards.

Many systemsstaff have a natural tendency to
believe that, because of their lack of pro-
fessional systemstraining, users are not capable
of designing, constructing, and documenting
software to the professional standards
demanded by the systems department. This
view is not borne out in practice by many ofthe
engineering and actuarial departments that
have been developing their own software for
manyyears. Whenproblems do occur, they are
more often caused by lack of standards and
guidelines thanby lack of ability. The needfor
specialists to set corporate standards is not a
new concept; indeed, in manyorganisations,
professional staff in one department set
standards that must be followed by other
departments. For example, in most organi-

Chapter 4 Procuring new software

sations, there are standards for handling cash,
keeping adequate financial records, talking to
the press, and so on. A professional accountant
or lawyer may well be needed to set these
standards, but professional training in the
particular discipline is not needed to follow
them.
In conclusion, systems departments must accept
as a fact of life that business staff will
increasingly have the skills, and the access to
the tools that they need to construct more of
their own applications. Systems departments
should therefore start planning for and
encouraging user involvement in software
selection and construction. Thefirst step is to
ensure that the organisation has an appropriate
software infrastructure that is backed up by
professional standardsfor using it to construct
new applications. This will ensure that the user
community adopts good practices and does not
repeat the mistakes made by the systems
community during the past 20 or 30 years.

Report conclusion
In this report, we have shown that software
strategy should be directed at achieving busi-
ness goals, not at achieving technology-related
goals specific to the systems department. As
computer applications become more firmly
embedded in the day-to-day operations of
the business, it becomes more and more
important to be able to adapt the software to
reflect changes in the business environment
and in business strategy. A software infra-
structure is needed to enable systems to be
adapted more quickly in response to new
business needs.

Developments in software products have
enabled more and more software functions to
be included within a software infrastructure
that forms the basis for constructing new
applications. This, in turn, has reinforced the
trend to devolving the responsibility for con-
structing applications to user departments, so
that, in the future, the main applications-soft-
ware role of the systems function will be to
define and support the softwareinfrastructure.

The standards will ensure that different
applications use the same style of userinterface,

so that business users can move from one
department to another and immediately feel
comfortable with the applications used by the
new department. At a different level, the
standardswill allow developmentstaff to move
freely between different development environ-
ments, providing greaterflexibility in the use
of this scarce resource. The need for standardi-
sation arises particularly in those organisations
that use different computerarchitectures, and
in those that need to communicate with the
outside world. Progress has been slow in
developing open standards (although Unix-
based developments are now showing great
promise), and IBM’s SAAwill not provideall the
answers. We have provided guidance on how
Foundation memberscan identify and select the
appropriate subset of those standardsthat are
likely to succeedinthe IT industry in general,
or in their own industry.
The trend towards soft packages has meant that
in many areas where, in the past, bespoke
software would have been developed, a package
is now the most cost-effective option. Formal
evaluation of options for new developments
should be carried out. Similarly, a formal

Chapter 4 Procuring new software

method is needed to determine the point at
which ageing systems should be replaced.
We havestressed the need to focus software
decisions on business needs and benefits. This
has been said many times before, but few
systems departments have embraced this idea
fully, tending instead to concentrate on the
technical issues. Unlessthis situation changes,
user departments will increasingly take the

42

initiative by developing their own systems
without regard for the information needsof the
organisation as a whole. By developinga stableand consistent software infrastructure, thesystems department can retain control over
those softwareassets that rightfully belong tothe organisation as a whole, while allowing usersthe freedom they need to construct and manage
their own applications.

X FOUNDATION
© Butler Cox & Partners Limited 1989

Butler Cox
Butler Cox is an independent management consul-
tancy and research organisation, specialising in the
application of information technology within com-
merce, government, and industry. The company
offers a wide range of services both to suppliers and
usersof this technology. The Butler Cox Foundation
isa service operated by Butler Cox on behalf of sub-
scribing members.
Objectives of the Foundation
The Butler Cox Foundationsets out to study on behalf
of subscribing members the opportunities and possible
threats arising from developments in the field of
information systems.
The Foundation not only provides access to an
extensive and coherent programme of continuous
research, it also provides an opportunity for
widespread exchange of experience and views
between its members.
Membership of the Foundation
The majority of organisations participating in the
Butler Cox Foundationare large organisations seeking
to exploit to the full the most recent developments in
information systems technology. An important
minority of the membership is formed by suppliers
of the technology. The membershipis international,
with participants from Australia, Belgium, France,
Germany, Italy, the Netherlands, Sweden, Switzer-
land, the United Kingdom, and elsewhere.
The Foundation research programme
The research programmeis plannedjointly by Butler
Cox and by the memberorganisations. Half of the
research topics are selectedby Butler Cox and halfby
preferences expressed by the membership. Each year
ashortlist of topicsis circulated for consideration by
the members. Memberorganisations rank the topics
accordingto their own requirementsandas a result
of this process, members’ preferences are determined.

Before each research projectstarts there is a further
opportunity for membersto influence the direction of
the research. A detailed description of the project
defining its scope and the issues to be addressedis sent
to all members for comment.

The report series
The Foundation publishessix reports each year. The
reports are intended to be read primarilyby senior and
middle managers who are concerned with the
planning of information systems. Theyare, however,
written ina style that makes them suitable to be read
both by line managers and functional managers. The
reports concentrate on defining key management
issues and on offering advice andguidance onhow and
when to addressthose issues.

FOUNDATION
rtners Limited 1989

 © Butler Cox &

 FOUNDATION
Selected reports
8 Project Management

20 The Interface Between People and Equipment
24 Investment in Systems
25 System Development Methods
27 Developments in Videotex
28 User Experience with Data Networks
29 Implementing Office Systems
30 End-User Computing
31 A Director’s Guide to Information Technology
32 Data Management
33 Managing Operational Computer Services
34 Strategic Systems Planning
35 Multifunction Equipment
36 Cost-effective Systems Development and Maintenance
37 Expert Systems
38 Selecting Local Network Facilities
39 Trendsin Information Technology
40 Presenting Information to Managers
41 Managing the Human Aspects of Change
42 Value Added Network Services
43 Managing the Microcomputerin Business
44 Office Systems: Applications and Organisational Impact
45 Building Quality Systems
46 Network Architectures for Interconnecting Systems
47 The Effective Use of System Building Tools
48 Measuring the Performanceof the Information Systems

Function
49 Developing and Implementing a Systems Strategy
50 Unlocking the Corporate Data Resource
51 Threats to Computer Systems
52 Organising the Systems Department
53 Using Information Technology to Improve Decision

Making
54 Integrated Networks
55 Planning the Corporate Data Centre
56 The Impact of Information Technology on Corporate

Organisation Structure
57 Using System Development Methods
58 Senior Management IT Education
59 Electronic Data Interchange
60 Expert Systems in Business
61 Competitive-Edge Applications: Myths and Reality
62 Communications Infrastructure for Buildings
63 The Future of the Personal Workstation
64 Managing the Evolution of Corporate Databases
65 Network Management
66 Marketing the Systems Department
67 Computer-Aided Software Engineering (CASE)
68 Mobile Communications

Forthcoming reports
Electronic Document Management
Staffing the Systems Function
Managing Multivendor Systems
Future Information Technologies

Availability of reports
Members of the Butler Cox Foundation receive three
copies of each report upon publication; additional
copies and copies of earlier reports may be purchased
by members from Butler Cox.

ButlerCox & Partners Limited

Butler Cox House, 12 Bloomsbury Square,
London WCLA 2LL, England

@(01)831 0101, Telex 8813717 BUTCOXG
Fax (01)831 6250

SEURELkad
PET Teetdh

Burg Hogguerstraat 791,
1064 EB Amsterdam, the Netherlands
(020) 139955, Fax (020) 131157

OT
Butler Cox SARL

VDTAccesemTCL)ook Orear
93204 St Denis-Cédex 1, France

@(1)48.20.61.64, Télécopieur(1) 48.20.72.58
Germany(FR)

Butler CoxGmbH
Richard-Wagner-Str, 13, 8000 Mainchen2, West Germany

@(089) 523.4001, Fax (089) 52335 15

United States ofAmerica
Butler Cox Ine,

150 East 58th Street, New York, NY 10155, USA
@(212) 891 818s

Austratia andNewZealand
AORROOog

Butler Cox Foundation
3rd Floor, 275 GeorgeStreet, Sydney 2000, Australia@(02) 236 6161, Fax (02) 2366199

oe
MereOkeBOTTrth 10170 Helsinki, Finland

@(0)135 1533, Fax (90) 135 1091

Ura
SD Consulting

72 Merrion Square, Dublin 2, Ireland
@(01) 766088 762501, Telex 31077 El,

Fax (01) 767945

tT]
RSO Futura Sri

Via Leopardi 1, 20123 Milano,ItalypaeShababint)
The NordicRegion
BESOmetiy

Stora Varvegatan 1, 21120 Malmo, Sweden‘@(O40) 103040, Telex 12754 SINTABS

tig
Associated Management Consultants Spain SARosalia de Castro, 84-2°D, 28035 Madrid, Spain

boreat

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49

