Report Series Trends in Database
Nol?2 Management oystems

June 1979

I The Butler Cox Foundation j

Abstract

Report Series Trends in Database
Nol?2 Management Systems

by David Flint
une 1979

Trends in business data processing such as increasing user requirements and the convergence of
technologies require the integration of data processing systems. Integration may be between
operational and management information systems as well as across applications areas.

Integration requires a new approach to data processing — the database approach. Data must be
seen as a corporate resource that should be understood and managed in its own right. Database
technology is already used successfully by many businesses but it is most effective when used
to support the database approach.

This report discusses the concepts underlying database management systems and explains their
significance and likely impact on data management. The report also examines relevant trends
in hardware and software and discusses the changing market in data management products.

Networking and standards are also discussed insofar as they relate to data management.

The report concludes that the market is a rapidly evolving one and that it offers important
opportunities for the management services department to improve the service provided to the
enterprise. The report recommends the steps that management services should take to exploit
these opportunities.

The Butler Cox Foundation is a research group which examines major
developments in its field — computers, telecommunications, and office
automation — on behalf of subscribing members. It provides a set of
‘eyes and ears’ on the world for the systems departments of some of
Europe’s largest concerns.

The Foundation collects its information in Eu rope and the US, where it
has offices through its associated company. It transmits its findings to
members in three main ways:

— As regular written reports, giving detailed findings and sub-
stantiating evidence.

— Through management conferences, stressing the policy impli-
cations of the subjects studied for management services
-directors and their senior colleagues. :

— Through professional and technical seminars, where the
members’ own specialist managers and technicians can meet
with the Foundation research teams to review their findings in
depth.

The Foundation is controlled by a Management Board upon which the
members are represented. [ts responsibilities include the selection of
topics for research, and approval of the Foundation’s annual report and
accounts, showing how the subscribed research funds have been
employed.

Abstract

Report Series Trends in Database
Nol? Management Systems

by David Flint
June 1979

Trends in business data processing such as increasing user requirements and the convergence of
technologies require the integration of data processing systems. Integration may be between
operational and management information systems as well as across applications areas.

Integration requires a new approach to data processing — the database approach. Data must be
seen as a corporate resource that should be understood and managed in its own right. Database
technology is already used successfully by many businesses but it is most effective when used
to support the database approach.

This report discusses the concepts underlying database management systems and explains their
significance and likely impact on data management. The report also examines relevant trends
in hardware and software and discusses the changing market in data management products.

Networking and standards are also discussed insofar as they relate to data management,

The report concludes. that the market is a rapidly evolving one and that it offers important
opportunities for the management services department to improve the service provided to the
enterprise, The report recommends the steps that management services should take to exploit
these opportunities.

The Butler Cox Foundation is a research group which examines major
developments in its field — computers, telecommunications, and office
automation — on behalf of subscribing members. It provides a set of
‘eyes and ears’ on the world for the systems departments of some of
Europe’s largest concerns.

The Foundation collects its information in Europe and the US, where it
has offices through its associated company. It transmits its findings to
members in three main ways:

— As regular written reports, giving detailed findings and sub-
stantiating evidence. '

— Through management conferences, stressing the policy impli-
cations of the subjects studied for management services
directors and their senior colleagues. :

— Through professional and technical seminars, where the
members’ own specialist managers and technicians can meet
with the Foundation research teams to review their findings in
depth.

The Foundation is controlled by a Management Board upon which the
members are represented. lts responsibilities include the selection of
topics for research, and approval of the Foundation’s annual report and
accounts, showing how the subscribed research funds have been
employed.

Report Series No.12

TRENDS IN DATABASE MANAGEMENT SYSTEMS

by David Flint

June 1979

Butier Cox & Partners Limited Morley House 26 Holborn Viaduct London EC1A 2BP

This document is copyright. No part of it may be reproduced in any form without permission in writing.
Butler Cox & Partners Limited

| INTRODUCTION | . oo e il e 1
A 'The Purpose of this Report cwny sae st e e s S 1
B The Scope:of the SUBIEGCE .t vl o ate w b b ramma Sty Bl e 15 B0 2
Il THE PRESENT SITUATION IN DATA MANAGEMENT00intvennnnnnns 3
A The Experience of Users of Database Management Systems 3
R) A ase PO e S T e mpa o e) et e EB 6
CE B atabiase ADRHCAKIONS & i i et = o e e o = s s G R e e e e s o 7
11 THE COMPONENTS OF A DATABASE ENVIRONMENTconvivvrerrnns 8
A Organisational COMPONENTS v viaiiale s ss s st o os 9h o e o b o ks 8
B Hardware and Software Componentsc.cvcermnn e enrnneeneenneenns 10
IV IMPORTANT CONCEPTS IN DATA MANAGEMENTcciiiinnnnnnnnn 11
A IDatandepentience .t Lo suedhr s I v el e s el e S BT e 11
BEDataillodels o ot s e e e e e e 16
@ BETEATF T r0 o o et P o e o1 o) o) i) SR e e i e e e e e 21
D Database Inteqrity: - - oconic o Sl i e honl ah st w bt e s 5w s e e 23
ESSEAutomatic Desion-andiTuning, « « = v s sfvaiis ¢ 05 5 5 Smiie i o8l s < o g o ez 25
V. RELEVANT TRENDS INHABDWARE . . comicn o nniiams i oas » n e aiugu iaiaa 28
A TheCostofProcessorsand Memory-cccucciimmnnnnssncnsaannnanns 28
B Associative MOMOTIBS . civiv - vs sa v r caiubal g & & &s s lavessals & o & & & 8 50 muieies 31
C Novel Database Processorsccciucuuencnassnnnssnasansssns 32
VI DENVELOPMENTSAINSOETWARE = - oi s 0 i s s sivsimsre 002 = & & 2 i sieiemereny 34
D atabace N AragerSs Tl o o s . i e s beibetiriim &5 6 A AT AR & e R e 34
Bl Data Dictionariesand/Design ATds: o.ccviic « s ts vl e i ey et 38
G "Ouery LanguUages : -:.oc i s snieieieaies b i sieea W iats i mee y tn ela te e sl 40
D SystemBuildingToolscccocvicernnnnecinncssarsnmsnimanys 44
E Performance Monitoringand Tuningc.cecciiieireeannenccannan 46
Vil BATABASE AND NETWOBKING ' .- couleon it vivs sl Ul e Wi et il e o 49
A - Remote Accass t0/Data . ;. uiciviiu i o b v oaial s it iete = W n e e e e i 49
B On-Line Interrogation and Problem Solvingo ity 50

TABLE OF CONTENTS

IR crribtediD o rabase Tl N e L e s e L e e 52

B I D S N S AN D AR DS - L e L e o s mia oo n o oginia s = i
A An American Standard for Database Management Services
L e N
C The Implications of the Database Management Services Standard

IX FINDINGS AND RECOMMENDATIONS . ..o vvteeeee e e e eee e e
SRR PR =, L e eh T e s Sl (e P EL e g R
B S ROCODTBIURBONG -« . - & iaic 5t bs £ s 5 moniin = o n o s o eomimtars < 9ol & 8 b
T U T e R S T S e

APPENDIX A LIST OF DATA MANAGEMENT PRODUCTS
MENTIONED INTHE TEXT -« ccctimmmneeen v onsonns s

SELECTED BIBLIOGRAPHY\t e e e e

I. INTRODUCTION

Most large organisations have now implemented a range of computer-based systems which
assist the business at an operational level. The applications of order processing, sales ledger
and bill of materials are common examples. Such organisations are now seeing new oppor-
tunities to exploit computers to produce benefits for the organisation. Many of these oppor-
tunities depend upon the integration of information from different systems that up to now

have been quite separate. The opportunities encompass systems at an operational level and
also systems that provide support for managers.

Integration is often achieved by giving several applications systems access to a single, unified
database. Often, this database will be maintained by a database management system (DBMS).
DBMS are now used extensively. They are estimated to be in use in well over 5,000 installations
worldwide, and they are being used successfully. A survey conducted by the Foundation whilst
this report was being prepared illustrated this quite conclusively.

The main results of this survey are reported in section |1.A. Despite the satisfactory experience
of DBMS users, however, management services managers remain confused and apprehensive.

This is not surprising. New approaches to data management — for example, the relational
approach (discussed later) — are receiving publicity. In addition, the development of databases
to date has reinforced the trend towards centralisation and so it is not clear how DBMS should
be combined with the more recent trend towards distributed processing.

The relationship between DBMS and the search for new system development methods is also
not obvious.

Despite these difficulties there is a clear need for an integrated approach to corporate data and
for a DBMS to support this approach. The reasons for this are reviewed briefly in section I1.C.

A The Purpose of This Report

The report, having identified the need for DBMS and having shown that experience so far has
been good, concentrates on the future trends in the field.

The main purposes of the report are:

1. To explain the concepts that are basic to effective data management. Understanding these
concepts is necessary if the significance of future development is to be appreciated. These
concepts are discussed in sections |11 and 1V.

2. To explain the expécted trends in hardware, software and computer networking which
we believe to be relevant to DBMS in the next five years. These trends are explained in
sections V, VI and VI, respectively.

3. To consider the prospects for standardisation and the implications for management services
management. This is the subject of section VIII.

4. To explain the principal findings of our research and to provide management services
management with advice based upon our findings.

The report does not address the subject of the functional integration of data management and
office systems. Nor does it consider in detail the interaction between DBMS and distribued
processing.

B The Scope of the Subject

Database management is concerned with the effective management of the information
acquired by, and generated within, an organisation. It is a wider issue than the selection
and use of either a software or a hardware product. |t embraces the following concepts:

— Data as a corporate resource.
— Data administration as a function independent of particular project teams.

— The provision and use of tools in order to implement the concept (although the use
of a DBMS is not essential to the database approach).

— The revision of systems analysis technigues to embrace the analysis of data.

When we discuss the characteristics of DBMS products in this report we often quote particular
products as examples. We have done this either to enable us to be specific or to establish that
some capability is within the state of the art. Since this report is not intended as a buyer’s
guide to DBMS we have not attempted to list all the products that show each characteristic.
Some of the products will almost certainly be unfamiliar to some readers and so we have listed
all the products mentioned, together with their suppliers, in the appendix.

Il. THE PRESENT SITUATION IN DATA MANAGEMENT

A The Experience of Users of Database Management Systems

As a first step towards understanding the current position, we surveyed DBMS last year in
order to tap the informed opinion of those managers who have experience with databases.
We have published the results separately as ‘“The Experience of Users of Database Management
Systems”’. ‘

One hundred users replied. They represented enterprises from a wide variety of business
sectors in both the public and the private sectors both in the UK and continental Europe.
Between them they have had over two hundred years of database experience and they have
implemented systems in a wide range of applications.

Respondents were asked why they had adopted a DBMS and the reasons they gave, as shown
in figure 1, showed that the needs to increase productivity and to improve service to users were

Figure 1 Expectations of Users

You must have had reasons for adopting a DBMS at all. Please read the list of possible benefits and grade
them according to the influence they had on your original decision.

Number of Users reporting an influence that was:

Very Strong
Strong
Weak
Negligible
No Answer
Reduced programming effort in development 17/45|127| 8| 3
Reduced programming effort in maintenance 31(36(24| 7|2
Reduced data duplication 29(35(19 (13| 4
Better data consistency 27|46 (13 3
Faster response to new user requirements 28151115 3

All the suggested benefits were felt to be important by most respondents and no one benefit was of
overwhelming importance. The number of respondents reporting reduced programming effort in
development as a very strong influence was significantly less than that for the other items.

factors that had influenced their choice of a particular DBMS. Their answers, shown in f_igure
2, confirmed the conclusion reached above. The small number of respondents who mentioned
cost suggests that improving service to users was the major motive in the database decision.

Figure 2 DBMS Selection

Which factors most influenced your choice in favour of the DBMS you actually chose? Pick just three from
the list below.

Number of Users 10‘ 20’ 30‘ 40‘ 50‘ 60} 70‘ 80(90‘ 100
Ease of use anticipated b4

Opinion of own 52

technical staff

Quality of anticipated 37

after-sales service

References from 35

other users

Quality of vendor’s 25

technical staff

Cost 20| |

Quality of vendor’s 8

sales staff

Other factors 4 T

The ‘other factors’ included 15 reasons why the user had no choice of DBMS and a wide variety of virtues
ascribed to the DBMS, eg efficiency, reliability, ease of use.

Respondents were asked to comment also on their general experience of database and on their
experience against their expectations. The results are shown in figures 3 and 4 respectively.
The fact that 90% of respondents were at least pleased with their experience is a considerable
vote of confidence in DBMS and one that we had not expected. In some ways, however, the
muted nature of the six negative reactions is just as significant. This general result is confirmed
by the comparison of experience with expectations in figure 4. The preponderance of ‘better’
reports is striking as is the small number of ‘worse’ reports. Further analysis has shown that
all the ‘much worse’ and many of the ‘worse’ reports referred to benefits that the respondents
had not thought to be important when they were choosing the DBMS. Thus, managers had
unrealistically optimistic views only on points that were of limited significance.

Because only around 110 users responded the results of the survey must be treated with
caution. Nonetheless the very clear results and the general consistency of those results with
the results of other research allow two major conclusions to be drawn from them:

1. The use of database management systems has been a success. All the products on which we
received reports (except some older and more limited offerings) are well regarded by their
users, and brand loyalty is high.

2. Most users had expected to achieve significant benefits from their DBMS and most had
achieved even greater benefits than they had originally expected. The benefits achieved
included: reduced programming effort through greater ease of use, less duplication of
data, greater consistency of data, and faster response to new user requirements.

Figure 3 User Satisfaction

How do you feel about your experience with your DBMS?

Number of Users Cumulative Number

10‘ 20‘ 30’ 40‘ 50‘ eo\ 70‘ sol Qor 100

Delighted 5! R 5
Very Pleased 37 e 42
Quite Pleased 48 A e | 90
Rather Unhappy 6 = 96
Very Unhappy 0 96
Utterly Miserable 0 96
No Answer 4 77 |100
Total 100

Figure 4 Users’ Experiences

What benefits have you actually achieved? Please read the list of benefits and grade them according to the
degree of improvement or deterioration you have witnessed.

Number of Users claiming a benefit

Much Better than expected
Better than expected
Worse than expected
Benefit Much Worse than expected
No Answer
Reduced programming effort in development 18|44 |16 | 1 |22
Reduced programming effort in maintenance 13|43| 9| 1 |34
Reduced data duplication 18|67| 3| 0 |22
Better data consistency 18|64| 1| 0 |27
Faster response to new user requirements) 171381171 1 127

B Database Products

The first DBMSs were embedded in systems for specific application areas. In the late sixties,
with the release of IMS, IDS, and so on, DBMSs emerged as products in their own right.

During the seventies the vendors have increased the power and useability of their products by:
— Providing support for extra file access methods.
— Adding extra sophistication in describing data structures.

— Providing either data communication features, or an interface to a TP monitor, or both,

to support on-line operation.

— Improving reliability.

Figure 5 Data Management and Allied Products

Vendor Database Query Report DMI(s) 1| Data
Manager Language Generator Dictionary

and Design
Aids

ADABAS ADABAS ADASCRIPT | ADAWRITER| ADAMINT DD

Natural ADACOM

Cullinane IDMS oLQ CULPRIT DML - IDD

IBM (370) IMS IQF GIS DL/1 DD, DBDA

TANDEM "ENSCRIBE ENFORM CALLs 2

DATA
ICL (2900) IDMS DISPLAY no DML DDS
CINCOM TS T—ASK SOCRATES |CALLs DD
TOTAL

Informatics MARK 1V MARK IV

Hewlett- IMAGE QUERY CALLs

Packard [

(3000) !

Honeywell IDS |1 QRP PLP ' DML DD

(Level 66 ;

and below)]

Honeywell MRDS LINUS CALLs DD

(Level 68)

1 DMI — Codasyl data manipulatic language

2 CALLS— Procedure calls, no special features in the language

3 DD -

Data Dictionary

The main DBMSs are thus now limited more by the quality of their basic concepts than by any
deficiencies in their implementation.

Some well-known current DBMSs are:

— |IMS. This is IBM’'s leading database product. It is based on hierarchies of records cross-
linked by pointers.

— Total. This is supplied by an independent software firm, Cincom, and is probably
the world’s biggest selling DBMS. It is based on a two-level hierarchy. Total is avail-
able on a wide variety of computers including several minicomputers.

— |IDS. This is supplied by Honeywell for both their mainframes and their Level 6 minis.
It is based on the network data structures of the Codasy! report.

- Ram!s. This is supplied by Mathematica for IBM 370 and compatible machines. It
provides both data management (which is discussed later) and utilities for data retrieval
and maintenance.

The seventies have also seen a considerable extension in the range of data management
products. The offerings of some major suppliers are shown in figure 5. Figure 5 lists not only
database managers, which are the heart of the DBMS, but also a number of other supporting
routines. These are all important elements of a DBMS, and we discuss their respective roles
later in this report.

C Database Applications

Our survey showed that databases are used in a wide variety of applications, including payroll,
engineering, finance, order processing and distribution. In many cases, however, the systems
are integrated to only a limited extent with the other systems in an enterprise.

A general trend towards the integration of systems across departmental and functional bound-
aries can be observed in systems development. This starts with the grouping of single functions
into applications systems, a process that is normally achieved using conventional technigues.
It continues with the planning of ‘families’ of related applications, a process that requires the
resolution of various anomalies in the representation and definition of data items. A DBMS
may be introduced at this stage, and a fair proportion of major enterprises have now reached
this stage. Beyond this, there is the possibility of a system that meets the complete infor-
mation needs of the business. Few companies have so far attempted this since it certainly
requires a DBMS and it also involves high costs and significant risks.

A second trend runs in parallel with the first. It is the increasing significance of management
information, rather than operational data processing, as an objective of systems development.
In the past, management information systems have often been limited and have been quite
separate from operational systems. Management'’s needs for accurate, timely, and consistent
information are fuelling the development of systems in which routine processing and manage-
ment information are combined.

Database contributes to the development of combined systems by providing the raw data from
which management reports must be constructed in a clean and weil defined form which is free
of the presuppositions of particular processing.

Major trends in the development of data processing now clearly point towards the adoption of
the database approach to systems development.

I1l. THE COMPONENTS OF A DATABASE ENVIRONMENT

A Organisational Components

The complex, and usually unfamiliar, nature of data management software will usually require
some specialisation amongst those programmers who provide technical support for software.
Because one database will typically support a number of application systems the differing
requirements of these systems must be reconciled in a single database design. It is now usual
to meet these requirements by appointing a database administrator (DBA) within the data
processing department who has the following functions:

— Providing technical support for the database, the DBMS, and the data dictionary.
— Monitoring changes in database technology.

— Evaluating and selecting software.

— Choosing the file sizes, placement and access method to support the database.

— Defining procedures for the physical security of the database.

— Consulting on database design and the development of standards.

— Loading, reorganising, and restructuring the database.

There will normally be only one DBA or one DBA team in a company, though where a com-
pany has a federal structure there may be one in each constituent company.

In a large enterprise a variety of ways may exist of coding and describing the products,
customers, etc. with which the enterprise is concerned. To contain the problems which this
causes (and these problems are especially obvious if systems are to be integrated through a
database) there is often a data standardisation function. Since this function runs across line
departments, but is not directly concerned with computing, it will often be located in a non-
DP part of the management services department.

In constructing a database or, indeed, in linking application systems by the transfer of files,
various incompatibilities of data definition, accuracy, currency, and format are likely to be
encountered.

Sometimes these incompatibilities can be avoided by standardisation prior to the adoption of
a database or they may be resolved by purely technical means during the construction of the
database. In other cases, the departments for whom the systems are being provided may be
unwilling to accept such a resolution and then it will be necessary for someone at a senior level
in the company to break the deadlock. This function, which may or may not be a separate
post in the corporate hierarchy, is called data administration.

Data administration is, like data standardisation, not basically a DP function, and so it may be

8

combined with data standardisation. It will often be the task of the data administrator’s staff
to maintain records of both the occurrence and the usage of data items in the business. Such
records may cover non-database and, indeed, non-DP systems, and they will often be held in

a computerised data dictionary.

Figure 6 DBMS Components (schematic)

Data Administrator

Conceptual
Schema

Storage
Schema

= > Database
Utilities

Database Administrator
A
|

[}
Storage
Schema

i
Conceptual
Schema

[}

External
Schema

Database Manager

siawwelbolg uoliealjddy

B Hardware and Software Components

At present, databases are usually held on standard disc units, attached to a general-purpose
computer, though drums and main store also find application.

In the future, mass stores and specialised file controllers are likely to come into use. There may
also be data processors whose only function is to support the database. These possibilities are
discussed further in section V.B.

The key software component is the database manager. This program maintains the integrity
of the database, records transactions, translates user requirements for access into physical
transfers and data shuffling, and enforces the security rules, etc. The place of the database
manager within the DBMS is shown in figure 6.

Beyond this there are a variety of other data management programs of which the principal
ones are:

— Data Dictionary, which is used to record the occurrence and the user of data.
— Query languages, which are used to give end-users direct access to their data.

— Report-generators, which are used for the rapid preparation of reports, the reports
usually being printed.

— System building tools, which are used for the rapid development of application
systems.

These components are discussed further in section VI.B.
Database systems are commonly also on-line systems. They, therefore, involve screen managers,

TP monitors, telecommunications access software, terminal controllers, etc. Some of their
implications for database management are explained in section VII.

10

IV. IMPORTANT CONCEPTS IN DATA MANAGEMENT

In conventional application systems data management is a fully integrated part of the appli-
cation program. Data is described in the program, and anyone who wishes to access it must
find a description and then transcribe that description into his own program. DBMS grew out
of realisation that there must be better ways of doing this. Modern DBMSs find their origins
in three parallel lines of development as discussed in the following paragraphs.

In the first line of development it was realised (in the mid-sixties) that a great deal of common-
ality existed between the data management needs of different applications. To take advantage
of this factor the description of the data was separated from the applications that processed it,
and the necessary links were made by a new system component — the DBMS. The emphasis
with this approach was on providing a separate description for existing data structures. (This is
why hierarchies are so important in IMS, because hierarchies already existed in conventional
filing systems). One important consequence of describing the data separately was that it could
then be accessed by non-procedural query facilities such as IBM’s Generalised Information
System and Informatics Mark 1V.

The second line of development came from the desire to find better ways of storing the data.
Systems in this line include Adabas, which separates indexes from prime data and stores the
latter in a compressed form.

The third line of development was the desire to describe data in itself, rather than in its stored

form. This line has given us the Codasyl proposals, the relational approach, and the entity data
model.

This variety of origins partly explains the complex and the conflicting terminology that
obstructs the understanding of database technology. An equally potent source of confusion
is the DBMS vendors’ insistence that their products involve new and unparalleled discoveries.
A third source is the variety of data models (a term explained on page 16) on which the various
products are based.

A Data Independence

In early DBMSs, and in some current systems too, each data item, record, etc. is described only
once, and the collection of the descriptions is known as a ‘schema’. The schema must hold
everything there is to be known about the data item, including its location, the access method,
its logical relationship to other data, etc. It follows that all those who either use or support the
DBMS will have the same view of the data (this situation is shown as part A of figure 7). In
fact, however, the requirements of the different people involved are rather different. It is, for
instance, undesirable to give the application programmer access to data that he does not need.

The original Codasyl proposals therefore contained a schema for the database administrator to
use and a separate ‘subschema’ for each distinct user.

A Codasy! subschema describes the data that is needed for a particular program or suite of

11

programs. It is a subset of the schema and both a schema and a subschema are shown in part
B of figure 7. This concept may be called ‘logical data independence’.

Figure 7 DBMS Architectures

A) Early DBMS pBa
Systems Applications
Programmer Programmer
B) CODASYL 1973
DBA ,
Applications
Suhacherms Programmer 1
Systems
Programmer

Applications
Programmer 2

C) ANSI/SPARC

External
Administrator

Internal
Schema

DBA External

Applications
Schema

Programmer(s)

Conceptual
Schema

Internal

£i2 Schema

External

Schema Useriz)

D) BCS/DDSWP Data
Administrator

Conceptual
Schema

Storage
Schema 1

DBA

External

Schema Useris)

Storage
Schema 2

DBA

External

Applications
Schema

Programmer(s)

12

The Standards Planning and Reguirements Committee of the American National Standards
Institute (ANSI/SPARC) after considering what aspects of DBMSs were suitable for standard-
isation, argued that the physical properties of the data should be stored in a third schema
which they proposed to call the internal schema (as shown in part C of figure 7). (They wished
to rename the other schemas also). This concept is called ‘physical data independence’.

The existence of two internal schemas for a single conceptual schema shows that several

different arrangements of computer storage and access methods may correspond to a single
logical view of the data.

In most database design methodologies there is a conceptual design, a model of the finished
database, long before the DBMS schemas are written, and this is widely called the conceptual
data model. The Data Dictionary Systems Working Party of the British Computer Society
(BCS/DDSWP) has proposed that this should be held on the computer either in the data
dictionary or otherwise. This situation is shown in part D of figure 7, although neither the
figure nor the terminology is exactly that used by the DDSWP.

The crucial feature of data independence is the fact that the user does not need to know things
that are irrelevant to his task. Logical data independence frees both the user and the pro-
grammer from any need to know about the overall structure of the database. It follows that
applications programs need not be changed when the overall structure changes (for example,

following the expansion of the database to include a new application area which overlaps with
the previous one, as shown in figure 8).

A variety of data independence is possible, and some of the more important ones are shown in
figure 9 in approximate ascending order of difficulty.

Each of these types can be achieved, and most of them have been implemented, at least on an
experimental system. Data independence is most useful to the casual user, but in applications

programming, efficiency and clarity may be obtained by taking account of the actual storage
structures.

Physical data independence offers the following benefits:

— Improved performance, because the database administrator may vary the physical
storage without affecting the data in the views of either the data administrator, the
programmer or the end user. Possible changes include blocking factors, device types,
hashing algorithms, and physical location.

— Reduced maintenance, because the hardware and the file organisations that are used
for storage may be changed without requiring changes to be made to the programs.

— Easier access by end users, because their views of the data will change less often.

Most DBMSs provide reasonable physical data independence at the lower levels. But they
either reveal details of the implementation or depend on logical constructs, such as Codasyl
sets, which have, in practice, only one available implementation (in this case, pointer chains).
Almost all available DBMSs require all the data to be physically present at one computer
centre, and the range of devices supported may be limited (for example, ICL’s IDMS does not
support their innovative Content Addressable Filestore (CAFS) — which is described in section
V.B).

Logical data independence overlays physical data independence, and physical data dependencies
will usually appear in both the user’s and the programmer’s views of data as well. Logical data
independence (the independence of the global and the user’s views of the database) offers the
following benefits:

13

Figure 8 Data Dependence/Data Independence

Data Dependence

E

=] 1
S
* Processing O Conceptual ® Physical
Change Structure Change Storage Change
Al Data Data
Applications Administration Storage

Change
Data

Anuter

=

Data Independence

Program
Maintenance

4

4

Restructuring

O

N

L 0Q

Reorganisation

14

Figure 9 Types of Data Independence

Type of Data Independence

Defined by the things the
user need not know

Device Independence

File Organisation Independence

File Type Independence

Element Order Independence

Element Format Independence

Access Path Independence

Location Independence

Structure Independence

Language Independence

The type(s) of storage
device in use.

The organisation of the
physical file, e.g. block size,

The logical organisation of the
file, e.g. indexed sequential.

The order of elements within
the stored record.

Whether numbers are stored
in binary, display, packed
decimal; whether strings are
stored compressed, etc.

Which data elements are keys and
which sort of record the data is in.

The physical location of the data,

The relationships between the
various data.

The programming or query language
for which the data was defined.

— Reduced maintenance, because data structure changes will not require recompilation of
programs nor will program changes require restructuring of the database (providing
that the required data is available somewhere).

— Faster development of new systems, because old applications will not be affected.

— Easier implementation of applications and complex queries, because the programmer
can be given a view of the data that suits his thinking and programming language.

At present most DBMSs provide only limited logical data independence. For example, the
IDMS subschema is compatible only with COBOL, and it can contain no sets that are not in
the schema. The IMS programmer, to take another example, finds that aspects of the physical
implementation limit his manipulations. In some cases, users have provided extra data inde-

pendence of their own, for example:

15

— Hoskyns Manufacturing Applications Systems (MAS) are written in terms qf a virtual
database, which is mapped onto the actual database by an access module (five DBMSs
are supported).

— Some Total users do not access Total directly, but access it only through software of
their own that provides easier and cleaner access.

The following examples illustrate that vendors are moving in the same direction.
— IBM have recently released IMPS, which provides a relational view of an IMS database.

— Cincom’s new Total Information System (TIS) provides user and programmer inter-
faces that are independent of the underlying DBMS, which thus need not be Total
Cincom’s own DBMS.

Despite its apparent complexity, data independence is a crucial concept in database manage-
ment, and vendors are extending their products to provide more of it. All data processing staff
who work with DBMSs need to understand this concept.

B Data Models

The term ‘data model’ is normally used to mean a description of the data relevant to one
particular applications system or one group of systems. A model is normally embodied in
a schema, but it may also be held in a data dictionary. Any model must be built of certain
elements, and a set of these elements may, in a more abstract sense, be called a data model.
It is data models in this more abstract sense that we discuss below.

Data models are not new, and the COBOL data model, for example, consists of files, records,
group items, elementary items, tables, indexes, etc. These are the only ways in which data may
be described in COBOL and if some other structure or type is needed, such as a set or a switch,
then it must be simulated using the basic elements.

Data models enter into database work at two levels — the conceptual level and the imple-
mentation level.

1. Conceptual data models
The conceptual model for a business is produced by data analysis, and we discuss this in
the next section. It should be as free as possible of implementation details and, indeed,
of any detail that is not essential to an understanding of the basic structure of the data.
A conceptual data model should have the following characteristics:

— Simplicity. It should have a minimum number of elements and rules for combining
them.

— Power. It should describe any particular structure in a concise way.

— Picturability. It should be possible to represent a structure diagrammatically, because
many people find diagrams easier to understand than either words or a mathematical
notation.

— Appropriateness. The elements of the model should correspond directly to things in
the real world.

— Uniqueness. There should be just one way to represent a thing or a relationship in the
real world.

16

— Natural termin_ology. It should not be necessary to learn any new concepts or any
eccentric meanings of normal words.

These characteristics are, in some cases, conflicting. For instance, some people may find a
concise notation difficult to understand.

The _modeis most often suggested for the conceptual level are the entity model and the
relational model, though the binary model is favoured in some quarters.

The entity model describes data in terms of entities that have attributes and that stand in

relationships with one another. An entity is any person, thing, event, document or legal
object, etc. that is of interest to the system.

The entity model is easy for DP and user staff to understand, though some training is
necessary if they are to use it with precision. It has a few basic concepts and these are
drawn from normal discourse. Structures can be shown as diagrams, and indeed this is
the most usual method employed (an example is given in figure 10).

The entity model has been implemented by ICL as the conceptual part of the 2900 Data
Dictionary System. It is likely that other data dictionaries will be extended to include it.

The relational model treats all data as tables. The model is defined formally in quasi-
mathematical terms, and from this formal definition come a set of rules for deciding
precisely which tables should be constructed. This design process is known as ‘normalis-

ation’ and the resulting tables are said to be in ‘third normal form’. Tables in third normal
form have three main advantages:

— They can be updated simply, without creating the anomalies found with other struc-
tures.

— They can be understood easily by non-DP staff.

— They can be derived by following the normalisation rules.

Tables are easy to read, but the normalisation rules are difficult to master, partly because
they are expressed in mathematical terms. Once they have been mastered, however, the
rules represent a valuable tool in analysis and design. Relational structures cannot be
presented graphically without, in effect, transforming them into entity structures.

The binary model describes associations between data items. Diagrams can easily be

drawn (as shown in figure 11), but they tend to become unwieldy. IBM’s Database Design
Aid (DBDA) is based on the binary model.

Each model must also include integrity conditions which may be expressed either schemat-
ically (in the entity model) or mathematically (in the relational model). Only recently has
the importance of integrity conditions been fully appreciated.

At the conceptual level, judgments between models still seem to be largely subjective, and,
in any case, the theoreticians continue to refine the models on offer. For the moment, the
entity model (backed by relational analysis) seems the best choice for data processing.

Implementation data models

During database design, the conceptual model must be transformed into descriptions of
actual records and their relationships. This is done by adding such necessary details as
the size and type of fields and making change in the interests of performance (e.g. adding
indexes). In most cases, the implementation model is not sufficiently rich to support the

17

whole of the conceptual model, and the parts that are left out must be included in the
application programs.

Figure 10 An Entity Model

l Ereler I[\ RECEIVES Sippliar
w
L /
7] &
s &
S N
@]
&)
Order — Item sl g Delivery
|
e Y
pPL
=t CAN SY
o0
o
[:_-———-:}77 SOLD ON

Product | — ——==—— Y@e — Item

COMPRISES /1

Sale

ACCEPTS

Customer

18

Figure 11 A Binary Model

Order Order _ Supplier
Date No * Code

Supplier Supplier
Address Name

Product Quantity Product
Code Ordered Name

Quantity
On Hand

The implementation model should have the following characteristics:

— Simplicity, power, picturability, appropriateness, and natural terminology. These
things, although they are desirable, are less important than at the conceptual level.

— Uniqueness. The characteristic is desirable only if a variety of implementations may be
specified in the storage schema.

— Capacity for efficient implementation.

— Completeness. The model should be able to express everything that is included in the-
conceptual model.

The three models most often proposed for implementation are the hierarchical model, the
network model, and the relational model.

19

Hierarchies -often occur in the real world. They are therefore found in the cor]c_eptual data
model and must be implemented. Also, pure hierarchies can be mapped efficiently onto
conventional file structures. But hierarchies are not sufficient, and the so-called ‘hier-
archical’ products mostly include network elements. In IMS, for instance, the network
capacity is provided by ‘databases’. Although the underlying concept is basically obsolete,
some hierarchical products are very well established and will endure for many years.

Networks are a generalisation of hierarchies, and the most important network data model
is that of the Codasyl Database Task Group. The Codasyl model is suitable for imple-
menting a conceptual entity model. A Codasyl schema may be expressed fully as a.Baclj-
man diagram, and an example is given in figure 12. The full diagram convention Is
somewhat cryptic, and it is often convenient to leave out much of the annotation. Efficient

Figure 12 Bachman Diagram

<+
@ IX—CUST-NAME IX—ORD—DATE—PROM

N OA N OA
ASC ORD—DATE—

ASC CUST-NAME DN FROM DN

CUSTOMER ORDER
CUST—ORDER—
611 | F| 100 [CALC| OUTSTANDING 620 | F | 150 [CALC
CUST-NO [DN| NPO MA ORDER—NO [DN
CUST—AREA ASC ORDER—NO DN ORDER—AREA
ORDER—ITEM
NOP MA
NEXT

PRODUCT ITEM

631 | F| 100 |CALC| PRODUCT-ITEM | 621 F| 50 | viA
PROD-NO |DN| NPO OA ASC LOT-NO DN ORDER-ITEM
PROD-AREA ORDER-AREA

(Reproduced by courtesy of SCICON)

20

implemen_tations pf the quasyl model exist (for example, 1DS and IDMS) but because the
model re_hes heavily on pointer paths (due to the incomplete separation of the logical and
the physical aspects in the model), the database designer is often obliged to exclude some

relationships from the schema. This leaves the applications programmer with the task of
making the necessary connections.

The relational model can be used directly for implementation. Many experimental imple-
mentations exist and also a few commercial products (for example, IBM’s Query-By-
Example and the Multics Relational Data Store (MRDS). The model is suitable for the
implementation of conceptual entity and relational models. In existing systems efficiency
is either sacrificed or achieved by a concealed non-relational layer which must be guided
by extra material in the relational model. In the future, new storage devices may be able
to provide efficient implementations of relational databases directly.

Research suggests that these models are suitable for different purposes and that, in
particular, the network model is convenient for the applications programmer who is
‘navigating’ the database whereas the relational model is convenient for executives who
are making analyses of the data. Provided that good design practice has been followed,
one view may be supported by another, and so it is possible to get the best of both worlds.
IBM's IMPS, for example, provides a relational view of an IMS database.

C Data Analysis

In the database approach, data is treated as a resource in its own right, rather than as an
adjunct of a particular processing system. One consequence of this approach is data analysis,

a process which determines the inherent properties of the data, rather than just its relationship
to a particular computer process. '

Data analysis is more than an academic exercise, although it is now being given a rigorous
logical basis. It is a valuable tool in database design and it can help the database designer avoid
the disastrous mistakes which have been made in the past.

We do not, in this report, recommend a particular data analysis methodology, but we do wish
to caution against the temptation to perform a thorough and detailed analysis of all the
company’s data before commencing database design. A quick survey must be justified at an
early stage, but the attempt to be exhaustive will be:

— Very time-consuming, so that the start of systems development will be delayed.

— Rather academic, because of the lack of cross-fertilisation from the study of processing
reguirements.

— Slow, because of the absence of normal project pressures.

The correct place for data analysis is that shown in figure 13. The important points which the
figure illustrates are as follows:

— In data analysis, as in other phases of systems analysis, it is important to get the scope
right. This is thus the first step.

— Data and functional analysis proceed in parallel. They may even be performed by the
same team, and each adds to the effectiveness of the other. Functional analysis
produces both the specification for functional processing and a data model that, for
each function, gives the data and the relationships required for that function.

— In database design a database structure is produced which can support the required
functional data models and the expected processing load, this load being determined

21

from the function specifications. Design requires a thorough knowledge of the data
management software to be used, and this need not be a DBMS.

Figure 13 The Place of Data Analysis in Computer Systems Development

Decide Scope
and Objectives
of the Project

Data
Analysis

Functional
Analysis

Conceptual
Data Model

Functional
Specifications

Functional
Data Model

/ /
Dathase
Design Transaction
Design
Schema
Implement and External
Load Database Schema

Implement and
Commission Programs

22

Data analysis will normally start by a discussion with user management and staff about the
people, places, objects and events that are important to the business. These are the ‘entities’
about which information (the ‘attributes’) will be stored. The relationships between the
entities must also be documented. It is important that user personnel should be actively

involved in this phase of the work, and it seems best to document the results as an entity
model,

Analysis will then continue with the existing records of the business. Where possible the results
should be recorded in a data dictionary.

The results of this stage should be checked by the relational technique of ‘normalisation’ and
only normal forms (which are the result of normalisation) should be allowed into the model.

As an alternative, the normalisation process may be applied directly to the existing computer

files and clerical records of the business. This approach is faster, but it may fail to uncover

anticipated changes in the business. In addition, it will not encourage user staff to become
involved.

Data analysis is valuable even when it is known that a DBMS will not be used. It provides a

thorough understanding of the data before design work starts, which is the time when errors
can be corrected most cheaply.

It could even be used during the development of manual systems, but there is little evidence
that this has been done in the past.

Data analysis also provides a sound base from which the need for a DBMS can be assessed.
In our view, all systems work, with the possible exception of the very simplest, will benefit

from the use of data analysis. |t should be made an integrated part of the development process,

in the sense of figure 13, rather than an exceptional technique that is used only on database
projects.

D Database Integrity
The integrity of a system may be compromised by any of the following:
— A clerical error made in entering a transaction.
— An error in the applications program.
— Anerror in the DBMS and its utilities.
— An error in the hardware, the operating system or the TP monitor.

— An error made by the system operators, and especially an error made in recovering
from another error.

Where applicable, conventional and proven methods (validation of input data, file recon-

ciliations and processing reconciliations) will be used to ensure integrity but these are often
less effective in an on-line system.

Database presents special problems. The distinctive features that make integrity a greater.
problem and the appropriate remedies are given in figure 14.

The database audit program is an important tool. It works by reading all or part of the database
and checking that certain logical conditions hold good. It checks for example:

23

— That there is a delivery address for every order.

— That every waiver has been authorised by someone who has the requisite authority.
A random sample may be taken, or some part of the database that is of partic_ular interest may
be selected. Offending records may be removed, report, or both. The functions of the audit
program are:

— To detect errors, so that they can be corrected (unrecognised errors can be very expen-
sive).

— To reveal patterns of errors, so that changes in either procedures or vetting rules may
be made to prevent any recurrence.

— To provide a quantitative measure of the quality of the database for managers, the
data administrator, and the auditors.

Figure 14
Feature Remedies
1. There is less redundancy and Data Administration
this makes it more difficult Controlled Redundancy

to recover from crashes
because data cannot so
easily be reconstructed
from related files.

2. Since data no longer belongs Data Administration
to a single application the Security System
manager or the department
sponsoring an application
will no longer feel as
responsible for it.

3. A database program has access Logical Data Independence
to the whole database and it Security System
is difficult to be sure that Database Audit

it is updating only the parts
intended. This is especially
true if the database may be
updated by people who are not
DP professionals.

4. The DBMS and its associated Database Audit
utilities are more complicated
than the corresponding
components of conventional
file management systems; and
the file management systems
may be present as well.

24

Integrity conc.iitions are often identified during data analysis, and the entity model provides
ways of showmg various sorts of conditions in the conceptual model. Also the DBMS may be
asked to check integrity conditions whenever it does an update. In theory, integrity conditions

should _make the audit program redundant, but in practice the audit program will probably
be required for the purposes of:

— Policing those conditions that are too expensive to check in real time.
— Detecting any errors there may be in the DBMS, the hardware, the utilities, etc.
Real time checking is potentially expensive, but it has the following major benefits:

— Thq database quality is assured (apart from system faults), and so the reports that are
derived from the database are of high and consistent quality.

— Validation and update programming is simplified, because the integrity checking need
not be included in the applications program (and cannot be by-passed).

—' Systems generation by users is, consequently, both easier and safer. It allows more

complex tools to be supplied to end users and it takes the load off the central DP
department.

— The control of the data administrator is extended, and so his ability to manage the
data resource is improved.

Some existing commercial systems already either provide non-procedural ways to state con-
ditions (for example, Nomad) or provide ways in which procedural tests may be added to the
schema (for example, IDMS). In other cases, certain conditions are implicit in the data struc-
tures (for example, IMS).

IBM’s prototype relational DBMS, System R, provides a number of well designed features
for ensuring integrity including:

— Vetting rules for individual fields.

— Vetting rules for groups of related records.

— Relationships between fields in a record.

— Relationships between records of different types.
The conditions are expressed in a non-procedural language called Sequel.
In addition to these facilities at the logical level, the DBMS should include facilities that
detect and repair errors at the physical level. Errors may include disc space that is lost through

errors in the space management routines and pointers that do not point to records of the
correct type.

E Automatic Design and Tuning

Data analysis is essentially a human activity. However, a good data dictionary can help with.
the documentation of the activity and can detect loose ends that have been left by the analysis
team. (Data dictionaries are discussed in section VI1.B.) If, as we recommended in part C of this
section, the result of data analysis is a normalised entity model, implementation will involve
two design stages:

25

1. Logical design. In this stage the conceptual entities, attributes, relationships and integrity
conditions are translated into the terms of the implementation data model.

2. Physical design. In this stage the derived schema is translated into a storage schema.

In logical design, the designer must select for computer implementation only those entities,
attributes and relationships that are necessary for the systems that are being built. Since a
sophisticated data dictionary will record the use of data by the required functions, it provides
the basis for the automation of this selection. However, in any practical system, the designer
will need to be able to override the system.

Design problems arise because of conflicts between the conceptual and the implementation
data models. For instance, an involuted relationship is quite proper in a conceptual data
model — (a) in figure 15 — but is not supported by the Codasy! set construct. In IDMS, then,
it must be implemented as in (b) in figure 15.

Figure 15
(A) Conceptual Model (B) IDMS Implementation

Employee Employee
(e)

SIOVNVIN
A8 dIOVNVYIN

Managerial
Link

It has been established that the various data models that are currently in use are equally
complete in their ability to represent data structures, and so it will certainly be possible to
convert automatically from one model to another. It would be better, however, to choose
a better implementation data model, and a number of vendors are moving in this direction.

In physical design, the designer will select the access method for each record (or segment),
decide blocking factors, design hashing algorithms, etc. These decisions will then be recorded
both in the storage schema and the derived schema, although only the storage schema would
be involved if physical data independence was complete.

Experience commonly shows that the use that is made of database systems, especially systems
that have online query facilities, is signficantly different from that expected by the designer.

Even if the estimates are right initially, changes in the business will invalidate them sooner or

later. Consequently, it will always be beneficial to monitor the performance of the system and
to tune it either for higher performance or greater efficiency.

26

The tuning problem is now well understood theoretically. Work by Professor Stocker and his
colleagues at the University of East Anglia, for instance, has shown that a self-optimising
system that adjusts its physical storage to accommodate changing patterns of use is quite
practical, although so far only experimental systems have been built. Performance prediction
aids of a more conventional kind are already available from various sources, and they include
analytical models based on queueing theory and complex simulation models. These aids will

assist the database administrator until such time as the DBMS is able to take over the whole
task.

27

V.RELEVANT TRENDS IN HARDWARE

A The Cost of Processors and Memory

There is an underlying trend of falling hardware costs, and one example of this — the trend in
processing power — is shown in figure 16, and it can be seen from this that by 1985 a one

Figure 16 Computer Power Cost

100M
IBM 7030

10M L 7

L 3 e CDC 7600
o - F
E = PDP 8 CDC Star-100
% 100K | Large scale computers
e
Q =
g i 1000 MIPS

processor

S 10K 5
m =
iz C
i =
£ i 10,000 MIPS
S 1K = processor

10 E

E Minicomputers
L Microcomputers
1] | ! | =)
1960 1970 1980 1990

28

million instruction per second (1 MIPS) microprocessor (which is approximately equivalent to
the power of an IBM 3032 or an ICL 2972) is expected to cost £50. It does not follow, of
course, that IBM will actually be selling a 3032 cpu for £50, but that is the expected pro-

duction cost. The remainder of the selling price will pay for software, support, marketing, and
SO On.

The cost trends for various types of memory are shown in figure 17. It can be seen that the

Figure 17 Memory Cost Trends

1RO =
Solid state random-access memories
g (bubbles, semiconductors)
1
1

| A
10 Fast access discs

10-2

Mass storage
systems
10-3

Memory cost. cents/character

10

Conventional

105 | magnetic tape
106 |
Video disc
10-7 | | 1\1 jle]
1960 1970 1980 1990

rapid decline in memory cost is expected to continue for at least the next decade. The direct
effects of these cost trends are:

29

— The cost of including a microprocessor and some store in any device will be triyial
compared to the cost of the electromechanical parts and the cost of programming.

— Mainframe computers will have very large main stores as a matter of course. (By 1985
a single memory chip will hold half a megabyte and will cost ESQ). If the necessary
reliability can be achieved, stores of several hundred megabytes will become feasible.

— Large disc stores will remain an important part of computer systems for the foreseeable
future. However, semiconductor and magnetic bubble devices will displace them for
rapid access applications and mass storage devices will displace them for large volume
slow response functions. A one thousand megabyte disc drive will be available within
eighteen months at the latest.

— Hardware may be duplicated or even triplicated in the interests of reliability.
Each of these effects can already be seen in a few systems.
As far as data management is concerned it is important to note that:

— A range of stores of various costs and capacities will be available, and the range will be
wider than at present.

— Processing power can, if necessary, be incorporated into store controllers.

Storage hierarchy concepts have been exploited in virtual storage systems (for example) in
which modules and working storage are ‘paged in’ from the backing store as needed in a
manner that is transparent to the programmer, and may be exploited by a storage hierarchy in
which frequently accessed data is held in fast memory, and infrequently accessed data is held
in slower and cheaper memories.

An example of such a storage hierarchy is that suggested by George Champine of UNIVAC and
described in figure 18.

Figure 18 A Possible Storage Hierarchy

Access Size
ok Technology :
Procasior Aszg)matwe Time (bytes)
ache
Semiconductor 100ns 64K
Main Store Semiconductor 800ns 2M
Database
Cache 500ns 16M
Data Semiconductor
Store Disc 30ms 2,000M
I Mass Store Bs 20,000M

Such a hierarchy would combine costs typical of the slower devices, with a mean access time
close to those of the faster ones, whilst providing the user with access to the whole of the

30

stored data. The effectiveness of such hierarchies has been confirmed both by research and by

Ehe expe)rience of systems that use a storage hierarchy for the database (for example Tandem's
nscribe).

B Associative Memories

In conventional memories, data is read or written one record at a time, and the physical
address of the record must be known first. An associative memory (AM) has in-built logic that
enables it to read or write a number of records in parallel. Moreover, the AM can be told to
retrieve, or to modify every record that contains some value, so that the physical address need
not be known. For this reason, AMs are sometimes known as Content Addressable Memories.

Semiconductor AMs are more expensive than conventional, passive memories because of the
extra logic they contain. It is expected that the cost of AMs will be two to three times that of
passive memory for the foreseeable future. Currently, AMs are used in the paging hardware of
high performance computers where their high cost is acceptable.

The advantages of associative memories are:

— Very high search speeds.

— Faster updating in a case where the change is to be applied to a number of similar
records.

— Smaller stores, because there is less need for pointers to maintain the information
structure. (This helps to offset the higher cost of the AM.)

— Simpler software, because the address calculation and the serial search routines can be
omitted.

Amongst the devices that are based on associative memory concepts is ICL’s Distributed Array
Processor (DAP), and similar machines are available from other manufacturers. The DAP
employs 4,096 processors in two megabytes of store and is sold at about £600,000. It is very
effective for solving certain scientific problems, especially those involving fluid mechanics (for
example, weather forecasting). However, it is not easy to apply effectively to commercial
databases because:

— Many commercial transactions involve the retrieving and updating of single records
whose keys are known.

— The databases are much too large to store in the AM. Effective exploitation of the AM
therefore requires transfer rates from backing store that are more than an order of
magnitude higher than those that are currently available.

In the long term, devices like the DAP may find application in those systems that apply
deductive logic to databases. However, such systems are still strictly experimental, and their
ultimate value is still a matter of specification. In the immediate future, AMs are an attractive
option where a high access rate presently justifies holding the data permanently in main store
as provided by the IMS Main Store Database option.

A compromise exists between holding the whole database in AM or in passive storage only..
In ICL’s Content Addressable File Store (CAFS) all the data is held on a disc drive that has
been modified to allow reading from all heads in parallel. The CAFS controller can read
and search half a cylinder in a single revolution, and it can conduct a number of such searches
in parallel. In retrieval, CAFS is ten to fifty times faster than conventional search techniques.

31

It is currently being evaluated by the British Post Office for an on-line telephone directory
inquiry system.

CAFS is valuable not only for the rather peculiar requirements of directory enquiries, but also
for implementing the retrieval and manipulation of sets of records that are needed in both
query systems and relational databases. Content addressable stores based on discs are likely
to be supplemented, and ultimately superseded, by stores based on magnetic bubbles.

C Novel Database Processors

Hardware developments are of interest to the DP manager only if they lead to new products.
The possible new database processor products are:

— An up-rated disc controller, which is compatible with existing devices but provides
faster access and higher throughput.

— An enhanced disc controller, which provides the retrieval and manipulation of sets of
records, rather than of just single records or blocks.

— A back-end processor, which provides all database management functions for one or
more mainframes.

— A database machine to which intelligent terminals might be connected either directly
or via network processors.

Up-rated disc controllers reduce the problems of contention for disc space and so they support
higher transaction rates and allow transactions to access more records whilst giving an accept-
able response time. The latter is important in database query and analysis work. The increasing
size of disc stores and the falling cost per character are largely achieved by the increases in
recording density. Since disc access times fall more slowly than density increases their trends
lead to increased contention. Improved controllers are thus necessary even to maintain present
performance. Many current disc controllers contain more logic than they use, and so it is likely
that mainframe vendors will use this logic to extend capacity (with or without associative
memory).

Enhanced disc controllers provide both increased performance and new facilities. To exploit
these new facilities, however, will require changes to the data management software, and it is
not yet clear precisely what mixture of hardware and software will give the best results. These
devices will be introduced initially for special purposes (such as the use of CAFS for directory
enquiries mentioned earlier), and they will be integrated into general-purpose DBMSs only
slowly.

Back-end processors offer advantages in security and integrity, rather than in pure perfor-
mance. Where one back-end processor can support several applications machines, the expense
of holding several copies of the DBMS is saved, but it is saved at the cost of extra data com-
munications. With its Multi-Computer Support feature, Cullinane has provided for users to
establish back-end processors for IDMS. In initial versions the back-end machine must be
either an IBM 370 or a machine compatible with it, but Cullinane is actively considering
supplying its own hardware.

From the viewpoint of the independent DBMS vendors, back-end machines have the following
advantages:

— Portability across ranges of mainframes.

— The ability to lock the user into the DBMS.

32

— Less dependence on the mainframe supplier’s hardware and operating systems.
However, for the vendor, back-end machines have the disadvantage that he must:

— Provide hardware support.

— Compete with hardware manufacturers in a market that is becoming increasingly com-
petitive and in which he may have no previous experience.

— Innovate in both hardware and software, if he is to obtain the full benefits. This will
increase both his development and his maintenance problems.

The independent manufacturers are therefore likely to come to differing conclusions about the
wisdom of making this move,

Database machines that support terminals directly are not really distinct from mainframes and
minicomputers with DBMSs. An interesting marketing initiative is National CSS’s marketing of
an |1BM-compatible super mini, the NCSS3200, to run their Nomad DBMS. This is important in
that it brings a powerful DBMS within the reach of the smaller user.

Very big database machines will find application in public database services (as discussed in
Report No. 10: Public On-line Information Retrieval Services).

Some technical questions remain unanswered but the main constraints on introducing novel
database processors are commercial ones. IBM, to take a critical case, will not wish to intro-
duce any product which adversely impacts their IMS rental base. On the other hand, IBM will
wish to keep everyone, and especially their competitors, off balance and will continue to
enhance their product line. They will also change the interfaces between the mainframe and
the disc controller as they upgrade the latter. IBM’s own need to maintain and enhance soft-
ware will limit the speed at which such changes can be introduced. As in the past, independent
vendors will be able to handle the new IBM interfaces within six to twelve months of IBM
product release.

33

VI. DEVELOPMENTS IN SOFTWARE

We discussed the several components of a DBMS earlier in this report — figure 5 showed what
some of the major vendors offer, and figure 6 showed the relationships between these com-
ponents.

The principal vendors are extending their product lines to include at least most of the soft-
ware discussed in this section. At the same time each vendor is trying not only to meet his
customer’s changing needs but also to so commit his customers to his products as to make
it difficult for them to migrate to competitive products.

To win new customers, vendors are also providing interfaces to each other’s products. While
this adds to the complexity of the market it also provides opportunities for the more advanced
user.

The major types of products discussed are:
— Database managers. These are the heart of DBMS and they are discussed in A below.

— Data dictionaries and design aids. These are used in data and systems analysis and in
logical database design. They are discussed in B below.

— Query languages. These comprise batch-oriented report generators and high-level data
manipulation languages. They are discussed in C below.

— System building tools These are those DBMSs that are intended to provide an alterna-
tive to conventional systems development techniques. They are described in D below.

— Performance prediction and monitoring aids. These are the tuning options provided by
the database managers. They are discussed in F below.

A Database Managers

The database manager (DBM) is the central element in a DBMS. It provides access to the
database and enforces privacy, security, and integrity on behalf of the data administrator. For
the purposes of this discussion, the DBM is taken to include the utilities responsible for re-
organising and restructuring the database, for integrity checking, and for maintaining the
schemas.

In this section a number of significant features of DBMs are discussed and special emphasis is
placed on those that are relevant to the improved understanding of databases given in section
M1,

As with any software product, it is desirable that a DBM should be reliable, well documented,
well supported by the vendor, and efficient. It is also desirable that training and consultancy
shouid be available. Some of these points are covered by the annual Datapro survey of soft-
ware products, and the results of their most recent survey are shown in figure 19.

34

Figure 19 How Users Rated the Popular Database Management Systems

Package and Vendor

*ADABAS, Software ag of N.A.
Datacom/DB, Applied Data Research

Weighted Average User Ratings

28
15

DBMS—10/20, Digital Equipment Corp| 6

DBOMP, IBM Corp., DPD

DL/1 DOS/VS, IBM Corp., DPD

DL/1 Entry, IBM Corp., DPD

DMS—II, Burroughs Corp.

DPL, National Information Systems
*IDMS, Cullinane Corp.

IMAGE/1000, Hewlett-Packard Co.
*IMAGE 3000, Hewlett-Packard Co.

IMS, 1BM Corp., DPD

INQUIRE, Infodata Systems, Inc.

SYSTEM 2000, MR| Systems

TOTAL, Cincom Systems, Inc.

25
36
8
30
6
42
9
30
34
8
24
108

Number of Users reporting

Overall Satisfaction

35
29
238
28
2.8
3.0
34
3.5
3.5
3.0
35
29
3.8
33
32

3.1
3.1
25
2.5
2i5
2.6
3.3
23
3.3
2.9
3.3
2.4
2.8
29
3.1

Throughput/Efficiency

35
3.0
3.0
2
25
2.6
3.4
3.8
3.5
3.4
3.7
2.2
3.6
3.1

3.2

Ease of Installation

Ease of Use

33
3.2
2.8
2.5
2.5
3:1
3.4
3.5
3.4
3.0
3.6
20
3.3
3.2
32

Meaning of Rating: 4 — Excellent; 3 — Good; 2 — Fair; 1 — Poor

*Datapro Honour Roll

Source: Datamation, December 1978

Documentation

28
2.5
25
23
25
2.5
2.5
3.0
3.1
25
3.2
2.8
29
2.8
747

Vendor
Technical Support

Training

3.1] 3.1
29| 2.8
2.21 2.7
23| 23
27| 28
30| 28
26| 25
3.0f 3.2
35| 33
27| 33
3.0 2.7
28| 26
33| 29
28| 3.0

2525

The main features of database managers are discussed below. For particular purposes other
features may be of special interest and their absence does not necessarily mean that they will

not be relevant to an evaluation.

35

. Storage options
A wide variety of storage options are needed in order to cope with the variety of ways and

frequencies in which data is manipulated in different systems. For instance, a relationship
between entities of two types may be implemented by:

— Storing the corresponding records together.

— Holding the physical address of one record in the other.

— Linking the records of one type by pointers (which are physical addresses).

— Holding the key of one record in the other or in a separate record.

— Using an index.

These options are not equally valuable. In general, physical addresses should be used with

restraint and only where high performance is needed. In such cases, however, they are most
valuable.

A similar range of choice is desirable for the implementation of entities and attributes, for
the placement of data on disc, and for the choice of backing store devices.

No single option is ideal. The database administrator needs a wide range of choice, together
with the facilities for converting from one to another without impact on the conceptual
model. The reorganisation facilities should include:

— Consolidating of overflow areas on indexed sequential files.

— Changing hashing algorithms.

— Changing device types.

— Changing the implementation of a relationship.

Relational DBMSs usually have a variety of these options available. They are not usually
implemented solely by files that contain only records of a single type (‘flat files’).
The advantages of two database managers may be combined if one allows access to data
maintained by the other. Ramis, for instance, may be used on IMS and Adabas databases,
and Codasyl ‘ON procedures’ may also be used to access alien data.

The present tendency is to give the database administrator a wider choice of storage
options and to provide better utilities for reorganisation.

Physical data independence

The virtues of physical data independence were discussed earlier. In almost all current
DBMSs this is incomplete in one or more of the following ways:

— The nature and the sizes of data items are visible (except for Nomad).

— The combination of fields into records (or segments) is visible (eg Adabas).

— The mechanism used to implement relationships is visible (eg Total).

— File access methods, including the existence of indexes, may be visible (eg IMS).

Consequently, any change in these structures will require corresponding changes in the
programs.

36

Relational systems, such as IBM’s System R, by contrast usually possess a high degree of
physical data independence.

In the older DBMSs there is often no clear distinction between the logical and the physical
views of data. An IMS hierarchy, for instance, is both a logical relationship between seg-
ments and a description of the physical storage. The original Codasy!| proposals were also
deficient in this area. However, the suppliers of Codasyl implementations do now seem to
have accepted the need for separate storage schemas and this means that physical data
independence will increase. The hierarchical products are less likely to improve.

Logical data independence

The virtues of logical data independence were also discussed above. Codasyl subschemas
allow both the user and the programmer to be shown a subset of the records and sets in
the schema. More powerful facilities than this are possible, and System R for example,

allows a user ‘view’ (the equivalent of a subschema) to include records that are not physic-
ally present, but are created from other records as needed.

In Codasyl systems, it is possible to arrange that any attempt to access a record causes a
user-written procedure to be executed. This procedure can then create the desired record
from other database records, or, indeed, from data outside the database entirely.

Recovery

Following the failure of either a program, processor or disc file it should be possible to
recover and to continue with only a little delay.

The failure of a program should cause the loss of that single transaction only, and any
updates that it has already done should be undone (‘backed out’). If necessary, other
transactions may be reversed in order to ensure integrity.

The failure of a processor will cause the loss of all current transactions, but the loss should

be limited to those transactions that are not yet completed. IDMS and IMS are among the
systems that meet this requirement.

The failure of a disc file may cause transactions to be aborted. The rest of the system

should be able to continue processing whilst the lost data is reconstituted from back-up
files and the log.

Facilities of this sort require the logging of copies of database records (‘images’) both

before and after modification, and the ability to run only part of the system after a partial
failure.

Sequential processing

Despite the predominance of on-line working in database applications it is often necessary
to process large parts of the database sequentially. Some DBMSs do not support this, and
it is necessary to have an extract-sort-process-update sequence outside the database. ICL's
IDMS will shortly provide an option to view part of the database as a sequential file
(FAME). This may also be seen as adding to logical data independence.

Divisibility :
It should be possible to reorganise parts of the database and to continue processing if part

becomes corrupt. Hierarchical systems usually treat the various hierarchies separately for
these purposes. Codasy! ‘realms’ provide a more flexible facility of the same kind.

Integrity checks
The need for integrity checks was discussed earlier. No commercially available system

37

provides adequate features for integrity checking, though Codasyl ‘ON procedures’ may
be used.

8. Testing : 1
The DBMS should provide test data generators and comparison facilities. For example, IMS
has a test facility which will:

— Create a database that contains arbitrary values but conforms to the schema.
— Compare ‘before and after’ versions of a database.
— List the database.

9. Restructuring
It will certainly be necessary from time to time to add fields to records and new record
types to the database. Utilities for this should be available and generally are. It should not
be necessary to unload the whole database (and the IDMS utility does not even require the
records in guestion to be unloaded).

B Data Dictionaries and Design Aids

Data dictionaries are a growth area in the database field, and there is still a considerable lack of
clarity as to the functions they should provide. Early dictionary products either recorded the
structures created and the calls written in the program or else served merely to support a query
language. More recent products (IBM’s IMS/DD or ICL’s 2900 DDS for instance) play a more
active role by serving as the source from which the database description or schema respectively
are generated. These differences in concept make it difficult to compare the products.

A fully developed data dictionary should assist the fact finding activity and also the data and
functional analysis. It should therefore be possible to record the details of clerical and non-
database systems. This is possible with, for instance, 2900 DDS or Data Manager, but not with
most other products. It should also be possible to record the conceptual data model. The only
product that currently supports this is 2000 DDS, although others are currently being ex-
tended. Figure 20 shows the elements of the entity data model used in 2900 DDS.

IBM’s Data Base Design Aid (DBDA) accepts, as input, details of the data items established by
fact finding and details of their inter-relationships, and it derives implementation data struc-
tures from them. DBDA seems to be the only product to provide this degree of support. In our
view the data dictionary can be valuable at three major stages of a development project as
discussed below.

During design, representations will be chosen for the entities, attributes, relationships and
conditions in the conceptual model. The dictionary should record the links between the con-
ceptual and the implementation models.

During implementation, schemas and subschemas can be generated from the dictionary to save
the labour of transcription and also to enforce naming standards, etc.

After implementation, the dictionary serves as documentation for maintenance and data
standardisation work.

It is highly desirable that all systems, and not just database systems, should be recorded in the
dictionary. Experience shows, however, that if this task requires programmers to prepare
separate documentation it will not get done. To be used in this way the dictionary must be
able to capture the necessary data from source programs. Better still, the dictionary should
be able to generate both source programs and printed documentation from the same dictionary

38

Figure 20 Elements of the Entity Data Model used in the Conceptual Part of DDS 2900

Event
= n
(1)
2.
w
~+
-
4]
Cause Relationship
N 2
2
&
° 5 :
3
o
®
AN
) mak /‘ }\ of ("
OperatuonW G £ l Use I > l Entity
=
2
Attribute
Procedures Data
entries.

The basic reason for using a data dictionary is that there can be no central view of data without
it, and without such a view there can be no administration of that data. The data dictionary is
an essential tool of the data administration function, the role of which is discussed at greater
length in section I11.A.

39

C Query Languages

Once a substantial part of an enterprise’s data has been entrusted to the database, it becomes
essential to have some way of inspecting it. It is often desirable to supplement the facilities
provided by the applications programs with some more flexible way of locating data within
the database and with a way of making it visible. This need is met by on-line query facilities
and report generators (which are often orientated towards batch processing). Some modern
query facilities provide features both for locating a few records by their keys, and for listing
and summarising them for a printed report.

Query languages are a rapidly evolving part of data management, and there is considerable
variety in the facilities available. For the purposes of discussion, query language features may
be categorised in the following way:

— Specification of relevant data.
— Manipulation of the data.

— Qutput control.

In specifying the relevant data it is usually necessary to state where the data is held. This may
involve stating either the record name (as in Cullinane’s OLQ in figure 21) or the name of the
hierarchy (as in Adascript in figure 22). In some systems the system can deduce the record
intended. This is shown in the Nomad sample in figure 23. The data of interest may then be
further specified by stating the values of various fields in the records indicated.

Figure 21 Sample of IDMS Online Query (OLQ)

GET ALL CUSTOMER RECORDS
WHERE (REGION = 01545
AND CREDIT = X)
THEN GET ALL ORDER RECORDS
WITHIN OUTSTANDING SET.

Figure 22 Sample of ADASCRIPT

FIND ALL RECORDS IN PERSONNEL-FILE
WITH EDUCATION = LAWYER OR ENGINEER
AND AGE FROM 40 THRU 60

AND SORT BY NAME

AND DISPLAY NAME, EDUCATION, AGE, SALARY.

40

Figure 23 Sample of NOMAD

'product sales'

WIDGETS
SUM

g SALES

PER MONTH

1,327.45
688,53

list by months across prodname sum (sales) title
PRODUCT SALES
BLIVETS JARVERS LINKERS
SUM SUM SUM

& SALES g SALES g SALES
MONTHS PER MONTH PER MONTH PER MONTH
JAN G B 400,68 168.23
FEB 556 .91 208.59 204.12
MAR 470.10 442,18 278508
APR 497,56 dielny 11 253055
MAY 576,14 282,21 153,095
JUN 316.16 444,48 243,36

885,77

Having identified some subset of records as being of interest it will often be useful to obtain
data from related records (for example, to obtain the customer’s name from the record of the

customer who has placed the order).

Where the other record is at a superior level in a hierarchy it may be possible for the system to
deduce the record intended. Otherwise the relationship will have to be specifically declared in
the schema (eg. Nomad) or in the query itself (eg. Enform in figure 24). Where more than one
relationship links record types it will be necessary to indicate which relationship is intended

(eg. OLQ).

Figure 24 Sample of TAMDEM’'s ENFORM

OPEN ORDER, PARTS

LINK ORDER TO PARTS VIA PART-NO

LIST BY ORDER-NUMBER,
CUSTOMER, PART-NO, QUANTITY, COST
(QUANTITY*COST) HEADING "TOTAL-COST",
WHERE CUSTOMER = JONES
SUBTOTAL;

41

When the user has obtained the data he may wish to analyse it. A good query le.lnguage shou!d
allow new quantities to be calculated from those stored, using simple arithmetic (as shown in
the Enform example in figure 24). It should also provide statistical functions.

It should also be possible to specify the data of interest using the statistical functions (as
shown in the second Nomad sample in figure 25).

Figure 25 Second Sample of NOMAD

When the required analysis has been obtained, it should be possible to inspect it on a VDU
and, if required, to have it printed. It should also be possible to fit printed output onto paper
of various sizes. Existing languages provide a variety of features in this area.

A good query language should provide editing facilities, including table look-up at the output
stage. Nomad, again, provides some interesting features (as shown in figure 25).

Output in the form of graphs and histograms is very convenient for some purposes, and the
query facility may provide this as an alternative to tables.

In general, non-procedural languages are to be preferred to procedural ones, because they are
easier both to understand and use. Non-procedural query languages can be very compact, and,
for instance, the length and complexity of the COBOL program equivalent to the Nomad
query shown in figure 23 illustrated this. Non-procedural query languages are also relatively
easy to maintain.

42

Figure 26 Sample of T—ASK

“"END DATA"

10,11,.5-6

ENTER SELECTION CRITER

V235
ANTITY = JER-VALUE
LUE

CUSPE—NAME

3124
4001
4055
3124

IS 215

T B TR TR

43

Most query facilities allow complex queries to be stored and invoked with parameters. This
allows the data processing department to provide users with tailored reports more quickly,
more cheaply, and more flexibly than conventional languages do. Queries should certainly be
subject to some privacy checks, and preferably to checks provided by the database manager.

All the languages discussed above assume either that the user knows enough to enat_)Ie him t_o
construct his own queries, or that he can be restricted to queries that others define on his
behalf. Alternatively, a dialogue can be conducted between the system and the user to estab-

lish his needs. Viewdata provides one example of this, and Cincom’s T—ASK, shown in figure
26, provides another.

D System Building Tools

The view of data as an entity in itself also implies a new view of data processing as a whole.
Systems based on this view, ISDOS for example, were discussed in Report No.11: Improving
Systems’ Productivity, and are not considered further in this report.

There are, however, a number of DBMSs that have the more modest objective of reducing the
time and expense necessary to implement data processing systems through the combination of
database technology with high level, data manipulation languages. Systems of this sort (of
which Query-By-Example, Ramis, Mark 1V, Nomad and MRDS are examples) combine simple
database concepts — usually based on hierarchies — with sophisticated non-procedural languages.
The use of these languages for queries has been discussed earlier.

The simplicity of the database concepts that are typically used by these systems expresses
itself in the lack of tuning options for data storage and access, the absence of logical data
independence and, sometimes, the lack of a central schema. These limitations make the

systems inconvenient and expensive to use for high-volume operational data processing. Within
their limitations, however, they present a very attractive alternative.

The advantages of these systems are:

— Programs in higher level languages can be discussed with users as, for instance, a
COBOL program cannot.

— Programs can be written faster and more easily. This means that programs can be
developed for jobs that would not be worth doing with conventional tools.

— The implementation cycle is greatly shortened (as shown in figure 27), and this gives
less opportunity for both misunderstanding and delay.

— Faster implementation means that the benefits of the resulting system are obtained
sooner.

— More rapid implementation enables the data processing staff to produce more systems
for users.

— DP staff become orientated more towards the business and less towards the computer,

Substantial savings may be obtained. Flynn and Kimber of McCulloch Properties, Arizona,
quoted in Datamation (January 1977), from their experience, the savings shown in figure 28.

The principal barrier to the widespread adoption of these systems appears to be the difficulty
that DP staff have in believing the claims that have been made for them.

44

Figure 27 Development Cycles

Conventional Programming

Problem
Statement ; Required System _
Evaluation
Trial
Execution
Yy v
Requirements . System
Statement Trial
A
PDrgs?;?.m - Coding —» Debugging

I

System Building

Problem

Statement Required System

Evaluation
Requirements o Trial
Statement Execution

45

Figure 28 Savings Achieved with Mark IV

Units of Work

STAGE COBOL Mark 1V Reduction
T |15 14 0%
Program coding : 40 25 38%
Program testing 20 10 50%

File conversion 10 10 0
Documentation 5 2 60%
System testing 5 4 20%
TOTAL 100 65 Mean: 35%

E Performance Monitoring and Tuning

Before implementing a database system the database administrator will have estimated its
impact on machine loading and throughput and response time will have been estimated. After
implementation, there will be a need to measure the actual performance to determine whether
it is acceptable and to check how it compares with his estimates. If the performance is in-
adequate, then it may be necessary to modify either the database or the DBMS.

DBMSs usually collect some statistics internally. Others may be obtained from an analysis of
the log. (The statistics collected by the IBM version of IDMS are shown in figure 29). In some
cases, the statistics may be inspected by the console operator whilst the system is running.

Once the cause of a throughput or response time deficiency has been identified the DBA will
wish to remove it. He may act either by tuning the DBMS or by reorganising the database.

Those DBMSs that are intended for high-volume operations usually have a complex internal
structure within which transactions are passed from one module to another via queues. The
DBA may adjust the sizes of these queues, the numbers of partitions allocated, and the sizes
of buffers and work areas. By way of an example, the options available for tuning in IDMS
central version are shown in figure 30.

‘The options available for the database itself depend upon the file structures used for storage.
Indexed sequential files, for instance, will need periodic reorganisation to remove overflow.
IMS allows reorganisation of selected parts of a hierarchy (there being a monitor feature to
suggest which parts are in need of it), and this increases the usefulness of this option. The
placement of files may be adjusted to balance the use of various drives, and it is sometimes
possible to split a highly active file across several drives.

46

Figure 29 IDMS Statistics

“The bulk of the available statistics are accumulated whilst IDMS is running and are
available during program execution or alternatively they may be obtained from the
log file at a later date. These statistics include:

o Pages Read and Written

o Pages Requested by DBMS

o CALC Records hit in page

o CALC Records overflowed,

0 VIA Records in same page as owner

o VIA Records overflowed

o Records Requested by DBMS

o Calls to DBMS

o Records that became current of run unit

o Fragments stored

o Record Locks Requested

o Exclusive Locks Held

o Shared Locks Held

Statistics concerning the space utilisation of the database are provided both space
distribution per record and per page is given”’.

(Reproduced by courtesy of Scicon).

The following more radical changes may also be justified:

— A record type may be divided into two where each has different access characteristics.
— An indexed sequential file may be restructured as a hash random file,
— Secondary indexes may be added.

These techniques, although they are valuable, often require corresponding changes to be made
in those applications programs that process the data.

To be fully effective, tuning requires a high degree of physical data independence behind

which the DBA can optimise the storage schemas for optimum performance. Improvements in
the understanding of tuning, however, will allow much of the DBA’s role in this to be auto-

47

Figure 30 IDMS Central Version Tuning Options

— Maximum number of run-units that may sign on to IDMS—CV concurrently

— External wait time — time that CV will allow between database calls from a run-unit

before aborting that run unit. Values can be set for specific programs or as a global
default.

— Internal wait time — time that CV will wait for a database resource (DB-key, Area etc)
requested by a run unit before aborting that run init. Values can be set for specific
programs or as a global default.

— Check times — frequency with which the resource controller checks each run unit for
abend condition.

— Maximum number of subschemas and database procedures that can be loaded during each
CV session.

— Size of the program pool where non-resident subschemas and database procedures are
loaded.

— Size of the storage pool where DMCL buffers, database-key locks etc. are held.
— Number of database keys that can be locked by a single run-unit.

— Number of database keys that can be locked by all run units at one time.

— Number of times a run-unit can be pre-empted for a resource.

mated. Indeed, those IMS products that select parts of an ISAM file, and then reorganise them,

may be seen as a step in that direction. Existing relational systems normally perform a variety
of optimisations automatically.

Tuning is a vital function for the DBA, and it may easily make the difference between a
successful system and an unworkable one. In the longer term, however, increased automation

of the tuning function and falling hardware costs will make this a progressively less attractive
area for the application of scarce technical skills.

48

VIl. DATABASE AND NETWORKING

On-line access and database management are both major trends in data processing. But they are

trends that often lead in opposite directions. The rest of this section identifies the conflicts and
discusses ways of dealing with them.

A Remote Access to Data

Most major companies now provide at least some of their staff with on-line access to corporate
data. Those that do not are mostly building the necessary systems. It is quite common for the

various systems in an enterprise to use incompatible hardware, software or telecommunications
methods.

In an attempt to rationalise the situation, or to avoid proliferation, some companies have con-
centrated their data processing on a central facility. Systems integration has pushed in the .
same direction, and the mainframe manufacturers have not been slow to stress these factors.
Centralisation has also had other benefits, such as the rapid availability of engineering and
programming support after a crash.

Organisations that have centralised have, however, found the following disadvantages:
— When the users are located at several sites there are high communications costs.

— Processing power costs more than a cluster of smaller machines would. It seems that
Grosch’s law no longer applies. :

— If there is a single central machine it never has quite enough power. Consequently,
either effort has to be put into complex optimisation, or useful jobs have to be kept
off the machine, or more hardware has to be purchased.

— User departments feel that they are losing control of their systems.

— Throughput is limited by contention for the database.

— The database is very vulnerable to accident, sabotage, and industrial action.

— The high data volumes, the high transaction rates, the ‘domino effect’ consequences

of a failure and the inherent complexity of the large mainframe require extra work
and expense to ensure reliability.

On-line access to a single database may be obtained using standard software. Standard solutions
are normally adequate, but they have their difficulties. Moreover, improvements in hardware,
software and communications services will make this increasingly straightforward.

Standard solutions can also handle the following configurations:

— A number of sites have their own copies of the database they refer to exclusively. This
approach is very suitable for systems that require retrieval only.

49

— The data is divided, without duplication, between a number of sites, each of which
may update its local data only.

— The data is divided, but although duplication exists, the duplicate copies do not peed
to be kept aligned from moment to moment. It is satisfactory to align the duplicate
copies either each evening or at the end of the week.

Until recently, any further interconnection would require the writing of special message-
switching software. However, the network architectures announced by IBM, Tandem, DEC,
etc. will now allow access to data on both local and remote machines, provided that either
the user or the programmer knows which particular machine or which particular database
he wishes to access. The network in these products provides message services, but it does
not provide any integration between databases.

For many practical cases these facilities are adequate. And if the network is also used to move
batches of updates round the system, data need never be more than a few hours out of date.

Companies who need real-time updating of duplicated data will still have to write their own
telecommunications software. (One example of this, the distributed network system of the
Swiss Credit Bank, was described to the London Management Conference of the Butler Cox
Foundation in April 1978).

This composite approach has the following disadvantages:

— It requires staff who have telecommunications skills, and staff with these skills may
not be readily available.

— It requires extra procedures when recovering from both line and machine failures.

— It is expensive, and this restricts it to large enterprises or to those organisations (banks
for instance) to whom the functions are absolutely vital.

— It distracts attention from business problems.

The question of a true distributed DBMS is discussed further in part C.

B On-line Interrogation and Problem-Solving

Interrogation and the running of analysis programs against the database form an increasingly
large element in database processing. It is an element that differs from simple transaction pro-
cessing in the following ways:

— Its volume and its nature are difficult to predict, especially if the system is to be used
to support non-recurring managerial decisions.

— Processing requirements are high, especially if engineering calculations or graphics are
involved.

— - Data access requirements are high. A simple request to report all orders that are more
than five days overdue may result in thousands of accesses. By contrast, a guideline is
sometimes given that no more than thirty disc accesses should be made per transaction.

— The needs of the users are very variable. One executive may be an occasional user who
requires more help in formulating his request than does a regular clerical user. Another
may be an experienced APL programmer who wishes to run a financial model against
the database.

50

1k

— In the absence of a true distributed database, the user may need to access several

different databases in different locations, and those databases may, perhaps, use
different DBMSs.

— The user may need to access data from a public database and to integrate it with
corporate data.

The problem of variety

In a large company, several languages are likely to be needed for different types of user.
Query languages were discussed in section VI.C, but it should be mentioned here that
most proprietary languages can access data at only one location at one time. An exception

to this is Tandem’s Enform which can access any number of databases if the user knows
their locations.

Where a network architecture exists it may be possible to make several databases look like
one to the query facility.

Access to several databases may be obtained from a programming language, but the work
necessary to do this may be considerable. On the IBM 370, for instance, APL cannot
access IMS databases at all and COBOL programs may access only one IDMS database
in a run. The necessary open access can be obtained however. For example, on Multics
(that is, Honeywell Level 68) all languages have access to two database systems, 1DS2
and Multics Relational Data Store (MRDS). Also, IBM and MIT have developed an experi-
mental system called General Management Information System (GMIS) under which a
variety of languages and statistical systems can call data from a variety of DBMSs.

These systems apart, it is usually easier to extract the required data and to re-format it for
the language or the utility that is to be used than it is to find a general solution. The more
users, languages, and utilities there are, the greater will be the overhead of this approach.
It has the advantage, though, of also solving the resource contention problem discussed
below.

No current commercial system provides access to remote databases of different kinds, but
several could have such facilities added by skilful software programming.

In the long term the solution lies in improved logical data independence in the DBMS. One
interesting development that is relevant here is ICL’s decision to provide a subschema
option in 2900 IDMS which will allow a program or a utility to treat part of the database
as a file (that is, without using the data manipulation language). This will allow file-based
utilities and applications programs to be applied unchanged to the database, and this is a
valuable facility.

The problem of performance

The size and the unpredictability of both the processing and the access load makes it
difficult to provide reasonable response to ad hoc enquiries without ruining the response
to those clerical users who are performing operational transactions. Fundamentally, this
difficulty is the result of limitations in the basic design of present DBMSs and TP monitors,
and therefore the best solution will lie in improving these products. Short of that, the
following partial solutions exist:

— The required data may be extracted to a separate system using an extract utility
running at low priority. The separate system can then be dedicated to the required
manipulations. Cne computer aided design centre at Cambridge is developing a manu-
facturing system in which a separate processor performs graphics and engineering
calculations. The same principle is also used for text processing on the Xibus.

— A query facility with its own priority system may be chosen. ASl’s Inquiry runs long

51

queries at a much lower priority level than is given to short queries in order to limit
their impact on the system.

— Long queries may be performed as overnight batch tasks, provided that the system can
recognise them and store them appropriately.

— The required data may be extracted by an overnight batch run. It can then be made
available to a suitable utility or language system running as a timeshared program.

— Long transactions may be split into several short ones by the programmer by issuing
a reply to the user or by having the transaction suspended. This is practical of course
only when the transaction is programmed by the DP staff, rather than by the user.

In the long term these problems will be dealt with by improvements to those scheduling

systems that DBMSs use, and also by associative hardware to speed accesses to the data.

C Distributed Database

A distributed DBMS is one that supports a single unified view (a conceptual schema) of data
that is physically distributed between a number of processors at different locations.

The storage of any particular type of data may be:

— Localised. This is appropriate for corporate level financial data and for manufacturing
data where there is only one factory.

— Replicated. This is appropriate for a price list that must be available at several sales
offices.

— Partitioned. This is appropriate for customer accounts that are to be held at the
responsible sales office, or for manufacturing data where there are several factories.

A simple example is given in figure 31.

It is the task of the distributed DBMS to route accesses either to the correct location, when the
data is held only once, or to the cheapest (which is usually the nearest) location when several
copies are held. The distributed DBMS must also ensure that updates are applied to all copies
of replicated data. In the interests of data independence changes in placement should be
invisible both to the user and the application programmer, and this means that the location
should be specified through the storage schema.

A fully distributed database has the following advantages over a centralised one:

— Reduced communications costs, because the data that is referred to most frequently is
stored locally.

— Reduced dependence on a single complex mainframe.

— The ability to tailor the facilities at each location to local needs.

Potential disadvantages of a fully distributed database include:
— Increased software complexity.

— Extra processing in order to maintain consistency.

52

Figure 31 A Simple Example of a Distributed Database

AHOLOVA

331440 S371VS

Location 1

Factory
Sales Office

»{Manufacturing

!)

y

rice

Orders/Queries

List

[

;

Location 2

Top Management
Sales Office
Cashiers Office

LThe Database |

Manufacturing Data: Centralised at Factory
Stores Data: Centralised at Factory

Price List: Replicated at Sales Offices

Sales Ledger: Partitioned between Sales Offices

Arrows show principal information flows between the functions shown and the database.

_.|
o
o
=
>
=
>
o
m
=
=z
Price
—
Changes
\ cn
>
=
m
Price g
List
J Sales =
Analyses =
/ =
?‘ : Orders/Queries
]
Sales ! Ledger }e
'—/ Payments

{ 301440 SHIIHSVD

53

— The need to replicate hardware, particularly electromechanical devices.

— The need to diagnose and cure faults in machines at remote sites (which may be done
over the network).

A distributed database offers the following advantages over the decentralised systems that are
not linked together:

— The data may be administered centrally.
— Central management can obtain data directly from various locations without difficulty.

— The same query languages, utilities and applications programs will be usable on all the
data.

— Functional integration between geographical locations, applications, and operational
and managerial levels will be achieved much more easily.

— Resources can be shared between locations.
— A remote site may be used for back-up processing.
These advantages are offset by the following disadvantages:
— The high cost of establishing and running the communications network.
— Increased software complexity.
— The need for support programmers to diagnose and cure errors over the network.

The balance between costs and benefits must be struck separately for each organisation but
two general approximate guidelines can be given:

1. If 80% or more of the processing on some data emanates from one location then the data
should be held there.

2. If more than 50% of accesses are updates then partitioning is preferable to replication.

The methods of operational research have been used to determine the best locations for data,
the problem being analogous to that of locating warehouses.

At present, however, no manufacturer offers a distributed DBMS despite the advantages in
flexibility it would provide to many users. The closest approach is made by Tandem’s Enscribe
which allows a database file to be divided between locations by its primary key. It can then be
accessed as a single file when necessary. Files may be replicated in any system, but no pro-
prietary DBMS will keep them consistent automatically.

The principal problems in the construction of a distributed DBMS are in the areas of:

— Interfacing dissimilar machines, although this is eased if a single vendor supplies both
machines and software.

— Maintaining integrity, especially after a hardware or program failure. If a failure leaves
updates partially completed at a number of locations, and one or more of these has
failed, the updates must be backed out of the database. This will require separate
recovery actions at each location, and these must be synchronised.

54

— Avoiding deadlocks. This problem is familiar with centralised DBMSs but the optimum
solutions may be different in the distributed case due to the increased time and cost
and the lower reliability involved in network accesses. In particular, methods aimed at
preventing rather than curing deadlocks are preferable.

In short, the distributed DBMS has all the worst problems of database and networks. The
problems are therefore greatly eased if the integrity of part of the system is assured and
may be assumed by the other parts (for example, a message mechanisms of 100% reliability
would be a great asset). The use of duplicate hardware at the circuit (IBM), at the board
(Magnuson), or at the module (Tandem) level can give very high hardware reliability, but
software of similar quality is currently possible only for very simple tasks.

Industry spokesmen have suggested that full distributed DBMS will not be available for ten to
twenty years. We believe that user pressure (especially from US multinationals), combined
with technical improvements, will produce it within the next five years. And once one vendor
has demonstrated this capability the pressure will be on the other to follow.

bb

VIIl. INDUSTRY STANDARDS

Industry standards for DBMSs will be of greatest importance for those enterprises that antici-
pate transporting their applications from one computer system to another, although they may
find that a commercial product is available on both the computer systems. Industry standards
will, however, be of general value if they bring greater stability to the DBMS scene. In this

section we review briefly the most important standards activity under way at the moment
and comment on its significance.

A An American Standard for DBMS

The American National Standards Institute (ANSI) has voted to produce database standards
based on the Codasyl proposals, and the work is expected to be complete within the next five
years. There will be standards for three languages and, although some slippage will probably

occur, the target dates are as shown in figure 32.

Figure 32 The American National Standards Institute Database Standards

Language

Language Target | Remarks
Date
COBOL Data Manipulation 1980 The DML verbs will be
Language included in the next
standard, due in 1980.
FORTRAN Data Manipulation 1983 The DML verbs will be in the
Language next standard but this must be
at least five years on from the
present FORTRAN standard,
which was 1978.
Data Description 1983 DDL is the biggest of the

three jobs and standards-making
work is slow.

Codasyl is currently working on a Data Storage Description Language (DSDL); that is, a
language for the storage schema. Because it is desirable to separate the physical and the logical
aspects of the schema a DSDL standard is likely. However, it will probably not be produced

until at least the mid-eighties.

56

The importance of a standard derives, not from its inherent merits, but from the likelihood
that it will become available on a wide range of machines. Since Burroughs and IBM (and
especially I1BM) are strongly opposed to the Codasyl database proposals, the new standard
will become generally available only if the US government insists (as it did with COBOL) that
every commercial machine it buys shall support it. However, the momentum behind standard-
isation is, we believe, now sufficient to put the promulgation of a standard beyond doubt, no
matter what IBM may do by way of a relational DBMS.

Even without the US government's intervention, vendors will make ‘standard’ DBMSs available
on most commonly used types of hardware. European users who feel suspicious of the likely
quality of the standard should note that Codasyl is open to non-US members, and aiso that
groups in this country have already made valuable contributions to its activities.

B Other Standards

Other standards work relevant to database includes the definition of a common information
retrieval language for Euronet, and the attempts both by an ANSI/SPARC working group
under Charles Bachman and by a committee of the International Standards Organisation to
develop a common framework into which all computing will fit. Neither seems likely to be
very influential in the near future.

C The Implications of the DBMS Standard

The advantage of using any standard product arises less from the inherent merits of the stan-
dard than from the possibility of portability. Choosing a Codasyl DBMS thus has the following
advantages:

— Experienced staff are easier to get, although this is also true of any IBM de facto
standards.

— A change to a very different type of hardware is eased.
— A change to a different, but compatible, DBMS is possible.
On the other hand, these considerations are less than overwhelming at present because:

— There will be no standard until 1983, and the standard will then be different both from
the present Codasyl proposals and the state of the present products.

— The ancillary software, query languages, data dictionaries, and utilities differ between
standard products, and tend to lock in the user. Avoiding this involves a tough-minded
attitude to vendors and may involve more trouble than it is worth.

— IBM may produce a hardware-supported relational DBMS on the long-awaited H series
that is so flexible as to make the alternative DBMSs obsolete overnight. This would be
contrary to IBM practice, and there is some doubt as to whether it is technically
possible. Nevertheless, it might happen. If it did happen, IBM could have substantial
difficulty in transferring their IMS users to the new system, and so IMS is not especially
attractive as an interim solution.

The choice of a DBMS remains a matter of judgment in a complex market. A Codasyl DBMS
is strongly indicated only if a major hardware change is anticipated.

57

IX. FINDINGS AND RECOMMENDATIONS

A Findings

The principal findings of our research are:

18

Database management systems have potential for alleviating the backlog of work that now
confronts most system development departments. Query languages and system building
tools, which are becoming elements in most suppliers’ product ranges, will allow at least
some end-users to develop and enhance systems for themselves,

This trend has implications for the future role of management services. It will tend to

change the present role from one of constructing systems to one of advising and providing
tools for end users.

Users’ experience with database management has been favourable. In almost all cases, users
have achieved the benefit that they expected to achieve and, in many cases, their achieve-
ment has exceeded their expectations. This experience indicates that, if the introduction

of a DBMS is well planned, the DBMS is most likely to be successful and produce worth-
while benefits.

Until at least the mid-1980s the proprietary DBMS will exert a centralising influence on
data processing. This influence conflicts with most other influences which are pushing
organisations towards dispersing both equipment and responsibility.

Those organisations that wish to take advantage of the benefits of both distributed pro-
cessing and of DBMSs in the near future will necessarily have to pioneer. This pioneering
effort will need to be in two areas:

— Data administration. The planning and control of the physical location of data will
add a new dimension to the data administration function.

— Software. Network functions concerned with the integrity of the database etc will need
to be developed. Clearly, highly-skilled people will be needed for this task.

Much of the attraction of the DBMS lies in the ability it provides to integrate systems
that previously were separate. This attraction stems from the potential benefits that
an organisation can obtain from the new facilities which come with integration. However,
integration does pose some potential problems because reliability, recovery, and com-
plexity of implementation become increasingly important. The trade-off between the
potential benefits of integration and the possible costs associated with failure needs to
be made consciously by the management of an organisation.

A separate database administration (DBA) function is vital if a DBMS is to be used effect-
ively. The software is too complex to expect every project team to master. In the longer
term, however, the DBA role will decline. As database becomes a standard data processing
technique, all analysts will acquire the skills needed to recognise the cases where a DBMS

58

10.

ilils

is appropriate and to design a database. Improved interfaces and greater data independence
will reduce the amount of technical detail that the applications programmer must master.
Tuning will be performed by software, and the falling cost of hardware will make tuning
less useful anyway. Similar trends will affect the DBA’s other responsibilities.

Many large organisations are now turning their attention to systems for planning, control
and decision support which can be built on top of functional systems. DBMSs clearly
enable organisations to exploit such opportunities. However, if these new systems are
to be effective they may require skills (for example, in managernent science) which are
not commonly found in management services.

The database approach involves much more than merely using a DBMS. It involves recog-
nising the importance of data as a corporate resource and treating it accordingly.

An organisation that wishes to adopt the database approach does not necessarily have to
use a DBMS. (Conversely, an organisation that wishes to use a DBMS does not necessarily
have to adopt all the principles of data management discussed earlier.)

Central to the database approach is the recognition of the need for data administration,
and the need to include data analysis as a necessary part of the process of systems analysis.

If the concept of ‘data as a corporate resource’ is to be implemented successfully, it needs
to be understood both by management services staff and by line management. Unless they
both understand the principles concerned, it is most unlikely that the inevitable conflicts
of interests will be successfully resolved. This poses a challenge to management services,

since it requires selling to line departments a concept to which they are unlikely to be well
disposed.

With a few exceptions the database approach is, in our view, the preferred future approach.
We believe that those organisations that are not currently employing a DBMS should
concentrate effort on when and how to move towards the database approach. Adopting
the database approach involves more than just selecting and successfully implementing a
DBMS. Before the software tools are introduced all concerned should be educated in the
concept involved and data administration and data analysis techniques should be intro-
duced.

The relational model has received disproportionate attention. It should be regarded as an
extremely valuable technique which is to be used in the process of data analysis. It is
applicable to the analysis and the design of all systems and, in particular, will make any
database more flexible and more easy to extend.

The use of the relational model will help to minimise the effects of moving from one
DBMS to another — and possibly one type of hardware to another. It also prepares for
the use of relational DBMSs which can be expected to provide considerably more hard-
ware assistance than current products provide.

The concepts associated with data analysis and data management are still fluid, and further
understanding can be expected to lead to new and superior products. As in other fields,
current suppliers will need to evolve new products if they are to protect their existing
market base.

This evolutionary process will lead some of those suppliers who have previously been
associated only with software products into hardware supply. Equally, some hardware
suppliers can be expected to add DBMS to their product range.

As hardware costs continue to fall exponentially, the life-cycle of the equipment is short-
ening. For most organisations the selected DBMS (or its derivative) is likely to outlast a

59

12.

13.

B

number of generations of hardware. The selection of a DBMS is, therefore, a particularly
crucial factor in ensuring the success of future application systems. Our research indicates
that those organisations that undertake a selection exercise in which they review the
leading contenders do seem to achieve better results than those that do not do this.

Over the next few years, vendors will introduce products to complete the range of facilities
that they offer. These ancillaries include data dictionaries, query languages and system
building tools. Beyond that, new products will include support for relational and distri-
buted databases.

Standards for DBMSs will emerge over the next few years. We expect an ANSI standard by
about 1983, and we expect that this will be based on existing Codasyl| proposals.

Recommendations

Each organisation will have its own data processing strategy and will already have progressed
some way in the field of data management. Our recommendations below will, therefore, apply
differently to different organisations depending upon their individual circumstances. Some will
be able to incorporate our recommendations in their future plans, whilst some will wish to use
them to audit their achievements.

Our recommendations are:

i1,

Any data processing plan that covers the next three years or more should include the
progressive adoption of the database approach. Clearly it is both sensible and necessary
to proceed through the right pilot project. Such a project should be one that enhances

the likelihood of success and one that poses the minimum threat in the event of failure
or delay.

The database approach is at least as important as the DBMS tools.

It is necessary to train systems analysts in data analysis skills and to incorporate data
analysis in the standard method of the development department. These steps will yield
immediate benefits irrespective of the adoption of a DBMS.

The database approach also implies the separate administration of data. Data admini-
stration needs to be set up as a separate function that has the authority to arbitrate in any
situation where the various interests of end-users and systems development staff are in
conflict. In practice, full autonomy is likely to come from the recognition both by end-
users and systems staff of the value of this approach, rather than by enforcement. Clearly,
the function of data administration needs to be both encouraged and supported in its
early days.

The DBMS is one of the most important elements in the data processing manager’s tool kit.
It will probably be with him longer than either the hardware and at least some of the soft-
ware in his installation.

The choice of the DBMS is a decision that will have a very considerable influence on the
options available within data processing. It will, therefore, affect the quality of service
which is provided to the organisation. This in its turn will affect the way in which manage-
ment services is regarded.

The choice, therefore, deserves both the attention of senior management and the use of the

best possible resources. Those concerned with the selection need to be able to take a
‘management’ view as well as a technical view.

60

c

Quer_y languages which can be used by end-users are now available. Other developments are
providing end-users with ready access to the terminal facilities needed to use them.

We recommend that management services investigate the use of query languages by end-
users as one way of alleviating the shortage of skilled systems staff. Clearly, this involves
not only selecting the right query facility but also identifying an end-user (or users) best
equipped to use it. As with all other innovations, it is important to limit the scope of the
implementation and to choose the best available circumstances,

The selection of new hardware must take account of the availability of good DBMS
facilities — both those that are available now and those which can be expected in the
future. It is likely that the quality of future products will be closely linked with:

— The market base of the product.

— The number of competing product ranges.

In general, those who are using IBM or IBM-compatible processors are likely to have the
widest range of alternatives available to them, but they will have the disadvantage that
they need to choose between them.

A number of vendors now offer ancillaries that enhance the basic DBMS. We recommend
that organisations when selecting data dictionaries, query languages, etc., consider products
offered by vendors other than the vendor of the chosen DBMS.

Those organisations that wish to implement a fully distributed database have to choose
between:

— Waiting at least five years for suitable DBMS products to become available, and waiting
for other organisations to succeed in implementing them.

— Going it alone. Proceeding with a distributed database involves both new data admini-
stration responsibilities and (probably) designing and implementing software to ensure
the integrity of the database.

We recommend that organisations review carefully the available skills and experience in the
relevant fields before embarking on such a venture.

Footnote

In many respects, database management is still in its infancy. It will be of particular interest to
see how it copes with distributed processing and with the convergence of data with other
forms of information. In view of the significance which we attribute to the database approach,
we believe that the Butler Cox Foundation should continue to monitor progress in database
technology and experience. The Foundation should report again on the position within the
next two years.

61

APPENDIX: A LIST OF DATA MANAGEMENT PRODUCTS MENTIONED IN THE TEXT

Name

Vendor(s) Notes
Adabas Adabas Software Ltd DBMS
Adacom Adabas Software Ltd Batch report writer
Adamint Adabas Software Ltd Interface for programming
languages
Adascript Adabas Software Ltd Query facility
Adawriter Adabas Software Ltd

Content Addressable
File Store (CAFS)

Culprit

Distributed Array
Processor (DAP)

Database Design
Aid (DBDA)

Data Dictionary
(DD)

Data Dictionary
System (DDS)

Enform
Enscribe

Data Language 1
(DL/1)

International Computers Ltd

Cullinane Inc

International Computers Ltd

International Business
Machines Ltd

Internaticnal Business Machines Ltd
Adabas Software Ltd

International Computers Ltd

Tandem Computers Inc

Tandem Computers Inc

International Business Machines Ltd

Generalised Information International Business Machines Ltd

System (GIS)

63

Report writer

Specialised hardware

Report writer for IDMS
Specialised hardware

Design aid for DL/1
database

Runs on 2900 machines

Query facility
DBS

Data Manipulation
Language and subschema
language for IMS. May also
be used independently.

Query facility for IMS

Generalised
Management
Information
System (GMIS)

Integrated Data
Dictionary (IDD)

Image

Integrated Data
Management
Systems (IDMS)

Integrated Data
Management
Systems (IDMS)

Integrated Data
Store (IDS)

Integrated Data
Store (IMPS)

Information
Management
System (IMS)

Inquiry

Interactive Query

Facility (QF)
Liar
Mark IV

Multics Relational
Data Store (MRDS)
Natural

Nomad

On-line Query (OLQ)

Prompt

Ramis |1

International Business Machines Ltd

Cullinane Inc

Hewlett Packard Ltd

Cullinane Inc

International Computers Ltd

Honeywell Ltd

International Business
Machines Ltd

International Business Machines Ltd

ASI

International Business Machines Ltd

International Business Machines Ltd

Informatics Inc

Honeywell Ltd

Adabas Software Ltd

CSS International Ltd

Cullinane inc

Theorem Series 1

Mathematica Ltd

64

Developed by IBM and MIT.
Not commercially available,
it was described in ACM
Translations on Database
Systems, December 1976,
344-369

For use with IDMS

DBMS

Codasyl DBMS

Codasyl DBMS

Codasyl DBMS

Provides a relational view
of an IMS database

‘Hierarchical’ DBMS

Query facility for IMS
databases

Query facility for IMS
database

Performance estimating tool
for IMS systems

Relational DBMS available
on Honeywell Level 68

High level language for
Adabas databases

Available as a bureau service
or (in US) on NCSS 3200
mini

Query language for IDMS
database

System building tool

System building tool

Socrates

System R

T—ASK

Total Information
System (TIS)
Total

Query-by-Example
(QBE)

Query (1)
Query (2)

Xibus

Cincom Systems International Ltd

International Business Machines Ltd

Cincom Systems International Ltd

Cincom Systems International Ltd

Cincom Systems International Ltd

International Business Machines Ltd

Hewlett Packard Ltd
Honeywell Ltd

Xionics Ltd

65

Batch report writer

Full function relational
DBMS. It is not commer-
cially available though
currently undergoing beta-
trials with users in Europe
and the US. System R is
described in ACM Trans-
actions on Database
Systems (1976) (2) 97-137

Query facility for Total
database

DBMS — provides extra
data independence for Total
and other databases

DBMS

Relational DBMS

Query language

Query language

SELECTED BIBLIOGRAPHY

BERG, J.L. (ed):

BRITISH COMPUTER SOCIETY:

CHEN, P.P.—S:

DATA, C.J:

GILBERT, J.C:

MARTIN, J:

NOLAN, J.R:

PALMER, I.R:

SENKO, M:

WIORKOWSKI, G.K. and
WIORKOWSKI J.J:

YAQ, S.F.etal:

The Next Steps: National Bureau of Standards,
1976. Available in the UK from the British
Computer Society.

Data Dictionary Systems Working Party Report;
1977.

The Entity-Relationship Model — toward a unified
view of data: ACM Transactions on Database
Systems (1976); 1 (1), 9-36.

An introduction to Database Systems: Addison-
Wesley, 1975.

Can Today's MIS Manager make the translation?
Datamation (1979); 24 (3), 141-51.

Computer Data-Base Organisation; Prentice-Hall,
1975.

Managing the crises in data processing; Harvard
Business Review (1979); 57 (2), 115-126.

Database System — A Practical Reference; CACI,
1975.

Data Structures and data processing in database
systems past, present and future; IBM Systems
Journal (1977); 16 (3), 208-258.

Does a Data Base Management System Pay Off?:
Datamation (April) 1978: 109-114.

Database Systems; Computer (September 1978).

67

Abstract

Report Series Trends in Database
Nolz Management Systems

by David Flint
June 1979

Trends in business data processing such as increasing user requirements and the convergence of
technologies require the integration of data processing systems. Integration may be between
operational and management information systems as well as across applications areas.

Integration requires a new approach to data processing — the database approach. Data must be
seen as a corporate resource that should be understood and managed in its own right. Database
technology is already used successfully by many businesses but it is most effective when used
to support the database approach.

This report discusses the concepts underlying database management systems and explains their
significance and likely impact on data management. The report also examines relevant trends
in hardware and software and discusses the changing market in data management products.

Networking and standards are also discussed insofar as they relate to data management.

The report concludes that the market is a rapidly evolving one and that it offers important
opportunities for the management services department to improve the service provided to the
enterprise. The report recommends the steps that management services should take to exploit
these opportunities.

The Butler Cox Foundation is a research group which gxamines major
developments in its field — computers, telecommunications, and office
automation — on behalf of subscribing members. It provides a set of

‘eyes and ears’ on the world for the systems departments of some of
Europe’s largest concerns.

The Foundation collects its information in Europe and the US, where it

has offices through its associated company. It transmits its findings to
members in three main ways:

— As regular written reports, giving detailed findings and sub-
stantiating evidence.

— Through management conferences, stressing the policy impli-

cations of the subjects studied for management services
directors and their senior colleagues.

— Through professional and technical seminars, where the
members’ own specialist managers and technicians can meet

with the Foundation research teams to review their findings in
depth.

The Foundation is controlled by a Management Board upon which the
members are represented. Its responsibilities include the selection of
topics for research, and approval of the Foundation’s annual report and

accounts, showmg how the subscribed research funds have been
employed.

il The Butler Cox Foundation

Butler Cox & Partners Limited
Morley House, 26-30 Holborn Viaduct, London EC1A 2BP
Tel 01-353 1138, Telex 8813717-GARFLD

SISDOCONSULT
20123 Milano - Via Caradosso 7 — Italy
Tel 86.53.55/81.62.2T7

Akzo SystemsB.V.
Velperweg 76, Arnhem, The Netherlands
Tel 85-662629

Butler Cox & Partners Limited
216 Cooper Center, Pennsauken, New Jersey 08109, USA
Tel (609) 665 3210

Printed in England

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76

