

—_—— ————— ————— o —
= mT= T e = O e i S

) ey T = SRR
- P81 £: £ 1R
i H E i
ER H £ § £%
$: g : Ii.E 2 EA
£ : - : i T
HS- H i Y 2 Fi R

Bl =
£ i

s = 4 s
.. S :
2 i T

FOUNDATIO

Using System Development Methods

Research Report 57, June 1987

Butler Cox & Partners Limited

LONDON
AMSTERDAM MUNICH NEW YORK PARIS

Published by Butler Cox & Partners Limited
Butler Cox House
12 Bloomsbury Square
London WCI1A 2LL
England

Copyright © Butler Cox & Partners Limited 1987

All rights reserved. No part of this publication may be reproduced by any method
without the prior consent of Butler Cox.

Availability of reports
Members of the Butler Cox Foundation receive three copies of each report upon publication;

additional copies and copies of earlier reports may be purchased by members from Butler Cox.

Photoset and printed in Great Britain by Flexiprint Ltd., Lancing, Sussex.

X FOUNDATION

© Butler Cox & Partners Limited 1987

FOUNDATT

Using System Development Methods

Research Report 57, June 1987

Contents
1 The need for system development methods 1
2 Methods, tools, and techniques, and the system
development process 3
The system development process 3
More than one development process is required 6
A working definition of system development techniques,
methods, and tools 6
Summary 7
3 Proprietary methods by themselves are not enough 9
Categories of method 9
No proprietary methods can be used for all types of
development process 10
Proprietary methods do not provide full support for
all development phases 12
Development methods need to be supported by appropriate
tools 14
Summary 18
4 Selecting appropriate methods and tools 19
Identify the development processes to be used 20
Decide where proprietary methods can best be used 20
Choose an appropriate method 20
Criteria for selecting a method 23
Choose tools to support the methods 25
5 Managing the implementation of methods 26
Obtain senior management consent 26
Consider the organisation of the systems department 26
Gain experience in using the new methods 27
Implement a new method as a distinct project 27

6 Monitoring the payback from system development methods 29

Payback achieved depends on the type of method 30
Improved quality of systems 30
Improved control over the development process 31
Do not expect productivity gains from methods alone 32
Implement advanced tools to support proprietary methods 32
Report conclusion 33

Management Summary

A Management Summary of this report has been published separately and distributed
to all Foundation members. Additional copies of the Management Summary are available
from Butler Cox

Chapter 1

The need for system development methods

Application system development is inherently a
highly complex and difficult task. In many organ-
isations, the system development group typically
develops several kinds of applications. These may
include process-control, transaction-processing,
and decision-support systems. There may also be
systems based on novel technology such as expert
system shells. These systems may be developed for
a variety of computers, in a number of languages,
and they may vary greatly in size. The level of
experience of the users and developers of these
application systems varies, as may the level of
business and development risk associated with
each system and the urgency with which they are
required. Because of the complexity and difficulties
of system development, and the different types of
system that have to be developed, several different
system development processes may be used — one
for transaction-processing systems, another for
decision-support systems, and so on.

Moreover, the demand for new systems still
exceeds the capabilities of most organisations to
deliver them, and many systems being developed
now are more complex than in the past. The result
is that, in many organisations, the systems devel-
opment department continues to be perceived as
delivering systems much later than was planned,
and at much higher cost. And often the systems
that are delivered do not match their users’ needs.

Most system development managers recognise that
there is room for improvement in the way that
systems are built. They realise that, all too often,
they are providing systems that are lacking in
quality, delivered late, and cost more than was
budgeted. They would like the development
process to be more manageable and less dependent
on the skills of the individual analysts and pro-
grammers — experts who are in short supply and
expensive to train. In other words, they would like
a well-defined systematic process for developing
systems.

In an attempt to solve these problems, many organ-
isations have tried to standardise their develop-
ment processes by using a proprietary development
method supported by appropriate tools. A wide

FOUNDATION

© Butler Cox & Pariners Limited 1987

range of such methods and tools are now in use,
with each one promoted by its supplier as the
solution to all development problems. Many sys-
tem development managers are confused by the
plethora of products and the competing claims of
the various suppliers.

In setting out to research this topic, we were asked
by many Foundation members to provide advice
on choosing a single system development method
that could be used to solve all their organisation’s
development problems. The underlying belief was
that system development methods had now
reached the stage where it was possible to do this.

However, our research showed that user organ-
isations are discovering that a method promoted
as an all-embracing solution to system development
is actually applicable only to specific phases of the
development process. This means either that
additional methods have to be purchased to cover
the other phases, or that in-house procedures have
to be used as well. And many organisations are
discovering that proprietary methods often do not
provide the management procedures necessary to
ensure the success of development projects.

Furthermore, user organisations often are not
making the best use of proprietary development
methods. In some cases, a method has been aban-
doned because the analysts and programimers were
not provided with the development tools that
would have allowed them to use the method
effectively. This is in part due to the fact that many
people (users and suppliers) are confused about
what a system development method is and how it
relates to development tools and development
techniques. Users are also unclear about the
relative benefits to be gained from using methods
and tools. This confusion is compounded by the
exaggerated claims that some suppliers of methods
and tools make for their products.

It is also costly to implement new methods and the
support they require, and considerable manage-
ment effort is required to ensure that a method is
implemented properly. The hoped-for benefits are
not always realised, and some of the benefits are

Chapter 1 The need for system development methods

difficult to quantify in any case. Hence it is hard
to justify an investment in new methods.

Because of these findings, we soon reached the
conclusion that it is not possible for an organisation
to expect a single proprietary method to solve all
development problems. Nor is this situation likely
to change in the foreseeable future. The focus of
our research therefore shifted to determining how
Foundation members could make the best use of
the proprietary system development methods that
are currently available.

The conclusion we reached is that each organisa-
tion needs to use proprietary system development
methods selectively to attack those development
activities that cause the most problems. Different
proprietary methods might be used for project
management, for systems analysis and design, and
for programming. Alternatively, a proprietary
method might be used only for the programming
phase, with in-house standards being used for the
rest of the development process.

Before deciding whether to implement a pro-
prietary development method, it is first necessary
to understand clearly the relationships between
methods, techniques, and tools, and their respec-
tive contributions to the systems development
process. We cast some light on this confused area
in Chapter 2.

In Chapter 3, we explain why a single proprietary
method is not a sufficient solution to an organ-
isation’s development problems. No method covers
all the phases of the development process, and
even those phases that are covered may be in-
completely covered. Furthermore, a particular
method may be suitable for one type of develop-
ment process but not for others. Chapter 3 also
shows that installing only one method by itself may
actually be counterproductive. It is necessary to
install development tools as well.

Chapter 4 provides advice about how to select
proprietary system development methods and the
tools that will be required to support them. Many
of the alternative methods provide similar tech-
nical facilities, and two important selection criteria
are the stability of the supplier and the support
provided by the supplier.

One of the keys to implementing a proprietary
method successtully is careful management of its
introduction. Chapter 5 provides advice on how to
do this.

Finally, once a new method has been implemented,
it is necessary to monitor the benefits being
achieved by its use. Chapter 6 identifies the
potential benefits that should be monitored.

The report is based mainly on research carried out
at the end of 1986 and the beginning of 1987. Some
seventy interviews were conducted both with
suppliers and with users of proprietary methods
throughout Europe. We also drew on the opinions
of a number of experts on this topic.

Apart from this specific research, we also referred
to our other related research and extensive con-
sultancy experience in this area, including that for
Foundation Report 47 — The Effective Use of
System Building Tools.

The research for this report was led by Mary
Cockcroft, a principal consultant with Butler Cox.
Mary has carried out a wide range of consultancy
assignments advising large organisations about
system development strategies and the use of
development methods. She was assisted by Rob
Moreton, an associate consultant with Butler Cox
who has extensive experience of the theory and
application of development techniques; David Flint,
a principal consultant with Butler Cox and the
author of Foundation Report 47; and Simon Forge,
a senior consultant with Butler Cox’s Paris office.

FOUNDATION

© Butler Cox & Partners Limited 1987

Chapter 2

Methods, tools, and techniques, and the
system development process

There is a considerable amount of confusion, among
user organisations and suppliers of development
methods and tools, about the meaning of the terms
‘development method’, ‘development technique’,
and ‘development tool’. This confusion is due
largely to a misconception about how a proprietary
development method helps with the system devel-
opment process. Contrary to popular belief, most
proprietary methods help with only part of the
total process. Indeed, in some cases, it may be
necessary to use several proprietary methods, each
one covering a different part of the life cycle. Thus,
before we can describe the relationships between
methods, tools, and techniques, we first need to
explain what we mean by the system development
process — the series of activities that encompasses
the whole of the systems life cycle.

THE SYSTEM DEVELOPMENT PROCESS

The system development life cycle typically begins
with a survey or feasibility study and ends with an
operational system that is then modified and
maintained until the end of its useful life. The need
to manage systems throughout the whole of their
life cycle has been recognised for a decade or more,
but, surprisingly, we found some major organisa-
tions with multimillion-dollar investments in
systems that were only now introducing the life-
cycle concept. Traditionally, they had formed
project teams of analysts and programmers, pro-
vided the project manager with a copy of the
standards manual (which typically specified the
programming standards to be used), and left the
team to get on with the development of the system.
These companies now recognise that a more
methodical approach to the whole system devel-
opment process could improve the quality, cost,
and timeliness of development.

Our first concept, then, is that of the system
development process. We use this term to describe
all the phases and activities that make up the
complete life cycle of a system. Depending on the
size and complexity of the application being
developed, the development process may take
anything from a few days to several years. There

 FOUNDATION

@ Butter Cox & Partners Limited 1987

are essentially two major types of system devel-
opment process:

= ':I'he conventional linear process, where progress
is achieved by proceeding in a linear fashion
through each successive phase of the life cycle.

— The iterative process, where several passes are
made through one or more of the life-cycle
phases, with additional functionality and detail
being added with each pass. The iterative
process usually relies on the use of prototyping
at the requirements-definition phase.

Some organisations now use both types of system
development process, selecting the one most suited
to the application to be developed. We have also
identified six other alternative types of develop-
ment process, which are variants of the two main
types. Each development process is described in
more detail below.

THE CONVENTIONAL DEVELOPMENT PROCESS

The conventional development process has been
used for many years for the development of com-
mercial and business applications. Typically, the
work is subdivided into well-defined steps or
phases, with the workflow being controlled and
monitored by formal project-management tech-
niques. More recently, proprietary system devel-
opment methods have been used to standardise the
tasks carried out during one or more of the life-
cycle phases.

THE ITERATIVE DEVELOPMENT PROCESS

An iterative development process is more appro-
priate for applications where the users’ require-
ments are less easy to specify and where the scale
of the application is small enough to allow a proto-
type to be built and revised quickly using advanced
system-building tools such as Natural, Focus,
Mapper, or Linc.

It is more difficult to use formal project-planning
and control techniques with the iterative devel-
opment process because the number of iterations
that will be required cannot generally be predicted
in advance. In practice, iterative development is

Chapter 2 Methods, tools, and techniques, and the system development process

better managed as a sequence of small project.s,
with each project typically lasting for between six
and nine months.

ALTERNATIVES TO CONVENTIONAL AND ITERATIVE
DEVELOPMENT

In practice, large organisations will need to develop
systems in ways that do not correspond exactly
with the conventional development process or the
iterative development process. The development
process used in practice will depend on the nature
and size of the application, its urgency, and
whether it is to be developed by data processing
staff or by end users. Figure 2.1 shows the six main
alternatives to the conventional and iterative
development processes. They have the charac-
teristics described below, and they require
different facilities in the methods that could be
used to support them.

Small-systems development process

The small-systems development process is appro-
priate for new small systems and for small en-
hancements to existing systems. Typically, the
development takes less than nine months’ elapsed
time and requires no more than about two or three
man-years of effort. The small-systems develop-
ment process covers the same range of applications
as the conventional development process.

A small-system development process is typically a
variant of the conventional development process,
but, because the timescale of development is
shorter and there are fewer development staff
working on the project, less stringent project-

management techniques are required. Such devel-
opment commonly uses structured analysis and
design, but prototypes may also be used for re-
quirements specification and as the basis of the
implemented system. Advanced system-building
tools such as fourth-generation languages can be
used for small-systems development.

Some organisations now deliberately subdivide
large complex systems into several subsystems,
each of which is implemented using the small-
systems development process. The advantages are
that the management of the overall project is
simplified and subsets of the total system are
delivered earlier than they would be otherwise,

Accelerated development process

Accelerated development is used to build a work-
ing system as quickly as possible in situations where
the operational performance of the completed
system is not a major concern. This development
process is based on the use of advanced system-
building tools such as Natural, Focus, Mapper, and
Linc,

In accelerated development, the tools are used to
build prototypes for requirements analysis and are
also used to construct the final system. The use of
prototyping and the high productivity in the con-
struction phase allows smaller teams and shorter
timescales, so that, relative to conventional devel-
opment, documentation and project-management
requirements can be reduced. Accelerated devel-
opment requires fewer, but more skilful, develop-
ment staff. Accelerated development can, given

Figure 2.1

Basic system development processes and alternatives

Nature and size

Development process of application

Urgency to develop .

the system System developer

Basic processes

Conventional (linear) Medium-to-large

Iterative Small-to-medium -
Difficult to predefine user

requirements

Conventional data processing |

Alternative processes
Small-systems Small

Conventional data processing

" Small
Conventional data processing
Operational performance not

Accelerated

a concern
Application-package Standard data processing
applications
End-user Very small

Department or user-specific

Realtime
Process control

Specialist-applications

Emergency Any

Systems department

Systems department

Normallurgent Systems department

Normal/urgent End user

Normal Specialist department/

systems department

Extreme urgency Systems department

FOUNDATION

© Butler Cox & Partners Limited 1987

Chapter 2 Methods, tools, and techniques, and the system development process

good staff and tools, be applied to data processing
and decision-support systems requiring up to five,
or even ten, man-years of development effort. It
may be used as an alternative to the small-systems
development process (except for enhancements),
or even for systems that would otherwise require
the conventional process.

Application-package development process

For many types of application, particularly in the
financial and accounting areas, packages providing
a large proportion of the functionality required by
the users already exist. As packages improve in
quality and coverage and become less expensive
than customised in-house development for a wider
variety of applications, the need to be able to buy
in packages and customise them will increase.
A development process is therefore needed that
can identify, select, adapt, and implement the
packages. Such a process usually incorporates the
following phases:

— Analysis of requirements.

— Review of the packages available in the market,
and selection of a shortlist.

— Comparison of the application requirements
with the deliverables of each shortlisted package
and selection of a package.

— Tailoring of the package to match the application
requirements more closely.

— Implementation of the package.

The application-package development process
therefore includes some phases not required in
conventional development, but it does impose
some additional constraints. For example, the tools
available for tailoring the package may be specific
to the actual package chosen.

End-user development process

Users should be involved in all application system
developments. However, some applications can be
developed by the end users themselves. These
applications provide limited functionality and are
usually very small systems, designed to meet an
individual or departmental requirement.

For users, system development is just one of their
responsibilities, and they neither need nor can they
be expected to be proficient in the use of a com-
prehensive development process intended for full-
time professional system development staff. But
the systems department can provide the users with
guidance by:

— Identifying appropriate system-building tools
that can easily be used by end users and that
are consistent with the organisation’s systems
architecture.

FOUNDATION

© Butler Cox & Partners Limited 1987

— Training users in the use of simple analysis
techniques and the system-building tools.

— Setting up a central support group (for example,
an information centre) that can provide assist-
ance and consultancy effort to end users when
required.

Specialist-applications development process
In addition to conventional data processing and
end-user computing applications, there are also
specialist applications such as ‘embedded’ systems,
process-control, and realtime applications.

The development process used for these applica-
tions is similar to a conventional linear process,
using formal project-management techniques at
each development phase, as well as structured-
analysis, design, and programming techniques.

However, the major differences between these
specialist applications and data processing appli-
cations are that:

— The level of ‘correctness’ and reliability required
in these systems is high. Correctness is the
extent to which the system satisfies its specifi-
cation, and reliability is the extent to which a
system can be expected to perform its intended
function with the required precision.

— The design of the application is oriented towards
activities rather than data, and there are time
constraints on system operation in realtime
systems.

These differences, and the fact that the users of
specialist applications are often engineers, mean
that the use of ‘formal’ methods for specification
and design is much more prevalent in realtime
development. (Formal methods are described in
more detail in Chapter 3 on pages 11 and 12.)

In addition, the tools used for these specialist
applications are different from those used in
traditional data processing. Operational perform-
ance is a major concern in these systems, and the
tools used reflect this concern. As a consequence,
little use to date has been made of advanced
system-building tools for implementing specialist
applications, apart from the requirements-defini-
tion phase.

If specialist applications are not a routine part of
their activity, most organisations subcontract this
type of development to software or systems
houses. Other organisations form separate devel-
opment teams dedicated to this kind of work,
and these teams use a development process that
is different from that used for data processing
applications.

Chapter 2 Methods, tools, and techniques, and the system development process

Emergency development process

Sometimes, it will be necessary to develop an
application in a very short time. In some cases, it
will be possible to use an accelerated development
process, but even this may not be sufficient to meet
the urgent timescales required. With such appli-
cations, time is of the essence, and the cost of
development is a secondary concern.

The keys to success in developing emergency
applications are to minimise the technical risks,
avoid distractions, and ignore costs. The methods
and tools used should therefore be those with
which the team are most familiar (provided that
they are adequate). The development process for
emergency applications will therefore vary accord-
ing to the requirements of the particular applica-
tion. The system development manager and the
project manager should decide between them
which of the available methods and tools are most
applicable.

They may decide, for example, that they will use
an iterative process without strict project-man-
agement techniques. The development team might
be provided with an advanced integrated project-
support environment together with advanced
system-building tools.

MORE THAN ONE DEVELOPMENT PROCESS
IS REQUIRED

From the description above of the different types
of development process, it is evident that an
organisation is unlikely to find a single develop-
ment process that is adequate for all its needs.
Some organisations try to use a standardised con-
ventional process for all types of application, and
this has caused problems. A common difficulty is
caused by spending too much time on managing
small projects, because the standard process
requires all phases of the life cycle to be recognised.

Several organisations reported that delays in
developing small systems were a major source of
user dissatisfaction. Some of these organisations
reported that development staff begin either not
to use the standards for the conventional devel-
opment process, or to pay only token attention to
their use, even in those circumstances where they
are necessary. On the other hand, the standards
used by some organisations mean that they do not
spend enough time on planning and managing large
projects. The result is that costs increase and
timescales slip on large projects.

Other organisations attempt to use a development
process based on a proprietary method for inapprop-
riate applications. For example, one company had

used the Vienna Development Method (VDM) for
a decision-support system that involved senior
user management during the analysis phase. This
company found that the very formal mathematical
VDM method was inappropriate for this type of
application because the users did not understand
the products of the analysis phase (a stream of
mathematical symbols).

A WORKING DEFINITION OF SYSTEM
DEVELOPMENT TECHNIQUES, METHODS,
AND TOOLS

Our research showed that the terms ‘system
development techniques’, ‘system development
methods’, and ‘system development tools’ are used
to mean different things by different people. Here
we define these terms as we use them in this
report. We believe that the definitions help to
clarify this confused area and make it easier to
understand some of the misconceptions that users
and suppliers have about the products they use and
supply. The definitions are summarised in Figure
2.2, and the interrelationships between techniques,
methods, and tools are shown diagrammatically in
Figure 2.3.

Figure 2.2 Definitions of system development techniques,
methods, and tools

Techniques | The rigorous procedures on which system
development is based. Often, techniques are
developed by academics and made available to
all through research papers.

Examples of technigques include data analysis,
functional decomposition, entity life history,
prototyping, and structured programming. Most
of these techniques are concerned with the how-
to-do-it, rather than the what-to-do, aspects of
systems development.

Methods A system development method isa way of
implementing in practice the ideas embodied in

- | a system development technique. The same

- | technigue may form the basis of several :

| competing methods A method specifies either
‘how to carry out a series of activities, or the
procedures for determining which activities have
to be carried out, or a combmaﬂon of bo!h

leferent types of method coverdlﬁerent phases
of the deve!opmen! life cycle.

Tools Development tools automate the activities within
a development method. Indeed, without such
tools, many methods are very difficult to use in
practice.

Some tools are specific to a particular method:
others to a particular technique. Other tools are
generic in nature because they are independent

of the method being used.

X FOUNDATION

© Butler Cox & Partners Limited 1987

Chapter 2 Methods, tools, and techniques, and the system development process

Figure 2.3 Interrelationships between system
development techniques, methods, and tools

Techniques | Technigue A Technigue B| | Technique C
Tools for
Technigue A
Toals for
Y
) ¥ A —Method Y
Methods Method X Method Y
\ } A
General-
purpose Tool 1 Tool 2
tools

DEVELOPMENT TECHNIQUES

System development techniques are the rigorous pro-
cedures on which system development methods are
based. In general, techniques are nonproprietary
because they are developed by academics and are
made available to the world at large through research
papers. Examples of system development techniques
include data analysis, functional decomposition,
entity life history, prototyping, and structured pro-
gramming. Sometimes a technique is originated by a
consultancy firm and is available only from them as
a packaged proprietary method. Most techniques are
concerned with the ‘how-to-do-it’ (as opposed to the
‘what-to-do’) aspects of systems development.

DEVELOPMENT METHODS

System development techniques are commercial-
ised as proprietary system development methods.
In other words, a system development method is
a way of implementing in practice the ideas em-
bodied in a system development technique. (Some-
times a proprietary method may, in fact, be based
on several techniques.) Suppliers may take the
same basic technique and ‘package’ it in different
ways, and today, many of the best-known pro-
prietary methods are based on the same underlying
techniques. For example:

— Yourdon's method is based on data analysis and
functional decomposition.

— LSDM is based on data analysis, functional
decomposition, the entity life-history concept,
the life-cycle concept, and phased project-
management techniques.

— Prism is based on the life-cycle concept and
phased project-management techniques.

A system development method specifies either how
to carry out a series of activities, or the procedures

FOUNDATION

© Butler Cox & Partners Limited 1987

for determining which activities have to be carried
out, or a combination of both. The purchaser of a
proprietary method receives a procedures manual
describing the activities that have to be carried out
and a series of standard forms to be completed as
specified in the manual. Until recently, methods’
suppliers did not provide any development tools for
use with their method. It was up to the user
organisation to work out how best to carry out the
activities specified in the procedures manual.

DEVELOPMENT TOOLS

More recently, development tools for automating
the activities within a development method have
become available. Indeed, many suppliers have
recognised that without such tools, their methods
are very difficult to use in practice, and they now
provide tools designed specifically for use with
their methods. An example is IEF (Information
Engineering Facility), which is designed specifically
for use with James Martin’s Information Engineer-
ing method. Another is the Yourdon workbench
product, which is designed for use with the
variants of the data-analysis and functional-
decomposition techniques used by the Yourdon
development method.

Other development tools are generic in nature —
that is, they are not designed for use with a specific
method, but for a range of methods based on
particular techniques. An example of such a
product is Index Technology's Excelerator (an
analyst’'s workbench product), which is designed
for use with methods that use data-analysis and
functional-decomposition techniques.

Some generic development tools can be used at
different phases of the systems life cycle and are
independent of the development methods being
used. They can range in complexity from flow-
chart templates to sophisticated integrated project-
support environments (IPSEs). Sometimes, generic
development tools are software-based (system-
building tools, for example, which were the subject
of Foundation Report 47 — The Effective Use of
System Building Tools), or a combination of hard-
ware and software. Philips Maestro is an example
of a development tool based on a combination of
hardware and software.

SUMMARY

A particular development method may be based on
several development techniques, and the same
technique may be used by different methods.
Development tools may be specific to a particular
method or technique, or they may be generic tools
that can be used with a range of methods. Propriet-
ary development methods will therefore differ

Chapter 2 Methods, tools, and techniques, and the system development process

from each other in the extent to which they cover
the total development process and in the extent to
which they cover the what-to-do and how-to-do-it
aspects of the phases they do cover.

The definitions of system development technique,
method, and tool presented above should make it

clear that one single proprietary development
method is unlikely to be sufficient for all of the
development processes that are likely to be used.
It should also be clear that methods by themselves
are insufficient; tools are also needed in order to
use the methods effectively. We develop these
themes in more detail in the next chapter.

X FOUNDATION

© Butler Cox & Partners Limited 1987

Chapter 3

Proprietary methods by themselves are not enough

There are a wide variety of proprietary develop-
ment methods available in the marketplace. Each
is backed by the vociferous claims of its supplier
that it is the solution to the system developer’s
problems. In our research we reviewed 21 develop-
ment methods. They are listed, together with their
suppliers, in Figure 3.1.

Figure 3.1 System development methods reviewed during
the research

Method Supplier
Management methods : '
_BIS Modus BIS o
MCP el Nonpropnetary refer in

! M Gedin, RATP, Paris
Method 1 Arthur Andersen & Co
Prism : Hoskyns Group Ltd
SDM (System Development | Cap Gemini Sogeti
Method)
~ SPDM {Small Project

. oject Hoskyns Group Ltd
o De_ve_loprr__:en-t Method) -

Smgle phase methods
Qo,e = lopdiome Desigiiers ptc

| Nonproprietary; refer 1o o
E Mumford, Manchester
Busmess_ School

' Eihlcs

- JSP (Jackson Struc:tured

Programming)

 Slim (Sofware Life Cyc|e
Management)

lasm Europe Ltd

‘Multiphase methods |
Delta Delta S ftware

DA ({mBractwe Design |

 Approach)

JSD (Jackson System

_ Development)

chael Jackson Systems Ltd

Cap Germm Sogeti,
_Sema-Matra

i Sofi Systems' '

p!
Prof Checkland at
_ Lancasier University

: fi_YOUTdUl’I '

lntegrated methods

_ Information Engineering
LSDM/SSADM }
LSDM Fastpath
‘Siradis

LBMS (Learmonth & Burcheit
: Management Systems)
| PE Consultancy Services

CATEGORIES OF METHOD

Development methods differ from each other in
the functionality they offer in two main respects:

— The extent to which they cover the phases of
the development process (‘what to do’).

— The extent to which they define how the
development phases are to be executed (‘how
to do it’) as well as what is to be done.

Figure 3.2 shows the four distinct categories of
system development method (management meth-
ods, single-phase development methods, multiphase
methods covering two or three consecutive develop-
ment phases, and integrated methods) and how
they differ with respect to these two parameters.
(In addition, some methods, VDM for example, are
designed to be used with particular types of appli-
cation, such as realtime process-control systems.)

MANAGEMENT METHODS

Some proprietary methods specify the various
phases of the development process, stating the

Figure 3.2 Categories of system development method

-« Coverage of the method ———»

All

Phases of
/ the

| development
7 Drocess
covered

FOUNDATION

© Butler Cox & Partners Limited 1987

Chapter 3 Proprietary methods by themselves are not enough

objectives of each phase together with what is to
be done and the deliverables. Typically, these
methods are document-orientated and tend to rely
on bureaucratic procedures. They usually cover
most phases of the development process, helping
primarily with the management of the project
rather than the execution of each phase. They can
be called management methods.

Management methods originate mainly from
systems consultancies that have developed the
methods as an aid for their own work. Some
examples are Method 1, Prism, and MCP.

SINGLE-PHASE DEVELOPMENT METHODS

At the other extreme of the methods spectrum are
those that address only one phase of the develop-
ment process. Their emphasis is on how the phase
is to be undertaken, although they do also provide
some guidance on what is to be done. Examples
include QSM’s Slim (for the project-planning and
estimation phases), and Jackson’s Structured Pro-
gramming.

MULTIPHASE DEVELOPMENT METHODS

Some methods address more than one phase of the
development process but concentrate on the
analysis and design phases, the core of the
development life cycle. Others (the system-build
methods) focus on the programming and testing
phases. Like the single-phase development
methods, they too define how the phase is to be
undertaken, providing limited guidance as to what
needs to be done. Typical examples of these
methods are the Yourdon development method,
SADT (Structured Analysis and Design Tech-
niques), and Merise.

INTEGRATED METHODS

Finally, there are methods that attempt to cover
the whole development process. These methods

define both what is to be done and how it is to be
accomplished. They are integrated methods both
in the sense of providing project-management and
development methods, and in the sense of linking
the techniques, methods, and tools used in the
different phases of the development process.

They are the most complex and comprehensive
form of method. Examples are James Martin’s
Information Engineering and LSDM/SSADM.
(LSDM and SSADM are, in effect, the same
product. SSADM is the version of LSDM that is
used in government installations in the United
Kingdom.)

NO PROPRIETARY METHODS CAN BE USED
FOR ALL TYPES OF DEVELOPMENT PROCESS

All of the proprietary methods we reviewed can
be used with the conventional linear development
process, although none of them covered every
phase. However, none of them could be used with
all types of development process. At the best, most
of the methods provided limited support for only
two or three development processes.

Many of the methods were not suitable for special-
ist (realtime and process-control) systems because
of their emphasis on data rather than activity or
event analysis, which is critical to many such
systems. Specialist systems were, however, catered
for by methods developed for their particular
needs.

Several methods recognise the need to cater for
small as well as medium-to-large systems develop-
ment. But the other development processes are
only partially supported, and by only a few
methods. Figure 3.3 summarises the coverage
provided by some of the methods we examined.

Figure 3.3 Different proprietary methods support different development processes

Type of development process T
Conventional Small Application-

Method (linear) Iterative systems |Accelerated*| package End-user Specialist | Emergency
Information P v » » oo o o~
Engineering -

JSP v w - - v

Prism - - - e -

Slim o~ » - - -
Yourdon - v - - 2z

*Accelerated development typically relies on the use of system-building tools such as fourth-generation languages.

10

Chapter 3

SUPPORT FOR ITERATIVE DEVELOPMENT

Most suppliers of proprietary development
methods recognise the need for iterative develop-
ment. For example:

_ James Martin’s Information Engineering allows
prototyping and structured-decomposition tech-
niques to be used for iterative development,
and recognises that it is a possible development
process.

— The Yourdon method also recognises a form of
iterative development (called radical top-down
development), and again provides some support-
ing techniques.

— The techniques inherent in Jackson System
Development and Jackson Structured Pro-
gramming could also be used for iterative
development.

Usually, however, their products do not provide
detailed standards and procedures for this type of
development process.

SUPPORT FOR SMALL-SYSTEMS DEVELOPMENT

Many proprietary methods can be used during
small-systems development, and suppliers have
realised the importance of catering for a ‘cut-down’
version of the life cycle. This avoids burdening a
small project with unnecessarily complex and
bureaucratic procedures that can be justified only
in large-scale projects.

Some methods offer an alternative version speci-
fically for small systems, with its own life cycle and
associated standard forms. Hoskyns’ Prism, for
example, offers the Small-Project Development
Method (SPDM). This is designed for projects typic-
ally lasting about six elapsed months and involving
little new technology or hardware. SPDM is based
on the same philosophy as Prism, but it specifies
fewer review points because of the reduced risk
associated with small projects. The main phases of
SPDM are shown in Figure 3.4.

The integrated methods such as Information
Engineering and LSDM/SSADM also offer small-
systems methods. The latter is called LSDM
Fastpath and is a reduced version of LSDM for use
with smaller projects with tight timescales.

SUPPORT FOR ACCELERATED DEVELOPMENT

Suppliers recognise the need for an accelerated
development process, but they do not provide
methods - specifically designed for this type of
development. Accelerated development typically
relies more on the use of system-building tools
(such as fourth-generation languages) rather than
on methods.

FOUNDATION

© Butler Cox & Partners Limited 1987

—_+——

Proprietary methods by themselves are not enough

Figure 3.4 Hoskyns’ SPDM (Small-Project Development
Method) is based on a cut-down version of the

life cycle
Feasibility
study
Functional - =
systems design|— — — — — —| prepare for
. installation

I

System and |
program design l
l

|

|

|

|

/

Program cod'mg
and testing

Installation

SUPPORT FOR APPLICATION-PACKAGE DEVELOPMENT

Few proprietary methods incorporate techniques
for package selection. In our sample, only BIS
Modus, Method 1, Prism, and James Martin’s
Information Engineering have these techniques.

SUPPORT FOR END-USER DEVELOPMENT

Not surprisingly, few proprietary methods provide
guidelines for end-user development. Typically,
end users are provided with fourth-generation
languages, limited training in development
techniques, and access to assistance (often from an
information centre) from their development group.
Both Modus and Information Engineering provide
guidelines on how to manage end-user develop-
ment, however.

SUPPORT FOR SPECIALIST-SYSTEMS DEVELOPMENT

Most of the well-known proprietary development
methods cannot be used to develop specialist (that
is, realtime and process-control) systems because
the methods are heavily data-oriented and are not
activity- or event-based.

However, specific methods have been developed
for these specialist systems. These methods are
expensive to purchase and use because they have
to meet the demanding quality and performance
requirements of specialist systems. The 1986
STARTS (Software Tools for Application to Large
Real Time Systems) Purchasers’ Handbook dis-
cusses several methods that can be used for

11

Chapter 3 Proprietary methods by themselves are not enough

realtime systems (see Figure 3.5) and recommends
how some of them could be combined with tools.
(This handbook is published in the United Kingdom
by the National Computing Centre on behalf of the
STARTS Public Purchaser Group, whose member-
ship is drawn from seven major purchasers of large
realtime systems.)

Mathematically based ‘formal’ methods such as the
Vienna Development Method (VDM) are also useful
for realtime systems development because they:

— Provide a formal technique for the analysis and
documentation of systems and they encourage
clear thought.

— Provide an unambiguous specification.

— Help in verifying the ‘correctness’ and accuracy
of the design, because errors can be detected
mathematically.

However, these formal methods are not suitable for
developing commercial and business applications
because:

— They are complex, take a long time to under-
stand (up to three months for VDM), and are
difficult for commercial development staff to
learn.

— Users of commercial and business applications
are unlikely to understand the documentation
that the method requires to be produced.

— It is difficult to measure progress on a project
that is being developed with a formal method.
Sometimes, it is necessary (for example) to
throw away a poor specification and start again.

PROPRIETARY METHODS DO NOT
PROVIDE FULL SUPPORT FOR ALL
DEVELOPMENT PHASES

None of the proprietary methods we examined
fully supports every phase of the conventional
development process (Figure 3.6). Apart from
project-management methods, no method covers
every phase of development; they vary in how
much of each phase they address (project-man-
agement methods do not cover the how-to-do-it
aspects of project management, for example), and
they also vary substantially in how they address
each phase. Even the so-called integrated methods
provide only limited support at the survey and
feasibility phase, and they provide no support at
the implementation and maintenance phases.

LACK OF SUPPORT FOR ALL PHASES

Although some methods cover most phases of
development, no single method covers every phase
of the conventional development process. This

12

Figure 3.5 Realtime methods recommended by the
STARTS (Software Tools for Application to
Large Real Time Systems) Purchasers’
Handbook

Method

Dagcr;‘ption -

JSD Jackson System Development aids in systems
analysis and design.

Mascot (Modular Approach to Software Construc-
tion, Operation, and Test) is a design method
supported by a programming system, supporting the
later phases of design and impiementation.

Mascot

Price Price is a project-estimating method.
(Source: 1986 STARTS Purchasers’ Handbook)

means that it is not possible to purchase a single
method for all aspects of conventional develop-
ment. It will either be necessary to purchase
several methods, each covering some of the phases,
or, if one method is purchased, it will be necessary
to fill in the gaps with in-house procedures and
standards. Typically, those methods that focus on
system design and building fail tc cover project
management and requirements specification, and
vice versa. For example:

— The project-management methods (such as BIS
Modus, Prism, and Method 1) tend not to extend
to the implementation level. This deficiency can
partially be overcome by the use of additional
tools. For example, if BIS Modus is used in
conjunction with BIS IPSE, it provides coverage
of most of the phases.

— Although the Yourdon development method
provides advice on the use of the project devel-
opment life cycle, it is designed primarily to
provide a set of systems analysis, design, and
implementation techniques, and only covers
these phases.

— James Martin's Information Engineering covers
most phases of the development process, but
does not provide detailed project management
facilities and techniques. Furthermore, it does
not provide facilities to ensure that changes
made in one part of the design are consistent
with other parts of the design.

In general, the single-phase, analysis and design

R COX FOUNDATION

© Butler Cox & Partners Limited 1987

Chapter 3 Proprietary methods by themselves are not enough

(multiphase), and integrated methods do not pro- design. It can also be used when determining
vide project-management facilities. If one or more requirements because it provides a graphical
of these types of method are used in a system documentation facility, which aids communica-
development project, the project manager will tion with users. However, SADT does not pro-
need to make separate arrangements for project vide procedures for obtaining information nor
management, perhaps by also using one of the. any documentation formats for recording it.
proprietary project-management methods.]

— LSDM/SSADM provides procedures for most

There are, of course, project-management methods aspects of the conventional development
and tools that have been developed for other types process, but stops at the level of ‘first-cut
of project but that can be applied to system program outlines (or profiles).

development projects. For example, PERT (project
evaluation and review technique) can be used to
identify the critical path of activities within a But it does not provide a structured design,
project, whatever its nature. Other such techniques which would be an advantage for some main-
have either been tailored to suit the needs of tenance jobs.

system development projects, or have been used
as the basis for system development project-
management methods.

— JSP (Jackson Structured Programming) provides
structured code that aids system maintenance.

Methods may also vary in their coverage of phases:

— LSDM/SSADM and Stradis specify both how to

INCOMPLETE COVERAGE OF INDIVIDUAL PHASES develop a system and what activities to under-

take at each phase.
Methods are often based on some of the techniques

necessary to address a phase of the development — The project-management methods (Prism,
process but do not cover all of the phase. Moreover, Method 1, BIS Modus, for example) typically
they may define the tasks in a phase, but may not specify in detail what is to be done at each phase
define how the tasks are to be performed; the of development. They also provide some details
reverse may also be true. There are several of how each phase is to be performed, although
examples of incomplete coverage of phases: this is not their main focus.
— Yourdon, SDM, and Merise focus mainly on how
— SADT provides a top-down structured analytical to do systems analysis, design, and implement-
method. This is suitable for systems analysis and ation. They do not provide project-management

Figure 3.6 No one type of method completely covers every phase of conventional development

- Typeof method o
_ Méii‘i,q{iasef . -
Managément : Sr‘ngle-phése Analysis and de_s:‘gﬁ ",_Systemi'-prﬁid':. 'fqtegratéd
'| Development phase How | What | ' Wha_t "!_qu : :-M_I:h'at - Hou_' | What How | e.wﬁ_a;r '

T\
7N

'Suniéy-a;_nd.feésibiﬁty = .

Regquirements analysis

Systems analysis

Systems design

Prqu'ammmg :

Testing

implemen ation

Enhancement and maintenance |

%& Indicates the extent to which each type of method covers each development phase.

FOUNDATION

© Butler Cox & Partners Limited 1987 13

Chapter 3 Proprietary methods by themselves are not enough

standards for what must be done in terms of
forms to fill in, lists of deliverables, and so on.

Although proprietary methods at present address
neither every aspect of conventional system devel-
opment, nor different development processes, most
of the methods are continually being enhanced to
provide greater coverage. For example, new ver-
sions of Stradis and LSDM/SSADM are released
frequently as these products are continually up-
graded and enhanced. The scope of these methods
has now been extended to provide project-man-
agement and development tools. Ultimately, their
suppliers plan to extend their scope into the
implementation phase.

DEVELOPMENT METHODS NEED TO BE
SUPPORTED BY APPROPRIATE TOOLS

In Chapter 2 (on page 7) we explained that, to be
used effectively, development methods need to be
supported by appropriate tools that will automate
the activities specified by the method. Unfortu-
nately, many proprietary methods suppliers do not
provide the necessary tools with their products as
a matter of course. Most of the organisations that
reported initial dissatisfaction with their use of a
proprietary method said that they lacked the tools
needed to support the method.

In one company, after about nine months of using
a particular method, the analysts expressed
extreme dissatisfaction, and the project managers
began to use it selectively or not at all. Further
investigation showed that the highly bureaucratic
and paper-driven method was not supported by
tools in this company. The analysts found it tedious
and time-consuming to use the method properly,
and development productivity was reduced. The
method was thus discredited, and they reverted to
the original in-house development method.

We also found that some system development
managers are not completely familiar with the
facilities offered by the various types of tool, and
are not fully aware of the need to automate system
development methods. They are sometimes unclear
about how a specific tool could fit into their devel-
opment process. Managers are also concerned
about investing in development tools because, in
this rapidly changing area, tools acquired now
could swiftly be made obsolete by new products.
Managers therefore need also to be aware of the
benefits to be derived from using appropriate tools
with their chosen method.

THE NEED FOR PROPER SUPPORT FROM SYSTEM
DEVELOPMENT TOOLS

Some of the most valuable techniques provided by

14

system development methods are impossible to use
without suitable development tools. The best
example of this is prototyping for which high-
productivity advanced system-building tools are
essential. (This point was explained in Foundation
Report 47 — The Effective Use of System Building
Tools.) Other examples include estimating packages
that draw on large historical databases, and analyst
workbenches that permit online development of
data models and that need to be underpinned by
databases.

Without appropriate tools, some methods will not
be used, or will be used reluctantly by developers,
because, without tools, they are very time-con-
suming and tedious to use. Drawing data-flow
diagrams, entity diagrams, functional-decomposi-
tion charts, and so forth by hand is an extremely
laborious process because many diagrams are
required and most of them have to be changed
several times.

If the structured methods are not accompanied by
an appropriate software tool, systems analysts and
designers often quickly lose sight of the advantages
of the methods and see the process as a tedious
bureaucratic overhead. In these cases, whether the
method continues to be used or not depends on
how much freedom the developers have to deter-
mine their own working practices.

In one organisation, a large government depart-
ment in the United Kingdom, developers were told
to continue using a particular method, despite their
objections and dissatisfaction with it. Eventually,
the department provided them with appropriate
tools. Productivity was low during the interim
period, however.

On the other hand, in some commercial organisa-
tions, only token attention is given to the use of
a method. For example, in a major multinational
engineering company there was an officially
recognised system development method, but devel-
opment staff continued to analyse applications in
the ‘traditional” way. At the end of the analysis
they produced documentation to the standard
imposed by the method, but they saw this as a
documentation task, not an analysis activity. They
were thus effectively not using the method at all,
but were merely adding to their documentation
workload. The situation changed when a basic
analyst/designer workbench supported by a data
dictionary was made available to the analysts, and
development productivity improved considerably.
In addition, development costs were reduced and
project schedules were adhered to.

SEVERAL TYPES OF TOOL ARE AVAILABLE

Our research showed that, because of the con-

BUTLER COX FOUNDATION

€ Butler Cox & Partners Limited 1987

Chapter 3 Proprietary methods by themselves are not enough

fusion that exists in some people’s minds about the
distinction between development methods and
tools, there is a belief that a single tool can be used
throughout the whole development process. Un-
fortunately, this is not true. Different tools are
needed to support different development methods,
and, as we have already shown, no method covers
all phases and all types of development process. We
have identified five basic types of development
tool:

— Project management tools, such as timesheet
analysers, project-estimating packages, project-
control and planning packages, and produc-
tivity-measurement tools. Examples of proprie-
tary tools include Artemis, Prompt, and Project
Manager Workbench (PMW).

— Analyst/designer workbenches, which support
the systems analysis and design phases of devel-
opment. Examples of proprietary products
include Core Analyst, Automate, Datamate,
Yourdon’s Workbench, Index Technology’s
Excelerator, Prokit Analyst, Design 1, Emer-
aude, Alcide, and Speedbuilder.

— Programmer tools (such as Delta and PDF),
which support the programming phase of devel-
opment.

— Advanced system-building tools such as Line,
Mapper, Focus, Natural, and Powerhouse. This
type of tool was discussed in detail in Founda-
tion Report 47 — The Effective Use of System
Building Tools.

— Integrated project support environments
(IPSEs), claimed by their suppliers to support the
whole of the development process. Proprietary
examples include IEF, BIS IPSE, ISTAR, and
Philips’ Maestro.

The tools we reviewed during the research are
listed in Figure 3.7. The range of facilities offered
by development tools, together with examples of
products providing appropriate facilities, are
shown in Figure 3.8.

NO CURRENTLY AVAILABLE TOOL SUPPORTS ALL
PHASES OF THE DEVELOPMENT PROCESS

Despite the extensive publicity given recently to
the emergence of a new family of tools, the
integrated project support environments (IPSEs),
none of the currently available development tools
provides complete support for all phases of the
system development process. Furthermore, the
facilities provided by tools are evolving rapidly and

Figure 3.7 Development tools reviewed during the

Figure 3.8 Range of facilities provided by system

research development tools
Tool Supplier Type of facility Tools providing appropriare facilities
Alcide METS!, Delta Software Ltd Adminiotga:tive'_’"u"-- : Maestro prowdes fac1httes tor eieciromc
Artemis Metier Management Systems Ltd o) : _mail, standard forms, diary management, |
% = text handhng,andﬁ ver31or1 comroi
utomate LBMS (Learmonth & Burchett . documentatlon -
Management Systems) A
BIS IPSE BIS Multi-user Maestro, ISTAR, and BIS iPSE all prowde
Bore Analvet e e a multi- uoer‘enwronment (Note: Delta,
s pIRhE ke Designe_ro ne o Speedbuilder, and PRF naturally exist in
Datamate LBMS (Learmonth & Burchett a multi-user env;ronment) -
Management Systems) -
Delta Delta Software Toois Ltd
Design 1 Arthur Andersen & Co
Efuéjrjau;_ié Emeraude qu»(Pans) .
Excelerator Excelerator Software Products Ltd.
index Technology Corporatuon
IEF (Information James Martm ,Assocrates*_«

: Engmee«nng Fac;hty) ;
ISTAR '
Maestro .

PDF (F’rogreés O
Development Facility)

PMW (Project Manager

Impenal Soilware Technology Ltd .
thps e e e
Michael Jackson Systems Ltd

Heskyhs Group tid

- Workbeneh) =
Prokit*ANALYST McDosmeII Douglas
Prompt '
Wl Management Systems)r -
Speedbuilder Mlchael Jackson Systems Ltd
Yourdon Workbench - | :

Core Analyst supports Core and is a
: sophistlcated tool for requlrements
analySis .

Requirements
analysis

Implementation tools vary widely, but [EF
is the first tool to offer automatic code-
generation.

Implementation

FOUNDATION

g Butler Cox & Partners Limited 1987

15

ﬁ—'—ﬁ

Chapter 3 Proprietary methods by themselves are not enough

none of the tools incorporates all the latest best
practices.

To support an organisation’s development
methods, the tools chosen must provide support for
the whole of the conventional development process
and for any other development processes being
used. How well different tools provide this support,
and what the state of the art of tool development
is, are discussed below.

Proprietary tools support most development
processes but only to a limited extent

Most proprietary tools support most of the
development processes (except end-user and
realtime) to a limited extent. The extent of their
support is dependent on the nature of the tool. For
example, project-management and administration
tools can be used for any project, and analyst/
designer workbenches and programmer tools can
be used irrespective of whether a conventional,
iterative, or small-systems development process is
being used.

Many proprietary tools do not support the end-user
development process because they have been
designed for use by professional development staff,
and require knowledge about, and understanding
of, the management and development techniques
associated with the method being used. End users
would not usually have this level of expertise.
Some tools are suitable for end users, however,

particularly system-building tools like Focus,

Specific realtime development tools like the ISTAR
IPSE product are available to support specialist
development processes, but commercial tools tend
not to support specialised realtime methods.

Proprietary tools do not support the complete
conventional development process

Figure 3.9 shows the extent to which the different
types of proprietary development tool support the
various phases of the conventional development
process. Different tools typically support only a
specific aspect of system development such as
project management, analysis/design, or implemen-
tation. Even the integrated tools (IPSEs) do not
support the whole of the development process,

THE STATE OF THE ART IN TOOL DEVELOPMENT

System development methods are evolving rapidly.
This means that any tool or tools chosen today
should support the best latest practices. However,
no proprietary tool currently provides all the
facilities that might be required. Nevertheless,
there are three facilities that we consider to be the
most important, and development managers should
ensure that they are available when choosing
proprietary tools:

— A multi-user facility that allows developers to
enjoy the benefits of administrative and project-
control facilities, and enables them to share
information about development projects.

Figure 3.9 No one type of tool completely supporis every phase of conventional development

Type of tool
Project Analyst/designer Advanced system-

management workbenches Programming building tools IPSEs
Development phase How What How What How What | How What How What
Survey and feasibility -
Requiremenis analysi X

qu analysis K\\\ >
Systems analysis
Systems design N
Programming
Testing Z
Implementation
7 Z

Enhancement and maintenance \ G -

z’/ﬁ& Indicates the extent to which each type of tool covers each development phase.

16

Chapter 3 Proprietary methods by themselves are not enough

_ Graphical facilities that can be used to represent
models of the system during the analysis and
design phases, supported by databases, auto-
matic consistency checks, and rules for ensuring
that the method is followed.

_ Ability to generate code automatically from
detailed design documentation.

THE BENEFITS GAINED FROM SUPPORTING METHODS
WITH TOOLS

Using tools to automate the activities within a
method also provides secondary benefits during
system development. Different types of tools
provide different benefits:

— Project-management tools and IPSEs allow the
project to be planned and controlled more
effectively.

— Analyst/designer workbenches, programmer
tools, and some IPSEs help to improve the
productivity of development staff.

— IPSEs and some design tools help to improve
communication between staff working on a
project.

Project-management tools improve project
planning and control

A project-management facility allows the project
manager to plan and control a development project
more effectively because:

— Project estimating is improved by tools that
require a disciplined approach to the collection
of historical and current project data. These
tools also enable estimates to be updated rapidly
in the light of increased knowledge and changing
requirements, and they make it possible to
produce different estimates based on different
parameters (system size and type, difficulty
of project, manpower level, and scheduling
constraints).

— Project planning and reporting is improved by
tools that allow resources to be assigned (and
easily re-assigned); ‘what-if' scenarios to be
incorporated; a range of different graphical
reports to be produced quickly both for systems
and user management and for the development
staff involved in the project.

— Project control is improved by tools that quickly
highlight any deviations from the original plan.

Tools improve development productivity

The introduction of a proprietary development
method will not, by itself, improve the productivity
of development staff. Productivity improvements
will only occur if tools that support the method are
also installed. Development tools can improve

FOUNDATION

© Butler Cox & Partners Limited 1987

development productivity in the following ways:

— Advanced system-building tools provide produc-
tivity advantages during the implementation
phase. This is the most significant productivity
benefit offered by tools.

— Analyst/designer workbenches (or word pro-
cessing and graphics packages) speed up the
production of the analysis and design docu-
mentation.

— In large systems, it is difficult to cross-check
information manually (for example data names)
within each phase and between phases, and it
is easy to make mistakes. Some tools (IPSEs and
some analyst/designer workbenches) do this
cross-checking automatically and save the

analyst/designer a substantial amount of clerical
effort.

— Tools such as the IPSEs also allow code to be
generated automatically from the detailed
design documentation.

The overall impact of analyst workbenches is
difficult to assess because they have been in use
for only a limited period and are evolving rapidly.
We suspect, however, that their impact will be
limited mainly to the design phase. Their impact
on total development productivity will become
substantial only when the workbench output can
be used directly by system-building tools.

IPSEs and some design tools improve
communication

Using tools to support the method can also improve
communication among the staff working on a
project. For example:

— The office automation facilities provided by
multi-user workbenches speed up communica-
tion between members of the development
team. This is particularly important on large
development projects and those where members
of the team are located at more than one site.
If the system’s users have access to the same
office automation facilities, then communication
with them may be improved as well.

— Good analysts are not necessarily good draughts-
men and the effectiveness of using the graphical
techniques in systems documentation can be
reduced if analysts produce messy charts and
diagrams. Many development tools provide
graphical facilities that help the analysts to
prepare neat and orderly diagrams.

— Some tools (for example Maestro) provide com-
mon sets of documentation (standards, formats,
and so on) that are available immediately for
electronic distribution to all members of the
development team.

17

Chapter 3 Proprietary methods by themselves are not enough

SUMMARY

In this chapter we have shown that a proprietary
method by itself will provide an incomplete solu-
tion to an organisation’s system development
problems. A single method will not be suitable for
all types of development process, and, even where
it can be used, it will not cover all of the
development phases. Moreover, development tools
have to be used in conjunction with a method if
the most effective use is to be made of the method,

18

The proprietary tools available today are also
limited in their application because they too cannot
be used with all types of development process and
they do not cover all phases of development.

To make the most effective use of proprietary
development methods, an organisation must there-
fore choose methods and their supporting tools and
integrate them with its overall development pro-
cesses. We offer advice on how to do this in the
next chapter.

% FOUNDATION

© Butler Cox & Partners Limited 1987

Chapter 4

Selecting appropriate methods and tools

There is now a wide range of proprietary develop-
ment methods and tools available in the market-
place. The choice of a method and the tools to
support it depends on whether they support the
development processes being used by the organisa-
tion, and on the techniques on which the method
is based. It also depends on whether the method
and tools can be used with the hardware environ-
ments in which the systems will be developed, and
on the level of support provided by the suppliers.

Implementing a new method can be a major under-
taking. Development staff (and in some cases users
as well) need to be educated and trained in the new
method. Hence, the training and support provided
by the supplier is an important consideration when
choosing a proprietary method. Some suppliers
offer a turnkey service, where they guarantee to
train all the development staff in the use of the
method, and help with its introduction.

System development managers find it difficult to
evaluate the relative merits of different proprietary
methods and tools because the suppliers tend to
overemphasise the benefits of their own particular
product relative to others. Some bring an almost
religious fervour to the sale of their method or tool,
promoting it as the solution to all the developer’s
needs. Thus, a method covering only one or two
phases may be presented as a comprehensive
method; a collection of associated analysis and
design tools can be promoted as a totally integrated
method; or a good data processing system develop-
ment method can be promoted as being suitable for
applications of other kinds.

These exaggerated claims are a symptom of the
immaturity both of the products available and of
the market. Most methods are continually being
enhanced to embrace the latest techniques and
tools emerging from the research on systems
development. For example, a new systems-analysis
and design concept is that of the ‘entity-life-
history’. When we carried out the research for this
report, none of the proprietary methods we ex-
amined were based on the entity-life-history
concept, although such methods will undoubtedly

FOUNDATION

© Butler Cox & Pariners Limited 1987

appear in due course. Similarly, the supporting
tools are undergoing rapid development.

The result is that different techniques, methods,
and tools are at different stages of maturity. Figure
4.1 shows the relative maturity of some techniques,
methods, and tools. Most suppliers of methods and
tools provide new versions of their products regu-
larly, as they try to keep abreast of the technical
developments. Indeed, some update their product
every three to six months, which means that any
technical review of methods and tools quickly
becomes out of date. Hence, any choice of method
or tool must take account of not only what is
available now, but the likely developments of the
product over the next few years.

Before setting out to select proprietary methods
and the tools with which to support them, an
organisation must first be clear about the different
types of development process that will be used.
Some methods and tools cannot be used with
particular types of process. And no method or tool
even covers the complete conventional (linear)
process.

Figure 4.1 Different development techniques, methods,
and tools are at different stages in the life
cycle

Project-management
methods and tools
®
System-building
Mature tools
®
Programmer
workbencres ® Analysis and
design technigues
Maturity
® Analyst/designer
workbenches
Immature
__—bn-
Time

19

Chapter 4 Selecting appropriate methods and tools

IDENTIFY THE DEVELOPMENT PROCESSES
TO BE USED

In addition to the conventional development pro-
cess, most organisations will also develop systems
using one or more of the other types of develop-
ment process identified in Chapter 2. Some types
of application (decision-support systems and those
developed by end users) are best developed by a
process other than the conventional linear process.

The types of development process in use, and
the phases within each process, will be determined
largely by the overall style and culture of the or-
ganisation. A bureaucratic organisation will tend
to develop systems differently from an organisation
that has a much more laissez-faire approach to the
way it conducts its business. And one-off applica-
tions designed to provide specific information to
satisfy a particular requirement will be developed
in a way different from applications that will be
used regularly over many years.

It is not possible to provide general advice about
the number and types of development process that
should be adopted, other than to say that the
number of processes formally recognised by an
organisation should be kept as small as possible,
consistent with the total applications needs. We
believe that most organisations will not be able to
standardise on the conventional process alone. Yet
adopting more than one process has evident dis-
advantages. Additional training and implementa-
tion costs will be incurred for every extra process,
for example.

DECIDE WHERE PROPRIETARY METHODS
CAN BEST BE USED

Having determined the development processes that
will be used, the next step is to decide where in
each process proprietary development methods
and tools can be used to best advantage. We have
already explained that, even for the conventional
linear process, it is not possible to find a method
that will cover all phases. Foundation members
should therefore concentrate on the development
process, and the phases of that process, where the
most problems arise. Thus, if the majority of devel-
opment problems arise during the analysis phase
of conventional development, methods should be
sought to address this phase of development. Other
problems that may trigger the decision to purchase
a proprietary method range from systems not
meeting users’ requirements, to a lack of manage-
ment control over the development process. On the
other hand, there is no point in adopting a sophis-
ticated method to support a conventional develop-
ment process if the majority of new systems will
be based on packages.

20

Decisions about methods to support other develop-
ment processes and phases can then be postponed,
awaiting the improvement in methods and tools
that will occur in the next twelve to eighteen
months. These improvements will make it more
likely that a method can be found to cover several
development processes and more phases of the
processes. In particular, some of the tools, like
analyst/designer workbenches and IPSEs will im-
prove considerably over the next year or so. These
types of tool have only recently become available
as commercial products, and they are being con-
tinually enhanced by their suppliers. Although
tools such as IPSEs are now being used increas-
ingly, many organisations prefer others to be the
pioneers in using this novel technology.

The experience of other organisations is valuable
when considering whether to purchase a propri-
etary method. Some of the reasons why organisa-
tions that participated in the research introduced
a new method are briefly described below:

— A multinational oil company introduced a man-
agement method in order to improve the quality
of its systems documentation. The maintenance
of old systems was a major problem, mainly
because of a lack of documentation, and main-
tenance costs were rising as a proportion of the
total expenditure on systems. The company
introduced a bureaucratic forms-driven method
to overcome this problem.

— A large retail company introduced Method 1 as
part of a major reorganisation of the systems
division. This reorganisation was prompted by
extreme user dissatisfaction with the quality of
systems being produced.

— A major bank introduced LSDM to reduce the
large number of bugs found during the imple-
mentation of systems.

These examples illustrate that organisations choose
proprietary methods to help them to overcome
specific development problems. However, the use
of methods is not the only way to solve develop-
ment problems. A problem with systems quality,
for example, could also be addressed by:

— Using prototyping for the requirements-defini-
tion phase.

— Improving staff training.

— Recruiting better staff.

CHOOSE AN APPROPRIATE METHOD

After identifying the development processes, and
the phases of those processes, for which methods
are required, the next step is to choose the most

COX FOUNDATION

& Butler Cox & Partners Limited 1987

Chapter 4

appropriate methods. Most organisations will now
evaluate the alternative proprietary packages that
are in the marketplace, selecting the products that
best match their requirements. A few organisa-
tions, however, have attempted to construct their
own in-house method and the supporting tools. We
would not recommend this approach because it is
expensive, time-consuming, and very difficult. It
also requires considerable in-house expertise.

In addition, an organisation that constructs its own
method and tools may not be able to benefit from
technical advances made in proprietary methods
and tools because the investment required to
update its own procedures is prohibitive.

In the early 1980s, a large American-based interna-
tional engineering company attempted to develop
an in-house process for system development,
incorporating both methods and tools. After a
considerable investment of staff time (25 man-
years) and consultancy and training costs, the
attempt was abandoned and proprietary methods
were chosen and introduced. This company’s
experience illustrates the risks of attempting to
develop methods and tools from scratch. It is
technically complex, requires high levels of invest-
ment, diverts staff from application development,
and success is not guaranteed.

We would expect the cost of a proprietary method
to be less than that of developing an in-house
method because the development costs can be
shared amongst the purchasers. For most organi-
sations, the only sensible course of action therefore
is to choose a proprietary method. There are two
main options:

— Choose an integrated method and the tools to
support it.

— Choose one or more proprietary methods to
address specific phases of the development
process.

Despite the claims of the suppliers, integrated
methods do not yet cover all development phases.
We believe that the best approach is to configure
your own development process, making use of
proprietary methods wherever it is appropriate to
do so.

INTEGRATED DEVELOPMENT METHODS ARE RISKY

A few suppliers claim their ‘integrated’ proprietary
methods and tools cover the whole of the con-
ventional development process. Two examples are
BIS (with its Modus and IPSE Products) and James
Martin Associates (with Information Engineering
and IEF — Information Engineering Facility). As
yet, there is only a limited amount of experience
with either of these methods. For example, in

X FOUNDATION

@ Butler Cox & Partners Limited 1987

Selecting appropriate methods and tools

March 1987 BIS IPSE was in use at only 20 sites,
and IEF is still being beta-site-tested.

Although there is not yet any hard evidence to
show how successful these integrated methods are,
initial reports are encouraging. For example, Pearl
Assurance, a leading UK life assurance company,
is very satisfied with its use of BIS IPSE. Pearl
believes that the benefits it has gained in practice
are even greater than were originally planned.

What is clear, however, is that adopting an inte-
grated method will require extensive support from
the supplier in terms of both consultancy help
and staff training. To a great extent, the success
achieved will depend on the organisation’s willing-
ness to be flexible and change its current develop-
ment process to the one prescribed by the method.
Changing the integrated method and tools to meet
its own requirements may not only be costly, but
it will also introduce a risk that the method will
not be used effectively. Furthermore, if the
method and tools are changed, the organisation
may not be able to take advantage of any new
versions released by the supplier.

There are other disadvantages of buying an integra-
ted method. As Chapter 3 explained, no system
development method — even the integrated
methods — at present covers all of the phases
of the development process. Also, adopting an
integrated method and tools is technically risky.
These products are at a very early stage of devel-
opment, and later products coming onto the market
are likely to be technically superior.

Unless an integrated method can be used to solve
a particular development problem, we advise
Foundation members not to adopt integrated
methods in the short term, but wait until these
products are proven.

SELECT METHODS TO ADDRESS SPECIFIC
DEVELOPMENT PHASES

In the absence of an integrated method that covers
the whole of the development process, an organi-
sation should choose a combination of proprietary
methods that address specific development phases
and that complement each other. Sometimes, two
methods will be required for the same phase — one
to address what-to-do issues, the other to address
the how-to-do-it aspects. In other cases, different
methods will be used for different development
phases.

Figure 4.2 (overleaf) shows how the Prism, Yourdon,
and Delta products were integrated by one company
to cover most of the system development process:

_ Prism addresses project management, the initial
survey and feasibility phase, the requirements-

2i

Chapter 4 Selecting appropriate methods and tools

Figure 4.2 Example of complementary methods provifling
(almost) complete coverage of the conventional
development process

What to do

Development phase How to do it

Survey and feasibility

Requirements analysis

Systems analysis

Systems design

Implementation .

Enhancement and maintenance

Prism
Yourdon
[N Delta

analysis phase (detailing what has to be done
and how to do it), and provides guidelines about
what should be done during the system analysis
and design phases.

— Yourdon provides structured techniques for the
system analysis, design, implementation, and
maintenance phases.

— Delta is a tool that supports structured program-
ming and maintenance.

There are areas of overlap between the compo-
nents, particularly in the system analysis and
design phases, which are covered both by Prism
and Yourdon. In this case:

— Prism would be used to determine what should
be done during the system analysis and design
phases because it provides more detail in these
areas than Yourdon.

— Yourdon would be used to determine how Sys-
tems analysis and design should be carried out
because it provides more detailed procedures.

Occasionally, different methods are used in con-
junction with one another, even though they
provide incomplete coverage of the system devel-
opment process. An example is the use of MCP in
conjunction with Merise. MCP provides basic
project-management techniques. It identifies the
phases of the life cycle but does not identify details
of the tasks and deliverables from each phase.
Merise provides system analysis and design tech-
niques. However, when they are used together,
they do not cover the whole of the development
process. Figure 4.3 shows the gaps that are left.

In such cases, the system development department

22

will need to use in-house standards and procedures
to fill in the gaps left by the proprietary methods,
The danger is that individual development staff will
use their own methods, based on their own experi-
ence, to fill in the gaps. If different developers
working on the same project use different in-house
methods, the ensuing confusion may well be worse
than the problems that the introduction of pro-
prietary methods was meant to solve.

Some proprietary methods should not be used
together because they cover the same phases of the
system development process and they address the
same aspects of the phase, both defining either
what is to be done or how will it be done. For
example, both Prism and BIS Modus are project-
management methods. They both provide guide-
lines on what is to be done at each phase of
development, from the survey and feasibility phase
through to detailed system design (see Figure 4.4).
They both state how project management is to be
carried out and provide techniques for the survey,
feasibility, and requirements-analysis phases.
Neither of them provides detailed techniques for
the system analysis and design phases, although
both recommend the use of structured techniques.
BIS Modus, however, can be used with BIS IPSE,
which has an analyst/designer workbench support-
ing structured techniques.

The advantage of mixing and matching different
proprietary methods and tools is that a much closer
fit to the needs of the development group can be
achieved. But the choice of methods needs to be
made carefully to avoid the possible problems
described above. In addition, it is advisable to carry
out small trials lasting no more than about four or
six weeks before deciding that a particular method

Figure 4.3 Example of complementary methods providing
incomplete coverage of the conventional
development process

Development phase What to do

How todo it

Survey and feasibility

Requirements analysis

Systems analysis

Systems design

Implementation : S \

Enhancement and maintenancel’ /.

MCP
@ Merise

Chapter 4

Figure 4.4 Example of overlapping methods

Development phase

What to do How todo it

Survey and feasibility

Reguirements analysis

Systems analysis

Systems design

Implementation

Enhancement and maintenance FEEEEmes

Prism

& BIS Modus

is appropriate. These trials should be carried out
by experienced system development staff and
should be monitored closely by the systems devel-
opment manager. Most method suppliers welcome
this type of experimentation period, and will often
provide extensive support for it. The results of the
experiments should be reviewed by management
as quickly as possible after the end of the experi-
mentation period.

CRITERIA FOR SELECTING A METHOD

Apart from ensuring that the technical facilities
provided by a development method are adequate,
there are two main criteria for selecting a pro-
prietary method:

— The level of support provided by the supplier.

— The ‘fit’ with the corporate culture.

ENSURE THAT METHODS ARE SUPPORTED BY
SUPPLIERS

The consultancy and training services offered by
the method supplier were quoted by many users
as the most critical factor in selecting a method.
The commercial stability and technological track
record of the supplier is also of concern.

Most suppliers of methods provide training courses
in the use of their method. These are typically
available either as public courses, or as in-house
courses, if required. (Indeed, for many suppliers,
training provides their major source of revenue.)

When choosing a method, it is important to ensure
that frequent courses in its use are provided
because there will be a recurring need to train
staff. There are several major characteristics to
look for in these courses:

. FOUNDATION

© Butler Cox & Partners Limited 1987

Selecting appropriate methods and tools

— There should be a variety of courses available
for management, users, and the different types
of development staff who will use the method
(analysts, designers, programmers, and so on).

— The training programme should be updated in
line with improvements to the method.

— Clear and extensive training material should be
provided.

— Where appropriate, the use of automated tools

to support the method should be demonstrated
and taught.

— The training staff should have experience of and
expertise in using the method.

The purchaser of a proprietary method should
recognise that training costs represent the largest
proportion of the total cost of installing a method,
and that these costs will continue because new
staff will need to be trained in the method.

Many organisations recognise that the consultancy
services of the supplier are required to ensure that
a method is properly used, particularly when it is
first implemented. Some suppliers (BIS, for
example) offer a complete turnkey service for the
installation of their method. Sometimes, a con-
sultant from the supplier works with the develop-
ment group on a pilot application, and is therefore
available to give advice and help.

A checklist of what to expect from method
suppliers and some further pointers to gaining the
best value from a supplier are shown in Figure 4.5
overleaf.

The supplier should also have local staff available
who have experience in the use of the method, and
who can provide the required level of consultancy,
advice, and support. A concern expressed by Euro-
pean users of one method was that all the experts
were based in the United States. This situation
should be avoided when choosing a method.

The commercial stability and technological track
record of the supplier are also of concern. There
are two main reasons for this:

— Training and consultancy are needed from the
supplier on a continuing basis. The supplier must
be large enough and financially secure enough
to ensure that it can continue in business for the
foreseeable future. If the supplier ceases to
trade, the substantial investment made by an
organisation in implementing the method may
have to be written off.

— Ideally, the method should be ‘mature’, having
been implemented successfully in several other
organisations. Any new or immature method

23

Chapter 4 Selecting appropriate methods and tools

should be selected only if it offers substantial
technical advantages. It is also vital that the
supplier be prepared to continue to develop
the method to incorporate new concepts and
techniques.

CHOOSE METHODS THAT ‘FIT’ WITH THE CORPORATE
CULTURE

The organisation’s corporate culture is an impor-
tant factor in selecting a proprietary development
method. System development methods formalise
the procedures for developing systems. To be

successful, the procedures must either complement
or replicate the working practices commonly used
in the organisation. If the selected method requires
the organisation to depart significantly from its
customary practices, then the method is unlikely
to be accepted. The main organisational charac-
teristics that influence the choice of a system
development method are the extent to which the
organisation is structured as a hierarchy, and how
paper-oriented it is. For example:

— Large, bureaucratic organisations tend to
choose, and have success with, those methods

Figure 4.5 What to expect from the method suppliers

Product feafure Description Pricing policy Other comments
Documentation | Manuals deS.C'l'_in'ing‘I' - o Be awa{a Ehat thtsdecuméniatlon -
~ Ingeneral, me'method énd those 1 wmch is normally voluminous, is on
~ phases of the deve)opment eycl Squ"e'S wor d WOGESSW
covers. - . { :
— Stepby siep, for each m
activity, what needs tobe dcme an
| howtodo |t
= —kor each mites!on the
deliverables (typacaiiy syster
documentatmn) wit
examples
ights to ame,gd it. This Eié, o
o generaily expenswe. = =
Tailoring Amending the method (especially the | Time and materials at consultancy Tailoring generally must occur before
documentation) to fit the client’s rates — apart perhaps for a limited implementation. As a consequence,
environment more closely. This might | number of days of free support the client is likely to have too little
involve including any equipment or included with the basic product. experience of the product to tailor it
software restrictions, for example. Word processing, printing, and and will be dependent on the supplier.
distribution charges may also be This is- where the suppliers make their
applicable. profit. Try to get a fixed price on this
potentially uncontrollable expense.
Piloting Assisting tﬁefpfoigét.-ié?ﬁ{itg pilot the | Tim and matenals at consu!tancy . Sbecific terms of reférénéé are
method through the ﬁ_rst_-ap_'dﬁcaﬁjqr?‘. : rates . |essential. Again, try for a fixed pnce
= e - ‘ |Be aware that the success of the plkat
may be attributed to the supplier’s]
; facilitator — enthusiasm for the.
- |project may wane once he is off-site.
Training Preparation and presentation of Fixed price per course — depending |Another potentially large expense.
courses on the method for systems upon duration and location. Try to have courses on your own site;
staff and users. secure ownership of the material and
become self-sufficient as soon as
possible.
Ongoing Assisting systems staff after Time and materials at consultancy Do not remain dependent on the
support implementation. |rates. supplier. Establish your own, in-house
support unit.
Software Providing software tools to support the | Definitely optional. May be bought Be aware that much of this software
method from a different supplier. In any case, |runs on microcomputers and the
pricing may be either once-off with an |licence may be per machine. To make
annual maintenance contract, or the software available to all usersin
monthly rental. the systems department can be very
Any documentation (up to a specified |SXPENSIve.
limit) may be included in the software
price — but not other requirements
(like piloting, training etc).
{OUNDATION
24

© Butler Cox & Partners Limited 1987

Chapter 4 Selecting appropriate methods and tools

that are heavily biased towards project manage-
ment and control and are forms-driven. A good
example of this is the United Kingdom Govern-
ment’s use of SSADM.

— Alternatively, results-oriented companies in fast-
moving environments (for example the retail
sector) have greater success in implementing
methods that place relatively little emphasis on
project management, relying instead on skilled
staff using advanced techniques and tools (like
using a fourth-generation language for
prototyping) to develop systems.

Some systems departments have adopted a bureau-
cratic style as a defensive measure to counter user
criticisms. Sometimes the line managers would like
a fast response to their needs, but have abandoned
hope, and interest, through years of poor experi-
ence. The introduction of a new development
method may make it possible for the systems
department to adopt a more entrepreneurial
attitude, thereby enabling a better service to be
provided and good relations with the line managers
to be re-established. Thus, new methods may
themselves affect the corporate culture, at least in
so far as it concerns the systems department.

CHOOSE TOOLS TO SUPPORT THE METHODS

The final stage in selecting the appropriate system
development methods is to choose the tools that
will provide automated support for the methods.
In some cases, the tools are provided along with
the method. However, if a mixture of methods has
been chosen, it is likely that the system develop-
ment manager will need a selection of tools to
provide the support for the methods.

Some method suppliers recommend tools that are
suitable for supporting their methods. For example:

® Butler Cox & Partners Limited 1987

— Speedbuilder and PDF are recommended for use
with Jackson System Development and Jackson
Structured Programming.

— Prompt, Automate, and Datamate are recom-
mended for use with LSDM/SSADM.

— Design 1 is recommended for use with Method 1.

The advantages of choosing supplier-approved
tools are that the tools are designed to integrate
with each other and with the method, and any
changes made to one of them are incorporated in
the others. Furthermore, the supplier typically
supports both the tool and the method. However,
it is possible to replace selected tools with others
that undertake the same tasks but that offer
different and even improved facilities (for
example, replacing Automate with Excelerator, or
Prompt with PMW). Some technical expertise is
required for this to be done successfully, however.

The major disadvantage of choosing a range of tools
is that they will seldom offer the same advantages
as a true IPSE (automatic generation of code, for
example) and they often do not have automatic
interfaces between then. This means that substan-
tial nonproductive clerical coding effort may well
still be required.

The tools chosen should have a range of technical
facilities appropriate to the phase (or phases) of the
development process that the tools are to support.
The range of technical facilities for development
tools was listed in Figure 3.8 on page 15.

Once the development processes that will be used
have been decided on, and the development
methods that will be used and the tools that will
support the methods have been chosen, the next
stage is to manage the introduction of the new
methods. This is a critical task, requiring substantial
effort. We turn our attention to this topic in the
next chapter.

25

Chapter 5

Managing the implementation of methods

Successfully introducing proprietary methods,
perhaps for several different development pro-
cesses, is a substantial task and is likely to be both
expensive and time-consuming. It requires effort
and commitment, not only from systems develop-
ment management and staff, but also from user
management and staff. The key to success in
implementing a new method is therefore to manage
its introduction actively. We provide guidelines on
how to do this in this chapter. There are four
critical steps that have to be taken:

— Obtain senior user management consent.

— Assess the impact of the methods on the organ-
isation of the systems department.

— Gain experience by using the new methods for
pilot applications.

— Implement the new methods and tools as a
distinct project.

Each of these is discussed in more detail below.

OBTAIN SENIOR MANAGEMENT CONSENT

Before introducing the new method or methods it
is vital to gain the consent of senior user manage-
ment. This is necessary because:

— Implementing the method will require substan-
tial effort from development management and
staff, and in the short term this will divert effort
from developing new applications.

— When the method is implemented, the basis of
the relationship between user management and
staff and development staff is likely to change,
with users being much more closely involved in
the development process. User management
needs to be aware of the organisational and
personnel implications of this change.

— Investing in a new method is likely to be expen-
sive. Not only is there the cost of purchasing the
method and tools themselves, there is also the
cost of the training and consultancy required,
the cost of piloting the method, and the ‘lost-
opportunity’ time of developers and users as
they learn to use the method.

CONSIDER THE ORGANISATION OF THE
SYSTEMS DEPARTMENT

Before implementing a method, the current organ-
isation of the systems development department
must be considered in order to assess the likely
impact of the method, and to prepare for any
organisational changes that may be required.

Most development groups are organised in one of
three ways:

— By business function (specialist groups for
accounting, manufacturing, and so on).

— By project team, to develop specific applications.

— By job specialisation (business analysts, systems
analysts, systems designers, and so forth).

Many organisations have a mixture of these struc-
tures in their system development department.
When choosing a method, it is important to con-
sider the current organisation and the impact of the
method on it in order to avoid an inappropriate
choice. For example:

— A development group based wholly on job
specialisations would find it difficult to carry out
iterative development because the system-
builder or analyst/programmer skills are not
readily available.

— A systems department based on small project
teams of development staff who have expertise
in developing small systems quickly is likely
to find that large project-management-based
methods are inappropriate.

The introduction of a new method is also likely to
change the roles played by the development staff,
with more emphasis being placed on project-
management and communication skills and less on
technical skills like coding. Inevitably, the roles of
the analyst, designer, and programmer will begin
to converge. This will be a direct consequence of
the increasing automation of the development
process, the increased use of prototyping, and
the use of advanced system-building tools in the
implementation phase.

'LER COX FOUNDATION

€ Butler Cox & Partners Limited 1987

Chapter 5 Managing the implementation of methods

GAIN EXPERIENCE IN USING THE
NEW METHODS

The introduction of a new method will change the
way in which all system development staff carry
out their work. Before implementing a method
throughout the development department, it is
necessary to gain some real experience of using the
method and to create a nucleus of staff who are
expert in using it. Such experience and expertise
cannot be gained quickly, and carefully planned
pilot projects need to be carried out. Whilst these
pilots are carried out, all other systems will be
developed using whatever methods are currently
in use. Depending on the development processes
that the new method is to be used with, any of the
following types of pilot project may be required:

— A small-systems development project lasting
about six months.

— An iterative development project, with the
development being evaluated after about nine
months.

— A conventional development project lasting
between 12 and 18 months.

It is important to select the pilot project teams
carefully, with the team members representing the
development group as a whole. Thus they should
have an average level of expertise and experience;
they should not be the best and brightest develop-
ment staff. At the same time, the team members
should not be opposed to the introduction of the
new method. Eventually, some of the pilot team
members should be able to help with the wider
implementation of the method.

For similar reasons, the applications chosen for the
pilot projects should be typical of the systems
department’s development workload. However,
they should not involve a high business risk,
because additional risks will inevitably be intro-
duced by using the new method for the first time.

Before the pilot projects begin, the team members
should be thoroughly trained in the use of the
method and its supporting tools. Supplier support
must be available throughout the pilot projects,
ranging from full-time consultancy assistance to
offering specific advice and help when necessary.

At the end of each pilot project, success should be
evaluated by:

— Comparing each project with similar projects
carried out using the ‘old’ methods, in terms of
productivity, user satisfaction, cost, timeliness,
and number of errors after implementation.

— Obtaining the views of the pilot development
teams on both the advantages and disadvantages

i
B & i

X FOUNDATION

© Butler Cox & Partners Limited 1987

of the method and tools compared with the
current methods, and on what particular prob-
lems the new method posed during the pilot
projects.

— Seeking the views of the users on their percep-
tion of the development process, and on their
opinion of the resultant application systems.

Once the pilot applications have been completed
and evaluated, and the lessons have been learned,
the method can then be implemented throughout
the system development department.

IMPLEMENT A NEW METHOD AS A
DISTINCT PROJECT

The implementation of a new method throughout
the systems development department should be
viewed as a project in its own right. A project team
should be formed to manage the implementation,
and a formal implementation plan drawn up. The
project team should be small, with around three
or four members. The members of the team can be
drawn either from the initial team that evaluated
the methods and/or from the pilot teams. It is
essential, however, that the manager is an effec-
tive project manager and that the team members

are familiar with the technicalities of the method
and tools.

The responsibilities of the implementation project
team include:

— Developing the implementation plan.

— Liaising with the method and tool suppliers.

— Creating guidelines for using the methods.

— Assisting in the education and training pro-
grammes.

— Providing continuing support (together with the
suppliers) to the development staff who are
using the method and tools.

— Appraising the success of the implementation
project, and modifying and extending the guide-
lines if necessary.

The implementation plan consists of three separate
but related components:

— An education and training plan for development
management and staff, and also (where appro-
priate) for users.

— A plan for creating the guidelines and standards
to accompany the method.

— A plan for the phased introduction of the
method and tools into new development and
maintenance projects.

27

Chapter 5 Managing the implementation of methods

Figure 5.1 Methods for dealing with resistance to change

Method When to use it Advantages Drawbacks

Education plus | When there is either a lack of Once persuadad people will oﬂen Canbe very tlm&consummg i rnany
communication | information or inaccurate information ‘help with the 1mplementatnon of the peeple are involved.

and analysis. change ; :

Participation When the initiators do not have all the People who participate wnil be Can be very time—consuming if

plus information they need to design the committed to implementing change, |participants design an inappropriate
involvement change, and when others have and any relevant information they change.

Facilitation plus
support
Negotiation plus
agreement

considerable power to resist.
When people are resisting because of
adjustment problema

When someone or some group will
clearly lose out ina change, and

have will be integrated into the change

p]an

No othg; appmach worksas well wfth
adjustment prob}ems

Sometrmes lt isa re}atlvely easy way

Canbe time-cansuming and
expenswe. and may stsll fatl

Can be too exéenswe in many cases |f
it alerts others to negotiate for

where that person or group has
considerable power to resist.

implicit coercion| initiators of the change possess
considerable power.

to avoid major resistance.

it can be a reIattvely quick and
inexpensive. s_gfutlon to res:stance =

Mantputaﬁoﬁ- When other tacttcs will not wcrk or
plus agreement .are too expanswe e

¢ j problems
Explicit and When speed is essential and the

It is speedy, and can overcome any
kind of resistance.

compliance.

- Caéi*:esd'fomtd’re prbﬁléﬁé ;f'peopf' o

Can be risky if it leads to pe'ople
resenting the initiators.

The project manager should agree this plan with
system and user management before implementa-
tion, and when it is agreed implementation can
proceed.

The first component takes the form of a general
education programme for development staff and
users. At this stage, resistance to the concepts of
the new method can be expected. An earlier Foun-
dation Report (No. 25 — System Development
Methods) discussed the problems of overcoming
this resistance to change and suggested six methods
for dealing with it (these methods are summarised
in Figure 5.1). An important factor in motivating
people to accept the changes required by a new
method is the knowledge that their management
is fully committed to the method.

The pilot project team members also have an

important role to play in overcoming any resistance
to the new method, and in acting as ‘missionaries’

28

for it. (However, they should bear in mind that, like
real missionaries, they may be unfairly attacked,
and they should tone down any excessive en-
thusiasm they may feel for the method.) The pilot
team members should be used on as many as
possible of the initial projects, acting as the source
of knowledge on the use of the method.

Once the method has been implemented, its use
must be continually reviewed in order to:

— Improve the guidelines and standards for its use.

— Incorporate any improved technique or tool into
the method.

— Ensure that the method continues to meet the
needs of the company.

The benefits of using the method should also be
monitored. The next chapter describes the bene-
fits that can be expected.

I()l \I)\T [ON

Butier Cox & P L 987

Chapter 6

Monitoring the payback from system

Proprietary development methods are expensive
to implement, not just in terms of the cost of
purchasing the method and the supporting tools,
but in the support costs and the ‘lost time’ both of
users and development staff whilst they are learn-
ing how to use a new method. Furthermore, the
benefits of using a proprietary method are not all
gained immediately and cannot easily be quanti-
fied. Some of the benefits arise from the use of
techniques or tools, and could possibly be gained
without implementing a full method (improved
productivity in generating program code, for
example). Hence, development managers find it
difficult to present a hard financial case for
implementing a new proprietary method. Our
discussions with organisations who have invested
in system development methods suggest that their
motivation for so doing was an intuitive belief that
methods help to improve the quality, cost, and
timeliness of the development process.

One of the prerequisites for generating a good case
is that any expected improvements in development
performance can be compared with the perform-
ance prior to implementing the new method. At the
moment, many organisations are not in a position
to do this because they do not even have good
measures of their existing programming produc-
tivity, let alone their performance on other less
tangible aspects of system development. Even if
there are no immediate plans to install a proprie-
tary method, we believe that management time
and attention should be given to measuring current
development performance, so that a firm base
will exist in the future for selecting methods and
justifying the investment in methods.

We were surprised to find that relatively few
organisations measure their development perform-
ance on a consistent basis, even though several
measurement techniques now exist. For example,
the Butler Cox Productivity Enhancement Pro-
gramme (PEP) uses the Productivity Analysis
Database System, which relates various measure-
ments to the size of the system being developed.
The ten measurements used in PEP are listed in
Figure 6.1. Other measurement techniques can also
be used, in particular Function Point Analysis,

¥ FOUNDATION

@ Butler Cox & Partners Limited 1987

development methods

Figure 6.1 Development measurements used in the
Butler Cox Productivity Enhancement

Programme (PEP)

Productivity index (a global 'measure: of efﬁc‘iency).
Manpower building index (the rate at
are added to a project

Elapsed time {planned or actual

Source statemeﬁts_per month
 Total number o errors

Total errors per month

5

Cost per line of ¢

Most of the measurements are expressed as a ratio, related to the
size of a project.

which was described in Foundation Report 47 —
The Effective Use of System Building Tools.

At the very least, we believe that the following
measurements should be made so that targets for
improvements can be set when a new method is
introduced:

— The rate of achievement of tested function
points (or lines of code, for those who prefer to
measure development output in this way).

— Error rates during all phases of testing and
during initial implementation.

— The time taken to implement a new system.

— The extent to which operational service agree-
ments are not being met because of poor system
design or implementation.

— The level of changes and enhancements.

— Maintenance costs.

— Variances between actual expenditure and
budgeted expenditure.

Different types of method provide different bene-
fits and thus the payback achieved from their use

29

Chapter 6 Monitoring the payback from system development methods

differs. In general, however, proprietary methods
provide two main types of benefit:

— Improved quality of systems.

— Improved control over the development process
itself in terms of both cost and time.

One benefit unlikely to be achieved from intro-
ducing a method per se is improved productivity.
Productivity gains (that is, systems that are devel-
oped less expensively and with less effort) typically
come from using tools rather than methods.

PAYBACK ACHIEVED DEPENDS ON THE
TYPE OF METHOD

The payback achieved from the use of a system
development method differs depending on the type
of method. All system development methods will
improve both the quality of the systems developed
with them and the developers’ control over cost
and time in the development process. However,
different types of method lead to different bene-
fits. Figure 6.2 shows the types of payback that can
be expected from the different types of method.

For example, methods like Yourdon, which are
mainly concerned with the analysis and design
phases of development, provide benefits by im-
proving tne quality of systems more than by
improving the management control of projects.
Alternatively, the major payback from project-
management methods like Prism comes from better
control of costs and time during the development
process.

IMPROVED QUALITY OF SYSTEMS

Many of the organisations participating in our
research reported that using a proprietary develop-
ment method improved the ‘quality’ of their
systems. However, they could not provide quanti-
fied evidence to support this view because most
of them do not measure system quality, either
before or after the introduction of the method.

The definition of quality used by different organ-
isations varies, ranging from finding the minimum
of bugs during initial implementation to developing
a system that meets the needs of the end users.
However, the examples described below show how
different organisations have achieved better
quality by using proprietary development methods.

STANDARD CHECKLISTS AND DOCUMENTS IMPROVE
QUALITY

Many proprietary methods use standard checklists
and standard forms to document information about
the system being developed. Some methods use a
large number of standard forms: one widely used
method has 203 different forms that can be used
during a system development project. The com-
pleted documents form part of the deliverables for
each phase of the project. In practice, however, very
few commercial organisations use all the checklists
and documents provided by a method; instead, they
adapt the documentation to suit their specific needs
on a project-by-project basis.

Using standard checklists and documents improves
the quality of systems because they ensure that
development staff and users do not overlook (or

Figure 6.2 Payback from implementing different types of method

Type of payback Type of method
Improved Multiphase
Improved | control of
system cost and Project- Single- Analysis/ | System-

Payback achieved through quality time imanagement| phase design build Integrated
Visible plans/progress -
Standard checklists, techniques I v
Graphic techniques 4
Advanced requirements analysis, etc. v
Advanced analysis and design techniques >
Advanced building techniques v

R COX FOUNDATION
30 9 Butler Cox & Pariners Limited 1987

Chapter 6 Monitoring the payback from system development methods

provide inadequate details about) essential informa-
tion during the development process, and they ensure

that all the necessary information is properly
recorded.

For example, by using LSDM a Scottish bank
reduced the proportion of development time spent
on fixing bugs and on small enhancements from
30 per cent to 5 per cent. The bank believes that
this reduction was due to the use of the LSDM
checklists and standard documents.

GRAPHICAL TECHNIQUES IMPROVE QUALITY

Graphical documentation techniques, particularly
those used during analysis and design, are powerful
aids in communication in system development
projects. For example, Sodetag-TAI, a French
software house specialising in large turnkey
software projects, particularly in the areas of metro
signalling, load despatch, and message switching,
uses SADT for requirements analysis, systems
analysis, and specification, and Mach for systems
design. The company believes that much of its
success is due to its use of these methods. The
SADT method is based on top-down graphical
analysis where the system is analysed initially at
a high level of abstraction, with further levels of
detail being added in a logical structured manner.

The use of these methods in Sodetag-TAl is consi-
dered so important that two departments specialise
in their application. The first department teaches
new and existing staff how to use the techniques.
The second researches the methods, identifying
how to develop and implement them further.

The use of graphical techniques improves the
quality of systems by:

— Ensuring that the analysis and design phases
are carried out thoroughly and completely, by
expanding the top-level general view through
successive levels of detail.

— Presenting a large amount of information in a
way that is easy to understand (a picture is
worth a thousand words), so that it is easier to
check the design of the system for completeness
and accuracy.

— Providing a basis for automating the analysis,
design, and implementation phases.

ADVANCED REQUIREMENTS-ANALYSIS TECHNIQUES
IMPROVE QUALITY

Methods based on advanced requirements-analysis
techniques, such as prototyping, help to improve the
communications between development staff and
users and thus improve the quality of systems. Marks
and Spencer plc (a major UK retailer) recently com-

BUTLER COX FOUNDATION

© Butler Cox & Partners Limited 1987

missioned a software house to develop a micro-
computer-based system. Marks and Spencer found
that using prototyping as a requirements-analysis
technique provided the following advantages:

— Users were more involved, and more committed,
during the analysis and design phases.

— Using prototyping with an advanced system-
building tool (Sourcewriter) allowed the require-
ments to be developed and analysed by holding
discussions with the users, which enabled the
users to correct any misunderstandings quickly
and to generate new ideas.

— The prototype review, a critical phase in the
method used by the software house, allowed all
the users of the system to view the prototype
system, and to comment on its match with their
requirements.

We believe that a ‘consensus’ environment, where
users can freely discuss and agree their needs, is
a prerequisite for using prototyping in this way.
One of the major factors in Marks and Spencer’s
successful use of prototyping is the fact that it
achieved this consensus.

Other more traditional techniques used in require-
ments analysis can also help improve the quality
of systems. For example, a French car manufac-
turer found that its use of SDM and Merise helped
systems users to formulate their requirements and
resulted in fewer rejections of systems at the user-
test phase of development.

ADVANCED ANALYSIS/DESIGN AND BUILDING
TECHNIQUES IMPROVE QUALITY

Many proprietary methods make it easier to check
that applications software is correct because they
are based on structured-analysis, design, and
programming techniques. The modular construc-
tion both of the requirements and of the code
enables development staff to check for complete-
ness and consistency more easily. It also allows
walkthroughs of the system design and code to be
conducted easily. For example, a major multi-
national oil company found that the use of Infor-
mation Engineering and a fourth-generation
language improved quality by reducing the amount
of time spent on maintenance from 70 per cent to
less than 50 per cent of the total development
effort. The robustness of the systems was also
improved.

IMPROVED CONTROL OVER THE
DEVELOPMENT PROCESS

Over the years, a continual difficulty with large
development projects has been the apparent

31

Chapter 6 Monitoring the payback from system development methods

inability of development staff to measure progress
objectively. Users have been told that a system is
‘90 per cent complete’’, only to find that as much
effort again is required to complete the remaining
10 per cent. This situation is a symptom of the
difficulties inherent in managing large develop-
ment projects. Moreover, the problem is not con-
fined to the systems department; it is also difficult
for users to be aware of the development progress
that has been made.

However, the progress of a system development
project can easily be demonstrated using methods
based on project-management techniques. The
Caisse National de Crédit Agricole (CNCA) uses
Merise for system development. CNCA'’s experi-
ence with this method is typical, with its major
benefit being that it allows senior management to
track the progress of system development projects
easily. The phases of a project are agreed in
advance with the users, together with the time-
scales, objectives, tasks, and deliverables for each
phase. Progress can then be compared against
these initial plans.

The Department of Health and Social Security
(DHSS) in the United Kingdom develops some of
the largest systems in the world. Some of the
projects are very large, ranging from 500 to 1,000
man-years and costing upwards of $75 million. The
DHSS controls these very large projects by using
a rigorous system development method (SSADM),
which is the standard method recommended for
government use in the United Kingdom. The
method is supported with automated tools such as
Prompt, Diadem, and Maestro. SSADM requires a
substantial amount of project documentation to be
produced. The deliverables from each phase of
development include many different types of
standard forms that must be completed by the
project team. This very bureaucratic method allows
the department to control and measure progress on
its projects.

By formalising the development process through
the use of methods like Merise and SSADM, the
systems development manager acquires, over time,
the ability not only to evaluate and demonstrate
progress but also to compare like projects. This, in
turn, provides the ability to estimate better the
time and resources likely to be required to develop
a new application system. Indeed, some method
suppliers are creating databases of projects that can
be used by development staff as an estimating aid.

The use of a proprietary development method also
provides another intangible benefit. The very fact
that a method, rather than an ad hoc approach, is
being used enhances the professional standing of
development staff in the eyes of the user commu-

32

nity. Many system development managers believe
this to be a significant benefit of the use of pro-
prietary development methods.

DO NOT EXPECT PRODUCTIVITY GAINS
FROM METHODS ALONE

In our research, suppliers and users agreed that the
use of proprietary methods does not, by itself,
improve development productivity. Their impact
on productivity is achieved in two ways. First,
methods based on advanced techniques, such as
prototyping, reduce the amount of time required
for the analysis phase. Second, the use of methods
means that advanced tools, such as system-build-
ing tools and IPSEs, can be implemented, and
these tools can improve development productivity
substantially.

USE PROTOTYPING TO IMPROVE PRODUCTIVITY

Prototyping with advanced system-building tools
was discussed in detail in Foundation Report 47 —
The Effective Use of System Building Tools. There
are three major ways in which prototyping can
be used, each providing different productivity
benefits:

— Prototyping is used as a requirements-definition
technique only, and the prototype forms the
basis of the requirements definition. Using
prototyping in this way improves productivity
by reducing the amount of effort spent in the
requirements-definition phase.

— The prototype produced during the require-
ments-definition phase is used as the basis for
the actual implementation of the system, using
either a third-generation language or an ad-
vanced system-building tool. Productivity is
improved by reducing the amount of effort
spent in defining the requirements and also
by reducing the effort required for the im-
plementation phase (assuming that an advanced
system-building tool is used). If a third-genera-
tion language is used, the prototype is used
merely to define the requirements and is then
discarded.

— Prototyping is used as the development meth-
od, and the system is developed iteratively,
using an advanced system-building tool, with
functionality being added as the prototype
grows. Using prototyping in this way can im-
prove productivity dramatically because func-
tionally incomplete, but working, prototypes
are produced very quickly, and these can be
converted rapidly into working systems using
the system-building tool. However, few organ-
isations are yet using this radical method of
developing systems.

S Butler Cox & Pariners Limited 198

X FOUNDATION

Chapter 6 Monitoring the payback from system development methods

Figure 6.3 Benefits obtained by automating methods with tools

Type of tool
: Analyst/designer
Benefit Project-management workbenches Programming
| Improved planning and control - i (. .

Improved productivity

Improved interpersonal communication

IMPLEMENT ADVANCED TOOLS TO SUPPORT
PROPRIETARY METHODS

Proprietary methods affect development pro-
ductivity by enabling advanced system-building
tools such as IPSEs to be implemented. The bene-
fits of using such tools were discussed earlier in

Chapter 3 on pages 14 and 15.

As with methods, the benefits obtained from
automating a method with development tools
depend on the type of tool. The types of benefits
that can be obtained from using different types
of development tools are shown in Figure 6.3.

REPORT CONCLUSION

In this report, we have dispelled some misconcep-
tions about the use of proprietary development
methods and tools. In particular, we have shown
that it is not yet possible to purchase an all-
embracing development method that can be used
for all types of development project and for all
phases of the development process. Furthermore,
many tools are designed to support either a parti-
cular technique or method. Even the so-called
integrated tools do not cover the whole of the
development process. Foundation members should
review the development processes currently used
in their organisation, identifying the activities that
cause the greatest difficulties. They should then
select the methods that will be required to attack
those difficulties.

But methods by themselves will not be enough. The
main benefits from using development methods
come from improved quality of systems and better

. FOUNDATION

© Butler Cox & Partners Limited 1987

control of the management of development pro-
jects. Methods by themselves do not improve
development productivity, however. Improve-
ments in productivity come from using develop-
ment tools to automate the activities required by
the methods. Indeed, many methods are almost
unusable without the appropriate tools. Thus,
having selected the methods, an organisation must
then choose the development tools that will be
used to support the method.

The report has provided advice about how to select
the appropriate methods and tools. In practice,
however, the benefits actually achieved from using
the methods and tools will depend not only on how
well they are chosen. They will depend also on how
well their introduction is managed. The report has
highlighted the need to manage the introduction
of a new method as a distinct project and has
provided advice about how to do this.

33

Butler Cox & Partners Limited
Butler Cox House, 12 Bloomsbury Square,
London WC1A 2LL, England
=(01)831 0101, Telex 8813717 BUTCOX G
Fax(01)831 6250

Benelux
Butler Cox BV
Burg Hogguerstraat 791
1064 EB Amsterdam
= (020) 139955, Fax (020) 131157

France
Butler Cox SARL
Tour Akzo, 164 Rue Ambroise Croizat,
93204 St Denis-Cedex 1, France
=(161)48.20.61.64, Fax (161) 48.20.72.58

Germany (FR)
Butler Cox Deutschland Ltd.
Richard-Wagner-Str. 13
8000 Miinchen 2
=(089)5234001, Fax (089)52335 15

United States of America
Butler Cox Inc.
150 East 58th Street, New York, NY 10155, USA
=(212) 486 1760 Fax (212)319 6368

Australia
Mr J Cooper
Consultants (Computer and Finanecial) ple Australia
Level 5, 303 Pitt Street, Sydney 2000, Australia
= (02) 2870400, Fax (02) 2870450

Ttaly
SISDO
20123 Milano, Via Caradosso 7, Italy
=(02)4984651, Telex 350309, Fax (02) 481 8842

The Nordic Region
Statskonsult AB
Stortorget 9, §-21122 Malmo, Sweden
= (040) 1030 40, Telex 12754 SINTABS

Spain
Mr Sidney M Perera
Rosalia de Castro, 84-2°D, 20835 Madrid, Spain
=(91)723 0995

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39

