m |

. 0=

/////////////////////

. e

THE BUTLER COX FOUNDATION
REPORT SERIES NO. 36

COST-EFFECTIVE SYSTEMS DEVELOPMENT

Abstract

Research team

TheButler Cox Foundahion

© Reproduction by any method is strictly prohibited

AND MAINTENANCE

ISSUED AUGUST 1983

Both the nature and the scope of most organisations’
computer applications will expand dramatically over
the next three to five years. The pressure on
management services staff is already here: in many
organisations, users are demanding that flexible new
systems be developed urgently.

In working towards cost-effective systems there is
a bewildering choice of approaches, methods and
tools. There are too many alternatives for most
organisations to investigate, let alone install and use.

The purpose of this report is to identify the key fac-
tors that influence systems cost-effectiveness, and
to offer guidance to Foundation members on how
‘cost-effective’ systems can be achieved.

The report concludes that there are opportunities to
significantly improve the cost-effectiveness of sys-
tems development and maintenance, if a co-ordina-
ted programme of action is undertaken.

The team that researched and wrote this report was:

David Flint, a consultant with Butler Cox who has
considerable experience of commercial systems
development. He was the author of Foundation
Report No. 12 — Trends in Database Management
Systems — and has carried out numerous systems
studies.

Rob Moreton, a consultant with Butler Cox
specialising in systems development and data pro-
cessing management. He has contributed to the re-
search programmes of several Foundation reports,
and was responsible for arranging the programme
for two recent Foundation conferences that dealit
with systems productivity. He has also lectured
extensively on these topics.

Chris Woodward, a consultant with Butler Cox
specialising in information systems and the man-
agement of computing projects. He has extensive
experience of systems development and main-
tenance and has carried our numerous projects in-
volving both large mainframe computers and smaller
distributed systems.

Photoset and printed in England by Flexiprint Ltd., Worthing, Sussex

THE BUTLER COX FOUNDATION

Butler Cox & Partners

Butler Cox is an independent management consultancy and
research organisation, specialising in the application of
information technology within commerce, government and
industry. The company offers a wide range of services both
to suppliers and users of this technology. The Butler Cox
Foundation is a service operated by Butler Cox on behalf
of subscribing members.

Objectives of The Foundation

The Butler Cox Foundation sets out to study on behalf of
subscribing members the opportunities and possible threats
arising from developments in the field of information
systems.

The Foundation not only provides access to an extensive
and coherent programme of continuous research, it also
provides an opportunity for widespread exchange of experi-
ence and views between its members.

Membership of The Foundation

The majority of organisations participating in the Butler Cox
Foundation are large organisations seeking to exploit to the
full the most recent developments in information systems
technology. An important minority of the membership is
formed by suppliers of the technology. The membership is
international with participants from Belgium, Denmark,
France, Italy, the Netherlands, Sweden, Switzerland, the
United Kingdom and elsewhere.

The Foundation research programme

The research programme is planned jointly by Butler Cox
and by the member organisations. Half of the research
topics are selected by Butler Cox and half by preferences
expressed by the membership. Each year a short list of
topics is circulated for consideration by the members.
Member organisations rank the topics according to their
own reguirements and as a result of this process, members’
preferences are determined.

Before each research project starts there is a further
opportunity for members to influence the direction of the
research. A detailed description of the project defining its
scope and the issues to be addressed is sent to all members
for comment.

The report series

The Foundation publishes six reports each year. The reports
are intended to be read primarily by senior and middle
managers who are concerned with the planning of infor-
mation systems. They are, however, written in a style that
makes them suitable to be read both by line managers and
functional managers. The reports concentrate on defining

key management issues and on offering advice and guid-
ance on how and when to address those issues.

Additional report copies

Normally members receive three copies of each report as
it is published. Additional copies of this or any previous
report (except those that have been superseded) may be
purchased from Butler Cox.

Previous reports

No. 1 Developments in Data Networks

No. 2 Display Word Processors*

No. 3 Terminal Compatibility*

No. 4 Trends in Office Automation Technologies
No. 5 The Convergence of Technologies

No.6 Viewdata*

No. 7 Public Data Services

No. 8 Project Management

No. 9 The Selection of a Computerised PABX

No. 10 Public On-line Information Retrieval Services*

No. 11 Improving Systems’ Productivity

No. 12 Trends in Database Management Systems

No. 13 The Trends in Data Processing Costs

No. 14 The Changing Equipment Market

No. 15 Management Services and the Microprocessor

No. 16 The Role of the Mainframe Computer in the
1980s

No. 17 Electronic Malil

No. 18 Distributed Processing: Management Issues

No. 19 Office Systems Strategy

No. 20 The Interface Between People and Equipment

No. 21 Corporate Communications Networks

No. 22 Applications Packages

No. 23 Communicating Terminals

No. 24 Investment in Systems

No. 25 System Development Methods

No. 26 Trends in Voice Communication Systems

No. 27 Developments in Videotex

No. 28 User Experience with Data Networks

No. 29 Implementing Office Systems

No. 30 End-User Computing

No. 31 A Director's Guide to Information Technology

No. 32 Data Management

No. 33 Managing Operational Computer Services

No. 34 Strategic Systems Planning

No. 35 Multifunction Equipment

*These reports have been superseded.

Future reports

No. 37 Expert Systems

No. 38 Selecting Local Network Facilities
No. 39 Trends in Information Technology
No. 40 New Ways of Presenting Information

© Reproduction by any method is strictly prohibited

THE BUTLER COX FOUNDATION
REPORT SERIES NO. 36

COST-EFFECTIVE SYSTEMS DEVELOPMENT
AND MAINTENANCE

CONTENTS

REPORT SYNOPSIS j
PREFACE il
1 INTRODUCTION 1
The meaning of cost-effective systems development and maintenance 1
Symptoms of the problem 2
Evolution of the problem 5

2 UNDERSTANDING AND MEASURING THE COST-EFFECTIVENESS OF SYSTEMS

DEVELOPMENT AND MAINTENANCE 7
Assessing effectiveness and efficiency 7
Installing and using metrics 10
Factors that influence cost effectiveness 13
3 IMPROVING ORGANISATIONAL FACTORS 16
Management attitudes 16
Motivation 16
Project management 117
Work organisation 18
Organising for maintenance 19
Work environment 20
4 CHOOSING THE RIGHT APPROACH 2
The problem of choosing between alternative approaches 21
The available alternatives 22
Selection of development approaches 23
Using prototyping to promote user involvement 25
Case study: positive steps to involve users 25
5 ADOPTING SYSTEM DEVELOPMENT METHODOLOGIES AND AUTOMATED TOOLS 27
Methodologies to support the approaches 27
Available methodologies 27
Increasing the degree of automation 29
Increasing the use of computer-based tools 31
The changing role of analysts and programmers 35

Summary 35

CONTENTS

6 TRENDS IN SYSTEMS DEVELOPMENT AND MAINTENANCE AND GUIDELINES

FOR MANAGEMENT ACTION 36
Trends in the systems environment 36
Implications for data processing departments 36
Guidelines for improving the cost-effectiveness of systems development and maintenance 37
CONCLUSION 38
BIBLIOGRAPHY 39
GLOSSARY OF TERMS 40

| TR LI IX HOLTCIAL
LG A AL

© Reproduction by any method is strictly prohibited

THE BUTLER COX FOUNDATION
REPORT SERIES NO. 36

COST-EFFECTIVE SYSTEMS DEVELOPMENT

Both the nature and the scope of most organisations’
computer applications will expand dramatically over
the next three to five years. The pressure on manage-
ment services staff is already here: in many organisa-
tions, users are demanding that flexible new systems
be developed urgently.

Responding to these demands means selecting
methodologies, taking advantage of appropriate avail-
able aids and, in various ways, improving develop-
ment productivity. It does not mean simply increas-
ing the number of people engaged on the develop-
ment: for most organisations this is not possible and,
even if it were possible, it would not be advisable.

Development and maintenance are the two parts of
the complete system life-cycle. They are strongly in-
terrelated, since false economy in development can
lead to substantial extra costs in maintenance.

Modern systems development practices aim to
achieve reduced maintenance costs through better
structured and documented systems and automated
procedures. These procedures may increase de-
velopment costs, but can result in lower maintenance
costs and hence improved overall lifecycle cost-
effectiveness. This is important since maintenance
typically accounts for over 50 per cent of system cost.

In working towards cost-effective systems there is a
bewildering choice of approaches. System develop-
ers are offered project management disciplines,
structured analysis and design methods, structured
programming, application generators, application
packages, development toolkits, novel operating
systems and end-user computing — too many alter-
natives for most organisations to investigate, let alone
install and use.

Large computer users can benefit from one or more
of these alternatives. But the uncritical adoption of
a single solution can be no panacea for development/
maintenance problems. Choosing the right approach
is the subject of chapter 4 of the report.

The traditional staged development approach is
thorough, but cumbersome and slow. It is regulated
by formal standards, and supported by a limited

TheButler Cox Foundation

© Reproduction by any method is strictly prohibited

e

AND MAINTENANCE

REPORT SYNOPSIS

number of automated tools. Three non-traditional ap-
proaches — collaborative, iterative and end-user
development — have emerged in attempts to over-
come the traditional shortcomings.

In collaborative development the system re-
guirements and design are developed by a team of
users in close association with professional systems
staff. This takes time, but it enhances user commit-
ment and applies user knowledge directly.

In iterative development a prototype of the system
is built, using advanced tools, and is then refined to
form the operational system. End-user development
(reviewed in Foundation Report No. 30) embraces a
variety of approaches in which users develop their
own systems.

Managers should accept that the non-traditional ap-
proaches are here to stay and are likely to contribute
more extensively in the future. Projects can be mat-
ched to the appropriate approaches on the basis of
a number of key characteristics: commonality of re-
quirements, generality, impact on the business, com-
plexity of reguirements, performance reguirements
and clarity of requirements.

Whatever approach is adopted, the active participa-
tion of users in the development process should be

.encouraged. Users must be able to identify their own

requirements, and prototyping — the building of a
working model to test assumptions — is increasingly
used for this.

Prototypes can be used for various types of system,
provided that appropriate software tools are available.
They are well suited to small business applications
such as stock control and decision support systems;
and less suited to large, complex systems.

Five examples of methodologies that are affecting
systems development are described: data analysis
methodology, systems development methodology,
structured analysis and design, information systems
work and analysis of change, and PRIDE/ASDM.
These are outlined in chapter 5 of the report, which
also discusses the effects of increasingly automating
systems work and the use of systems building tools.

REPORT SYNOPSIS

These tools include system generators, language-
independent program generators, DBMS-based tools,
integrated toolkits and discrete tools such as query
languages.

The use of computer-based tools, together with im-
proved access to computers, is leading to the integra-
tion of the separate tasks of the analyst, designer and
programmer. Program code may be generated by a
wider variety of people, and once again it will be feasi-
ble to combine the roles of analyst and programmer.
This change in the role of systems staif will be a main
feature of data processing over the next five years.

Another change in role concerns the relationship
between systems staff and systems users. Systems
staff bridge the gap between the user and the
machine. But the gap-bridging becomes easier as the
machine facilities expand. Sometimes the gap can
be closed by providing users with appropriate
computer-based tools, whereupon the role of the
systems staff becomes that of identifying how the
machine facilities can best be exploited by the users.

How can cost-effectiveness in systems development
and maintenance be measured and improved?
Measures of effectiveness (in terms of timeliness,
quality and quantity) and efficiency (in terms of staff
performance, equipment, methods and costs) form
a useful structure for managing performance.
Managers should establish formal programmes to
monitor the appropriate performance data; systems
management by intuition is no longer adequate.

Certainly there are difficulties in systems perfor-
mance measurement — the “product” may be in-
tangible, different phases are interdependent, the
creative process does not lend itself to measurement,
and comparisons may mislead if the products are
dissimilar. But these difficulties can be overcome if
well-defined measures or metrics are established.
Appropriate measures for systems, equipment, per-
sonnel and projects are discussed in chapter 2.

We find that improvements in cost-effectiveness can
best be achieved through a broadly based improve-
ment programme. This should consider such factors
as project management, environmental (personnel)
factors, data management, new methods and tools,

application packages, new approaches to develop-
ment and the role of the user.

Work attitudes of systems staff have a strong influ-
ence on productivity, as we noted in an earlier
Foundation Report. And work attitudes are them-
selves strongly influenced by organisational factors.
Among the many organisational factors reviewed in
chapter 3 are the importance of assigning high
management priority to staff motivation: the value of
inspection procedures; and the benefits of organis-
ing maintenance as a separate function.

In the final chapter of the report we give guidelines
for management aimed at promoting cost-effective
system development and maintenance. Strategically,
the choice of system to be developed in the first place
is a critical factor.

At departmental level, our recommendations include:

— Implement training programmes to improve staff
skills and motivations.

—Introduce system metrics to provide objective
measurement of performance.

— Introduce quality assurance procedures.

— Adopt automated project management aids for
large and complex projects.

—Increase the degree of automation within the data
processing department.

Among the guidelines given for the project level are:

—Adopt collaborative, iterative and end-user de-
velopment approaches.

— Break long-delivery projects into smaller elements.
—Raise productivity by using off-the-shelf software.
—Adopt formal methodologies such as data analysis.
—Cut lead times by adopting system-building tools.
Using the approaches outlined in the report in the
context of a co-ordinated programme, we conclude,
there is no reason why most data processing depart-
ments cannot double their development and
maintenance productivity in three to four years' time,

and raise it by a further 400 per cent in six to eight
years.

TheButler Cox Foundation

© Reproduction by any method is strictly prohibited

Before a new application system is developed,
several crucial decisions need to be taken. These in-
clude the method and the tools that will be used to
develop the system. Also, in recent years, it has
become increasingly relevant to consider the type
of staff (systems developer and user) involved in the
development process. These early decisions have
far-reaching effects on system costs — yet they are
often ignored.

Intended readership

The report is intended for the executive responsible
for an organisation’s systems function. It will also be
of value to systems development managers, senior
systems staff, and managers of user departments
which are closely involved with systems develop-
ment and maintenance.

Our approach to the research

The research contained three main elements:

—Interviews with suppliers, progressive user
organisations and industry experts.

—Working group meetings with Dutch Foundation
members.

— A study of the literature on cost-effective systems
development and maintenance.
Purpose of the report

We approached the research with three main
objectives:

Tha R Han (v Eacmdatics
| he Butier Cox Foundation
© Reproduction by any method is strictly prohibited

PREFACE

—To identify the key factors that influence cost-
effectiveness.

—To evaluate the success of organisations in ex-
ploiting these factors.

—To give guidance to Foundation members on how
to improve the cost-effectiveness of their sys-
tems development and maintenance processes.

Structure of the report

Chapter 1 reviews the broad issues of cost-effective
development and maintenance and identifies the re-
guirements for improving cost-effectiveness.

Chapter 2 discusses the issues of efficiency and ef-
fectiveness in relation to system processes, and
reviews the factors that affect cost-effectiveness.

Chapter 3 discusses the potential contribution of im-
provements to the organisational environment.

Chapter 4 evaluates alternative approaches to
systems development and maintenance and iden-
tifies criteria that can be used in the evaluation.

Chapter 5 evaluates alternative methods which can
be used to support the different approaches, and
discusses the use of enhanced computer access
and software tools.

Chapter 6 identifies potential future developments
and indicates the main conclusions drawn from our
research.

A recurring theme of the Foundation's work has been
systems development productivity. Foundation Report
No. 11 — Improving Systems Productivity —
examined the overall issues of productivity in the
system life-cycle. Foundation Report No. 25 —
System Development Methods — reviewed the
methods that organisations can use for developing
systems. For many organisations, the question of how
to develop and maintain systems in the most efficient
and cost-effective manner remains a crucial issue.
Data processing departments are experiencing grow-
ing pressures from users to provide flexible systems
quickly. These pressures emerge as users become
aware of new opportunities, often through direct con-
tact with computer suppliers.

Decisions about the method or methodology that will
be used to develop a new system, and about the tools
and techniques that will be used to aid the develop-
ment process, have far-reaching effects on the
development and subseguent maintenance costs. Yet
the factors that affect the development process are
not widely understood.

In this chapter, we describe the significant factors
that can contribute to cost-effective systems develop-
ment and maintenance. We begin by explaining what
we mean by cost- effective systems development and
maintenance, and other relevant terms. We go on to
describe the nature of the problem because, for most
information systems managers, both development
and maintenance present problems.

THE MEANING OF COST-EFFECTIVE SYSTEMS
DEVELOPMENT AND MAINTENANCE

Systems development and maintenance are terms
that mean different things to different people. So we
begin with some definitions.

Systems development and maintenance

We define systems development as that part of the

system life-cycle which precedes the changeover to
a new system. (The system life-cycle spans all stages
from project initiation to system replacement. It en-
compasses both systems development and systems
maintenance.)

Systems maintenance is that part of the system life-
cycle which follows changeover and which changes

Tk Elosea e s e s—abey
[he Butler (ox Houndanon
© Reproduction by any method is strictly prohibited

e

CHAPTER 1

INTRODUCTION

the operational system. We define systems mainten-
ance as the process of modifying an existing opera-
tional system while leaving its primary function intact.

Of these two definitions, it is the second — system
maintenance — that is the more controversial. By
way of amplification, the following activities all fall
within the scope of our definition:

—Redesign and redevelopment of parts of an exist-
ing system.

— Design and development of an interfacing system
which requires some redesign of an existing
system.

— Modification of the systems documentation, file
structure or programming code.

It is useful to categorise systems maintenance, so
that valid comparisons can be made between dif-
ferent kinds of maintenance work. There are two main
categories:

—System enhancements, which change and im-
prove the system functions.

— System repair, which leaves the system functions
unchanged.

System repair can itself be further subdivided into:

—Corrective maintenance, resulting from process-
ing, performance or implementation failures.

— Adaptive maintenance, resulting from changes in
configuration, input or data files.

— Perfective enhancements, to improve performance
or maintainability.

Approaches, methods, techniques and
methodologies

Before discussing what we mean by cost-effective
systems development and maintenance, it is useful
to explain some further terms: approaches, methods,
technigues and methodologies. Here our definitions
are consistent with those given in Foundation Report
No. 25 — System Development Methods.

System development approaches

An approach provides a general direction for doing
something. In system development, an approach pro-

CHAPTER 1 INTRODUCTION

vides a general framework within which development
is carried out, and this framework is based on fun-
damental beliefs. These beliefs may be axiomatic in
that they do not necessarily have to be proven. A
hierarchy of system development approaches can be
constructed, based on the orientation of a particular
set of approaches. (For example, all structured
approaches aim to derive the system by examining
its structure. These approaches can be subdivided
according to the criterion used to derive the
structure.)

System development methods

A method is an orderly arrangement of ideas that aids
a particular activity (such as system design or system
analysis). A method usually contains an inherent
logical assumption, and is based on a theoretical con-
cept. Thus, a system development method is used
to practise a system development approach. (Indeed,
a system development approach cannot be practised
without a system development method.) Some sys-
tem development methods can be used in several
system development approaches.

System development techniques

A technigue provides a predominantly mechanical
way of doing something. System development tech-
nigues therefore provide the detailed guidelines for
using a system development method, and such a
technique will often require that a specific tool be
used. For example, documentation methods that are
based on the assumption that system design should
be represented in pictorial and diagrammatic format
require that both technigues and tools be used in
order to draw the diagrams.

System development methodologies

A system development methodology is a collection
of interconnecting methods and techniques, normally
within the framework of an approach. A methodology
represents a packaging of practical ideas and prac-
tices for a given area of activity. As an example,
within the structured approach, programming meth-
odologies and system development methodologies
have been developed.

Defining cost-effective systems development and
maintenance

Effectiveness is a measure of usefulness, or value.,

The term cost-effectiveness is a measure of value for
money. When something is cost-effective, it repre-
sents good value for money. Value for money can be
improved either by increasing effectiveness for a
given cost, or by reducing cost for a given level of
effectiveness.

It is important to realise that effectiveness relates to

the systems process, which is the means by which
the system is produced, and not to the product itself,
which is operated to achieve a business objective.
It is also important to note that effectiveness is not
the same as efficiency. Efficiency measures the con-
sumption of resources during a process. (Improving
staff productivity is a means of improving efficiency,
but not necessarily a means of improving effective-
ness.)

Having explained what we mean by systems devel-
opment and maintenance, and by the term cost-
effectiveness, we are now in a position to state the
meaning of cost-effective systems development and
maintenance. Put simply, it means achieving good
value for money during the process of systems
development and systems maintenance undertaken
throughout the system life-cycle, from inception to
replacement.

Cost-effectiveness can be improved either by increas-
ing the development cost — if this results, say, in
greater reliability of the operational system — or by
decreasing the development cost, if what the user
really needs is a simple system that satisfies only
(say) 80 per cent of his requirements. It follows from
this view that the biggest contribution to systems
cost-effectiveness comes from the correct decision
on which system to build. This issue falls outside the
scope of this report. In this report we identify the most
appropriate development approaches to adopt on the
assumption that the choice of system has already
been made.

Finally, it is worth noting that the early stages in a
project are the most critical because:

—Most of the problems that arise in the system
maintenance stage can be traced back to earlier
stages, especially to requirements definition.

—The cost of correcting errors is much higher dur-
ing the later stages of a project (see Figure 1).

SYMPTOMS OF THE PROBLEM

In this section we consider the pressures that are be-
ing exerted on data processing departments to pro-
duce cost-effective systems. These pressures are for-
cing senior managers to look critically at the effec-
tiveness and efficiency of their approaches to both
systems development and maintenance.

Systems development

Both the nature and scope of most organisations'
computer applications will expand dramatically over
the next three to five years. Today, computers are
being applied to a variety of management informa-
tion systems. At the same time the widespread use

heButler Cox Foundatior

© Reproduction by any method is strictly prohibited

CHAPTER 1 INTRODUCTION

Figure 1

1000

500

200F
100

50

Relative cost

20

Design Code

Requirements | .

Larger projects

; Development TestI Acceptance Test :

Increase in the cost of system changes throughout the life-cycle

Smaller projecis

Operation

Phase in which error was detected and corrected

(Source: Boehm (1980))

of computers in office and production environments
is opening up a whole new range of applications.
Improved user education and awareness, and in-
creased sales activity by suppliers, is reinforcing this
trend. In many organisations, frustrated users are
making continual demands on overstretched manage-
ment services staff for the development of new
systems. There are three ways to solve this problem.

One way is by improving the efficiency (productivity)
of systems development undertaken by professional
systems staff. But high levels of productivity are
difficult to achieve on large-scale projects because
of communication and integration problems. Produc-
tivity aids are available, but they are relatively expen-
sive and may not be justifiable on small-scale
projects. In most organisations, systems staff will
continue to play the major part in the development
(and maintenance) process. Often there is a long
elapsed time from user request to successful opera-
tion (many months is typical and several years not
unusual). Elapsed time may be reduced by carrying
out some sub-stages in parallel but this must be
planned and controlled very carefully or inconsisten-
cies and further delays may result.

A second way of solving the problem is by exploiting

re-usable software (standard code or application

packages). Suppliers are offering standard packages
for a growing range of applications. The two main ad-
vantages of the package approach are that im-
plementation can be quick, and at a known cost. The
main disadvantage is that the package is unlikely to
meet precisely the users’ needs. Users must decide
whether the benefits outweigh the shortcomings.

A third way of solving the problem is to encourage

TheButler Cox Foundation

i

© Reproduction by any method is strictly prohibited

users to develop some of their own systems. This
solution falls beyond the scope of this report. (It is
worth noting, however, that suppliers are improving
their products’ ease of use, so that end users can
construct some of their own solutions with the
minimal involvement of system staff.)

One of the major factors that inhibits cost-effective
development for users is the poor selection of appli-
cations. Historically, the data processing department
has acted as a reviewing body for computer projects,
although end users are increasingly developing many
of their own systems. This trend could lead to more
relevant systems being developed. But there is also
a danger of effort being wasted on ineffective
systems because of the inexperience of end users
in selecting projects for computerisation. Figure 2,
overleaf, provides a rough guide to evaluating a
system’s effectiveness and its development costs.

The evaluation is based on the return on investment
which is provided to the user by particular system
functions. For instance, the operating system is an
investment feature: it has to be financed, but it pro-
vides few direct benefits for the user. Application
functions can be regarded as having a high pay-off:
for relatively small incremental investments, they
result in relatively large returns. The return on invest-
ment begins to diminish beyond a certain point, when
the incremental cost of system development exceeds
the incremental value to the user.

Systems maintenance

It is important to distinguish between the cost-effec-
tiveness of systems development, and cost-effective-
ness over the system life-cycle. Reduced develop-

CHAPTER 1 INTRODUCTION

Figure 2 Cost of producing the facility

Natural speech
e) input
|Diminishing
| returns
|

Investment High pay-off

|
| } Exotic functions
' Multicolour graphics

I ‘secondary application
I functions

[Humanised /O

|
Basic application
functions
|
Operating |
system

Value to organisation

I
I
1
Main application functions
1
I
1
I
I
|

]
‘\I Data management system
Type of expenditure

(Source: adapted from Boehm (1981))

ment costs do not necessarily lead to improved life-
cycle cost-effectiveness. Modern systems develop-
ment practices emphasise a reduction in mainten-
ance costs through better structured and documen-
ted systems, automated procedures and so forth.
These procedures may actually increase develop-
ment costs. But they could result in lower mainten-
ance costs, and hence improved life-cycle cost-effec-
tiveness (particularly for long lifecycle systems).

Foundation Report No. 11 concluded that mainten-
ance typically is responsible for over 50 per cent of
the cost of a system. Although it may be difficult to
estimate or predict accurately, systems maintenance
is not a cost that can be ignored. It absorbs an in-
creasing proportion of scarce systems staff. This is
unacceptable in today’'s environment with, typically,
a growing backlog of potential applications.

Distribution of maintenance effort and cost

Estimates of the magnitude of systems maintenance
costs vary considerably from system to system and
from installation to installation. A recent survey in the
USA (reference 1) indicates that, for data process-
ing installations in business, the average ratio of
development to maintenance costs is 47:53.

Figure 3 shows that, within system repair, corrective
maintenance (emergency program fixes and routine
debugging) accounts for about 20 per cent of the
maintenance effort; adaptive maintenance accounts
for about 25 per cent of the effort and perfective
enhancement accounts for about 10 per cent. About
45 per cent of the maintenance effort is devoted to
software updates (enhancements for users).

Figure 3 Distribution of system maintenance effort

System
50 enhancements
45.2
S
= 40
(2]
[c2]}
Q
=
4]
c
(2
= L
&= System repair
% Adaptive
Y e e Perfective
o Corrective o 2
c 5 o4 = <}
@ 12.4 a o = [0} —
£ < =@ E =
& > 9.3 o 52 = ”E-’
L | o s o
10 < g’ 2 o i - a 8
[=) = 2 Die =
o ol||= Sw© ©
eg||28| |23 2| =
wellrg3 OO 5] E

Type of system maintenance

(Source: Lientz and Swanson (1978))

The conclusion to be drawn from these percentages
is that achieving error-free system development does
not eliminate a significant reguirement for system
maintenance. Corrective mainienance consumes a
relatively small proportion of the overall system main-
tenance effort. Almost half the system maintenance
effort is devoted to enhancements for users which
result in changes to the specifications. It is this fac-
tor which dictates that maintenance levels remain
constant over time — as user demands increase and
change.

It is possible to consider system maintenance in
terms of relative cost-benefits for the tasks under-
taken. In figure 4, the investment segment consists
of those maintenance activities which must be per-
formed if the system is not to deteriorate in value.
The activities include emergency program correc-
tions, hardware changes, operating system and data
changes and mandatory enhancements as a result
of legislation. The high pay-off segment of the curve
consists of high-priority enhancements for users.
These include improvements in efficiency, reliability
and documentation together with a set of secondary
improvements which provide a lower but still positive
ratio of benefits to costs. The diminishing-returns seg-
ment of the curve consists of a backlog of ‘desirable’
features such as limited-demand reports, and
rewriting poorly structured, but stable, code.

The decision on how much effort to put into main-
taining particular systems rests with each organisa-
tion. Our research indicates that once an organisation

| NE puler LoX H
© Reproduction by any method is strictly prohibited

has determined an appropriate level of maintenance
this will remain constant over time. As corrective
maintenance is reduced by use of, say, modern
development methods and tools, the demand for
system enhancements which require changes to the

Figure 4 Returns on investment for software

maintenance
Investment High payoff Diminishing
returns
Secondary user enhancements
| Improve
| documentation -=
5 | {
= | Improve code
2 [= efficiency
|
% : Routine
) debugging
‘2 ! \
= : !
2 | Primary user|
|
g enhancements
i
o Input data ! I
= file changes I‘}Aandatory enhancements
2 |Emergency | !
5 |
O | I
' i
“~Hardware, software, system changes

' . L 1y L | L i

20 40 60 80 100
Percentage of maintenance budget

(Source: adapted from Boehm (1981))

CHAPTER 1 INTRODUCTION

specification increases. It is clear that flexible data
structures and report generation capabilities can
facilitate system enhancements, thereby improving
the effectiveness and efficiency of systems
maintenance.

EVOLUTION OF THE PROBLEM

The data processing function, and the roles of the
systems staff employed within it, have both evolved
over time, and this evolutionary process has directly
affected systems development and maintenance.
Projecting how the process will continue in the future
helps to throw light on the changing nature of systems
development and maintenance.

The major environmental changes in the period
1950-1985 are summarised in figure 5, and the more
important trends are described in the text that follows.

1950-1960

The first commercial computer applications were
typically accounting and payroll. They were justified
on the basis of a reduction in repetitive clerical work.
The systems were implemented by analyst/program-
mers, with part-time user participation. The analyst/
programmers were concerned largely with the
technical aspects of computing, often failing fully to
understand the users’ information processing needs.

Figure 5 The changing data processing environment

4. Limited programming

Technology/control Functions of Functions of
Era factors user departments DP departments
1950-60 1. Computers are new tools 1. Limited participation on design 1. Select and maintain hardware
2. Lack of understanding of of DP systems 2. Control the design effort
computers 2. Maintain data base 3. Full-time participation on project
teams
4. Employ programmer/analysts
1960-70 1. Proliferation of technology 1. Increased participation on 1. Select and maintain hardware
2. Project teams emerge project teams 2. Control the design effort
3. Full-time participation on project
teams
4. Employ analysts
5. Employ programmers
6. Maintain data base
1970-75 1. MIS 1. Joint control of project team 1. Select and maintain hardware
2. Teleprocessing 2. Continued participation on 2. Full-time participation on project
3. Better understanding of project teams teams
computer usage 3. Employ analysts
4, Employ programmers
5. Maintain data base
1975-85 1. Distributed processing 1. Joint control of project team 1. Select and maintain hardware
2. Corporate data base 2. Full-time participation on project 2. Full-time and part-time
3. High-level languages teams participation on design
3. Own analysis 3. Employ analysts — more

emphasis on user to undertake
own analysis

4. Employ programmers

5. Maintain data base

Tl Hem Ly mAabm
[he Butler Cox Foundation
® Reproduction by any method is strictly prohibited

CHAPTER 1 INTRODUCTION

The data processing department selected and main-
tained the computer hardware.

1960-1970

In this era, the concept emerged of project teams
dedicated to the design of data processing systems.
The project manager was part of the data process-
ing organisation. User personnel were assigned to the
project on a part-time or full-time basis.

With the proliferation of new software (operating
systems, languages, utilities) and hardware (storage
devices such as discs and tapes, input devices such
as key-to-disk systems, and output forms such as
microfilm), merely keeping up-to-date with the tech-
nology became a full-time job. At the same time, it
became clear that a greater understanding of
business functions was needed in order to design
effective systems. A separation of functions offered
a solution to the problem, and programmer/analysts
were largely replaced by specialist programmers and
specialist analysts.

1970-1975

During the early 1970s most organisations imple-
mented some form of management information
system (MIS).

In some advanced organisations, project teams dev-
eloping MISs changed significantly during this period.
Some users became actively involved in the manage-
ment of systems projects. This happened for three
reasons. First, user acceptance of designs for com-
puter systems was often a problem, and this problem
was reduced if the user-manager was involved in the
design. Second, for users, the mystery of what com-
puters could do gradually disappeared. And third, user
managers wanted to control systems that affected
their jobs.

Technical advances in this area revolved around
teleprocessing. Systems were designed to provide
online retrieval, validation and updating of data files.

In leading organisations, users themselves gained
direct access to data for the first time.

1975-1985

The current period has itself brought some significant
changes. Many users now have experience in speci-
fying and approving major computer systems. In
some cases, users have participated in designing
data processing systems. In a few organisations, the
business analyst (the former systems analyst) now
reports to a user manager.

The popular concepts of the period are corporate
databases and distributed processing. (At first sight,
the existence of the corporate database seems to
contradict the trend towards user departments defin-
ing their own data processing systems. This apparent
contradiction can be resolved by the user department
business analyst taking responsibility for defining the
logical relationships of data, while the data process-
ing department maintains the corresponding data-
base software.)

During this period, some individuals from user depart-
ments are writing some of their own programs. Basic
retrieval (extract, sort, and list) with a high-level
language, either online or by batch processing, is one
of the main purposes of these programs. The need
for such a retrieval tool varies from application to
application. Users find retrieval an excellent tool for
solving both unigue and repetitive problems. Some
enthusiastic users also appreciate the convenience
of the process, because they no longer have to
endure long delays while the data processing depart-
ment processes their requests. Increasingly, some
users are writing non-critical and relatively simple
applications themselves.

In short, during this period some advanced users
have experienced for the first time the advantages
of developing their own systems and programs. The
expectations of users resulting from this evolution are
providing a major impetus to the development and
maintenance of cost-effective systems.

e DUier LOX FOLnaanor

© Reproduction by any method is strictly prohibited

CHAPTER 2

UNDERSTANDING AND MEASURING THE COST-EFFECTIVENESS OF
SYSTEMS DEVELOPMENT AND MAINTENANCE

The effectiveness of a system is measured in terms
of the benefits that it provides to the user. It follows
that the biggest contribution to systems effectiveness
stems from the choice of which system to build in
the first place. This topic was considered in Founda-
tion Report No. 34 — Strategic Systems Planning —
and falls beyond our present scope. In this report we
concentrate on the cost-effectiveness of systems
development and maintenance processes once the
decision on which system to build has been taken.

A related but distinct issue is that of efficiency. Effi-
ciency measures how well the organisation utilises
the resources assigned to systems development and
maintenance.

The relationship between effectiveness and efficiency
is represented diagrammatically in figure 6. In this
chapter we discuss the different measures of effec-
tiveness and efficiency. We also identify the meas-
urements that are appropriate in a formal perfor-
mance measurement programme.

Figure 6 The measurement of effectiveness and

efficiency
@ Timeliness

EFFECTIVENESS ® Quality

Objectives @ Quantity
el Th it Th duct
resources € systems e produc
! D) development |QUTPUT (operational
—“ process A > application

(tasks) system)

T

EFFICIENCY
® Staff

® Equipment
® Methods

® Costs

ASSESSING EFFECTIVENESS AND EFFICIENCY

In this section we discuss the factors which affect
the measurement of effectiveness and efficiency. We
also discuss the difficulties of performance measure-
ment.

The Butler Cox Foundation

© Reproduction by any method is strictly prohibited

Factors in assessing effectiveness

Systems effectiveness can be assessed in terms of
three factors: timeliness, quality and gquantity.

Timeliness

Timeliness reflects the extent to which the objective
can be accomplished in time to be effective. Typical
measures of timeliness include:

—Responsiveness to users. This measure can be
applied to activities during systems development
and maintenance.

— Schedule compliance. This measures the progress
of a project. Poor schedule compliance often re-
sults in a loss of user confidence in the data
processing department, from which it may be diffi-
cult to recover. Experience indicates that adding
additional staff to projects is not an effective way
to solve this problem. (Brook’s Law states that add-
ing additional staff to a late project during its final
stages in an attempt to make up time almost cer-
tainly makes the project later still.)

Quality
Quality reflects the extent to which the objectives of
a system are achieved. Typical measures of quality
include:

— Acceptability. Each system must contain a mini-
mum set of essential features if it is to be effec-
tive. Measurements of user acceptance are gener-
ally subjective, but it is possible to establish a con-
sistent procedure for evaluating acceptability.

— Process complaints. Following the completion of
a phase, the number and nature of complaints can
be used to measure process effectiveness and to
highlight problems such as poor evaluation of user
requirements and inadequate documentation.

Quantity
Systems effectiveness can also be measured quanti-
tatively. Typical quantitative measures include:

—System throughput. This is measured by the
number and size of systems developed over a
specific period of time.

— Extent of backlog. This is measured by the number
and size of outstanding systems applications.
(Many potential users may not request systems
because of the backlog.)

CHAPTER 2 UNDERSTANDING AND MEASURING THE COST-EFFECTIVENESS OF

SYSTEMS DEVELOPMENT AND MAINTENANCE

Factors in assessing efficiency

Efficiency can be assessed in terms of four factors:
staff, equipment, methods and costs.

Staff

It is not easy to measure guantitatively the perfor-
mance of individual programmers and analysts.
Nonetheless, where it can be done the results may
be revealing. The point is well illustrated by a study
(reference 2) conducted in 1966 which analysed the
performance of 12 experienced programmers. The
performance variations ranged widely between indi-
viduals as is illustrated by the following ratios between
the worst and best person:

debug computer coding code running
time time time size time
26:1 11:1 25:1 5:1 8=

Despite the fact that such variations are probably not
so extreme among today’s programmers (as a result
of the widespread use of high-level languages and the
observance of stricter standards) they do still exist.
Measuring guantitatively the performance of systems
analysts is by no means easy (individuals are usually
assessed subjectively by experienced project mana-
gers). Were it to be done, there would probably be
a similar variation between individuals as in the case
of programmers — a variation of, perhaps, 4:1.

This difference in productivity between individuals
does offer a major opportunity for improving effi-
ciency by replacing those individuals who are not
really suited to the systems environment. Our re-
search indicates that most organisations are not
taking advantage of this opportunity.

Equipment

Throughput and staff performance can be
measured in situations where different levels of
eguipment are used. The level of equipment can be
measured in terms of capacity, faciliies and ar-
rangement. Our research indicates that equipment
enhancements can improve the productivity of
systems development and maintenance.

Methods

Throughput and staff performance can also be
measured in situations where different methods are
being used. These measures can help to identify
appropriate methods of systems development for
different types of system. Ideally, any method
should include:

—A framework for evaluation.
—A uniform presentation of results.

—Consistent terminology through each stage of the
project.

—Clear objectives.

—The achievement of objectives through systema-
tic application of the method.

— Suitability to the development environments.

— Appropriate skills and expertise.

Costs

Individual systems and the total application portfolio
can be monitored on a cost basis. Equipment and
staff resources can be directly translated into finan-
cial terms. Comparative costs of different methods
are more difficult to define and monitor but, as we
indicated in Foundation Report No. 25, separate
evaluation programmes can be set up and costs can
be monitored over time.

Performance measurement

Effectiveness and efficiency measures form a
useful structure for managing performance.
Measuring performance is fundamental to manage-
ment control in any organisation. Yet most organ-
isations lack a formal programme for performance
measurement, so systems management remains an
intuitive process. To correct this situation, mana-
gers should establish a formal programme for
indentifying and collecting the appropriate perfor-
mance data.

Difficulties of performance measurement

There are four main difficulties of performance
measurement: measuring an intangible product,
phase interdependencies, measuring the creative
process and comparing dissimilar products.

Measuring an intangible product

The perceived effectiveness of a system depends
largely on users’ expectations. When expectations
are well-defined in quantitative terms, they can be
compared with actual systems performance. But
users rarely identify quantifiable requirements.

The process of developing systems is in itself difficult
to measure. Each phase can be documented, thus
apparently measuring progress. However, if the pro-
duct does not work when it is finally tested, the
documented ‘progress’ may be meaningless.

Phase interdependencies

Each phase in the systems development process is
based on preceding phases. The process is also
dependent on the specific requirements of individual
systems. The necessary flexibility in the process
makes only the most general measure of effec-
tiveness worthwhile.

Measuring the creative process
The creative aspect of system design is undefined

© Reproduction by any method is strictly prohibited

CHAPTER 2 UNDERSTANDING AND MEASURING THE COST-EFFECTIVENESS OF

and discontinuous and does not lend itself to
measurement. Since all phases of a project contain
tasks requiring creative effort, performance measure-
ment must be viewed at best as a step function (with
results becoming measurable at certain stages of the
project). In contrast, the input of resources is con-
tinuous.

Comparing dissimilar products

Three characteristics of an application system make
it unigue to a particular organisation: technology,
structure and size. Comparing the design effort
required by a small, highly structured, low-technology
project with that required by a large, unstructured,
high-technology one is unwise.

The need for practical metrics

The problems raised in the previous section can be
overcome if well-defined measures or metrics are
established. These measures require conscious
evaluation to provide a basis for comparison and
should incorporate inspections, audits, and con-
tinuous record keeping.

Much of the discussion in this report is concerned
with improving the productivity of systems develop-
ment and maintenance. Some people argue that im-
proving productivity leads inevitably to an improve-
ment in cost-effectiveness. Our view is that produc-
tivity can lead to gains in cost-effectiveness — but
this is not inevitable.

Productivity metrics — such as cost per instruction
— are extremely sensitive to variations in project
timescale, system size and the development environ-
ment. Because of this sensitivity, it is misleading and
dangerous to use these measures as the sole basis
of assessing progress.

Compressing the timescale of a project in an attempt
to force up productivity is often counter-productive.
That is the case when additional manpower resources
are allocated in an attempt to meet the deadline, with
the frequent result (a reflection of Brook’s Law) that
productivity actually goes down. The assumption that
manpower and time are interchangeable is not valid.

Cost per instruction is not constant either. Lines of
code may be used as a measure of work done, pro-

vided a single language is used in a consistent way

in a consistent software environment. In the great
majority of cases, though, where changes are con-
templated, a better system metric must be found.

Factors for improving productivity

An overall view of the factors contributing to software
productivity is given in figure 7 (based on work car-
ried out at TRW Systems in the USA). It shows the
ratio of the least to the most productive rating. The

TheButler Cox Foundation

© Reproduction by any method is strictly prohibited

SYSTEMS DEVELOPMENT AND MAINTENANCE

productivity ranges provide a means of identifying the
high pay-off areas that should be emphasised in a pro-
ductivity improvement programme.

From these ratios we conclude that an effective pro-
ductivity improvement programme involves more than
just introducing improved techniques for systems
development. The highest ratio in figure 7 is for
project staff. Thus cost-effectiveness must be con-
cerned primarily with maximising the contribution of

Figure 7 Software productivity ranges
Programming

1.20 language experience

Schedule
constraints

Data
base

1.23

1.23

Computer
1.32 turnround time

Configuration

134 experience

Configuration

1.49 volatility

Software
1.49 45015

Modern programming

1:51 practices

1.56 Main storage constraints

1.57 Application experience

1.68 Execution timing constraint

1.87 Required reliability

2.36 Product complexity

Personnel/team capability (analysts and programmers) | 4.18

T T T
1 15 2 2.5 3 3.5 4
Ratio of least productive to most productive rating

(Source: Boehm (1981))

systems analysts and programmers. Appropriate
measures must not just increase productivity in the
short term (for instance, through increased controls)
but must have a longer-term effect as well (for in-
stance, through engaging higher-guality staff).

Each of the factors given in figure 7 can be meas-
ured and weighted in accordance with its effect on
system development and maintenance effort. But do-
ing this in a practical and effective way is not always
easy.

45

CHAPTER 2 UNDERSTANDING AND MEASURING THE COST-EFFECTIVENESS OF

SYSTEMS DEVELOPMENT AND MAINTENANCE

INSTALLING AND USING METRICS

Many organisations have difficulties in establishing
programmes for systems measurement. In this sec-
tion we describe three different approaches to sys-
tems measurement and offer some practical guide-
lines for installing and using system metrics.

The use of successful metrics provides two primary
advantages for systems management. One is a sound
start-point for management planning and project con-
trol. The other is that many of the system cost para-
meters are project related, so that by concentrating
on the most appropriate parameters the cost-effect-
iveness of a system can be improved. For example,
the amount of software to be developed can be con-
trolled or reduced by choosing alternative develop-
ment options. It may be possible to purchase a pack-
age or to adapt a number of existing program routines
to fit the system requirements.

Using metrics in combination should provide on the
one hand a measure of the successful systems pro-
duct (in terms of such factors as people, resources,
structure) and on the other hand a measure of the
successful development process (in terms of such
factors as people, resources and scheduling).

Achieving non-quantifiable goals

Figure 8 illustrates an approach (derived from the
concepts of management by objectives) which aims
to ensure that non-guantifiable goals are achieved
through analysis of objectives.

The first step is to define the overall objectives of the
function or the system. The next step is to refine the
objectives at lower levels, and then to determine the
means of achieving them. This involves defining a
plan to assign responsibilities, identify actions,
recognise assumptions, and so forth. The final step
is to monitor the development process relative to the
objectives. The main benefits are:

—Explicit personal commitments to product and pro-
cess objectives.

—A well-defined sequence of progress.
—A framework for checking achievement.

—Checkpoints for reconciling qualitative measures
with quantitative measures.

A design-by-objectives methodology which translates
high-level business objectives into low-level technical
objectives has been developed by Gilb (see reference
5). The purpose of the methodology is to structure
the objectives of a system and then to decompose
them into a network of lower-level objectives that can
be expressed in terms of system attributes, functions
and performance.

10

Figure 8 Examples of functional objectives

Data processing —— Objectives

department ® To operate existing systems in a
reliable and consistent manner.
® To ensure that hardware and
software is operated in the most
efficient manner, consistent with
organisational objectives.
————————— ® To develop and maintain data
| Define processing systems that will
I lower level enhance the organisation’s
| objectives ability to meet its objectives.
System

development —— Objectives

® To assist users in the design of
application systems.

® To produce application software
to support business functions.

(R S ® To produce and maintain
Define records of data processing
lower level systems.

; objectives
Documentation ——— Objectives

® To establish and maintain the
applications programme library.

® To establish and maintain the
systems software library.

® To establish and maintain
operating procedures.

@ To distribute and maintain all
user documentation.

The methodology is associated with an evolutionary
approach to design, planning and implementation. It
is based on the early delivery of high priority sub-
systems or improved attributes. (The approach is
distinct from that of prototyping as each delivery is
concerned with a well-defined controllable part of the
final system.)

A system is progressively defined in terms of its func-
tional and attribute requirements. The functional re-
quirement is basic to the system solution. The at-
tribute requirement indicates the important
characteristics or qualities of the function. Attributes
can be defined in terms of resources such as time,
money, manpower, system capacity, and qualities
such as reliability, ease of use and timeliness.

Gilb stresses the need to identify the critical attributes
— those which if not properly controlled would
threaten the viability of the project or final system.
He also emphasises the need to quantify the objec-
tives in a way that is easy to understand.

The fundamental element of the methodology is the
‘attribute specification’. All the tools recommended
by Gilb are based on this. The general principles of
attribute specification are that:

o R - D B R, o YIS, I
I GUE AU 1l

© Reproduction by any method is strictly prohibited

CHAPTER 2 UNDERSTANDING AND MEASURING THE COST-EFFECTIVENESS OF

__All critical attributes must be identified and con-
trolled throughout the project.

—_All attributes must be measurable.

—_Attribute specifications must be clear and
unambiguous.

—The attributes must be specified early in the pro-
ject plan.

—The requirements of any one attribute must be
evaluated against the others (because the planned
levels of all attributes are interdependent).

— Priorities must be established to resolve conflicts
between attribute objectives.

The attribute specification can then be used to pro-
vide tools for analysis and design. The three major
tools are:

— Function/attribute/techniques analysis: this maps
the relation between system goals (function and
attributes) and the means suggested for meeting
these goals (the technigues).

—Quota Control Analysis: this provides a rough esti-
mate of progress towards achieving attribute
goals. It is a highly generalised cost-estimating
technique which can be used at any point in the
development process.

— Multi-element component comparison and analysis
(MECCA), which allows comparisons to be made
between alternative systems. A weighted score is
derived for each alternative system, and the best
alternative is the system with the highest score.

Each defined attribute has to be measured in some
way. Concepts which cannot be immediately quanti-
fied must be partitioned into sub-concepts until it
becomes obvious how to measure them. Unless
otherwise specified the measure should be something
that can be carried out in acceptance tests, or at the
point where the changes start to have an impact on
the end user.

The aim of the methodology is to provide managers
with a decision accounting method in areas of evalua-
tion which are usually treated in a less formal manner.

Case studies of performance evaluation

The efforts of two large organisations to implement
formal measurement programmes illustrate how suc-
cess can be achieved.

TRW Systems’ programme for productivity
improvement

TRW Systems’ programme for productivity improve-
ment has been described by Stuckle (reference 6).
The programme was implemented after TRW had per-
formed a detailed analysis of 63 large software pro-

The Butler Cox Foundation

© Reproduction by any method is strictly prohibited

SYSTEMS DEVELOPMENT AND MAINTENANCE

jects. A cost estimation programme has been
developed to help identify the major cost-sensitive
parameters (see figure 7 on page 9) and to evaluate
which of these parameters can be influenced by a
productivity improvement programme.

TRW undertook a ‘productivity audit’ of its projects
to determine the weighted averages of parameters
characteristic of systems under development and
maintenance. The audit measured not only the pre-
sent situation, but also several future alternative
scenarios at different levels of investment for produc-
tivity improvement. The resultant analysis indicated
that a co-ordinated programme concentrating on just
a few key parameters would improve productivity by
a factor of 3.4 by 1985, and a factor of 7.8 by 1890.
The analysis also provided guidelines for determin-
ing which parameters to emphasise as part of the pro-
ductivity improvement strategy.

At the same time, TRW undertook an activity analysis
aimed at assessing the likely reductions in project ef-
fort at each development phase as a result of the
improvement programme. The results pointed to
development savings of 39 per cent and maintenance
savings of 46 per cent (excluding any savings due to
software re-use).

As a result of these analyses, TRW'’s management
has decided to implement an improvement pro-
gramme. The goals are to improve productivity by a
factor of 2 by 1985, and a factor of 4 by 1990.

IBM’s Function Point Analysis

IBM's use of Function Point Analysis was reported
to the Share/Guide Conference in October 1979. In
order to measure productivity, IBM defined and
measured systems and costs. For each system, the
number of inputs, enquiries, outputs and master files
delivered was counted, weighted, summed and ad-
justed for complexity. The objective was to develop
a relative measure of the function value (to the user)
which is independent of the particular technology or
approach used.

As part of the estimating process, a series of
weighted questions were developed covering the ap-
plication function and the development environment.
Figure 9, overleaf, illustrates the Function Value
Worksheet, which enables a relative measure of
‘function value' to be derived for each system.

Function points are calculated from the systems
specification as follows (an adjustment of up to 25
per cent may be made in special cases):

Points For each:
4 Input data type.
5 Output data type.
4 Enquiry type.
10 Master file.

il

CHAPTER 2 UNDERSTANDING AND MEASURING THE COST-EFFECTIVENESS OF
SYSTEMS DEVELOPMENT AND MAINTENANCE

This approach defines a ‘function’ which is based on
external system attributes. It has been used to deter-

mine the relative productivity of different languages
and technologies for projects of different sizes.

Figure 9

IBM’s function value worksheet

IBM

DP SERVICES
FUNCTION VALUE INDEX WORKSHEET

Date:

Project ID:

Project name:
Prepared by:

Date:

Reviewed by:

Date:

Project summary:

Start date End date

Waork-hours

Function points delivered or designed
(from calculation)

Function points calculation (delivered or designed):

Allocation estimated by Project Manager

| |
I I
Note: Definitions | Delivered by Delivered by Delivered by Delivered by | Totals (identify
on back of form | new code modifying installing using a code | preponderant language)
| existing and testing a generator I
| code package I
| |
T
Language | |
Inputs | ' X 4
Outputs | | %5
Files | I x10
Inquiries | I X 4
Work-hours | Total
Design ' I Unadjusted
Implementation I ' function
e | points

Complexity adjustment: (Estimate degree of influence for each factor)

Reliable backup, recovery, and/or system
availability are provided by the application
design or implementation. The functions may be
provided by specifically designed application
code or by use of functions provided by
standard software. For example, the standard
IMS backup and recovery functions.

Data communications are provided in the
application.

Distributed processing functions are provided in
the application.

Performance must be considered in the design
or implementation.

On-line data entry is provided in the application.

On-line data entry is provided in the application
and in addition, the data eniry is conversational
requiring that an input transaction be built up
over multiple operations.

Master files are updated on-line.

Inputs, outputs, files, or ingquiries are complex in
this application.

Internal processing is complex in this
application.

In addition to considering performance there is
the added complexity of a heavily utilised
operational configuration. The customer wants
to run the application on existing or committed
hardware that, as a consequence, will be
heavily utilised.

Degree of influence on function:

0 None 3 Average
1 Incidental 4 Significant
2 Moderate 5 Essential

Total degree of influence (N)

Complexity adjustment equals (0.75 + 0.01 (N))

Unadjusted total X complexity adjustment = function points delivered or designed

X

12

X HOL

TheButler Cox Foundation

© Reproduction by any method is strictly prohibited

CHAPTER 2 UNDERSTANDING AND MEASURING THE COST-EFFECTIVENESS OF

FACTORS THAT INFLUENCE
COST-EFFECTIVENESS

Our research strongly suggests that improvements
in cost-effectiveness can best be achieved by a
broadly based improvement programme. Many fac-
tors need to be evaluated and key factors identified
before an effective programme for improvement can
be implemented and sustained. We now describe
each of the factors to be considered.

Project management

In Foundation Report No. 8 — Project Management
— we argued that system development is best con-
ducted in an organised and stable environment where
the ground rules are established clearly in advance,
and then maintained. We emphasised that if a high-
quality product is to be delivered on time and within
budget, there are not many ways of doing it right.

Good project management will not directly improve
the quality of a system, but it will reduce the risks
of time and cost overruns. Poor management can in-
crease system costs more than any other factor.

Environmental factors

Environmental factors are concerned not with
systems work itself but with the analysts’ and pro-
grammers’ perception of it. In order to improve pro-
ductivity, a positive attitude must be promoted
amongst the staff.

Increased control, fragmentation and deskilling of
system development can demotivate staff. Such
methods often increase productivity in the short term,
but have a larger negative impact in the long term
because they produce staff who are interested in
neither professional growth nor in the organisation's
objectives.

Work conditions can be improved by the use of such
facilities as software tools. The use of these tools
does improve staff morale, as they remove some of
the tedious tasks and increase the analyst’s or pro-
grammer’s control over their own output.

Working conditions can have a negative impact —
if conditions become too bad, people will leave. This,
in turn, can reduce productivity because a high pro-
portion of staff may be unfamiliar with the organisa-
tion and its cbjectives.

The most significant environmental factor in terms
of productivity is the analysts’ or prog rammers’ per-
ception of the work objective. As far as possible,
systems staff must be encouraged to recognise that
their ultimate objective is to assist users to manage
their activities effectively. The use of modern methods

TheButler Cox Foundation

© Reproduction by any method is strictly prohibited

SYSTEMS DEVELOPMENT AND MAINTENANCE

and facilities which we discuss in chapter 5 can en-
courage this attitude.

Data management

In Foundation Report No. 32 — Data Management
— we examined the topic of data as a company
resource, and identified several benefits that arise
from that coneept. They included:

— Reduced time needed for applications
development.

—_Involvement of users in data analysis (enabling
them to contribute to data model design and
application development).

— Greater flexibility in database design.

Additional resources are needed at the outset, to
carry out data analysis and database administration
while existing staff are being trained in the new
methods. Additional software tools, such as a data
dictionary, a database management system and data
design aids may also be required. In theory, the
number of systems development and maintenance
staff should eventually be reduced as productivity
rises, development becomes quicker and easier, the
maintenance load reduces and end users satisfy
many of their own requirements. Whether this hap-
pens in practice remains open to question. The ability
to satisfy user demands more easily has the effect
of generating further demands from users.

Foundation Report No. 12 — Trends in Database
Management Systems — confirmed that a database
approach can improve productivity by reducing the
cost and effort of development and maintenance and
by allowing a faster response to user requirements.
To achieve the full benefits of data management,
however, an organisation needs to invest heavily in
manpower, training, tools and technigues.

Methods and tools

Too often the whole topic of systems productivity is
associated with the implementation of new methods.
Modern systems development methods can improve
systems productivity, but they should be regarded as
only one element in a complete programme.

Most modern development methods help to improve
productivity in parts of the development process, but
not all of them improve overall life-cycle productivity.
Because of this, methods based on the traditional
staged approach to systems development have
limited application.

Figures 10 and 11, overleaf, illustrate the results of

a 1979 Guide (IBM user group) survey of the use and
evaluation of improved practices in about 800 installa-

13

CHAPTER 2 UNDERSTANDING AND MEASURING THE COST-EFFECTIVENESS OF

SYSTEMS DEVELOPMENT AND MAINTENANCE

tions. Figure 10 illustrates the effects of new methods
on various system and life-cycle characteristics. It in-
dicates that the greatest improvement has been in
the quality of code, and in early error detection. The
effects on programmer productivity and maintenance
costs are strongly positive. About 50 per cent of in-
stallations reported ‘some’ improvement and about
30 per cent reported ‘great’ improvement.

Figure 11 gives estimates of further improvements
which might be achieved if the methods are intro-
duced extensively. About 40 per cent of the 800 in-
stallations could achieve an additional 10-25 per cent
productivity gain; about 12 per cent could achieve an
additional 25-50 per cent.

Note that the effect on staff morale indicated in
Figure 10 is overwhelmingly positive. Nineteen per
cent improved greatly, 50 per cent improved some-
what, 28 per cent showed no effect and three per

Figure 10 Use of modern methods: effects on system and

life-cycle
Number of organisations

Factor considered Improved| Improved| No | Negative | Totalres-

greatly | some effect | impact |pondents
Projectestimating and control 63 294 206 8 571
User communication 89 227 252 3 5
Organisational stability 47 193 303 10 553
Accuracy of design 166 297 107 3 573
Quality of code 206 287 94 2 589
Early error detection 213 276 87 4 580
Programmer productivity 165 350 80 6 601
Maintenance time or cost 178 272 108 11 569
Programmer or analyst morale| 108 292 160 20 580

(Source: Guide survey)

Figure 11 Use of modern methods: potential for further

productivity improvement

Relative to
current level

Number of
organisations

decrease 8
same 132
< 10% increase 153
10-25% increase 264
25-50% increase 82
50-100% increase 18
100% + increase Ll
total respondents 658

(Source: Guide survey)

14

cent experienced a negative impact. We conclude
that measurable positive results can be achieved if
new development methods are introduced carefully.

Closely associated with, but separate from, the use
of new methods is the use of software tools. Using
software tools on their own can help to improve pro-
ductivity. Using them in combination with other
technigues can be even more worthwhile.

Application packages

In Foundation Report No. 22 — Applications
Packages — we concluded that much of the increas-
ing demand for application systems can be satisfied
by the use of packages. There are six powerful
reasons why an organisation should make greater use
of application packages:

— They release scarce professional staff to work on
unigue or special applications.

—They enable the maintenance activity to be sub-
contracted to the package supplier.

— They enable more systems staff to work on priority
systems.

—They are usually well supported and well main-
tained (the best packages have a large user
population).

—They are available more quickly then bespoke
systems.

—They are initially more reliable and cheaper than
bespoke systems.

But there are four main disadvantages to the use of
packages:

— Problems of matching the package to user needs.

— Problems of integrating packages with other appli-
cation systems. (These problems may include
difficulties in establishing a data management
policy.)

—Conflict with other elements of an organisation’s
systems strategy, such as hardware and systems
software.

— Problems of maintenance with some suppliers.

We believe that the advantages often outweigh the
disadvantages, and that applications packages, or in-
deed any re-usable code, will continue to be an
important method of improving productivity for the
foreseeable future.

The development approach

The advent of database management systems,
application generators and report generators has led
to new approaches to system development that dif-

 p O 5 VA 2 e} o N oo M -4 T
= =y Y
| FIR [T X |

© Reproduction by any method is strictly prohibited

CHAPTER 2 UNDERSTANDING AND MEASURING THE COST-EFFECTIVENESS OF

fer from the traditional staged approach. (We des-
cribe these alternative approaches in chapter 4.)

The new approaches reguire greater commitment
and involvement from the user in the development
process. A great deal of effort and technical skill may
be required to create the database or the com-
munications network, but the provision of application
programs can be so easy and cheap that no main-
tenance will be undertaken. It may be simpler to

discard the inadeguate programs and develop new
ones.

The new approaches require a different contribution
from the systems analyst. In many cases the analyst
will act as technical adviser to the users. For
instance, the users may be responsible for the identi-

TheButler Cox Foundation

© Reproduction by any method is strictly prohibited

SYSTEMS DEVELOPMENT AND MAINTENANCE

fication of data elements, with the analyst responsible
for setting up and loading information into the files.

The role of systems staff is to bridge the gap between
the user and the machine. As the machine facilities
expand, the job of ‘bridging the gap’ becomes tech-
nically less demanding. Sometimes the gap can be
closed by providing users with appropriate computer-
based tools. At that point the relationship between
the user and systems staff is changed: the role of the
systems staff is to identify how the machine facilities
can best be exploited by the users.

There has been considerable debate on how to in-
volve users in systems development. Nevertheless,
user involvement certainly promotes system accep-
tability and thereby effectiveness.

15

CHAPTER 3

IMPROVING ORGANISATIONAL FACTORS

In Foundation Report No. 11 we noted that the work
attitudes of system development staff are significant
determinants of productivity. Organisational factors
have a strong influence on work attitudes.

In this chapter we discuss the organisational factors
that influence work attitudes and summarise the
lessons learnt from our research.

MANAGEMENT ATTITUDES

Many of the factors that should be considered by
management in promoting a positive systems environ-
ment were discussed in Foundation Report No. 31 —
A Director’s Guide to Information Technology. The
following is a summary of the more pertinent factors.

Ensure commitment to the information systems

function at all levels

Senior managers should expect and demand ap-
propriate actions from line managers and systems staff
to realise profitable use of information technology.
Senior managers must set the stage, in an organisa-
tional sense, for information technology to prosper.

Develop on the basis of systems plans

In most organisations data processing and other
systems trail behind the business decisions that they
have to implement. Though primacy must be given to
business requirements, support systems must be con-
sidered at an early stage.

Plan strategically

This theme has recently been examined in detail in
Foundation Report No. 34 — Strategic Systems Plan-
ning. The report notes that many organisations fail to
understand the nature of strategic planning. Managers
often think that it is about future decisions but the focus
should be, in Drucker’s terms, on making ‘current deci-
sions in the light of future needs’.

Recognise the need for infrastructure

Senior managers must differentiate between individual
projects or uses of information technology and the
infrastructure required to make them work. Both are
important.

Manage technical staff as a company resource

Technical staff must be treated first and foremost as
company employees and resources — otherwise they
tend to burrow into the technology. All technical staff

16

need business training and some need career develop-
ment outside the systems area.

Emphasise the link between systems and
business goals

Systems plans must be integrated with business plans.
The proposed changes engendered by new systems
must have the necessary management commitment to
ensure their implementation.

Create and sustain objectivity

Managers must ensure that timescales and cost
estimates are not falsely optimistic. Productivity can
be seriously degraded by unrealistic scheduling or un-
necessary slippage.

Clarify the role of central expertise

In large organisations, the role of central expertise
in relation to local operating divisions must be
clarified. This factor is central to the issue of develop-
ment approaches addressed in chapter 4.

Concentrate on the key issues

Key issues in 1983 are not concerned with hardware
policy. Rather they are concerned with aligning in-
formation technology with business aims, the delivery
of working systems and the problem of technology
absorption.

Be positive

Senior managers must adopt a positive attitude
towards information technology. The real task of
managers is to 'grasp the nettle’ in order to ensure
Success.

Identify responsibilities of end-user and
systems staff

In large organisations every system must have a line
departmental manager as its sponsor. This is par-
ticularly critical where a central unit sponsors a
system for use in a number of dispersed units such
as local offices and depots. In too many such cases
the sponsor acts more as a barrier than a com-
munication channel. The existence of a sponsor
should not prevent systems staff from having access
to both end users and their local managers.

MOTIVATION

Most productivity studies have found that motivation
is the most important of all influences on producti-

TheButler Cox Foundation

© Reproduction by any method is strictly prohibited

CHAPTER 3

vity. Given the strength of this assertion we need to
find ways to motivate systems staff. But motivation
is a complex issue. There are many theories of
motivation (including Maslow’s hierarchy of needs,
McGregor's theory X and theory Y, and Herzberg's
motivation and hygiene theory). The overriding prac-
tical consideration, however, is that the personal
objectives of systems staff must be aligned with
organisational objectives.

Motivating systems staff

Studies (references 7 and 8) have shown that data
processing staff are more highly motivated by
‘growth’ needs than by social needs. Although Herz-
berg’s distinctions between motivating factors and
hygiene factors generally hold for systems staff, there
are also significant differences between systems staff
and other office workers. These studies indicate that
data processing staff are more strongly motivated by
opportunities for technical supervision, by peer rela-
tions and by personal life than by recognition, respon-
sibility, salary and status. The differences are more
pronounced among analyst/programmers than they
are among project leaders and managers. The results
indicate that data processing managers should not
expect their subordinates to be motivated in the same
way as themselves.

Reconciling individual and organisational
objectives

It follows from the significantly higher levels of pro-
ductivity achieved by highly motivated people that
data processing management must emphasise staff
motivation as one of their highest priorities. It is the
responsibility of data processing management to pro-
mote an efficient and co-ordinated development pro-
cess so that staff capability, motivation and team
work can be maximised. Such a commitment must
be maintained over a period of time. Once-off exer-
cises are often counter-productive. Managers must
demonstrate their continued commitment by investing
in better systems tools, recognising and rewarding
good performance and enforcing good practices. The
prime essential of any motivation programme is that
management commitments must be both consistent
and sustained over a long period of time.

Case history — a failure in motivation
This case history concerns a major heavy engineer-

ing company that is divided into nine divisions, each -

with a management board. There are about 500
system development staff in total, about 130 of whom
are located in a strong central systems department.
This department is responsible for defining standards,
evaluating tools and technigues and ensuring
adherence to common policies.

As part of a staff improvement programme the com-
pany evaluated and accepted the BIS MODUS

The Butler CoxFoundation

© Reproduction by any method is strictly prohipited

IMPROVING ORGANISATIONAL FACTORS

system. MODUS is a systematic methodology for in-
formation system planning and development which
incorporates procedures, technigues and documen-
tation. A high-level steering committee gave its sup-
port to the choice, and a central techniques group
visited each of the systems departments to run
courses introducing and establishing MODUS.

However, MODUS has not been used effectively —
not because of its lack of quality as a product — but
because the implementation programme did not gain
the full acceptance of middle managers and project
managers.

The company is now seriously reconsidering its posi-
tion. The message is clear: without management
commitment, improvements in the systems process
cannot succeed. Managers must be genuine in their
desire to change systems procedures and methods.

PROJECT MANAGEMENT

Good project management cannot directly improve
the quality of a system but it can reduce the probabi-
lity of failure and the likelihood of time and cost over-
runs. There is considerable evidence that systems
staff often regard project management methods and
systems development techniques as acting against
their own interests. Foundation Report No. 25 speci-
fically addressed this problem and identified guide-
lines for introducing new development methods.

It is useful to discuss project management under
three headings: management quality, planning the
project and controlling the work.

Management quality

No study has yet put forward a convincing definition
of management quality, nor succeeded in establishing
precisely its impact on staff productivity. The
penalties of poor management, however, are clear.
They can lead to a doubling of system development
costs as a result of assigning the wrong people to
jobs, demotivating staff by failing to reward good per-
formance, allocating staff to projects in advance of
defining their responsibilities, failing to resolve high-
risk elements in time, and failing to provide adeguate
support.

Planning the project

Planning the project entails breaking it into segments,
then estimating the resources needed for each seg-
ment. Several proprietary aids are available to assist
with the task of determining work stages, estimating
and monitoring progress against plan. Two examples
are the Putnam SLIM model and PROMPT 1.

The Putnam SLIM model is based on Putnam’s
analysis (reference 16) of software life-cycle costs in

17

CHAPTER 3

terms of the levels of people assigned to a project
over its duration. Putnam concludes that for a job of
a given complexity, there is an associated minimum
timescale.

PROMPT I utilises a life-cycle model to determine
work stages and provides, at the end of each stage,
formal reports to management. The stages are pro-
ject initiation, conception (this addresses business
justification and resources needed), functional defini-
tion, project definition (an outline technical design,
identifying the work and resources required), develop-
ment, systems test, user acceptance and main-
tenance.

For PROMPT Il to be effective, a plan is required to
address training needs, overheads, suitable pilot pro-
jects, consultancy support and costs. A manager
should also be designated for each project stage.

Controlling the work

Again, several proprietary products are available to
assist the task of controlling the work. BIS’'s MODUS,
Arthur Andersen’s Method-1 and Philips’ PRO-
DOSTA-R are three examples. All three stress the
need to manage the projects using a steering com-
mittee. The committee controls the budget and
decides whether to continue the project at each
stage. Another characteristic is a strong separation
between the initial stages that are concerned with
functional aspects of the system, and subsequent
stages concerned with technical aspects.

A relatively simple way of controlling work and rais-
ing systems quality is through formalising the pro-
cedures for checking quality and compliance with
standards. This type of approach is referred to as
inspection.

The aim of inspection is to detect errors in system

IMPROVING ORGANISATIONAL FACTORS

components and documents. Several inspections
should be conducted during the systems life-cycle.
Early stages of the development project as well as
the design and programming stages should be in-
cluded. Inspections are characterised by the use of
checklists and summary reports. An inspection team
typically includes a group leader responsible for pro-
cess planning, moderating, reporting and follow-up
activities. Other members of the team are the per-
son responsible for designing (or implementing) that
part of the system, and the person responsible for
testing the item being inspected.

The five basic steps involved are: planning, prepara-
tion, inspection meeting, rework and follow-up. The
steps do not vary for inspections conducted at
different development stages but the responsibilities
of individuals on the inspection team will change as
the life-cycle progresses.

Qur research indicates that inspections are an
effective method of increasing product quality
(reliability, usability and maintainability). Experience
with the technique indicates that it is effective in
projects of all sizes. The best results are achieved
when the inspection leader is experienced in using
the inspection technigue.

One IBM study reported a 23 per cent improvement
in programmer productivity with inspections
compared to walkthroughs. The study also reported
38 per cent fewer errors in the operational software
compared with the use of walkthroughs as a method
of detecting errors.

WORK ORGANISATION

In trying to improve the cost-effectiveness of devel-
opment and maintenance, it is worth considering the

Figure 12 Distribution of project effort by activity
s
T 40+ ‘
g = Project A
2
& 30} D = Project B
©
o
5 o0t
D
o
@
=
g 10 |
o b
a
Design Plan Program Document Review Meetings Enhancements
(additions)
(Source: Boehm (1880))
TheButier Cox Foundation

18

© Reproduction by any method is strictly prohibited

CHAPTER 3

nature of tasks undertaken by systems staff. Once
this has been done, the appropriate work environment
can be created.

Figure 12 shows the distribution of effort by activity
for two small application systems projects. The
analysis indicates that activities such as reading,
reviewing, meetings and enhancing (changing or
adding to) the original specifications consumed
roughly 40 per cent of the development effort for both
projects. These ancillary project activities need to be
estimated before development work commences.

Figure 13 shows the results of a Bell Laboratories
time and motion study for 70 programmers. It indi-
cates that roughly 30 per cent of the programmers’
worktime is devoted to overhead activities such as
training and personal business.

Figure 13 Analysis of programmer activities

Write
programs
13%

Job
communication
32%

Read

(program manuals, etc.)
16%

Training
6%

Personal
13%

Miscellaneous
(walking, off site, etc.)
15%

IMPROVING ORGANISATIONAL FACTORS

Choosing objectives

Figure 14 illustrates the results of a programming
experiment indicating that programming performance
is highly sensitive to objectives. In this experiment,
five teams were given the same assignment but each
team was required to maximise a different objective.
When the programs were completed and evaluated,
the results indicated that each team (with one
exception) charged with responsibility for maximising
an objective, did in fact do better in that respect than
the other teams. None of the teams, however,
performed consistently well on all of the objectives.

The main conclusions we can draw from this are that:

—Programmers are highly motivated towards
achievement. If achievement is defined in terms
of project objectives, programmers will generally
attempt to achieve those objectives.

— In practice, different objectives conflict with each
other.

The conflict between different objectives must,
therefore, be resolved if life-cycle planning is to be
successful.

ORGANISING FOR MAINTENANCE

Most organisations still undertake maintenance within
system development groups. Our research indicates
that, where maintenance is organised as a separaie
function, the result is usually an overall reduction in
the need for resources. In terms of the organisational
environment, the main conglusions from our research
are:

— Maintenance should be organised as a separate
function. The responsibilities of development and
maintenance staff must be clearly defined.

—Co-ordination between development
maintenance staff is essential.

and

Figure 14 Analysis of programmer performance against objectives

Performance ranking

AR e) Etf or: tzg Number of Memory Program Output

Team objective to optimise: compc statements required clarity clarity
assignment

Effort to complete
assignment @ 4 4 5 3
Number of statements 2-3 @ 2 3 5
Memory required 5 2 @) 4 4
Program clarity 4 3 3 @ 2
Qutput clarity 2-3 5 5 1 @

(Source: Weinberg (1974))

The Butler Cox Foundation

© Reproduction by any method is strictly prohibited

19

CHAPTER 3

—Requests for system changes must be handled
through formal procedures.

— Staff attitudes to maintenance can be improved (or
made worse) by management actions.

WORK ENVIRONMENT

Foundation Report No. 20 — The Interface Between
People and Equipment — discussed aspects of the
work environment that affect people’s attitudes
towards their jobs. These environmental factors apply
to the performance of systems staff as much as they
do to end users. The physical work environment has
a significant influence on systems productivity. Work
conditions tend to act as ‘a Herzberg hygiene fac-
tor'. Above a certain level they are not a powerful
motivator; but below that level they are a powerful
demotivator.

Perhaps the most ambitious attempt to provide a work
environment specially suited to the needs of systems
staff is the architectural design and development of
the IBM Santa Teresa Laboratory (reference 9). The
buildings, offices, furnishing, electrical and telephone
connections of the Santa Teresa Laboratory were all
designed to meet a set of requirements derived from
studies of software development activities. These
requirements included:

—Communications (both intra-project communica-
tion such as office proximity and conference

20

IMPROVING ORGANISATIONAL FACTORS

rooms, and external communications such as
voice and data telecommunications).

— Seclusion (personal offices with acoustic isolation,
adeqguate ventilation, windows and individual con-
trol of the environment).

— Furniture (such as work surfaces which accom-
modate the use of computer listings and interac-
tive terminals).

—Computer connections (terminal connections to
every office and easy access to communication
links and hard-copy devices).

—Security (controlled access to the site, data pro-
cessing facilities and project facilities).

— Technology (flexibility to encompass future hard-
ware and software advances such as powerful per-
sonal workstations).

Several organisations we visited in our research have
recently established less comprehensive but similar
work environments. The managers we interviewed
concluded that the new environment provides a
positive influence on productivity, staff attitudes and
personnel retention.

Most organisations will not have a building specifically
designed to satisfy professional systems staff needs,
but all organisations can evolve towards a better
systems work environment. The level of concern for
providing such an environment should, at the very
least, match the level of concern for providing a
suitable environment for hardware.

[NeButier (ox Houndation

© Reproduction by any method is strictly prohibited

In this chapter we look at the various ways in which
systems might be developed and maintained. We con-
sider the relevance of each alternative and offer guide-
lines for selecting the appropriate approach.

THE PROBLEM OF CHOOSING BETWEEN
ALTERNATIVE APPROACHES

Each organisation has its own culture and ethos. Within
an established cultural framework some approaches
(and methods) work better than others. For instance,
members of a Dutch Foundation working party on
systems development have stressed the need to adapt
American methods and practices to the different cul-
tural environment of the Netherlands.

Both Foundation Reports No. 24 and No. 34 have
stressed the need for organisations to adopt a
mechanism for identifying systems needs and for
systems planning. In most large organisations the iden-
tification of a systems need is followed by a fixed pro-
cess in which requirements are determined and the
system built. This can be termed the traditional
development process. Most organisations already
have at least one other means of acquiring systems,
typically based on personal computing on microcoms-
puters. This alternative often is subject to few central
controls, and often is seen as not contributing to the
organisation’s portfolio of applications.

The problems to be resolved

Traditional data processing departments have become
remote from the user community they profess to serve.
Two factors in particular have inhibited contact bet-
ween systems staff and users: over-specialisation and
inadequate specifications.

Over-specialisation and bureaucracy

The complexities of data processing have led both to
specialisation, and a need to combine and integrate the
work of different specialists. The large size of many
system functions has led to detailed controls, pro-
cedures and extensive documentation requirements.
Both complexity and size contribute to bureaucracy,
and with bureaucracy comes reduced responsiveness.
Data processing organisations usually have become
bureaucratic not because of poor management but
because of the complexity of hardware, software and
application systems.

TheButler Cox Foundation

© Reproduction by any method is strictly prohibited

CHAPTER 4

CHOOSING THE RIGHT APPROACH

Inadequate specifications

With traditional development methods, the specifica-
tion of business requirements is a very difficult task. On
the one hand it is difficult for users to define clearly and
precisely what they want. On the other hand, their
requirements tend to change over time. On large com-
plex projects, communication problems between team
members compound the difficulties.

Confusing alternatives

Faced with these problems, users and system
developers are offered many confusing alternatives,
such as:

— Project management disciplines and methods.

— Structured analysis and design methods.

— Structured programming.

— Application generators/higher-level languages.

— Application packages.

— Development toolkits.

— Novel operating systems (such as UNIX and PICK).
— End-user computing.

In practice there are too many alternatives here for

most organisations toinvestigate, let alone install and
use.

Management commitment

In our view most large computer users can benefit from
one or more of these alternatives. But we strongly
caution against the uncritical and comprehensive
adoption of a single solution as a panacea for develop-
ment and maintenance problems. A good deal of time
is wasted through failure to recognise the scope and
limitations of a proposed tool or method. Nevertheless,
it is vital for systems management to commit them-
selves once they have chosen an approach. This com-
mitment should be expressed in:

— Public endorsement of the approach.

— Support for the new methods that accompany the
approach.

—Clear and reasonable expectations of the benefits
to be achieved.

The remainder of this chapter provides guidelines for

21

CHAPTER4 CHOOSING THE RIGHT APPROACH

choosing the right approach. (in the chapter that
follows we give guidelines for choosing the most
suitable methods and automated tools.)

THE AVAILABLE ALTERNATIVES

Several different approaches have beendevised totry
to ensure the successful development of computer
systems. More recent approaches have been design-
ed to overcome the shortcomings in the traditional
staged development approach.

The traditional staged approach

The traditional staged development approach is
presented schematically in figure 15. In most organisa-
tions this approach is regulated by formal standards,
and is supported by a limited number of automated
tools such as editors, compilers, program libraries, TP
monitors, interactive test aids and report generators.
The process is thorough but it is also cumbersome and
slow. Communication problems can arise between the
user and development staff, as well as within the
development teams themselves.

Collaborative development

In collaborative development, the system require-
ments and design are developed by a team of users
and their representatives, in close association with pro-
fessional systems staff. This approach was pioneered
by Land and Mumford. Collaborative development is
time-consuming, but it enhances user commitment
and allows user knowledge to be employed directly.

Case history — userinvolvement in a collaborative
development

This case history examines the experience of a Dutch
group of companies. Each company in the group has
a medium-term business plan which provides the basis
for an associated systems development plan. The
implementation of this plan is the responsibility of a
supervisory committee. This committee monitors the
progress of active projects and takes executive deci-
sions about their conduct.

The initial stages of a development project are under-
taken by operating company staff (large systems are
developed for mainframe computers). Each company
has its own section of business information analysts
who are independent of the central systems staff. The
feasibility study is undertaken by a project group con-
sisting of one or two business information analysts and
one or two end users. The next stage, functional
design, is undertaken by an enhanced project group
which is responsible for system structure and data
analysis. Working in conjunction with the project group
on a part-time basis is the user group. This group is
responsible for supplying information to the project
group. They review project work such as input/output

22

Figure 15 Traditional staged system development

Identify need

{

] Feasibility study |

/

Cost-benefit evaluation

Outline requirements

Requirements study

Detailed requirements
I

System design

System specification

i

Program design

Program and module
specification
o

Coding

Program

¥

Test

Y
System test

A
Acceptability test

/\

Install Maintenance

:

formats, volumes and algorithms for which they provi-
ded information in the first place.

Central systems staff become involved only towards
the end of the functional design stage to provide advice
on database design, run-times and other technical mat-
ters. Once the functional design is complete, the
systems staff have responsibility for developing the
automated parts of the system. Responsibility for
developing the clerical parts of the system remains
with the project and user groups.

There are now few problems of user acceptance. The

['he Butier CLox Foundation

© Reproduction by any method is strictly prohibited

users have complete responsibility for functional
design, while central systems staff develop the auto-
mated parts of the system in accordance with the func-
tional design specification.

Some problems were experienced on large projects
where the elapsed time between functional design and
implementation was prolonged. Inthese cases, users
lostinterest because of the lack of a visible product in
areasonable timescale. Conseqguently, all systems are
now partitioned so that acceptance testing on the early
sub-systems begins less than nine months after com-
pletion of functional design.

Iterative development

Initerative development, a prototype of the system is
built using advanced tools and is then refined until it
satisfies the user. Figure 16 shows the iterative pro-
cess diagrammatically.

End-user development

This type of development includes a variety of
approaches, all of which are initiated by the end user.
It includes users who have a report-writing facility to
define reports for themselves, and users who develop
their own applications using a modelling package such
as FCS-EFS and languages such as APL and Basic.
This type of approach, which is outside the scope of this
report, was fully reviewed in Foundation Report No. 30.

SELECTION OF DEVELOPMENT APPROACHES

Cost-effectiveness (and productivity) is often inhibited
when all systems are developed in one standard way.
Since this approach is typically appropriate for the
most sensitive, large and complex systems, it is often
inappropriate for systems that are small, local or aimed
at decision-support applications.

We believe that organisations should recognise the
four kinds of development process described in the
preceding section: traditional, iterative, collaborative
and end-user. Many organisations already use several
kinds of development approach. Managers and system
developers in these organisations should recognise
that the non-traditional approaches are not some kind
of peripheral anomaly. They are already contributing to
the organisation’'s portfolio of systems and will con-
tribute more extensively in future.

Standard procedures should identify the nature of a
new system (or an enhancement request) at an early
stage. The request should then be tackled using the
appropriate development approach. The complete
system need not be developed using only one ap-
proach. Often it will be sensible to divide a system into:

— Operational processing and database maintenance,

The Butler Cox Foundation

© Reproduction by any method is strictly prohibited

CHAPTER4 CHOOSING THE RIGHT APPROACH

Figure 16 Iterative system development

Identify need

Y

Feasibility study

Jreey

Cost-benefit evaluation Qutline reguirements

l

Design |
Build
Review

Test

=

Document

N

Maintenance

Implement

v

which will be developed using the traditional staged
approach.

—Standard management reports, which will be
developed iteratively.

—Ad hoc reports, which will be specified by line
managers from time to time using a query language
or some other end-user facility.

Selection criteria

We can identify some general rules for allocating pro-
jects todifferent development approaches. Figure 17,
overleaf, summarises how development needs can be
assessed on the basis of a small number of key char-
acteristics: commonality of requirements, generality,
impact on the business, complexity of requirements,
performance requirementsandclarity of requirements.

Commonality of requirements

A system requirement may be common to a number of
businesses, or it may be unique. Systems with unique
requirements usually have to be specifically devel-
oped. Systems with common requirements may be
able to make use of a package shared with other
offices or businesses. An apparently commonplace
requirement may be rendered unique in practice by
features such as a bonus scheme in a payroll system.
Equally, an apparently unigue requirement may closely
resemble a need commonly met elsewhere.

In recent years some extremely flexible application
packages have appeared. As noted in chapter 2, the

23

CHAPTER4 CHOOSING THE RIGHT APPROACH

Figure 17 Selecting a suitable development approach

Are the requirements stable and clearly stated?

] [
Yes No

t

Is a suitable application package available?

I 1
Yes No
]

Are performance and efficiency constraints stringent?

| |
Yes No
)
Are the requirements Is the potential impact on
easy to understand? the business very broad?
| | I]
Yes No Yes No
t t
Does the user fully understand
his requirements?

T I

Yes No
¥ 1
Application . : End-user
package Collaborative| | lterative computing
Traditional
~ e =
Development
approaches

package option is more relevant than ever before.

Generality

Where the particular requirements are unique they
may, nevertheless, sometimes be seen as an example
of a more general pattern. Thus many financial models
may be seenin terms of spreadsheets. Inthese cases,
the need may be met by providing a suitable end-user
facility such as an electronic spreadsheet.

Impact on business

The system may have implications for many offices or
business functions; alternatively, its effects may be
localised. Systems with widespread effects are usually
sponsored by a central authority and developed by cen-
tral systems staff, while systems with only local effects
may be developed locally.

For systems having a broad effect, the most ap-
propriate approach is usually either collaborative or
traditional (or, occasionally, iterative). However, with
the availability of advanced system building tools such
as NOMAD, LINC and MAPPER, there are now a
number of large operational systems (mostly among
engineering companies) that have been wholly
developed by sophisticated users with little involve-
ment from systems staff. There have also been a

24

number of conspicuous failures to produce systems in
this way.

In the longer term we are convinced that users will be
able to develop most of their systems reliably. This will
result from an improvement both in the tools and in
understanding how they should be used. We advise
organisations to experiment with end-user develop-
ment so that data processing staff can monitor the ex-
periments and learn the lessons quickly.

In general, it is desirable that systems with a narrow
impact should be developed by their users. Our
research for Foundation Report No. 30 made it clear
that organisations must now formulate policies and
plans to guide (and perhaps control) the development
of end-user computing. One of the key elements of
these plans is the formation of an end-user support ser-
vice. Such a service can be used either to control and
restrict the activities of end users, or to assist end users
in enhancing their computing. The same Foundation
Report strongly recommended that this service should
be staffed by high-calibre people, having the potential
to progress to management positions.

Systems with narrow impact which will be replicated in
many dispersed units should be developed under the
supervision of a central sponsor. Often this arrange-
ment helps to discourage dispersed units from devel-
oping their own systems, except when agreed by the
sponsor and the central data processing department.

Complexity of requirements

At one extreme an application may be highly struc-
tured, or at the other extreme rather simple. Some-
times, apparently complex requirements may be ex-
pressed as a set of simple processes. Complexity in the
applications domain suggests iterative or collaborative
development. Complexity in computing requirements
suggests central and conventional development.
Simplicity suggests user development or central devel-
opment using advanced tools.

Performance requirements

Performance requirements are obviously critical areas
for success in system design. The required levels of
system response and resilience (especially with large
files or large transaction volumes) can often be
achieved only through considerable expertise in
design. Strict performance targets generally require a
disciplined approach and the use of conventional lan-
guages (or even assembler) in critical parts of the
system. The less rigorous the operational constraints,
the greater freedom will exist over both the choice of
development methods and the choice of tools.

Clarity of requirements

If the requirements for a system are clear and stable,
traditional development is probably the right choice
though the most productive methods and tools should

The Butler Cox Foundation
© Reproduction by any method is strictly prohibited

be used. If the requirements lack clarity then develop-
ment should begin with a prototype:

—If development is to be traditional then the prototype
should be discarded when it has served its purpose.

—If development is to be iterative then the prototype
will evolve into the finished system.

USING PROTOTYPING TO PROMOTE
USER INVOLVEMENT

Regardless of which approach they adopt, systems
departments should encourage the active participation
of users in the development process. Users must of
course be able to identify their own requirements.
Increasingly, prototyping is becoming a viable method
of achieving this objective.

Inthe context of this report, prototyping means build-
ing a working model of a system — a working model
which can be created quickly and relatively inexpen-
sively, and which enables a set of assumptions to be
tested. Prototyping is an iterative approach based on
trial and error. It can help to clarify user requirements,
verify the feasibility of system design and develop the
final system.

Requirements for prototyping

Oneimportant requirement for effective prototyping is
achange inthe traditional attitude of both systems staff
and users. Both need to be closely involved in an
iterative process to specify and develop the required
systems — rigid specifications no longer exist. Proto-
typing demands different procedures, different skills
and different tools.

Different procedures are needed:

—To identify the basic requirements.

— To develop a working model.

—To utilise and refine the model.

—To upgrade the prototype to an operational system
(if iterative development is used).

Different skills are needed because, despite the re-
duced importance of formal interviewing, communica-
tion remains the key to success.

Different tools are required because prototyping must
be supported by the appropriate automated tools (such
as adata management system, an application develop-
ment language, an application generator or re-usable
code).

Resources required

Compared with traditional methods, the prototyping ap-

heButler Cox Foundation

L
© Reproduction by any method is strictly prohibited

CHAPTER4 CHOOSING THE RIGHT APPROACH

proach uses extra staff resources (10 to 20 per cent
extra) during the early stages of a project. But it
requires fewer staff during later stages because of
more accurate requirement specifications. When user
requirements are better satisfied, fewer resources are
needed for system repairs. However, as we discussed
inchapter 1, user demands for changes tend to remain

constant, so the overall maintenance effort may not be
reduced.

Appropriateness of prototypes

Prototypes can be used for different types of system
provided that the appropriate software tools are
available. They are particularly suitable for small
business applications, such as stock control and deci-
sion support systems. They are least suitable for large,
complex systems. If the large systems are partitioned,
however, prototyping can be used within discrete areas
of the total development process.

Prototyping is an essential ingredient of an overall
iterative development approach. It can be counter-
productive, however, if the initial version leads to an
unresponsive system, or to a short-term solution which
neglects longer-term objectives.

Afurther danger of prototyping is that users may be so
content with the prototype that it becomes the opera-
tional system. Prototypes are not intended for that pur-
pose. A prototype may not, for instance, contain all the
fail-safe and recovery features of the eventual system.
Prototypes may fulfil only the main requirements, and
not the subsidiary ones which often ‘make or break’ a
system whenitis usedin a live environment. It is vital
that prototyping activities follow a well-defined plan.

CASE STUDY: POSITIVE STEPS TO
INVOLVE USERS

The key element in all the new development ap-
proaches is the increased involvement of the user. One
approach that has been successful in Scandinavia, the
Netherlands and Belgium is the use of Staffan
Persson’s Bottleneck Analysis (reference 10).

In this approach, small groups of employees are pro-
gressively consulted during the definition of business
procedures. The overall systems structure is built up
by an amalgamation of these definitions. Four stages
are involved:

—Identifying relations between the information
system, the work organisation and the company
objectives.

—Identifying and describing the operational pro-
cedures and organisation.

— Undertaking a design/definition programme with the
users.

25

CHAPTER4 CHOOSING THE RIGHT APPROACH

— Utilising an automated tool to define data and its
structures. A relational database is the best form of
tool to model the structures, although there are per-
formance limitations for most implementations.

Evenwhere a systemis not clearly defined, Dr Persson
undertakes development projects on a fixed price basis
— something which is possible, he argues, because
the main parts of all systems can be defined early in the
project. Because the development is undertaken in
close collaboration with the user, a potential failure can
be detected and corrective action taken at an early
stage.

Akzo Systems BV in the Netherlands has success-
fully developed a number of large and small systems
utilising the Bottleneck Analysis approach. Akzo's
development method COSAM (Co-operative Organisa-
tion and Systems Development Method) is supplemen-
ted by the documentation and system support tool
SWISS. SWISS is used for the definition of each of the
data items; the definition of the relations, keys and
dependent data; program generation from data struc-
tures (dialogue generation for display programs and
report generation for list programs); and finally for
menu generation. The result is an information system
that can be implemented gradually.

26

COSAM consists of nine stages, the last three of which
are supported by SWISS (see figure 18).

The result is an approach that involves more resources
thantraditionally in the early stages, but fewer in later
stages.

Figure 18 Stages of the COSAM development method

Stage 1 Preparation — naming functions
— task description
— discussing social and
organisational conseguences

Stage 2 Describing the present system
Stage 3 Analysis and improvement

Stage 4 Functional design — data dictionary
— bubble charts
— Backmann diagrams

Stage 5 Developing the operational plan
Stage 6 Implementation
Stage 7 Prototyping

Stage 8 Reviewing

Stage 9 Rebuilding/improving

Using SWISS

TheButler Cox Foundation

© Reproduction by any method is strictly prohibited

CHAPTER 5

ADOPTING SYSTEM DEVELOPMENT METHODOLOGIES AND AUTOMATED TOOLS

Having described in chapter 4 the different ap-
proaches to system development and discussed the
advantages of each one, we turn now to examine the
available methods and automated tools for improv-
ing the productivity of system development.

METHODOLOGIES TO SUPPORT THE
APPROACHES

In this section we briefly consider the different
approaches before describing the methodologies that
are available to support them.

Traditional staged development and collaborative
development approaches

Although the need for standards and a disciplined
approach in both traditional staged and collaborative
development is now widely recognised, our research
indicates that these are not always practised. In many
organisations there is still considerable scope for
improvement in the application of standards. Struc-
tured analysis and design disciplines have been intro-
duced with considerable benefit in many organisa-
tions using the traditional staged development
approach. Particular advantage can be gained in the
construction of large and complex systems in well-
managed organisations. The value of these disciplines
has been less significant in less well-managed
environments. Structured methods have been
developed to deal with the problems and systems of
the 1970s. But in many circumstances the same
benefits can be achieved by increasing the level of
staff skills.

In traditional staged development, a prototype can
sometimes be a useful aid to defining system
requirements. Only the more complex or vague parts
of the system need to be prototyped. The final system
can then be built in the conventional way, and the
prototype discarded.

lterative development

As we indicated in chapter 4, iterative development
may be used for a wide variety of applications, for
both new developments and enhancements. Since
experience is still limited, users should be cautious
about this approach. (It is clear that conventional
documentation standards are inappropriate for itera-
tive development, but it is not yet clear what the new
standards should be. Such methodologies as

TheButler Cox Foundation

®© Reproduction by any method is sirictly prohibited

PRODOSTA-R and PRIDE/ASDM (which we describe
later in this chapter) encompass the iterative ap-
proach, but they still have a traditional approach to
documentation.)

lterative development reguires advanced system
building tools or languages. It has been successfully
practised with APL, ALL, NOMAD, RAMIS and other
system building tools. But this form of development
is inconsistent with the existence of separate
analysts, designers, and programmers. The systems
staff involved must be able to fulfil these various roles
in rapid succession.

End-user development

Today, end-user computing is regarded increasingly
as an alternative, and legitimate, system development
approach (as we described in chapter 4). In Foun-
dation Report No. 30, on end-user computing, we
identified guidelines to enable an organisation to get
the maximum benefit from this activity, whilst at the
same time minimising the associated risks.

AVAILABLE METHODOLOGIES

During our research we identified five examples of
methodologies that are significantly affecting systems
development. The five are as follows:

— Data analysis methodology.

— Systems development methodology.

— Structured analysis and design.

— Information systems work and analysis of change.

— PRIDE/ASDM (which embraces project manage-
ment, systems development processes and auto-
mated aids).

The main characteristics of the five methodologies
are summarised in figure 19, overleaf, and each is
then described in turn.

Data analysis methodology

Data analysis is a methodology developed by CACI.
It incorporates data and process analysis. The
development cycle consists of six phases, of which
analysis and design are specified in detail. The
methodology is most suitable for the development of
systems in a shared data environment. These sys-

27

CHAPTER 5 ADOPTING SYSTEM DEVELOPMENT METHODOLOGIES AND AUTOMATED TOOLS

Figure 19 Characteristics of five development
methodologies

- (7}
=)
s g §e
a > 38
o, g]
2> O © c =
v >g5 c Sa o
>0 @@= ©Tg O_o
T ©F°E O =D o (2]
58 €8 38 28§ 3
L= = =0 g o w
2 22 Jy o5te6 4
zo 22 EP <o- &
ot & ws £20o o
Applies to all stages of
development - v - X 7
Includes project
managsment tools ¥ v X X -
Includes automated tools
and technigues - - - X -
Assists in documentation v - v = »
Applicable to large and small
systems = = = v >
Intended for shared data
systems » > >4 —
Aimed at systems staff v v v = »
Aimed at users — - - s =
Top-down approach b4 - v - -
Structured approach = v v = v
Includes entity modelling v W X — =
Includes data-flow v v v X =
Uses a data dictionary » o = X -

» =definitely included X = definitely not included
— =partially or peripherally included

tems are likely to be complex and to use database
software.

The methodology is intended for systems staff. It is
comprehensive, with the emphasis on tools and tech-
nigues rather than on documentation requirements.
It emphasises the use of diagrams and the need to
record information within a data dictionary.

The data analysis is based on a conceptual data
model represented in terms of data entities, attributes
and relationships. The process analysis is similar to
the Yourdon structured approach. All activities are
discrete and are actioned in series. There is little
allowance for iterative work, and a top-down
approach is not used.

Systems Development Methodology (SDM)
Systems Development Methodology was developed
by BIS and by Learmonth and Burchett. It is a highly
structured, data-driven method of systems analysis
and design which covers all phases of systems
development. It incorporates well-defined procedures
for both logical and physical design and relies heavily
on the data analysis approach.

28

The major techniques used in the methodology are
data flow diagrams, logical data structuring, third nor-
mal form of data analysis, data dictionary, walk-
throughs and reviews.

The methodology is aimed at all types of system. [t
uses the data-driven approach and is concerned with
understanding the data and its transformations. It is
independent of hardware and applies to all kinds of
file and database structures. At present, no major
software aids are incorporated except for the data
dictionary, and standard utilities for testing and check-
ing. The methodology provides program specifica-
tions that could be translated into operational pro-
grams in any language.

System Development Methodology is a comprehen-
sive and complex methodology which incorporates
a large number of stages, tasks and technigues. It
is aimed at systems staff, who need to be experi-
enced and skilled in order to apply the various techni-
ques. The user is involved mainly through discussion
with the analyst together with walkthroughs and
reviews.

Structured Analysis and Design

Structured Analysis and Design (SASD) covers the
analysis and design phases of the development pro-
cess. The Yourdon company, which provides train-
ing and consultancy for SASD, refers to it as a set
of process-oriented techniques. The technigues in-
clude data flow diagrams, structure diagrams and
structured English. These can be combined with pro-
ducts, such as data dictionaries from other suppliers.

The analysis and design phases are broken down into
well-defined sub-phases with checkpoints at which
users can check on the previous phase. The design
phase produces a set of program specifications with
supporting design documentation and operational
procedures in the data dictionary. The methodology
is intended for use on medium to large projects where
the problems of complexity and communications with
the user are significant. These systems often require
the solution to be partitioned via functional decom-
position.

Some large SASD users have written graphics soft-
ware that allows the interactive development of data
flow diagrams. Some of these are now becoming
available as commercial packages.

The approach requires trained and skilled systems
analysts. Data flow diagrams play an important role
in allowing the analyst to demonstrate models of the
system for verification by the user.

Information Systems Work and Analysis of
Change
Information Systems Work and Analysis of Change

TheButler Cox Foundation
© Reproduction by any method is strictly prohibited

CHAPTER 5 ADOPTING SYSTEM DEVELOPMENT METHODOLOGIES AND AUTOMATED TOOLS

(ISAC) is a problem-oriented approach to systems
development, created by Professor Lundeberg. The
methodology is user-driven and systematic. It charts
work processes and leads to a diagrammatic repre-
sentation of both an activity and an information
model. No automated tools are commercially
available to support the methodology.

To understand wider problems and implications than
those specified by the scope of the system, analysis
is undertaken by breaking the problem down into
smaller units. The initial steps in the process can be
performed only by business managers and analysts
who have a wide understanding of the business func-
tions of the organisation.

ISAC gives no detailed guidelines on how to perform
gach phase, but examples are available. Maintenance
is not specifically covered in ISAC as a separate
phase.

The use of ISAC does not require detailed technical
knowledge until relatively late in the development pro-
cess, after data structures and computer routines
have been designed. The user is closely involved in
analysis and design. The methodology has been used
in large and small organisations. But it is potentially
most useful in complex situations where a top-down
analysis of problems reduces them into manageable
sub-problems.

PRIDE/IASDM

A high level of automation of the systems develop-
ment process is incorporated in PRIDE/ASDM as
developed by Bryce & Associates. This is a systems
development methodology which incorporates project
management methods. The system is similar in con-
cept to METHOD-1 and PRODOSTA-R, but its great
advantage is that it incorporates a data dictionary
feature and automated design facilities.

The methodology divides systems development into
nine phases, ranging from the initial system study
through to the audit of the installed system. An auto-
mated dictionary/directory stores the definitions of
systems, organisational entities, data, procedures,
and programs. It generates data diagnostics and
phase documentation. The design method is based
on the concept of grouping outputs by the time cycles
in which they must be produced.

In the automated design process, the outputs are
defined first as the analyst performs the initial system
study. Each of the outputs is defined in terms of a
cycle, offset within a cycle and response time require-
ments (for example, a daily report, produced at 1 pm
with a response time of ten minutes). The system
analyses the dataflows, relating them to their sources.
As the design advances the system can be divided

The Butler Cox Foundation

© Reproduction by any method is strictly prohibited

into sub-systems and more detailed design under-
taken for each sub-system.

Again data definitions are input to the system,
together with the procedures necessary for produc-
ing the desired outputs. The system identifies errors
of inconsistency or omission. This whole process is
iterative, with the design progressing on a trial and
error basis.

This comprehensive methodology offers considerable
advantages for the development and maintenance
processes and has been used successfully on both
large and small projects. So far the major productivity
improvements relate to the design of batch systems,
although the suppliers are enhancing the automated
facility to provide assistance for on-line system
design.

INCREASING THE DEGREE OF AUTOMATION

Significant productivity improvements can be
achieved by increasing the degree of automation
available to support systems staff. As the technology
advances, so the guality of system design aids will
continue to improve, becoming easier to use, requir-
ing less effort, and assisting in the logical design.

Advantages of increasing the degree of
automation

Many advantages arising from increasing the degree
of automation can now be enjoyed by systems staff.
A wide variety of products are available to automate
or support the process of system design and con-
struction. Almost all these products work in one (or
more) of three ways:

—They improve the user or developer’s access to
computer power.

—They provide pieces of code, or whole programs,
that would otherwise have to be written specially.

—They allow data and functions to be defined in a
more convenient way than in conventional lan-
guages, often in a way that the user can under-
stand.

Access to computer power may be provided through
programmers’ workstations and software work-
benches, through front-end development systems and
through the use of interactive compilers, editors,
debuggers and interpreters.

Re-usable code may be provided through standard
modules for file access, calculation or business func-
tions; through data centre utilities; through a library
of standard program skeletons; and through operating
systems, DBMSs and TP Monitors (‘middleware’).

29

CHAPTER 5 ADOPTING SYSTEM DEVELOPMENT METHODOLOGIES AND AUTOMATED TOOLS

Better ways of defining functions were first provided
by report generators and query processors. Later, file
definition capabilities and dedicated very high level
languages were introduced. The most recent develop-
ments are comprehensive systems development
packages and facilities which short-circuit the nor-
mal development process by imitating a familiar
manual data structure such as a spreadsheet or a
box of file cards. Products currently on the market
provide the following benefits:

—They improve the image and self-esteem of
systems staff through increased professionalism.

— They support prototyping and thereby ensure that
the system matches the user’s requirements more
closely.

—They reduce the proportion of routine and tedious
activities, thereby enabling systems staff to be
more creative.

—They reduce the lead time from project initiation
to system delivery.

—They improve the overall productivity of the data
processing function.

— They identify careless errors (inconsistency, omis-
sion, duplication).

—They enable changes to be made with a minimum
of disruption.

—They require a disciplined and structured approach
(and therefore help to enforce standards).

Improving access to computers

In many organisations, programmers and analysts are
still poorly supported by their computers. Easy and
responsive computer access can improve the produc-
tivity of maintenance and enhancement work, as well
as new development work. The areas that are ripe
for improvement include:

—Response times.

—Turnround times.

—Access to documents.

—Ratio of terminals to systems staff.
—Source code libraries.

Response times may be reduced by tuning or upgrad-
ing an existing mainframe. But this improvement is
usually obtained more economically by using a mini-
computer-based front-end system.

In a recent project within IBM, one development team
was given priority access for TSO (timesharing) work.
The team was allocated a dedicated office adjacent
to the computer, using fast local line connections. A
terminal was allocated to each programmer. The
study noted that the time taken by programmers to

30

reply to the terminal (programmer response time) fell
dramatically with system response time — see figure
20. Productivity was increased by 58 per cent indi-
cating a saving in total effort of 37 per cent. Of equal
significance, the equipment cost per module did not
increase — the increased rate of use of machine
resources was balanced by the saving in time.

Figure 20 Analysis of programmer response time
against system response time

Z &

|

3

S 201

»

£

= 154

@

w

=

o

g 104

g

E 57

S

()]

e

s L , . : . . [—

0 i 2 3

System response time (seconds)

(Source: IBM (1982))

In addition to the productivity gains, the project also
benefited from an almost complete elimination of
overtime and the early installation of the finished
system.

Qur research indicates that a number of organisations
have noted this effect in reverse. Heavy mainframe
usage often results in a degraded service, causing
programmers to lose concentration and eventually to
become demotivated.

In principle a combination of micro-based work-
stations, locally shared resources and mainframe ac-
cess would provide the best facilities. But the soft-
ware to support such an environment does not yet
exist.

A substantial reduction in response time changes the
nature of the interaction with the computer. Menu
selection, for instance, is efficient when response
times are under one second, but is less efficient when
response times are five seconds. If textual search can
be made sufficiently fast, it will be preferred to the
manual scanning of printouts. (Though the use of
printouts for debugging has declined in some organi-
sations, it remains a central element in most devel-
opment work. It is therefore desirable that a fast
printing service should be provided for system
developers.)

= e T e s L e e B
[NepUler LoX -oundanon
© Reproduction by any method is striclly prohibited

CHAPTER 5 ADOPTING SYSTEM DEVELOPMENT METHODOLOGIES AND AUTOMATED TOOLS

In many organisations there is considerable scope
for increasing the ratio of terminals to programmers.
One terminal per working programmer is a reason-
able target. Often the terminal can be cost-justified
by increased productivity.

Online access to specifications and other documents
speeds up retrieval and updating activities. Computer
support also makes it easy to manage several parallel
versions of a document. Good library facilities ease
the programmer’s job and encourage the sharing of
code and skeletons. The use of electronic messag-
ing systems for memoranda and systems documen-
tation can also improve communication between
team members.

The Philips Maestro system

Maestro has been designed to run as a stand-alone
system linked to the host computer. Currently each
Maestro system can handle up to 20 workstations.

Maestro supports program development starting with
specifications and continuing through module design,
coding and testing. Documentation can be created
and maintained throughout the process. A text editor
is provided for making additions, deletions, changes
and global replacements in a body of code. It is also
useful for handling textual information, such as
requirement statements and system (or program)
specifications. For example, analysts can develop the
specification for a new system in text form. The top-
down design features, plus the text editor, allow them
progressively to correct and enhance the specifica-
tion.

Maestro provides a variety of functions to support the
programming process. |t encourages structured pro-
gramming by providing five control ‘constructs’ for
designing a program. The system can draw structure
diagrams of the logic that has been expressed in
terms of these control constructs. It allows for the
marking of sections of code, text and data, and each
of these sections can be indexed. Movement between
sections is undertaken by one key stroke. A shorthand
feature enables abbreviations to be used for common
data-names etc. Significantly, an audit trail is main-
tained of all changes to each program; and the
system monitors the usage of facilities.

Maestro is relatively expensive; each workstation
costs about $6,000 for the configuration described
in the case history below. But the productivity gains
experienced by existing users confirm that the system
can improve the cost-effectiveness of the develop-
ment and maintenance process.

Case history — justifying increases in the degree
of automation

A major consideration in increasing access to com-

The Butler Cox Foundation

@© Reproduction by any method is strictly prohibited

puters and introducing automated tools is that they
may require substantial capital expenditure, which
may be difficult to justify in advance.

During our research we contacted a major manufac-
turing organisation to discuss its systems develop-
ment environment. The company, which employs
more than 70 development staff, has recently made
a financial case, justified over five years, for purchas-
ing a dedicated Philips Maestro system to provide one
terminal per programmer/analyst. The company and
staff have agreed that a 10 per cent increase in
development productivity will be achieved, and
development timescales are being adjusted accor-
dingly. This productivity improvement will be used as
a basis for evaluation in the next round of annual staff
assessments (and salary reviews).

The system costs about $100,000 and consists of 16
terminals, 2 x 64M bytes discs and a Philips P7000
processor. An additional payment is required for
annual software rental. Each individual is given three
days training on the system and five days are allowed
for familiarisation over a period of three months. The
decision to acquire the system was taken after the
company had considered using interactive facilities
on the mainframe. This alternative was rejected
because of the poor response time (and low priority)
of development work on the mainframe.

In addition to the increase in productivity, the most
significant advantages of the Maestro system
observed during a trial period of nine months were:

— Instantaneous response for editing.
— Terminals with function keys.

— Consistency of approach through the development
process.

— Enforcement of standards and procedures.
— Automatic document generation.

—The ability to cross-reference between levels of
program definitions within the system, thus pro-
viding flexibility of work patterns.

INCREASING THE USE OF COMPUTER-BASED
TOOLS

There is no doubt that modern system building tools
(SBTs) lead to much higher productivity than conven-
tional languages such as COBOL and PL/1. Some of
these tools are referred to as fourth generation lan-
guages, and some are also referred to as non-pro-
cedural or declarative languages. Conventional lan-
guages such as COBOL require the programmer to
specify a procedure for achieving a solution as well
as strict processing logic. With non-procedural

31

CHAPTER 5 ADOPTING SYSTEM DEVELOPMENT METHODOLOGIES AND AUTOMATED TOOLS

languages, the developer describes ‘what’ needs to
be done and leaves the individual ‘how’ steps to the
software.

The improvements derive from a number of features,
including:

—A rational syntax, which enables more efficient
translation into executable code.

—Integration with a database management system
(DBMS), which eases the accessing and updating
of files.

— Non-procedural instructions, which ease the use
of languages by reducing the level of technical
expertise and training needed.

— Integrated debugging aids, which ease the testing
procedures.

Advanced SBTs are needed for iterative development
but they can also be used to improve stages in the
traditional development approach.

The selection of appropriate tools depends upon a
number of factors associated with an organisation’s
application portfolio. These include:

—The nature of the workload: how much is batch
processing and how much is on-line? What is the
balance between on-line enquiry and file update
transactions?

— The need for operational efficiency: what are the
response time requirements? How heavy are the
tools on main memory capacity?

—The need to interface with other systems written
with conventional languages.

—The computer used (because tools are available
on only a limited range of computers).

—Whether systems staff or the end user will be the
prime developer.

As a result of our research, we can distinguish
between five kinds of SBT. These categories are not
exclusive, as illustrated in figure 21.

System generators

System generators are appropriate to particular kinds
of application — often they cannot readily interface
to existing files and may be restricted to a proprietary
DBMS.

It is essential to evaluate the environment into which
the generator is to be fitted if the potential produc-
tivity improvements are to be realised. If a generator
does not closely fit an application or provide
appropriate interfaces, then substantial elements of
own coding may be required. This can result in a

Figure 21 Categories of system building tools

Category Example of tool Supplier

System generators | Application ICL
blueprint

Customised appli-
cation system

Hewlett Packard

Language indepen-
dent program

generators DELTA Sodecon AG
DBMS-based tools |ADF IBM
ADS Cullinet
FOCUS Information Build-
ers Inc.
MANTIS Cincom
NATURAL Adabas AG
RAMIS Mathematica Inc.
LINC Burroughs
Integrated toolkits [LINC Burroughs
ALL Microdata
MAPPER Sperry Univac
NOMAD National CSS Inc.

Discrete tools

Query languages
such as

SQL IBM
Various Various
text aids

hybrid application which is not much quicker to
develop and may be difficult to maintain.

There are two types of system generators, both of
which require programming expertise:

— Program generators: these create source code as
stand-alone programs. These statements can be
modified directly, without using the generator.
Further, an application may be built up from a com-
bination of results from the program generator and
direct coding in the source language.

—Application generators: these require a run-time
portion of the generator to run the application pro-
grams; they generally provide faster run-times
through the use of pre-compiled code. It is usually
very complicated to incorporate programs written
in conventional languages with programs gener-
ated by application generators.

Both ICL and Hewlett Packard provide examples of
products which have been developed to increase the
flexibility of system generators and to enhance in-
tegration capabilities. The main component of ICL’s
system, known as an Application Blueprint, is inten-
ded to provide users with a ‘core’ structure design-
ed for the application area concerned. The two main
components of the Application Blueprint are a
business model for the application area, and a data-
base design with sample reports and enquiries sup-

CHAPTER 5 ADOPTING SYSTEM DEVELOPMENT METHODOLOGIES AND AUTOMATED TOOLS

ported by ICL products, both documented in the ICL
Data Dictionary System (DDS).

Blueprint offers a standard startpoint from which to
modify, expand and build software. The next stage
in this process is likely to be the introduction of a pro-
duct (Application Master) which will generate on-line
database applications.

Hewlett Packard also offers a product that utilises the
building block concept. This product, which is based
on Hewlett Packard's ‘customisable’ application sys-
tem concept, consists of a set of application pack-
ages that can be made into a tailor-made system by
means of a system-aided assembly facility.

The Hewlett Packard approach has three elements:
the concept (tailoring), the set of packages (the
‘customisable’ applications system), and the facilities
(Application Customiser and Application Monitor).
Hewlett Packard has developed the approach for its
HP3000 computer, and it has been used with the

company’s Materials Planning and Control System for
Manufacturers.

The approach involves a special method for con-
structing the packages themselves, as well as a
sophisticated application facility for assembling and
using the packages to meet specific requirements.
The packages are developed in a parameterised form,
and the application facility maintains a set of tables
for each application. These tables make up the
‘application data dictionary’, and they define the
application and its operational environment. The
system is tailored by modifying the tables; no source
code is ever modified. With this approach, the cus-
tomisable application is a truly dictionary-based
system. The dictionary is the depository of all the
parts that make up the sysiem.

In practice, the customisable application system con-
cept needs two kinds of automated facilities — one
to tailor the application and another to run it. The
Hewlett Packard approach provides two ‘tools’ — the
Application Customiser (AC) for tailoring the system
and the Application Monitor (AM) for operating and
controlling the tailored application system.

Language-independent program generators

Language-independent program generators are
appropriate where there are a number of target
environments and where execution efficiency is par-
ticularly important. They have a place in the traditional
development process, particularly when structured
techniques are used. Their value in maintenance and
enhancement work is doubtful.

DELTA, a program generator (see reference 11) has
been used on some very large systems, including a
320 person-months banking package for Sperry. One

The Butler Cox Foundation

© Reproduction by any method is strictly prohibited

DELTA statement expands into three or four Cobol
statements. Production rates can be 3.5 statements

per hour (generating 10-14 Cobol statements per
hour).

DBMS-based tools

DBMS-based tools are especially appropriate when
the DBMS is already in use. They may be used to pro-
vide enhancements to DBMS-based systems, for new
developments and in iterative developments. Some
of them, such as RAMIS |l and FOCUS, may be used
also for end-user development. These non-procedural
languages provide users with facilities to create appli-
cations and set up database files.

RAMIS requires relatively little training (typically three
days). Development timescales can be reduced to
one third of the COBOL or PL/1 equivalent. The
response time of RAMIS programs is poor within a
timesharing environment, and these programs require
a relatively large amount of main memory.

RAMIS can be useful for implementing rapid changes
and for ad hoc reporting. One study (reference 12)
claims that RAMIS is valuable in system conversions.
In an example cited by the study, changes were made
to 40 RAMIS programs in just four hours. However,
experience shows that RAMIS is not suitable for real-
time updating, multiple terminal updating or very high
volume systems.

FOCUS is marketed to end users as well as being
presented to data processing staff as an SBT. For this
purpose the ‘Dialogue Manager’ facility allows
systems staff to build a ‘black box' between the
system and the user. FOCUS is written in a mixture
of Fortran and Assembler and it generates source
code. There is a common syntax to all output
modules. The data dictionary allows FOCUS to
describe virtual data structures and relationships.

Both RAMIS and FOCUS allow complex business ap-
plications with links to COBOL or PL/1 routines, for
instance, to be created but this demands con-
siderable programming expertise.

The SBTs vary in their usefulness depending on two
factors:

— Their intended purpose: are they to be used for
high performance, operational applications, or for
ad hoc applications with few performance or effi-
ciency requirements?

—The person intended to apply the product: is the

person to be a systems professional, or the end
user?

Figure 22, overleaf, illustrates the way in which some
available products are related to the supplier’s intend-

33

CHAPTER 5 ADOPTING SYSTEM DEVELOPMENT METHODOLOGIES AND AUTOMATED TOOLS

Figure 22 Alternative categories of system building

tools
Intended purpose
Intended To deliver high- To develop ad hoc
development | performance and applications with
person efficient operational | low performance

and efficiency
requirements

applications

System staff ADF NATURAL
ADS
ALL
MANTIS
End user LINC FOCUS
MAPPER NOMAD
RAMIS

ed market. We next outline five of these products —
MANTIS, NATURAL, FOCUS, MAPPER and LINC.

MANTIS

MANTIS, which is marketed by Cincom Systems for
IBM compatible machines, is used chiefly by systems
staff to develop high performance and efficient opera-
tional applications. It combines a good structural
language with screen development tools. It can be
linked to TOTAL and other IBM-based databases. Cur-
rently, MANTIS contains no report generator and is
available for on-line systems only.

NATURAL

NATURAL is a full programming language, com-
parable to COBOL, that was originally designed as
a query language and report writer. It was developed
by Software AG. The distinctive features of the
language facilitate access to ADABAS database
records, control of terminals and the process of pro-
gram writing. NATURAL programs are smaller than
COBOL equivalents, and their respective design
philosophies are different. Under some circum-
stances NATURAL programs may behave in ill-
defined ways or may terminate, and it is often difficult
to make provisions against these problems.
NATURAL is used by many end users as a query lan-
guage or report writer; it is also used by systems staff
to develop ad hoc applications.

FOCUS

FOCUS, a DBMS-based tool aimed at end users, is
available from Information Builders Inc. for use on
IBM compatible machines. It provides sophisticated
file accessing and interlinking facilities, but is subject
to performance constraints because it contains an
additional layer of software. It is not appropriate for
high-volume, high-performance systems.

MAPPER
MAPPER is a Sperry SBT running on large series 1100

34

computers. It is an on-line system which can be used
to create files, reports and processing procedures
that lie between high performance, efficient applica-
tions and ad hoc applications with no efficiency con-
straints. Its simple functions can be quickly learned
by end users, typically in two days, but learning all
functions requires considerably more time. MAPPER
employs a collection of shared files or tables which
constitute a simple form of relational database, which
is not integrated with Sperry's DBMS 1100 database
system.

LINC

LINC is a Burroughs product which uses the DMS
database in a way that is incompatible with normal
DMS use. Currently, LINC DMS files are not available
to non-LINC COBOL programs. Also the reporting
function is batch oriented. LINC is intended for effi-
cient, operational applications where the end user
carries out the bulk of the development work.

Integrated toolkits

Integrated toolkits, which provide a range of facilities,
have their greatest value for new developments.
Some toolkits such as ALL can access alien files and
may thus be used to enhance existing systems. Some
toolkits such as NOMAD impose substantial run-time
overheads; others such as LINC do not.This latter
group may even produce more efficient systems than
with conventional languages, because the routines
are written in Assembler and can use pre-compiled
code.

Entry level costs for most of these systems is above
$100,000. For that investment, however, significant
productivity gains are claimed. One user of LINC has
experienced a 70 per cent reduction in programm-
ing and testing activity and a 50 per cent reduction
in overall project effort. Similar claims are made for
the improvements in maintenance of LINC generated
programs.

Another organisation initially estimated that a conven-
tional development project, to develop a production
control system using COBOL, would take six person-
months of systems work and two person-years of pro-
gramming. In the event the system was developed
using ALL, and in eight weeks a systems analyst and
the production manager had 50 per cent of the ap-
plication working.

ALL, NOMAD and LINC may be used for prototyping
and the iterative development of systems. Specifica-
tions are not ‘frozen’ until the users have seen a tangi-
ble product and gained ‘hands on’ experience.

Most organisations we visited during our research
claimed that the productivity improvements gained
by the use of integrated toolkits would allow them to
develop systems more quickly and hence to handle

| e Butler Cox Foundation
© Reproduction by any method is strictly prohibited

CHAPTER 5 ADOPTING SYSTEM DEVELOPMENT METHODOLOGIES AND AUTOMATED TOOLS

more user requests. Any consequent reduction in
staff numbers usually was expected to take place
through natural wastage.

Discrete tools

Discrete tools such as query languages and text aids
may be used in various contexts and must be
evaluated individually.

One product from IBM is the structured query langu-
age SQL/DS. This is a powerful manipulation lan-
guage which is linked to a relational database
management system. Data from an IMS or DLA
database must be extracted and imported into
SQL/DS before the user can make enquiries.

Performance considerations

All the advanced software tools reviewed above raise
two significant issues in relation to machine perfor-
mance;

— How efficient is the code produced by software
tools?

—How fast is the response?

One IBM study (reference 13) has indicated that the
machine cycles used in running many applications
for their lifetime are less than the machine cycles
used for assembling or compiling them. This is true
of both advanced software tools and conventional
languages. A further IBM study (reference 14) indi-
cated that 50 per cent of the application programs
accounted for only two per cent of the machine
execution time. For over 90 per cent of the applica-
tion programs, development and maintenance costs
exceed lifetime execution costs by a factor of 10. This
would indicate that for most application programs
machine efficiency is not a significant factor.

Advanced software tools which use pre-coded
modules or modify skeletal programs will be machine
efficient. As we indicated above, tools of this type can
often create object code which is more efficient than
code produced via COBOL or PL/1.

Pre-compiled modules can reduce response times
substantially. The use of re-entrant code in a multi-
user environment means that there is substantially
less paging than with conventional programs, for
which every code module is different. In his latest
book (reference 15) James Martin cites an IBM
installation where PL/1 applications were replaced

TheButler Gox Foundatan

© Reproduction by any method is strictly prohibited

with the same applications written in DMS (IBM’s
Development Management System — a tool for CICS
applications). Eight applications ran concurrently and
shared modules of DMS. The average response time
dropped from 3.4 seconds to 0.6 seconds and the

range of response times dropped from 7.1 seconds
to 0.8 seconds.

THE CHANGING ROLE OF ANALYSTS AND
PROGRAMMERS

Computer-aided tools are available now for both
systems analysts and programmers. For analysts
they include application generators, high-level
languages such as MANTIS and integrated toolkits
such as ALL. For programmers, they include program
generators such as DELTA, generalised software en-
vironments such as UNIX and PICK, and programm-
ing workstations.

Generalised software environments can be used as
a rapid way of building high-powered command
systems without the need to generate conventional
program code. Programming workstations are
dedicated systems that help the programmer to do
the job. The relevance of these systems was dis-
cussed in Foundation Report No. 25.

The use of computer-based tools, together with
improved access to computers, is leading to the
integration of the separate tasks of the analyst,
designer and programmer. As the task of program-
ming becomes technically less demanding and com-
puter resources become more widely available, pro-
gram code may be generated by a wider variety of
people. Once again it will become feasible to com-
bine the role of the analyst and programmer. This
change in the nature of the role of systems staff will
be one of the main features of the data processing
environment over the next five years.

SUMMARY

The case for increased automated support should be
made at an organisational rather than at a project
level. The experiences described in this chapter in-
dicate that productivity improvements of more than
25 per cent (and sometimes more than 50 per cent)
can be achieved by increasing the degree of automa-
tion. If these improvements are translated into
numbers of systems delivered or staff reductions,
then a positive financial case can be made.

35

CHAPTER 6

TRENDS IN SYSTEMS DEVELOPMENT AND MAINTENANCE
AND GUIDELINES FOR MANAGEMENT ACTION

There have been significant changes over the past ten
years in most data processing organisations — par-
ticularly in the larger ones — as we pointed out in
chapter 1. Changes over the next ten years are likely
to be even more significant. Inthis chapter we first look
attrends in the systems environment, then summarise
the implications of these trends for the data process-
ing department, and finally set out guidelines for im-
proving the cost-effectiveness of systems develop-
ment and maintenance.

TRENDS IN THE SYSTEMS ENVIRONMENT

In this section we consider those factors which are
most likely to influence the systems environment over
the next ten years.

Improving hardware price-performance

Hardware price-performance will continue to improve,
helping to dispel the concern of many data processing
managers about the relative inefficiency of automated
tools and techniques. The cost of main store and pro-
cessing power required by these tools will often be
justified by productivity gains.

As a result, the degree of automation within data pro-
cessing departments will significantly increase. In
effect, machine costs will be substituted for people
costs.

Increased software capability

Software will continue to be a growth sector in the infor-
mation technology industry. The result will be an in-
crease in the capability and variety of tools as well as
their ease of use. On the one hand, this will enable
organisations to select tools most closely matching
their requirements. On the other hand, it will exacer-
bate the task of evaluating and selecting the right tool.

As a consequence, data processing departments will
become sources of expertise in techniques, deter-
mining the software appropriate for each application
and providing consultancy and training services to
users.

Diminishing role of programming

With improvements in hardware price-performance,
reductions in the costs of software products and the in-
creasing availability of high-level system building tools,

36

the programming role will diminish in importance.
Analyst/ designers will be able to generate applications
without needing to program in the accepted sense of
today. Rather, the job of programming will shift towards
program and application generation, undertaken by
analyst/designers using non-procedural facilities.

Increasing significance of the data resource

The more general recognition of data as a key com-
pany resource will encourage the spread of databases.
Systems analysts’ expertise will grow in the fields of
data analysis and data structures (though not in
technical matters, which will continue to be the respon-
sibility of the database administrator).

Increasing role of the user

Business competitiveness will grow rather than
diminish. As a result, the traditional system life-cycle
of five to seven years will reduce significantly. This will
affect the underlying economic justification of new
systems development, and underline the importance
of rapid system delivery. In turn this will encourage
users to develop more applications themselves. Users
will become more involved in systems processes and
systems management. The emphasis will shift away
from traditional development and towards col-
laborative development.

Users' expectations of business systems will continue
to rise. This will result from the spread of micro-
computers with easy-to-use packages (such as
VisiCalc and Wordstar), from the spread of simple-to-
program colour graphics, and from the growing
familiarity with computers of school leavers. Data proc-
essing departments will have to improve their delivery
performance merely to retain current levels of user
satisfaction.

IMPLICATIONS FOR DATA PROCESSING
DEPARTMENTS

The trends we have described in the preceding
paragraphs imply that data processing departments
should:

— Reduce the lead time between project initiation and
system delivery in order to meet user demand.

—Become more responsive tousers’ system require-

TL;B tler (v By mdstion
HE Duuet CUATUUL atitn]

© Reproduction by any method is strictly prohibited

CHAPTER6 TRENDSIN SYSTEMS DEVELOPMENT AND MAINTENANCE AND

ments, both at the beginning of a project and during
its evolution.

—Reduce the backlog of applications.

The need for these improvements is now urgent. Data
processing departments that fail to achieve them will
put their futures at risk.

GUIDELINES FOR IMPROVING THE COST-
EFFECTIVENESS OF SYSTEMS DEVELOPMENT
AND MAINTENANCE

In this section we set out guidelines for improving the
cost-effectiveness of the systems development and
maintenance process. We classify these guidelines in
three levels: strategic, departmental and project-level.

Strategic-level guidelines

The discussion in this report has been deliberately
wide-ranging. Improvements in productivity and in the
cost-effectiveness of systems cannot easily be
achieved. A critical factor is that appropriate systems
are selected for development in the first place, soas to
maximise the contribution to the business. This is a
matter of vital importance which is discussed in Foun-
dation Report No. 34.

Departmental-level guidelines

Departmental-level guidelines can be applied to the
management of systems development and mainten-
ance. These guidelines include:

— Implement training programmes with the aim of
improving the skills and motivations of systems
staff.

— Improve staff productivity by weeding out sub-
standard performers.

— Introduce system metrics to provide an objective
basis of performance measurement (of staff,
methods, tools and techniques).

— Introduce quality assurance procedures (including
formal audits of development and operational
systems, reviews of documentation and design

TheButler Cax Foundation

© Reproduction by any method is strictly prohibited

GUIDELINES FOR MANAGEMENT ACTION

procedures,
procedures).

software libraries and change

— Adopt automated project management aids for
large and complex projects.

— Improve the work environment in order to raise the
level of staff motivation.

—Organise staff specifically to undertake main-
tenance work, emphasising the problem-solving

aspects of the job, and try to attract high-quality
staff.

—Increase the degree of automation within the data
processing department (renting for a trial period
those products whose benefits cannot easily be
guantified beforehand).

Project-level guidelines
Project-level guidelines include:

— Adopt and emphasise collaborative and iterative
developmentapproaches, recognisingandaccept-
ing end-user computing as a valid approach.

— Use the criteria set out in chapter 4 on page 23 to
help identify the approach most appropriate for
new project proposals.

—Break long-delivery projects into smaller ele-
ments, each able to be delivered in a shorter time
and each retaining user involvement.

— Raise productivity levels by using off-the-shelf
software.

— Adopt formal methodologies, such as data
analysis (which is useful whether or not a database
approach is involved).

—Support the development process by adopting
specific development tools in the form of addi-
tional terminals, main memory and disc space; or
a dedicated development machine or programmer
workbench; or documentation program library and
testing aids.

—Help to cut lead times (and to increase product-
ivity, user participation and the match between
requirements and outputs) by adopting system-
building tools.

37

CONCLUSION

Most data processing departments can increase their
development and maintenance productivity by 100 per
centinthree to four years, and by an additional 400 per
cent insix to eight years, if a co-ordinated programme
is undertaken.

38

Approaching the problem of systems development and
maintenance in a piecemeal and ad hoc fashion may
produce short-lived gains that diminish or even disap-
pear when another productivity aid is implemented.

[he Butler Cox Foundation

© Reproduction by any method is Striclly prohibited

_ McNurlin, B., “Easing the software maintenance

burden”, EDP Analyser, August 1981.

_Grant, E. and Sackman, H., “An exploratory

investigation of programmer performance, SDC,
September 1966.

_Boehm, B. W., Software engineering economics,

Prentice Hall, 1981.

. Gilb, T., Software metrics, Winthrop, 1977.

_ Gilb, T., Butler Cox Foundation Management Con-

ference, Edinburgh, April 1983.

_ Stuckle, D., Butler Cox Foundation Management

Conference, Edinburgh, April 1983.

. Cougar, J. D. and Zawacki, R. A, “What

motivates DP professionals?”’, Datamation,
September 1978.

. Fitz-Eng, J., “Who is the DP professional?”’,

Datamation, September 1978.

TheButler Cox Foundation

© Reproduction by any method is strictly prohibited

10.

b

12

13

14.

15,

16.

BIBLIOGRAPHY

. McCue, G. M., IBM Santa Teresa Laboratory —

Architectural Design for Program Development,
IBM Systems Journal, Vol. 17, No. 1, 1978.

Persson, S., Butler Cox Foundation Management
Conference, Bournemouth, July 1981.

Thurner, R., Butler Cox Foundation Management
Conference, Bristol, October 1978.

McNurlin, B., “Replacing old applications”, EDP
Analyser, March 1983.

Kendall, R. C., Management perspectives on pro-

grams, programming productivity, Proceedings
Guide 45, 1977.

Kendall, R. C., Management perspectives on pro-
grams, programming and productivity, IBM, 1978.

Martin, J., Application development without pro-
grammers, Prentice Hall, 1982.

Putnam, L. H., The real metrics of software
development, |EEE paper, 1980.

39

GLOSSARY OF TERMS

An application
generator

An application
package

Collaborative
development

Data analysis

Data analysis
methodology

End-user
development

Entity analysis

Functional analysis

Inspection

40

Generates program code for specific
applications by using user-supplied
parameters for direct processing of pre-
coded routines.

A set of programs for use in data process-
ing systems. In practice the distinction
between application packages and some
other types of proprietary software is blur-
red. For example, some application
packages include a high-level report
generation language, and some application
packages use a database management
system for file management tools.

An approach in which the system reguire-
ments and design are developed by a team
of users in close collaboration with profes-
sional systems staff.

The activity of identifying entities together
with the data that describe them and
describing these in a data model.

There are two main activities within the
methodology (functional analysis and en-
tity analysis) which are normally completed
in parallel as complementary operations.

This type of development includes a variety
of approaches, all of which are initiated by
the end user. It includes users who have
a report-writing facility to define reports for
themselves and users who develop their
own applications using a modelling pack-
age or programming language.

The activity that identifies resources and
information needed by the organisation.
(For example, staff, equipment, orders,
personal details, etc.)

The activity which defines the functions of
the business (for example handling orders,
maintaining plant, paying staff, etc).

A manual analysis technigue in which
systems or programs (requirements,
design or code) are examined in a very
formal and disciplined manner to discover
errors.

Iterative development An approach in which a prototype of the

A metric

system is built using advanced tools. The
prototype is progressively refined until it
satisfies the user.

A measure which can be applied to a
system or software environment. There are
two important stages in defining metrics:
to agree on the measuring concept (for ex-
ample absenteeism) and to agree an
economical and accurate tool for measur-
ing the property (for example staff atten-
dance records).

Normalisation in data The process of achieving the highest possi-

analysis

A program generator

Prototype

A report generator

A system generator

Traditional staged

development

Walkthrough

ble levels of data independence. (This ap-
proach derives from the work of E. F. Codd
of IBM's research laboratory in San Jose.)
In third normal form (TNF), any one entity
will have only one value for an associated
attribute type and each associated at-
tribute type will describe only the entity
type in guestion.

Creates source code giving stand-alone
programs.

A working model of a system, which can
be created quickly and relatively inexpen-
sively and which enables a set of assump-
tions to be tested.

A processing program which can generate
object programs for report generation
dependent upon a set of pre-defined
parameters.

Produces executable software for a par-
ticular computer environment directly from
a set of functional specifications.

An approach in which systems are
developed by undertaking a series of
discrete stages. Each stage ends with a
formal cut-off point, at which a specific set
of project documentation is produced.

A manual analysis technique (mainly for
programs) in which a module author
describes the module’s structure and logic
to an audience of colleagues.

r (ox Foundation
© Reproduction by any method is strictly prohibited

Butler Cox & Partners Limited
Morley House, 26-30 Holborn Viaduct, London EC1A 2BP
= 01-583 9381, Telex 8813717 BUTCOX

Belgium & The Netherlands
SA Butler Cox NV
Avenue Louise — 479 — Louizalaan,
Bte—47-Bus.
Bruxelles 1050 Brussel
= (02)647 1553, Telex 61963 BUTCOX

France
Butler Cox SARL
Tour Akzo, 164 Rue Ambroise Croizat,
93204 St Denis-Cedex 1, France
2 (1)820.61.64, Telex 630336 AKZOPLA

United States of America
Butler Cox & Partners Limited
P.O. Box 590, Morristown, New Jersey 07960, USA
= (201)285 1500

Switzerland and Germany
Butler Cox & Partners Limited
Morley House, 26-30 Holborn Viaduct, London EC1A 2BP
‘= (London) 5839381

ltaly
Sisdoconsult
20123 Milano — Via Caradosso 7-Italy
& 86.53.55/87.62.27, Telex 31 1250 PPF MI

The Nordic Region
Statskonsult
PO Box 4040, S-171 04 Solna, Sweden
= 087300300, Telex 127 54 SINTAB

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49

