
Report Series System DevelopmentNo 25 Methods

November1981

The Butler Cox Foundation

Abstract

Report Series System Development
No 25 Methods

by Ehsabeth Somogyi
November 1981

The purposeofthis report is to encourage organisations to take a critical look at the way
in which they develop systems. The system developer has available today a much
greater variety of system development approaches and methods than were available to
him in the past. This greater variety has resulted from advancesin technology, from past
experience of developing and using computer systems, and from theories both about
systems and the system development process. This report provides organisations with
an overview ofthe different approaches that they might take to system development, so
that they will be better placed to make informed judgements about the relative merits of
different approaches.
In this report, we show that the system developer’s perception of what a system is deter-
mines the approach and the method he will use when developing a system. We also
review (and classify) the currently available methods, methodologies and approachesin
relation to the two extreme perceptions that system developers can take about systems.
The report considers the well-known technically oriented approaches and also the newer
planning and evolutionary approaches.It highlights the relevance of user participation,
and it discusses the methodsby whichthis participation can be achieved. In addition, the
report reviews the automated tools and support systems that are available to aid the
system development process, and it provides guidelines for selecting and introducing
new system development methods.

The Butler Cox Foundation is a research group that examines majordevelopments in the fields of computers, telecommunications andoffice automation on behalf ofits subscribing members. The Founda-tion provides a set of ‘eyes and ears’ on the world for the systemsdepartments of some of Europe’s largest organisations.
The Foundation collects its information throughits office in Londonand also through its associated offices in Europe and the US.Ittransmits its findings to its members in three main ways:

— Through regular written reports that give detailed findingsand substantiating evidence.
— Through management conferences for managementservices directors and their senior colleagues, where theemphasis is on the policy implications of the subjectsstudied.
— Through working groups where the members’ Own specialistManagers and technicians meet with the Foundationresearch teams to review their findings in depth.

The Foundation is controlled by a Management Board whose mem-bers include representatives from the Foundation member organisa-tions. The responsibilities of the Management Board include selectingtopics for research and approving the Foundation’s annual report andaccounts, which show how the subscribed research funds have beenemployed.

Report Series No 25
SYSTEM DEVELOPMENT METHODS

by Elisabeth Somogyi
November 1981

Butler Cox & Partners Limited Morley House 26 Holborn Viaduct London EC1A 2BP
This documentis copyright. No part of it may be reproduced in any form without permissionin writing.

Butler Cox & Partners Limited

Photoset andPrinted in England by Flexiprint Ltd., Worthing, Sussex

 7

CONTENTS
INTRODUCTION
Approaches, methods, techniques and methodologies
Structure of the report
Purposeof the report and intended readership
TWO SYSTEM VIEWS AND THEIR CONSEQUENCES
The attitudes to system development
The characteristics of a good system
The life cycle of a system
The attitudes towards maintenance
The use of technology
Summary
THE FACTORS THAT INFLUENCE THE EVOLUTION OF SYSTEM
DEVELOPMENT METHODS
The organisation of work
Developmentsin technology
ACLASSIFICATION OF SYSTEM DEVELOPMENT APPROACHES
Technical approaches to system development
Planning approachesto system development
Open system approachesto system development
Summary
AUTOMATEDAIDS FOR SYSTEM DEVELOPMENT
Integrated facilities
Programming support environments
Systemsfor building systems
Software development environments
Summary
INTRODUCING NEW WAYS OF DEVELOPING SYSTEMS
Resistance to changesin system developmentpractices
Overcoming the resistance to changes
Guidelines for introducing new waysof developing systems
Conclusion
SUMMARY AND CONCLUSIONS

BIBLIOGRAPHY

13
1314
17
17222433
34
353839
43
44
44474854
55
58

CHAPTER1

INTRODUCTION

During the brief history of commercial data processing, many organisations have dis-
covered that it is all too easy to develop application systems that do not meet their
expectations. Most organisations will be familiar with system developmentprojects that
have been perpetually 60 per cent complete, or that overran their original budgets for
time and cost by several orders of magnitude. And, even when such systems passed
from the developmentstage to the operational stage, they often did not meet the users’
real needs, and sometimesthey actually made the users’ jobs moredifficult to perform.
In addition, application systems proved to be mostdifficult to maintain and to adapt to
the changing needs of users, and often, maintenance and adaptation could be per-
formed only by selected specialists.
In order to combat the problems mentioned above, most organisations have evolved a
set of standard practices that they now use for system development. Organisations
usually base these standards on those practices that have proved to be successful in the
past, and most ‘standards’ for system developmentconsist of a set of rules and pro-
cedures that are rigorously enforced. The system development standards that most
organisations currently use concentrate on the construction of the ‘computer system’
itself, and they have the following basic characteristics:

— They view the computer system as an entity in itself, and so theytakelittle or no
account of the wider environment in which the system will be used.

— They are usually based on a staged and analytical approach to system
development.

— They require skilled technicians (analysts and programmers) to actually develop
and maintain the application systems.

These traditional (or analytical) approaches for system development have proved
adequate for manytraditional data processing applications. During the past few years,
however, several alternative system development approaches and methods have been
proposed. The purposeof this report is to provide organisations with an overview of the
different approaches that they might take to system development, so that they will be
better placed to make informed judgements about the relative merits of different
approaches.
Many organisations may wonder why they should even consider using either an alter-
native way or a new wayof developing systems, particularly if their existing system
development standards, after a long and perhaps painful evolution, worktolerably well.
Webelieve that recent developments both in computer-based technology andin the way
in which that technologywill be used, makeit essential for organisations to be aware of
the various alternative system development approaches and methodsthat are available
today. We have many reasonsfor believing this, but our most important reasons are as
follows:
— Recent developments in technology have opened up new application areas for

computer-based systems(for example, office applications and decision-supportsystems), and the types of systemsin these areasdiffer from traditional data pro-cessing systems. It is questionable whether any one system developmentmethodis the most appropriate method for all the different types of systemsthatcomputer-based technology can now be used for.
— Technological advances now makeit possible to automate parts of the systemdevelopment process. Before an organisation can make a sensible decisionabout whatpart of the system developmentprocessit should automate, it needsto have a good understanding both about system development methods andaboutthe nature of the system development process.
— Thecontinuing shortageofthe skilled manpowerthat the traditional approachesrequire makesit attractive for an organisation to select approaches and methodsthat non-specialists can use. Consequently, organisations should be seeking outsystem development approachesthat do not waste valuable and scarce humanresources, and that also permit non-specialists to be involved in the systemdevelopmentprocess.
— The current economic climate makesit essential for organisations to minimisethe risk of large-scale and expensive system failures. A knowledgeof alternativesystem development methods can help organisations to select economic andeffective methods.
— The established method of developing systems may no longer be the most effec-tive method. Althoughit is not a trivial task to change the method used fordeveloping systems, organisations should, from time to time, be prepared toreview their method. As computer-based systems become more ubiquitous,organisations have the Opportunity to achieve substantial gainsin productivity bydeveloping systems that are more effective than their existing ones are.

APPROACHES, METHODS, TECHNIQUES AND METHODOLOGIES
Wehavealready used the terms ‘approaches’and ‘methods’ several times. People oftenuse these two terms, together with the terms ‘techniques’ and ‘methodologies’, whenthey speak or write about system development. During the researchfor this report weencountered a good deal of confusion (and even laxity) in the way in which these fourterms are usedin relation to system development. It is therefore worthwhile defining insome detail the way in which we use the terms approaches, methods, techniques andmethodologies in this report.
System development approaches
An approach providesa general direction for doing something.In system development,an approachprovides a general framework within which developmentis carried out, andthis framework is based on fundamental beliefs. These beliefs may be axiomatic in thatthey do not necessarily have to be proven. A hierarchy of system development ap-proaches can be constructed, based on the orientation of a particular set of approaches.(For example, all structured approachesaim to derive the system by examiningits struc-ture. Structured approachescan be sub-divided accordingto the criterion used to derivethe structure.)
System development methods
A method is an orderly arrangement of ideas that aids a particular activity (such as

system design or system analysis). A method usually contains an inherent logical
assumption, and it is based on a theoretical concept. Thus, a system development
methodis used to practise a system development approach. (Indeed, a system develop-
ment approach cannot be practised without a system development method.) Some
system development methods can be used within more than one system development
approach.

System development techniques
A technique provides a predominantly mechanical way of doing something. System
development techniques therefore provide the detailed guidelines for using a system
development method, and a system development technique will often require that a
specific tool be used. For example, those documentation methodsthat are based on the
assumption that system design should be representedin a pictorial and a diagrammatic
format, require that both techniques and tools be used in order to draw the diagrams.In
this report, we do not discuss system development techniques.

System development methodologies
A system development methodologyis a collection of interconnecting methods and tech-
niques, normally within the framework of an approach. A methodology represents a
packaging of practical ideas and proven practices for a given area of activity. As an
example, within the structured approach, programming methodologies and system de-
velopment methodologies have been developed.

STRUCTURE OF THE REPORT
Webegin in chapter 2 by showing that the system developer’s perception of what a
‘system’ is determines the approach and the method he will use when developing a
system. We showthat a range of viewpoints can be taken, and we discuss the conse-
quences for system development of taking one or other of the two extreme viewpoints.
Wealso showthat there is a natural progression from one end of the range of viewpoints
to the other, and that as this progression takes place, system development approaches
and methodswill need to evolve.
In chapter 3, we examinetheinfluence that both the way in which workis organised, and
the wayin which technology is advancing have on the evolution of system development
methods. Next, in chapter 4, we classify system development approaches underthree
broad headings, and we then sub-divide these into more detailed classifications. To our
knowledge, no oneelse has attempted to classify system development approachesin a
similar way. We believe that such an orderly classification is badly needed because,
without it, organisations cannot compare and select approaches and methodsfrom the
numerous choices that are now available.
In chapter 5, we turn our attention to the automated aids that are available to support the
system development process. Next, in chapter 6, we provide guidelines that organisa-
tions can use to select and to introduce new system development approaches and
methods.
Following our concluding commentsin chapter 7, we then provide a comprehensive
bibliography, whose structure mirrorsthe structure of the report itself. We have adopted
this structure for the bibliography to makeit easy for those who wish to do so to obtain
further details about the many approaches and methods we mentionin the report.

PURPOSEOF THE REPORT AND INTENDED READERSHIP
The purposeofthis report is to encourage organisations to take a Critical look at the wayin which they develop systems.The reportis therefore intended to be read by the execu-tive responsible for an organisation’s systems’ function. It will also be of value both tosystem development managersandto the managersof those user departments that arelikely to become moreclosely involved with the development of their own systems.

CHAPTER 2

TWO SYSTEM VIEWS AND THEIR CONSEQUENCES

Most data processing systems form part of a larger system. This larger system is the
total work system that includes every aspect of a working environment — the physical
environment, the way in which work is organised, the operating procedures, the tools
and the equipment used, the local practices and customs, the organisational structure,
the working relationships both between individuals and between groups of people, and
so forth. (System developmentitself is a work system, and we discuss work organisation
as it affects system development in chapter 3.) In the larger environment of a work
system, data processing systems therefore have to co-operate with the human elements
of the work system.
In the past, however, many data processing systems have been developed with a total
disregard of the human elements of the work system in which they are embedded. Most
work systemsare an integral part of an organisation and they usually support the aims,
the goals and the objectives of that organisation. Even so, some of the data processing
systemsthat are being created today disrupt the organisation, and they also dolittle to
help the organisation both to grow andto survive. In this respect, then, those systems
are failures. However, without an understanding of the way in which people’s viewpoints
about systems affect the systems that they develop,it is difficult to understand whythis
should be.
In particular, both the approach taken to develop a data processing system, and the
method usedfor developing that system are determined by the system developer'sper-
ception of what a ‘system’ is. If his perception of a system does not include certain
concepts, factors or elements, then — no matter howvital they may be — the system is
likely to be developed without them. Consequently, any discussion of system develop-
ment approaches requires, as a prerequisite, an understanding of the different
viewpoints that can be taken about systems.

Data processing systems are part of the wider classification of technological systems,
and we present here two simplified viewpoints about technological systems and the
likely consequencesof holding them. These viewpoints represent the two extremesof a
wide range of viewpoints and, in practice, most actual viewpoints are somewhere
between these two extremes. Nevertheless, we discuss only the two extremeviewpoints
because webelieve that there is a natural progression from one extremeto the other.
This progression represents a maturing process in the use of technology, and we
discuss this maturing process in chapter3.
Wecall the starting point of the range of viewpoints on systemsthe ‘closed system view’.
The closed system view is a natural outcome of an environmentin which a technologyis
new, and so the main preoccupation of many people is to create and use that tech-
nology. In this environment, a technological system is regarded as a particular assembly
of the relevant technology, and the boundaries of the system are well defined. For
example, computer manufacturers call the hardware and the operating system a system
(and the manufacturer is often referred to as a system supplier), and those whocreate
application systems regard the programs, thefiles, the computer hardware and the
operating system software as the system. In both examples a fairly well-defined

boundary exists between the system andits users. The users, SO far as the hardware
manufacturers are concerned, are those who create the application systems, and the
users, so far as the developers of application systems are concerned,are the managers
and the staff of the department for which the application system is being created.
Those who hold a closed system view therefore perceive a technological system as a
closed assembly of the technological parts surrounded by a well-defined boundary. This
view mostly excludes those otherrelevant factors that mayaffect the larger work system
(such as the users, the company’s organisational structure, the environment within the
company, the company’s financial and other objectives, etc.).

The other end of the range of system viewpoints is the open system view. Those who
hold an open system view regard systemsas being larger than the technologicalparts of
the systems. They view systems as highly-complex open-ended entities that may have
fixed parts (such as those parts that are fixed in a computer), but they see systems
essentially as ever-changing organismsin which different parts interact with and modify
one another.
In general, the term ‘open systems’ is used to describe those systemsthat interact
strongly and continuously with their environment, that have manyparts, andthat are self-regulatory in nature. The term wasfirst used in general systems theory, based on thework of von Bertalanffy (see bibliography), who describedliving organismsin terms ofcomplex systems. The nature both of complex technological systems and of humanorganisational structuresis not dissimilar to the natureofliving organisms, and systemsthat contain human elements and machine elements can certainly be classified as opensystems.
The three prime characteristics of an open system are that it exists in a state ofcontinuous change,that it has a high level of complexity, and that human elements forma large part of the system. An open system has a high level of complexity for tworeasons. First, there are many interactive elements in such a system. Second, theessentially non-structured nature of the human element creates a level of unpredict-ability that is mostly unacceptable to those whorigidly adhere to a closed system view.
The viewpoint that system developers have about the nature of systems profoundlyinfluences their attitude towards all aspects of the development and the use of tech-nological systems. Before we examine the consequencesof holding either a closedsystem view oran open system view, two points relating to technological systems,and todata processing systemsin particular, need to be emphasised:
1. Most system developers have now progressed beyond

a

strictly closed view of dataprocessing systems. But most of the system development approaches that arecurrently practised originated from a closed system view, and the closed systemview still influences the extent to which system developers are ready to acceptthenewer methods, and the methodologies for, and the approachesto, systemdevelopment.
2. Data processing systemsare,in fact, parts of open systems regardiess of whetherthey are perceived as such. There is a tendency nowadaysto call these systems‘embedded’ systems, because their prime characteristic is that they form an insep-arable organic part of a larger administrative work system. Those whoperceive dataprocessing systemsas closed systemswill inevitably find that this view conflicts withreality. The larger work systemis itself an open system, andif the technologicalpartsOf it are to support their ever-changing environment they too should be regarded asOpen systems.

The consequences of perceiving data processing systems as closed systems are
different from the consequences of perceiving data processing systems as open
systems. We now explore these different consequences under the five headings of the
attitudes to system development, the characteristics of a good system, the life cycle of a
system, the attitudes towards maintenance, and the use of technology.

THE ATTITUDES TO SYSTEM DEVELOPMENT
The major consequence of perceiving data processing systems as closed systemsis
that the technological boundary needs to be defined fully and completely before any
development is commenced. The technological part of the work system is then
developed both within this boundary andin isolation from any other part of the work
system. The development process concentrates on making a preselected technology
work within a fixed specification. The development process is therefore an inward-
looking activity that precision-engineers the technological parts of the work system.
This activity is carried out by specialists and highly-skilled technicians who considerthat
outsiders, such as users, havelittle part to play in the developmentprocess. The users
are normally asked to specify their requirements precisely (and preferably in technical
terms), and the specialists regard any subsequent changesin the requirements as an
unwelcome intrusion. The specialists do not appreciate that requirements sometimes
need to be changed, and they interpret a user’s request for changesasindicating that
the user did not specify his requirements carefully enoughin the first place.
In contrast, those who hold an open system view usually start by envisaging all of the
elements and factors that influence a total work system. The system development
processis therefore a high-level process of design that optimises the arrangementofall
of the system elements before selecting those parts of the total work system that may
benefit from the use of technology. The development process takes into account goals
and factors of a financial, technical, human and organisational nature, and these goals
and factors are carefully balanced in order to specify those areas of the work system in
which technology can be employed.
With an open system view,the technological boundary exists just as it does with a closed
system view. The significant difference is that with an open system view the tech-
nological boundary does not prevent the system developer considering issues that are
outside that boundary. The technological boundary is a natural consequenceof a higher-
level design, and the system developer expects that changeswill occur both during and
after the development of the technological parts of the total system.

THE CHARACTERISTICS OF A GOOD SYSTEM
Technically-oriented people who hold a closed system view often equate the degree of
excellence of a system with the extent to which technology is used ingeniously, even
though the ingenious use of technology may not form part of the original specification.
This view usually results in technically-complex systemsthatare difficult to use, difficult
to operate and difficult to maintain. In general terms, those who hold a closed system
view can usethe best method of development to develop a system that is only as good as
its original specification. Thus the system development methodsthat are used by those
whohold a closed system view place great emphasis on the needto define carefully the
requirements of the system. Consequently, whether or not a system developed by those
whohold a closed system view is a good system depends upon:

— Howwell the technological system matchesits original specification.
— Howwell the technological system employs the selected technology.

System developers who hold a closed system view makelittle reference to the environ-
ment that surrounds a technological system. As a result, the most obvious measureof
how good a system is (which is how well it serves the purposefor which it was created)is
difficult to include in any evaluation of the system.
By contrast, system developers who hold an open system view perceive a system as
consisting of many parts, and as existing in a continuously changing environment. Such
an open system is therefore a good system when:
— It can adapt to change.
— It supports the interaction and the co-operation of its elements.
— It promotesits own survival.
— It can support the goal or the mission for which it has been created.

Individual parts of such a system must therefore be capable of developing, modifying
and repairing themselves, and these requirements have interesting consequencesforthe technologicalparts of the system. Self-developmentfeatures andself-repair featuresare difficult to include in a technological system, although various researchers in univer-sities throughout the world are attempting to develop heuristic technological systemsthat can learn from their own past experiences. As a result, the technological parts of anopen system tend to be developed as closed systems, and boththe fixed technologicalboundary and those technological systems that are built to meet the originalspecification are likely to become inappropriate as the overall open system evolves.They may, in fact, become so inappropriate that they cause the overall open system tocease to function.
A closed system view of the technological parts of an open system is therefore verylimiting. The reason for this is that the specification of the requirements of atechnological system rarely includes the need to absorb subsequent changes. Thetechnological parts of an open system are effective only if they satisfy the relevantObjectives, and only if they also support the rest of the open system in a changingenvironment. Consequently, an open system view of technological systemsrequiresthatthe specifications must include elements of the objectives and the goals set for theoverall open system, and these objectives and goals, must, in turn, indicate the need todeal with subsequent changes.

THE LIFE CYCLE OF A SYSTEM
Those whohold a closed system view perceive the life cycle of a system as having thefollowing two major characteristics:
— Thelife cycle of a system is envisagedas finite series of three stages. Theseare usually described respectively astheinitiation stage (or feasibility study), thedevelopmentstage (which consists of analysis, design and implementation), andthe operation stage (which usually includes maintenanceaswell).
— Thelife of a system terminates whenparts of the technology on whichit is based

are either changedor used in a different way. Anew system then replacesthe old
system, and thelife cycle begins again.

Those who hold a closed system view put most of the effort involved in developing a
technological system into the engineering of the system (in other words, into the way in
which the technology should be used). The time andthe effort put into defining the tech-
nological boundary and specifying what the system should do represents a small
proportion of the total developmenteffort.
The initiation stage and the development stage are usually separated totally from the
operation stage, and those individuals who have the greatest technical knowledge are
employed only on the first two of those stages. Maintenanceactivities receivelittle
attention from these skilled technicians, and the maintenance that is carried out is
usually performed by inexperienced personnel. Any changes to the system are usually
handled as a maintenanceactivity, and they are incorporated into the system at the
lowest possible level (for example, by making a coding change to a program).
Amendments to the system are handled in an ad hoc manner, andit is rare to find that an
existing system is reviewed thoroughly in a way that leads to a planned programmeof
change.
A technological system usually forms a part of an open system, and open systems spend
their lives in a state of perpetual change. Technological systems therefore have to be
modified at regular intervals to suit the evolving open system. Those whohold a closed
system view envisage that this process of regular modification creates successive
versions of the technological system.
By contrast, those who hold an open system view envisage that the technological parts
of an open system need,from the outset, to accommodate the changesthat are bound to
occur. The need to accommodate changes can becatered for in three ways:
— The system specification can include the requirement to accommodate specific

known changes.
— The development method that is chosen can be one that can be usedto create

technological systems that are easy to change.
— Thelife cycle of the technological parts of the open system can be planned on a

continuous anditerative basis. Thelife cycle therefore contains regular reviews
that enable a decision to be madeto either modify or redevelop the technological
system.

The perception of the life cycle of a system by those who hold an open system view is
significantly different from the perception of those who hold a closed system view. The
four main consequencesof holding an open system view are:
— Thedetailed planning and design stage that precedes the developmentof a

system is far longer thanit is for those who hold a closed system view.
— Regular system reviews and subsequent modification to (or even redevelopment

of) the system form a natural part of the life cycle of the system.
— The technological parts of the system are designedin a different way from those

designed by the holders of a closed system view, because an open system view
encouragesthe use of re-usable and changeable system elements.

— Theiterative nature of developmentis clearly recognised.

THE ATTITUDES TOWARDS MAINTENANCE
The most profound difference there is between those who hold oneor the other of the
two extreme system viewsis the attitude they have towards maintenance, and the
perception they have of the position of maintenance in the life cycle of a system. We
have already said that those who hold a closed system view see system maintenance as
the lowestpossiblelevel of activity (for example, fixing programs). In contrast, those who
hold an open system view encourage regular system reviews and the regular
redevelopment of systems. But the most interesting consequenceof holding a closed
system view is the belief currently widespread in the data processing community that too
mucheffort is being expended on maintenanceactivities. The emphasis on developing
systemswith finite life cycle means that many data processing professionals genuinely
believe that there will be a continuous need to develop large-scale new systems. They
see maintenance as a necessary evil, and to them the continuing increase in
maintenance requirements indicates that the original systems were of low quality.
The main reason that causes data processing professionals to hold this belief is that,
during the past twenty years, data processing technology has been progressively intro-
duced into most of the business areas that could be computerised on a large scale.
During the time that the technology is being introducedit is inevitable that the effort
expended on development will be high compared with the effort expended on
maintenance. Eventually, though, those areas will become saturated with the use of the
technology, and there will be a shift in emphasis from development activities to
maintenanceactivities. A new way of using the technology (for example distributed
processing and networking) may produce a temporary surge of developmentactivity, but
the trend will inevitably be towards a greater emphasis on maintenanceactivities.
The effort expended on maintenance activities (compared with the effort expended on
developmentactivities) in the data processing industry is not dissimilar to that expended
in otherindustries oncethose other industries have cometo termswith their appropriatetechnology. There is, therefore, nothing extraordinary about the level of maintenanceactivity in the data processing industry. What is wrong, though, is that, in general, thewrong systems are being maintained for the wrong reasons in the wrong way.Maintenance should be regarded as an integral part of the life cycle of a system, and toregard maintenance in this way requires that the system developer holds an opensystem view.

THE USE OF TECHNOLOGY
In addition to ensuring that technology is used in the developed systems, the systemdeveloper can also use technology as a tool in the developmentprocess.
The closed system view is most prevalent when a technology is new and expensive.Wherethis condition applies, the technology to be used in a system is usually selectedwell before the overall system issues are considered. And because the technologyisexpensive,it is rarely used as an aid to support the system developmentprocess. Thus,because data processing development approacheshavetheir origins in an era when theclosed system view prevailed, data processing professionals have beenslow to realisethat there are advantages in using technology as part of the system developmentprocess.Thisisillustrated by the following:
— Databases and database management systems were available to the users ofdata processing systems long before the data processing community realisedthat the same technology could be used to keep a record of the parts of adeveloping system.

10

— On-line terminals were installed in user departments well before they were made
available to programmers.

— Computer-aided design and computer-aided manufacturing techniques are
widely used in most disciplines outside of system development. Design and
implementation tools that can be used by system developers are now becoming
available, but the data processing community has not yet accepted them.

The open system view encouragesthe belief that the use of technologyis justified only to
the extent that it can be applied to make the overall system more stable and more
adaptable, and generally to assist it to endure. Thus, instead of technology being the
constraint around which a system is built, technology shouldfit into the overall system.
The open system view promotesthe idea of technological choice, where the appropriate
kind of technology is selected for any parts of the system that need to be computerised
(and where computerisation is itself one of several possible options). This means that
technology is subservient to the requirements of the overall system. However,
technology can be employed in the way encouraged by an open system view only when:
— Technological choicesexist.
— The cost of technologyis relatively low compared with the costof other elements

of the overall open system (such as people).
— Thecost of developing the technological part of the system is not too expensive.

At the presenttime, the cost of developing the technological part of the system is still too
expensive, and the implications of this are twofold:
1. Substantial effort is being made to identify cheaper methodsof developing the tech-

nological parts of systems.
2. As long as lengthy and expensive development methods continue to be used,

attention is focused on the technological developmentactivities. Non-technological
issues are rarely considered, and any consideration of technological choicesis pre-
empted because hardwareis selected without any consideration of its impact on the
larger open system.

The open system view also makesit easier to include technology in the developmentpro-
cess itself. The system developmentprocess can be thought of as a function that can be
supported by automation. In our view, the true potential of new development methods
and approaches cannotbefully appreciated unless the system development processis
viewed in an open system framework. In chapter 5, we review the ways in which
technology can be used aspart of the system development process.

SUMMARY
In this chapter we have shown howthe view that a system developer holds about the
nature of systems affects the way in which he develops systems.Also, by examining the
differences there are between those who hold system viewsat the extreme endsof the
complete range of system views, we haveillustrated the different consequences of
holding different system views. The system view of a system developer determines
which of those system development approaches that we classify in chapter 4 he is
prepared to use.
The class of system development approachesthat havetheir origins in an era when the

am

closed system view prevailed are usually called ‘technical (or traditional) approaches’.
The class of approachesthat are based on an open system view are normally referred to
as ‘systems approaches’, or ‘holistic approaches’.

12

CHAPTER 3

THE FACTORSTHAT INFLUENCETHE EVOLUTION OF SYSTEM DEVELOPMENT METHODS

In this chapter we examine the two factors that influence the evolution of system
development methods. When computers werefirst introduced into organisations, the
way in which they were used and the way in which systems were developed were
influenced strongly by the general approach to work organisation that prevailed at that
time. The first factor, therefore, that influences the evolution of system development
methodologies is the way in which workis organised.
The second factor concerns the way in which people’s perceptions about systems
change as they acquire a more mature understanding of the way in which to use
computer technology. Developments in technology are bound to modify the earlier
perceptions about the nature both of systems and system development.

THE ORGANISATION OF WORK
Formal methodsof organising the work both of clerks and manual workers have their
origins in the classic approach to work organisation (known as Taylorism) that was
developed in the United States at the beginning of this century by Frederick Wilmslow
Taylor. Taylor developed his approach during an era when machinery was expensive and
labour was both cheap and readily available. Thus, Taylorism is based on the premise
that people are disposable and machinesare not. In addition, Taylorism assumesthat, by
their nature, people are lazy, passive and unambitious. With Taylorism, therefore, the
roles assigned to employees are menial so as to minimise both the individual’s discretion
and his opportunity to interfere with the ‘system’. The essence of Taylorism is to:
— Separate planning from doing.
— Divide the work into small specialised tasks.
— Append people to machines.

For several decades, work in factories and mines was organised on the Taylor principle,
but from the 1930s there was mounting criticism of Taylorism. These criticisms were
based both on the inadequacies of Taylorism as a social organisation, and onits
ineffectiveness as a managementtool. After the seond world war, it became obviousthat
the wrong work organisation had long-term psychological consequencesfor workers,
and so the shortcomings of the Taylor-type organisation were, at the instigation of a
Senate committee, seriously investigated in the United States.
These investigations, and the general dissatisfaction with the approach of appending
people to machinesled to a search for better methods of work organisation. The best-
known new approach is Socio-Technical Design. This approach, which wasoriginally
developed by the TavistockInstitute in the early 1950s, aims to balance the human and
the technical parts of work systems in order to produce the maximum possible im-
provement. Several theorists have also contributed to the developmentof work-organisa-
tion methods, and the most notable of these are:

13

— Abraham Maslow,for his work on the analysis of human needs.
— Frederick Herzberg, for his work on hygiene and motivation factors for humans.
— Douglas McGregor, for his Theory X versus Theory Y.

Nevertheless, Taylor’s principles have continued to be usedin the organisation of office
work, and over the years large clerical departments were organised usingclassical work
organisation methods. Manyofthe first generation of expensive computers were usedto
computerise the work of someof those departments.Taylorism operates on the principle
that the essentially non-structured nature of people makesit difficult to plan and control
complex processes, andso it was almostinevitable that early computer systems were
designed according to the sameprinciple. As a result, as many complex but repetitive
activities as possible were transferred to the computer, and staff were entrusted only
with menial input and output operations. This approach to system development resulted
in a general dissatisfaction with early computer systems, particularly since the
technically-oriented system developerspaid no particular attention to the users’ needs.
Early approaches to system development also contained traceable elements of
Taylorism. The segregation of tasks, the total divorce of the management task and the
planning task from the ‘doing’, the isolation of the development process from the end
user, the separation of activities into large uni-functional departments, and, most
importantly, the separation of the development of the computer system from the
developmentof the manual procedures wereall in the true spirit of Taylorism.

However, as the new approachesand theories about work organisation were developed
during the 1950s, the early attitudes to systems and system development needed to be
revised. The three main factors that produced newattitudes towards systems were:
1. Social scientists recognisedthatit is wrong to treat people as adjuncts to machines,

and so the conceptof‘the right to work’ was extendedto include ‘theright to decide’.
The participative approach to work organisation is a direct consequence of this
recognition, and the Socio-Technical Design approach recognises that people
should not be appended to machines. Social scientists have provided the underlying
ideas that form the environmentof industrial democracy, employeeparticipation and
employee involvement in which systems now have to be developed.

2. Managementscientists developed various organisational models and management
techniquesthat have helped to create the overall environment in which systems are
now used. The recent tendencies to decentralise organisations and to use small (and
often multi-disciplined) teams of people instead of large uni-functional departments
are also significant developments that have helped to form the environment in which
systems are now used.

3. The theoretical work on the nature of systems pioneered by von Bertalanffy has
emphasised the need for a fundamentally different approach called the ‘systems
approach’.

DEVELOPMENTSIN TECHNOLOGY
In chapter 2, we indicatedthat there is a natural progression from a closed system view
to an open system view. The rate of this progression depends partly on changesin
attitudes towards systems and partly on the speed at which the technologyitself is
changing.

14

Information processing technology continues to change at a rapid pace, and already,
during the short history of data processing, there have been significant changes in
computing practice. For example, many large organisations have made someorall of
the following changes:
— They have progressed from a batch processing environment to an interactive

processing environment.
— They have changed from using one large centralised computing facility to using

several smaller (and dispersed) computers.
— They are now actively managing the data that is stored in their databases,

instead of, as previously, merely storing data.
As a result of these changes, new opportunities have appeared for using computers to
support the organisation. Thus, as well as being used astools at the operational-support
level, computers are now being used at the decision-support level and for information
management. Richard Nolanidentified the major milestonesof this progressin his paper
“Managing the crisis in data processing”’. (A description of Nolan’s work can be found
on pages 6 and 7 of Foundation Report No. 11.)
These changes in technology have changedthe attitudes both of users and developers
of information processing systems. As the technology has penetrated into more and
more areas of the organisation, the users have recognisedtheir obligations as ‘owners’
both of systems and data, and they have demanded better, moreflexible and‘friendlier’
systems. Consequently, system developers have beenforced to take greater accountof
the requirements of the users of data processing systems, and the importance of the
interface between people and equipment has beenincreasingly recognised.
To illustrate the way in which the development of a technology changestheattitudes of
those who use that technology, we now present two views about the effect that tech-
nology has on those who develop systems.
The first view was presented by Gordon Scarroit in his Clifford Patterson Lectureto the
Royal Society in 1979. He showedthat in the early stages of using a technology the
design emphasis is on how to make the technology work and on how to use it. During
these stages, system design is predominantly exploratory. As the understandingboth of
users and system developers of the way in which to use the basic technology matures,
there is a greater design emphasis on why the technology should be used and whatit
should be used for. In these later stages, system design becomes moreanalytical, and
the technology is used moreselectively. Also, the users of the technology become more
involved in the system design processas their understanding of the technology matures.

The second view waspresented by B. Hedberg in a paperentitled ‘‘The HumanSide of
Information Processing’, which he presented at the Computer Impact Conferencein
1978. In the paper, he identified three phases in the developmentof using technology,
and he related each of these phases to the way in which system designers view their
task.
In the first phase, the system designer is enchanted by the opportunity to work with a
new technology, and he often refers to his task as ‘‘working at the frontiers of
knowledge”. All his effort is taken up with making the technology work, and hewill
consider only those problems that are associated with the technical design of the
system.If the resultant technological system alters the organisational contextinto which
it is introduced, then this will take the designer by surprise, because he will not have

15

envisaged that such a thing could happen. The design philosophy during the first phase
can be summarised as ‘exploratory’.
In the second phase,the designer, having by now gained someexperience of using the
technology, is aware that it can have organisational consequences that the users may
not welcome. Consequently, he is now careful to design the system in such a way as to
minimise the social implications. Ideally, the remote users of the system will hardly
notice that they are working with a computer, and, if organisational changes do Occur asa result of the system, they will not be intended by the designer. The designer, in this
phase, workslike a tailor, trimming his system tofit the situation into whichit is beingintroduced. The design philosophy during the second phase can be summarised as‘defensive’.
In the third phase, the system designer has confidencein his ability to use technology ina sophisticated way. He perceives himself as an agent of change, and he is aware of thecomplexity and the multi-disciplinary nature of the design task. He knows that when hechangesthe technology he also changes the organisational environmentand alters theworking lives of many people. He deliberately designs systemsto achievea result that isgood not only in organisational and human terms butalso in technological (and also intechnical) terms. The design philosophy during this third stage can be summarised as‘strategic’.
From her work on participative design at the Manchester Business School (which wediscuss in more detail on page 27), Enid Mumford believesthatthere is a fourth phasefollowing the three phases that Hedberg identified. In this fourth phase, the specialistexpert designer disappears, and he is replaced by users of the technology who designsystemsin a participative manner. In this phase, the systems that are created takefullaccount both of technical factors and humanfactors.
From what we havesaid aboveit is clear that as people’s understanding of the wayinwhich to use technology matures,their perception both of systems and of the nature ofsystem development changes.This in turn meansthat the approachessystem designerstake, and the methods they use to develop systems need to be constantly reviewed.Approaches and methodsthat were adequateat an earlier stage of understanding mayno longer be so, and they mayin fact be hindering the developmentof systems that nowmeet the users’ expectations.
Technologyalso influences the developmentof systemsin another way, by making useof the technologyitself in the development process. Mucheffortis currently being madeto support the system development process with automation, and this is one morereason why the approaches and the methods for system development need to beconstantly reviewed.

16

CHAPTER4

A CLASSIFICATION OF SYSTEM
DEVELOPMENT APPROACHES

During the research for this report we came across many possible approaches and
methods for developing systems. Many of them were variations of individual general
themes, and there would be only limited value in classifying all the approaches
comprehensively. We have choseninstead to classify system development approaches
underthe three broad headings of technical approaches, planning approaches and open
system approaches. In many ways this classification reflects the ways in which the
overall evolution of system development approaches has been influenced both by the
shift from a closed system view to an open system view (which we discussed in chapter
2), and by the factors we identified in chapter 3.

TECHNICAL APPROACHES TO SYSTEM DEVELOPMENT
The first approaches to system development (usually referred to as ‘traditional
approaches’) were originated by technologists who viewed systemsprimarily as closed
systems. Theseearly technical approaches were not based on any systematic research
into the nature of system development. Instead, they grew out of the early ‘trial and
error’ experiences of developing computer systems. As a result, these traditional
approaches concentrated on the technological parts of the systems, and to a large
extent they took little account either of the users of the systems, or of the wider
environment in which the technological systems operated, or of the organisation's
overall objectives. With these approaches, system development wascarried out at a low
level, and it was performedin isolation both from the developmentof the overall work
system and from the users of the system.
A truly empirical set of practices evolved, and these were documented as standards.
These early approaches to system development are best described as regulatory,
advisory and deterministic. They provided system developers with checklists, rather
than methods. Although they did involve the users of the systems in agreeing the
technical specification, they did not help them to understand either their systemsor the
development process. In addition, these early approaches maintained a rigid view of the
sequencein which the developmentactivities had to be performed, and therefore they
did not allow for the developing system to be enhancedby successiveiterations of the
activities.
Over the years, the traditional approaches have evolvedto a stage where today there
are diverse and separate approaches and methodologies eachof which concentrates on
different technical aspects of the system. These approaches and methodologies are
usually called analytical approaches because they all have a common analytic
characteristic. They all break downthe steps of developmentinto a process of repeated
analysis and deduction.
Analytical approaches were developed to overcome three particular problems inherent
in the traditional approaches.Thefirst problem wasthe onecreatedbytherigid view of
the development process mentioned above, and this was overcome to some extent by
improving the mechanism used to control the system development process. In

17

particular, staged project management methods were introduced, and these methods
now permit limited iterations to be performed within the developmentprocess.

The second regular and recurring problem with the traditional methods was the problem
of setting objectives and specifying requirements for the system. It became clear that
development approaches neededto place a greater emphasis on theseactivities, and
that they also needed to allow moretimefor the activities to be performed. As a result,
today's analytical approaches place a greater emphasis on the early stages of system
development, and separate methods have been devised for specifying the requirements
of systems.
Thethird problem washighlighted when new concepts and theories (such as structuring,
top-down development, entity modelling, data management, etc.) were formulated about
the nature of technological systems and their development. As a consequence, it was
recognisedthat a technological system requires a level of design thatis as independent
as possible from thelimitations of the physical environment in whichit will be imple-
mented. Thus, logic design developed as a separateset of activities, and the key aspect
of many analytical approaches and methodologies is the method by which the logic
design is performed.
Most analytical approaches have, however, inherited from the traditional approaches
the assumption that systems are developedto be run on specific hardware.Forthis rea-
son, the point during the development process at which hardware should be selected
(and the steps that should be performed to select the most appropriate hardware) either
are omitted altogether from these approachesorare included at the very early stages of
the developmentprocess.
Analytical approachesrely on deductive development, andthis, of necessity, generates
ever-increasing amounts of paper during the development process.In trying to reduce
the amount of paper generated during the development process, most analytical
approachesuse oneof the various pictorial or diagrammatic documentation methods
that have been developed.
The most notable analytical approaches are the structured approaches,the database
approaches, and the software engineering approaches. In addition, a separate, but
partial analytical approach, the requirement analysis approach, has emerged. We now
discuss each of these four analytical approaches.
1. The structured approaches.

The two major types of structured approach are the data-oriented approaches and
the functional approaches. Both types of approaches regard structure as the key
element of systems, and both were influenced heavily by the theoretical work of
Dijkstra, Parnas, Boehm, Jacopini, Mills and others (see bibliography).
Structured approaches originally addressed the programming area of system
development, and they gaverise to the discipline of structured programming.
The data-oriented approaches derive the system structure from the data structure,
and the two best-knownstructured programming approachesare Michael Jackson's
JSP and Jean-Dominique Warnier’s Logical Construction of Programs (LCP). In
contrast, the functional approaches derive the system structure from the internal
functions of the system, and they were developed as the result of work done by
several people, the most notable being Myers, Constantine and Yourdon.
Once the two typesof structured approach had addressed the programmingarea,

18

both types were then developed to address the problems of other areas of system
development. The basic principles of structuring were identified, and attempts were
madeto integrate these principles into the design and the analysis areas of system
development. Various structured disciplines were formalised and packaged with the
aim of creating a complete structured methodology for system development.
Oneof the first attempts to create a structured methodology was IBM's Improved
Programming Techniques (IPT). This methodology brought together means and
methods of structured programming, structured walk-throughs, team organisation,
and a documentation method, HIPO (which was described in Foundation Report No.
11).
Subsequent generations of structured methodologies (both data-oriented and func-
tional) aim to support the total system development cycle. For example, Jackson is
currently developing a structured system design methodology, and K. Orr has
extended Warnier’s original ideas so that they can be used for systems analysis. (The
resulting Warnier-Orr methodology is now widely used in the United States.) Warnier
himself has also developed structured methodsfor defining the high-level objectives
of systems.
The functional structured approachesthat were originally used for structured pro-
gramming have also been extended so that they can now be usedfor other areasof
system development. For example, Ed Yourdon, working with Larry Constantine, has
established structured design as a separate discipline, and Yourdon’s further work
with Tom de Marco, Chris Gane and Trish Sarson has established the discipline of
structured analysis. Several formal structured methodologies have resulted from this
work, and the four most notable are:
— The Yourdon and de Marco approach.
— Gane and Sarson’s Stradis methodology.
— Metasystem 1000, which wasoriginally developed by Bank of America.

— SADT (structured analysis and design technique), which was developed
underthe direction of D. T. Ross by SofTech Inc.

Structured approaches are now a well-established technique for developing
systems, and they are widely used. The principies of structuring have been
encapsulated in logic description languages such as pseudo code, program design
language (PDL) and structured English. They have also been used to construct new
programming languages, notably Pascal.
The database approach
The database approach has its origins in the introduction of management
information systems that were based on large databases. It concentrates on the
organisation of global, company-wide data, and data analysis techniques are central
to the database approach.A well-known methodology that is based on the database
approachis the one developed by CACIInc. under the direction of lan Palmer. The
CACI methodologyis used to develop systemsin a shared data environment, andit is
based on the following six principles:
— A clear distinction between application-oriented tasks and data-oriented

tasks.
— Separation of design from analysis to provide flexibility both for business

changesand technological changes.

19

— Orientation towards a developmentstrategy rather than towards ad hoc prob-
lem solving.

— Decomposition into small, well-defined controllable tasks.

— Emphasis on simple, standard and diagrammatical documentation, rather
than on narrative.

— Interactive use of a data dictionary system for all documentation.
The CACI methodology views system developmentas a single large undertaking, and
this view is based on an unchanging global model of the company. The documen-
tation method is comprehensive, butits full benefits can be achieved only by using a
flexible and efficient data dictionary system. Of necessity, such a system needsto be
an automated system, and although most of the current data dictionary products
provide some of the facilities that the CACI methodology requires, they do not
provide nearly enough of them.
Software engineering
Software engineering is a highly-disciplined approach to developing software, andit
regards the production of software as an engineering problem.It uses rigoroustech-
nical methods that are enforced by rigorous management methods,andit is prac-
tised mainly by computer manufacturers and suppliers of software, and also by those
engaged in the developmentof military systems. The problems that such software
developers havein terms of the size, and the quality and the maintainability of their
software, and in termsalso of their user base are, of course,different from thosethat
a company’s system development department faces. Even so, the general methods
of software engineering can often be applied to the development of in-house
application systems. Many of the principles and practices of software engineering
are, in fact, used in many of the structured approaches.
The methodsof software engineering are most useful both for constructing large pro-
grams and systems and for managing the large group of people that are often
required for constructing such software. In particular, software engineering provides
a means of handling the complexity created by sub-dividing large software
developmentprojects into a large number of smaller units. Each unit may,in itself, be
self-contained and easy to manage, but the complexity arises from the need to
control the interface of the individual units with one another.
Quality control of the software product is an integral part of software engineering
approaches. The most formalised quality control method is the method of inspection
developed by M. E. Fagan of IBM. The inspection method was describedin detail by
Tom Gilb at the seventh Foundation management conferenceheld in Venice in May
1980, andfull details of this presentation can be found in the conferencetranscript.
IBM's software engineering programme (developed under the direction of Harlan
Mills) is an example of the management approach to software engineering. This
approach was developedby,and is used by, |BM’s Federal SystemsDivision. There
are two key elements to the IBM approach — the managementof the software
production processitself, and the development of a new kind of work called inte-
gration engineering.
The management technique is based on an unprecedented degree of formalisation
and fragmentation of the development process, and it is reinforced by a rigid
mathematically-based managementdiscipline. The main software productiontoolis

20

a factory-like structure (called the ‘uniform programming environment’) that aims to
make the software producer’s work more predictable, more controllable and more
uniform. This tool is used by the managers who control the production of software.
The software producersare part of the tool, not users ofit.

IBM use the term ‘integration engineering’ to define the incremental development
and integration of large software products. In essence, integration engineering is a
unifying methodology for a top-down, large-scale system developmentprocess. It is
concernedboth with the interfaces between the parts of a complex system and with
the quality of the resulting system. Those who practise integration engineering
(integration engineers) are concerned also with testing the parts of the system.
IBM claimsthat its software engineering programme has been successful during the
past five or six years, and has contributed to high productivity in the developmentof
large software projects. This claim cannot easily be verified because most of the
Federal Systems Division’s projects are large defence projects, and so are not in the
public domain. The United States government’s General Accounting Office has,
however, been very complimentary about one particular system that was developed
by using the software engineering programme. Onthe other hand,a survey that IBM
carried outof its staff showed that a relatively high percentage of programmers had
doubts about the successof this approach.
Another example of an engineering approach to producing and supporting software
is the approachthat the French software house SOPRAhas developed. The SOPRA
approach can best be described as industrialised software engineering, andit is
based on the re-employment of technical know-how within an overall framework(or
philosophy), supported by a selection of methods and tools. SOPRAusesits metho-
dology to develop bespoke application systems and adaptable application packages.
It is not available as a commercial product.
Requirement analysis (or requirement engineering)
Methods developed for analysing and specifying the requirements of a system fall
into two categories:
— The requirement engineering methods that aim for precision through

analysis. These methods are discussedin this section of the report.

— The methodsthatallow for initial imprecision, and advocate several iterations
to accumulate knowledge about, and understanding of, the requirements.
These empirical methods are discussed later in this chapter under the
headings of prototyping and system evolution.

Requirement analysis is not a complete system development approach, because the
specified requirements form the input to a system development process.
Requirement analysis methods were developed as a result of user dissatisfaction
with those early computer systems that were developed using traditional
development approaches. Methods for determining requirements began to emerge
when it was realised that systems cannot be created by simply translating the
existing processes to run on a computer system. The most notable researchin this
area was carried out by Boehm of TRW,and by Professor Teichrow at the University
of Michigan, who directs the ISDOSproject. (The workof both of these researchers
was reviewed in Foundation Report No. 11.) The ISDOS products (PSL and PSA —
problem statement language and problem statement analyser) are now used in new
requirement specification methods such as Core, which Systems Designers Limited
have developed in the United Kingdom.

21

Core standsfor controlled requirementspecification, and it was originally definedby
Geoff Mullery of Systems Designers Limited in 1978. The Warton division of British
Aerospace adopted the method in 1979 and,with their technical co-operation, it has
been fully developed and is now available as a commercial product.
The key conceptof Coreis that it takes account of the different viewpoints that dif-
ferent people have about the same system. Core enables a hierarchy of thesedifferent viewpoints to be established at the same time astheinitial informationabout a system is being gathered. The different viewpoints are used to establish astructure both for the information about the system and for the specification of thesystem requirements. For each level in the structure, the method provides viewpointstructures, action structures and data structures. A simple diagrammatic form ofdocumentation is used to express and to bring together thedifferent viewpoints ofusers, customers and management in a way that technical people can readilyunderstand.

PLANNING APPROACHES TO SYSTEM DEVELOPMENT
Thetraditional approaches to system development, and the analytical approachesthatevolved from them,all concentrated on the developmentof the technological system.However,right from the earliest use of computers there were those who took a moreopen view of the nature of systems, and as a result, a second family of developmentapproaches grew up. Instead of concentrating on the developmentof the technologicalsystem, these approaches concentrated on the selection and the use of computers.
These approaches can beclassified as planning approaches, and the early planningapproaches were characterised by a preoccupation with hardware,a disregard of theusers and a low emphasis on technical development. The last step in many planningapproachesis the implementation of the system, implementation in this context beingequivalent to development in the technical approaches.
Later, when database management systems became available, the planning approachesfocused on managementinformation systems. As a consequence,the conceptof dataas a corporate resource was developed, and the planning approaches evolved intoStrategic planning tools for technologically-based information systems.
Early advocatesof the planning approach were Jerome Kanter and Henry C. Lucas. Theyemphasised the need to define the business objectives, to developstrategies, to selectthe business area for the system and to derive the business system’s objectives.However, their methodologies did not particularly help with the development of thetechnological system oncethese actions had beentaken. Later, Paul Siegel and JamesMartin, in their various books, addressed lucidly the strategic issues of managementinformation systems.
The current planning approaches concentrate on the Strategic planning of informationsystems. The three best-known planning approachesare:
1. Business SystemsPlanning

IBM’s Business Systems Planning (BSP) concentrates on the use of data as acorporate resource, and it advocates that data must be Managed from an overallorganisational viewpoint. Through the use of BSP, an information system isdevelopedby identifying the basic data of various business processes, andthis datais used to create a stable information framework on which different applications canbe developed. BSP recommendsa series of fourteen steps that can be used todevelop:

22

— An information resource architecture.
— An information and data management framework.
— An action plan for system development.

The BSP approach has been developed specifically for use with large central data-
bases, although many elements of the approach could be applied to the process of
planning for information systems.

2. Critical success factors :
The critical success factors (CSF) approach was developed by John Rockart at MIT’s
Center for Information Systems Research. The approach concentrates on the infor-
mation needsboth of functional management and top management, andit relies on
the existing information systems(formal, informal, manual and automated)to provide
the inputs to the approach. These inputs comeprimarily from four sources:
— Theindustry that the companyis in.
— The companyitself.
— The business environment (customer trends, economic factors, political

factors, etc.).

— The existing organisational factors in the company.

Information needs are analysed with special emphasis on the following two factors:
— The‘soft’ information the company requires, including verbal information,

information of all kinds from outside the company, comparative data,etc.
— Theinformation needsof an individual manager, rather than the other needs

of either his position or his organisational function.
The critical success factors are determined from the objectives and goals either of
the companyorof an individual. The related information needs identify the need for
managementinformation systems or decision support systems.

3. PRISM (People/Resources/Information System Management)
The PRISM planning system was developed by Ivan George at Deltacom Inc. It
emphasises that information system development is not a process that can be
isolated from either the purpose,or the function, or the structure of the organisation.
With PRISM, the total planning process starts at the top of the organisation, and
strategic managementareas are defined. For each area, cost-effective management
functions (and their associated organisation structure and information systems) are
planned, specified and finally implemented. The management systems and the infor-
mation systems therefore evolve together within a framework of cost-effective
resource usage. The concept that underpins the PRISM approach is that an
information system cannot be effective without an effective management system.
The two systems musttherefore be planned and developed together.

The ISAC methodology, which we discuss on pages 30 to 33 as an example of a systems
approach to developing systems, can also be considered as a planning approach,
because it embraces the planning elements of system development.

23

Because many planning approaches do not address the detailed problemsof technical
development, it may bedifficult to translate into low-level technical objectives the high-
level objectives they identify. Tom Gilb developed the Design by Objectives methodology
with the aim of overcomingthis difficulty. The purpose of this method is to structure the
objectives and then to decompose them into a network of lower-level objectives that can
be expressedin terms of system attributes, system functions and system performance.
(A description of the Design by Objectives methodology can be found on pages 52to 56
of the transcript of the seventh Foundation management conference held in Venice in
May 1980.)

OPEN SYSTEM APPROACHESTO SYSTEM DEVELOPMENT
The technical approachesandthe planning approachesall assume a deterministic, well-regulated linear process of development. This requirement is not unexpected, becauseall of these approaches have their roots in the early days of computing, when it wasregarded as a modern branchofthe exact sciences. Thus, the rules of formal logic andmathematics were originally thought to be adequatefor designing all computersystems.But a linear view of development combined with a deterministic approach takes noaccountof the basic nature of people. People act in an unstructured manner, and theydevelop andlearn bytrial and error. As a result, requirementsin the real world are notalways logical, and they tend to change. Also, real organisations are complex andunstructured. In the real world it is not possible to develop the optimum system in asingle iteration, and manyof the early approaches allowed only for a single iteration.
The data processing community is slowly beginning to realise that system developmentneeds to be an iterative process, with the system designers and the system usersholding a continuous dialogue that successively refines their joint understanding of thesystem. Indeed,this iterative process needs to continue throughoutthe life cycle of thesystem. The approaches we have discussedsofar in this section of the report do notmake it easy to carry out this dialogue. This is because they concentrate on planningproblems, organisational problems and technical problems, and they exclude the useralmost entirely from the single pass through the development process.
However, work systems that employ technology as one oftheir elements must bedeveloped by methods that accommodate both the technological parts and the non-technological parts of the overall system within a methodology that can recogniseallparts with equal relevance. Such a methodology should also recognise the iterativenature of system development. The realisation by researchers that noneof the types ofapproaches we have discussed so far could be used easily in this way led them todevelop new approaches.
These new approaches have been developed with a much more open view of systemsthan earlier approaches had. Their aim is to remove the boundary that has existedbetweenthe user and the developmentof the technological system, by involving the usercompletely in an iterative development process. We classify the four categories of newsystem development approaches that we have identified under the headings of userparticipation, system evolution, approaches based on new views of the life cycle ofsystems, and a ‘systems approach’ to developing systems. We now discuss each ofthese categories in turn.

Userparticipation
For some time now,the trend has beento involve the user more than previously in thedevelopment of his systems. However, involvement implies a secondary role in the

24

developmentprocess,and it also implies that the users do not take the leadingrole.In
the past, the data processing manager filled this role, and because he wasa specialist
he could not be expected to have morethan a limited knowledgeof the users’ business
needsor plans, and of the way those needs and plansrelated to the wider goals of the
organisation.

It follows that it is not enough merely to involve users in the developmentprocess.If they
are to be really effective in the development process, users, and especially user
executives, should lead and participate, and data processing specialists should be
involved only as and when they are required. User executives should plan their own
systems, and users should both manage their own development projects and take an
active part in designing and developing their own systems.

Three recent developments that have madeit possible for users to participate in the
development process are personal computing, the prototyping method andtheparticipa-
tive approach. Personal computing and the prototyping method allow users to partici-
pate in the developmentof the technological system. The participative approach allows
the user to participate in the more important areas of planning and designing the
environment in which the technological system will operate. We now discuss each of
these developmentsin turn.

1. Personal computing
Personal computing requires high-level facilities such as simple and easy-to-learn
languages, data managementfacilities, on-line access to databases, and simple
screen formatting and report formatting facilities. The user can usethesefacilities to
develop his own systems, with little or no involvement from data processing
specialists. Although this development approach is not appropriate for all types of
systems, it is suitable for fairly simple applications and stand-aloneapplications. The
major advantage of personal computingis thatit provides the user with direct access
to computing facilities, and it also provides him with both an insightinto, and an
understanding of, the intricacies of the method of developing systems. In particular,
it enables the user himself to clear the backlog of small, low-priority applications that
the data processing department cannot handle because of its lack of resources.

In general, there are three ways in which a companycanprovide personal computing
facilities for users:
— By purchasing a small computer that users can use.

— By allowing users to use a timesharing system.

— Byproviding facilities that allow users to use the company’s own database.

When the user uses the company’s own database, he is provided with
comprehensive query and formatting facilities, and he can be trained to manipulate
the data with languages such as APL and Basic.

Personal computing facilities can also be provided both on mainframe computers
and on minicomputers. For example, both IBM and ICLoffer personal computing
systems on their mainframe computers, and Information Builders Inc. markets the
Focus system, which provides a data management facility on IBM machines using
IMS files. In the United States, Complete Computer Systems Inc. market a system,
called Create, which provides personal computing facilities on a variety of smaller
machines.

25

2. The prototyping method ; ue
After the basic hardware and softwarefacilities have been installed, prototyping is a
quick and inexpensive method of developing skeletal experimental systems. These
facilities may include either a database or a data management system,a high-level
(and preferably non-procedural) language, a screen formatter, a report generator,
generalised input/output software, and the ability to print out parts of the prototype.
The most important prototyping tool is, however, a high-level language that is easy
and quick to use for developing and modifying programs.
The prototyping method can be used at several stages of the system development
process. Thusit can be usedfor:
— Specifying requirements.
— Fixing the user interface of a system before system design commences.
— Testing the likely future effect of a system before the system is fullydeveloped.

Prototyping as a method has two key characteristics that are different from conven-tional development methods:
— Aprototypeis built quickly, without either a lengthy initial investigation or thedocumentation of requirements.
— Aprototype is exercised by the eventual users of the future system. The aimof the prototype is to make a practical check of the original views about thesystem, and to modify the prototype if those views prove to have been eitherincomplete or wrong.

Once a prototype system has beenbuilt, it can then betidied up, documented andused asthe final system. Alternatively, the results of the prototype can be trans-cribed into a conventional specification so that the system can. be developed bysome other method.In general terms, a prototype should beretaineduntilits originalpurposeis fulfilled. In practice, this means that a clearly-defined purpose should beattached to prototyping. In deciding whether or not to retain a prototype, it isnecessary to understand that a prototype does notincludeall the aspects ofa fullsystem. For example,it does not include:
— Resilience.
— Logicalclarity and completenessof design.
— Operational efficiency with large amountsof data or a large numberof users.
— Recovery and other technical operational features.
— Optimal technical design.
— Full documentation eitherof the features that exist in the prototype,or of therequirementsit fulfils, or of its operational characteristics.

A prototyping approachis effective only whenit is performed with the user’s full co-Operation. For example, the user needs to agree the system requirements and theuser interface, and he needs to assess the likely future effect of a system.

26

Prototyping provides the meansof creating a genuine dialogue between users and
system developers. The main advantageof the prototyping methodis thatit enables
the userto exert a vital influence on the system at a stage when a changeofdirection
does not cost a large amount of moneyoreffort.
However, if prototyping is to be effective, both users and system developers do need
to have the correct attitude towardsit. Prototyping implies less formality than is
involved with traditional and analytical approaches, and some organisations and
individuals mayfind it difficult (or even impossible) to operate in such an informal and
relaxed mode.In particular, the users need to understand that:
— The flexibility provided by the prototyping method brings with it a

responsibility for achieving the desired results, and the user has as much
responsibility for the design as the system designer has.

— Theprototype is merely a tool to prove a point, andit is not the final system.
8. The participative approach

The participative approach to system analysis and design has been developed by
Enid Mumford at the Manchester Business School, andit is based on earlier ideas
and practices that were formalised by the Tavistock Institute under the nameof
Socio-Technical Design (which webriefly discussed on page 13). The basic socio-
technical theory says that the successful introduction of new technologyis possible
only when human and social needs for the work system are recognisedin parallel
with the technical and the economic factors. Mumford and her colleagues have
adapted this basic theory and modified it to suit the development of computer
systems.
The rationale of the participative approach is based on four arguments:

— The morality argument, which says that people have a moralright to control
their destiny.

— The expediency argument, which says that activities should be (and
ultimately are) controlled by those who perform them.

— Thelocation-of-knowledge argument, which saysthat the people whoactually
do the jobs are the experts on operational factors (such as the design of
tasks).

— The motivation argument, which says that involvement both acts as a
motivator and leads to increased productivity and efficiency.

In practice, the participative approachinvolves the users of the technological system
in various levels of analysis and design. The original approach advocatedthree levels
of involvement — consultative, representative and consensus. Mumford found that
the approach works best when the users are fully involved in the analysis and are
allowed to redesign their own work system aspart of the development. She and her
colleagues have developed a rangeoftools for analysis and designto aid the system
analysis and design processes. Both the approach and the tools have now been used
successfully in severalfairly large companies.

System evolution
For many years, researchers have recognised that many systems would benefit if they

27

evolved over a period of time. This evolution would take place by successive develop-
ments of the system to provide an ongoing series of enhancements. Until recently, such
an evolutionary approach, which relies on performing large-scale iterative development,
wasprohibitively expensive.
However, recent developments both in technology and in the application of computers
have made the evolutionary approach to system development economically feasible. In
particular, the two major recent developmentsare:
— Advanced technicalfacilities such as on-line systems, databases, high-level lan-

guages, screen formatting aids, report generators, etc.
— Theprototyping method.

Wehave already discussed the prototyping method under the heading of user partici-pation. But prototyping can also be used to develop systems through seriesof evolvingprototypes. An exampleof this approachis the Nomadfacility that National CSS provideson its time-sharing facility. National CSS calls the development process ‘protocycling’.Nomadis a high-level non-procedural languagethatis used to interrogate, to change andto manipulate a relational database.
Another approach to system evolution is to use high-level technical facilities to develop afairly sophisticated base model of a given system, and then to modify that systemregularly during the first part of its operationallife-cycle. Easily-modifiable base-modelsystems can be used for those application areas in which the requirements neverbecomestatic, or the final requirements evolve only during the early operationallife ofthe system. This type of evolutionary approach can be used successfully for thedevelopment of decision-support systems. (Professor Persson from the StockholmBusiness School spoke about the practical application of this type of developmentapproach at the ninth Foundation management conference held in Bournemouth in July1981. Full details of his presentation may be found in the conference transcript.)
The ideal evolutionary development method would create a base system that coulddevelop a ‘system consciousness’. Such a system would sense changesthroughits ownexperience when used operationally, and as a result it would modify its own rules and‘learn’ a new behavioural pattern.
Existing approachesare still a long way from creating systems that can ‘evolve’ withchange, although Ronald Stamper's Legolproject at the London Schoolof Economicsispromising in this respect. Legol aims to describe systemsin termsof formal and informalrules and their associated data structures, and the Legol language provides asophisticated tool for developing those systems. The development of the base ‘rulesystem’ itself is evolutionary, because it is achieved through several hundreds ofsuccessively-refined models. But because the final system operates by analysing therules that describe the system, it is not inconceivable that Legol may provide a wayforthe system to recognise automatically changes and modify its own operationalrules.
Newviewsofthe life cycle of systems
The traditional view of the life cycle of systemsis that they progress through a regularsequence of stages (feasibility study, analysis, design, implementation, andoperation/maintenance). This traditional view assumesthat a single pass through thedevelopment stages producesa lasting and usable system. It also assumes that themaintenance stage is separated completely from the development stages. This linearview of the life cycle of systems is now being criticised from many quarters, and new

28

views and concepts have recently begun to appear. These new views and concepts
imply a markedly different non-linear nature of the life cycle.
The basic drawbackof the linear life cycle is that it does not recognise that systemsexist
in an environment of constant change. Even if external changes and organisational
changes are disregarded (and both of these can be considerable), the changes that a
systemitself induces cannot be ignored. Professor M. Lehmanat the Imperial College of
Science and Technology in London explains the meaning and the effect of this type of
change in a simple way. He says:

“Any computer program is, in part, a model of the environment whichit is intended to
serve. As soon as it becomesoperational, it becomes part of that environment and
thus interacts with it. Hence the model that the designer used to develop the
program and which forms anintrinsic part of its structure and content is at least
partly invalidated. The very installation of the program initiates and acceleratesits
own decline into obsolescence. Thus, an intrinsic property of software is that it
continually evolves and adapts to a changing environment.”

A linear view ofthelife cycle of systems suggests that the requirements of a system can
be defined completely and finally by a single pass through the requirementspecification
activity. However,it is now recognised that there are many situations in whichthis is not
possible.

We have already mentioned that the prototyping method can be used as an aid to
defining requirements, but Professor C. Floyd at the Technical University of Berlin
believes that there is a much more fundamental problem with defining requirements.

According to Floyd, most specifications deal only with the functional requirements of
systems. But, she says, every system has performance characteristics, and some
performance requirements (at least some rudimentary ones) ought also to be stated
before the system is developed. Althoughit is possible to state what these performance
requirements are, there are no known techniques for interrelating and transfusing them
with the functional requirements.
In addition, the requirements should also describe the mannerin which the system is to
be embeddedinto the activities of all the groups of people who areaffected byit. Floyd
calls these the handling requirements,andit is difficult to state precisely what these are.
A system (which is normally a well-structuredentity) has to perform in an essentially non-
structured environment, andthis makesit difficult to specify the requirements in a single
pass.This lack of structure in the environment can be caused either by individual users
using the system in a non-structured way,or by severaldifferent users using the system
in several different non-structured ways.

Professor Floyd believes, therefore, that the properties that should form the requirement
specification are the functional requirements, the performance requirements and the
handling requirements. The first two types of requirement are not incompatible with a
linear view ofthelife cycle of a system, but whetheror not the handling requirements are
being satisfied can be proved only by the use of the system in practice. Thus, the
complete specification of the handling requirements may require several iterations
through the specification stage and the operation stage.

In other words, Floyd maintains that there is no point in envisaging the life cycle of a
system in terms of a major development phase followed by an operational phase that
includes ‘maintenance’ of the system. Instead, she maintains that thelife of a system
should be envisaged as a series of controlled enhancements that are performed in a

29

well-planned cycle with a high level of user involvement. The cycle of ‘revisions’ would
occur at planned intervals (for example, every three years), and as few changes aspossible would be madein the intervening period. Successive ‘system versions’ wouldtherefore be developed, and the system developers and the users would both have well-
defined tasks to perform in parallel with each other to verify the version of the system
created during the current cycle. (These tasks are summarisedin figure 1.) Floyd callsthis approach to system developmentthe ‘process-oriented approach’, in contrastto thephase-oriented approach of the traditional and the analytical methods.
The main difference between the process-oriented approach and the phase-orientedapproach is a difference in emphasis. With the phase-oriented approach, thepredominant concern is with the sequencing of the activities within each phase ofdevelopment. The sequencing (and the control) of the rest of the life cycle is notaddressed. For the remainderofits life, the ‘system’ is basically the same single entity,which is subjected to minor modifications as and when they becomeessential. With theprocess-oriented approach, the design and the implementation phases are mapped ontosuccessive development cycles. During the life cycle of the system therewill be severalrecognisably different versions of the system, and during their operationallife theseversions will be subjected only to genuinely minor modifications.

A systems approach to developing systems
As a result both of von Bertalanffy’s work on general systemstheory and of the TavistockInstitute’s development of their socio-technical systems theory, new approaches tosystem development have been developed. The main characteristic of these approachesis that they regard systems as humanactivity work systems. In Foundation Report No. 11we reviewedthe approach developed at Lancaster University underthe direction of P. B.Checkland. The Lancaster approach is typical of a systems approach to developingsystems.
In the Scandinavian countries, the theoretical understanding of general systems theoryhas been further advanced by the work of Professor B. Langefors. He identified twodifferent general approaches to systems. Thefirst is the ‘infological’ approach thatfollows organisational design concepts for the design of systems, and the secondis the‘datalogical’ approach, which is the conventional way of finding solutions toorganisational problems within the context and the structure of a given organisation.Professor Mats Lundeberg in Stockholm subsequently developed a practical systemdevelopment methodthat recognises technical and economic problems, and usessocialand organisational criteria as well as technical criteria in system design. This approachis called ISAC (information systems work and analysis of change).
ISAC is one of the few system development methodsthat start with high-level planning ofall aspects of an information system (not just its technological parts) and then takeaccountof the details of technical development as well. An interesting and novel aspectof ISAC is that hardware is not selected until after all the data structures and thecomputer routines have been designedin the final phase of development.
The principal idea that underlies the ISAC approach is that a new system cannot beenvisaged or created without first examining the environmentin whichit will fit. Forinformation systems the relevant environment is the organisation. The principaltechnique of the ISAC approachis that of information analysis. This technique is usedbecauseits designers believe that information is now the prime source of raw materialfor organisations. The intrinsic properties of information must therefore be analysedinthe context of the organisation that creates and usesit. Without such an analysis, nosystem (whether it be manual or automated) can be successfully created, becauseit

30

Figure 1 The process-oriented approach to system development

Requirements

Preparation of
evaluation base

Evaluation
system

Evaluation of

preliminary system

y

Revised require-
ments definition

System version |_

definition

Production of
preliminary specification

Preliminary
system

Functional
analysis

Functional
specification

Revision

System
definition

Shelving

Preparation of
 production

System
 version

Version analysis
and correction
Restructuring

 proposals

evaluation base

Evaluation
base

Evaluation of
 system version

Revised require-
 ments specification

31

would be completely out of context. The ISAC approach recognises five phases ofdeveloping an information system andin the terminology of the ISAC approach they arecalled:
— Change analysis.
— Activity studies.
— Information analysis.
— Data system design.
— Equipmentadaptation.

The ISAC development approach is a top-down functional one, and it starts byestablishing the context for a future system by change analysis. Change analysisestablishes the areaof interest of future systems according to goals and objectives thattake into account social, organisational and economical factors. The four phasesfollowing the change analysis phase deal with the analysis and design of those worksystems that are in the area ofinterest that the change analysis hasoutlined. Activitystudies describe and analyseall the functions of the work system. This phaseis followedby a similar but more detailed analysis that considers only information processes. Thelast two phases deal with the design of the technological information system anditsimplementation in a particular hardware environment. The hardwareitself is selected aspart of the final phase.
The ISAC approach recognisesthe following five fundamental practical principles:
1. Iteration

Lundeberg believes that the chronological description of recommended develop-ment activities must not be mistaken for the need to perform them in that precisechronological order. In practice, the ISAC approach doesnot work without iteration.
2. User involvement

All analytical activities presume the involvement of the user. The ISAC approachtherefore relies on the user’s participation in the development process.
3. Open system view

Beforethe information system is considered, the whole system scenario is analysed.Activity studies considerall the activities in the selected area of the companybeforefocusing attention on the information processes. These processes are thenconsidered in the context of the relevant work system before the technologicalboundary of the system is delineated, and before the technological system isdesigned and implemented.
4. Simple documentation

The ISAC documentationis simple, and it uses:
— Aminimum amountof text.
— Aslittle formality as possible.
— Diagrammatical representation (squares, lines, arrows and dots, each ofwhich are either named or numbered).
— Very few symbols.

32

5. Simplicity
The same analytical methods and documentation techniques are used throughoutthe complete development process.

The ISAC approachhas been used successfully for several projects. In the Scandinavian
countries, IBM has adopted large parts of the ISAC approach in designing dialogue-
driven database-oriented information systems.

SUMMARY
In this chapter, we have provided a broad classification of system development
approaches, and in doing so we have mentioned several specific methodologies and
products. More details about these (and other) methodologies and products can be
found in the publications listed in the bibliography at the end of this report. Our
classification of approaches shows that a wide range of approaches are currently
available, and that different approaches can be used to advantagein different situations.
Later in this report (in chapter 6) we provide advice to those organisations that wish to
introduce a new approach to system development.

33

CHAPTER 5

AUTOMATEDAIDS FOR SYSTEM DEVELOPMENT

Earlier in this report we indicated that the task of developing systems can be considered
as a work process. Any work process can be enhanced and supported both by
theoretical knowledge about the basic concepts that underlie the process and by
practical aids. In the previous chapter we discussed the system development
approachesand methodsthat have evolved as a result of the growing bodyof theoretical
knowledge there is about the basic nature of systems. These approaches and methods
support the system development work process at a conceptuallevel.
In this chapter we turn our attention to the practical aids that are available to support the
system development process. These aids can be provided either for the complete
process or for part of it, and they can be manual, mechanised or automated. We
concentrate in particular on those aids that provide automated support for the system
development process.
Three levels of aid are available. First, there are the individual tools, such as documen-
tation aids, programming languages and compilers. In this chapter, we do not consideraids at this level. Second,there are integrated facilities such as user-oriented languagesand high-level languages, both of which can be integrated with databases and datadictionaries. We discuss these integrated facilities in more detail in the next section ofthis chapter.
Thethird level of aids comprise what we term ‘environmental support’. These comprisethe individual tools and the integrated facilities that workers haveat their disposal fromthe environments in which they perform the work. The environment is supportive if theindividual tools and facilities are integrated to produce a synergy that both meets thedemandsof a given job, and enables those who perform the job to do it better. To besupportive, an environment should have the following characteristics:
— It must providetight integration of the tools and facilities.
— It must be applicable and available to many different users.
— It must create a helpful and constructive work atmosphere.
— It must be flexible, so that it can adapt both to different needs andto differentusers.
— It must provide sufficient capacity to store and to index information about thediverse uses to which that information will be put.

Environmental support aids will themselves be complex computer systems, and theywillnormally comprise:
— An on-line facility and high-level languages.
— Someform of data depository (such as a database and its management system).

34

Special routines for generating reports, for screen formatting, for assistance andfor diagnostic analysis.
— Security features.
— Aco-ordinating or supervisory system.

A supportive environment can be constructed either to support the people who perform
particular tasks or to support a particular work process.In the first of those environ-
ments (a people-oriented supportive environment) the environmentis designed to aid a
specialist by providing him with the optimum environment in which to perform his work.
The specialist will use such an environmentin performingtasks with which heis familiar,
and the supporting environmentwill provide automated links between the tools and the
facilities he uses for the different tasks. If a complete work processconsists of tasks that
several different specialists perform, then each specialisation may well have its own
distinct supportive environment.
In contrast, an environment that is constructed to support a particular work process (a
process-oriented supportive environment) will force those who manage the work
process to examinecritically each individual task. This examination may show that the
sequence of the tasks that were performed before the supportive environment was
constructed is no longer relevant. Alternatively, it may show that some tasks are no
longer required, or that some tasks that were previously performed by people can be
completely automated, leaving no role for peopleto play.
An effective supportive environment (whetherit is people-oriented or process-oriented)
does not, however, force people to use a particular method to do their work.

In the field of system development, people-oriented supportive environments have been
constructed that provide automated aids to meet the specific needs of programmers,
and wediscussthesein this chapter under the heading of programming support environ-
ments.At the presenttime, people-oriented supportive environments donotexist for the
other specialists (such as designers or analysts) who are involved with other stages of
the system development process. However, there are now several process-oriented
supportive environments that provide automated aids to support the system develop-
ment process, and we discuss theselater in this chapter under the two headings of
systems for building systems, and software development environments commencing on
pages 39 and 41 respectively.

INTEGRATED FACILITIES
There are many general facilities that can be used to aid the system development
process. Thesefacilities combine several individual system developmenttools, and, as
such, we describe them as integrated facilities. In this section of the report we have
singled out the two typesoffacilities that we believe are particularly important — inter-
active system developmentfacilities and data dictionaries.
Interactive system developmentfacilities
In the previous chapter we mentioned several possible approaches to system develop-
ment (such as personal computing and prototyping) that require a combination of co-
operating facilities, such as:
— Aneasy-to-learn (and non-procedural) programming language.

35

— A database and a data management system, together with the appropriate
security and back-up features.

— Screen-formatting andprint-formatting facilities.
— A ready-madelibrary both of routine and generalised functions.

Most computer manufacturers offer a software package that contains these combined
facilities, and such packages are designed to provide personal computing facilities to
users. For example, IBM offersits virtual storage personal computing (VSPC) package,
and ICLoffers its personal data system (PDS). (Personal computing facilities designed
specifically for use by programmersare discussedlater in this chapter on pages 38 and39.) As an interim measure to providing full developmentfacilities to users, severalmanufacturers provide software products that enable users to interrogate existing data-bases. (For example, IBM’s Generalised Information System and Dataskil’s Slaveinter-active data handler.) In addition, APL and Basic are increasingly being used as userprogramming languages.
Wehave already mentioned the Nomadfacility of National CSS, which can be used bothby users to develop their own systems and by system developers for prototyping. Areasonably new IBM product, whichis similar in concept to Nomad,is structured querylanguage/data system (SQL/DS). SQL/DSis a relational database management systemthat is integrated with a very powerful manipulation language, andits facilities includethe dynamic redefinition of data and automatic navigation in the database (namely,searching for what the user wants without the user having to specify the way in whichtherequired information should be retrieved). The language provides facilities for makingqueries, for defining data, and for loading, updating and controlling the database.SQL/DS has a catalogue of information both about programs and users, such as theparts of the databasethat different users are authorised to access. The system can beused to develop databaseapplications in an interactive way. It can also be used bothforprototyping and(to a limited extent) for personal computing.
Data dictionaries
Most technical methodologies for developing systems recommendthat an automatedfacility be used for storing centrally the information about the different elements of adeveloping system. This central depository of information often takes the form of a datadictionary system, and ICL’s DDS productis an example of such a facility.
DDSis an interactive database for the support and controlof application development. Itis centred around an IDMSdatabasethat holds andinterlinks, in the form of models, thefollowing four different types of information:
— Information (in the form of operations and events) about real-world processes,such as business functions.
— Information about reai-world data (data models).
— Information about computer processes (programs and modules).
— Information about computer data (conventional records, files and IDMS datasets).

ICL represents the DDS database diagrammatically as a circle with four quadrantsthatconnect the real ‘world’ with the computer ‘world’, and connect processes with data(see figure 2).

36

 Figure 2 ICL’s Data Dictionary System (DDS)

Processes| Data

Real world Real world

Computer world Computer world

Processes| Data

DDScan be usedto:
— Maintain records of the parts of a developing system (such as models, designs,

data structures, programs, modules,etc.).
— Compile comprehensive documentation about all the computer data.

— Aid in the system design process for data analysis and functional analysis.

— Generate data descriptions for programs.

— Cross-referenceall the system elements (both real world and computer).

— Interlink selected parts of the database (for example, linking processeswith data,
or linking real-world models with computer models).

— Retrieve selected and interlinked items.

ICL is currently enhancing DDSto include facilities similar to those in Cades, which is
ICL’s internal software engineering system.

37

PROGRAMMING SUPPORT ENVIRONMENTS
Individual tools for automating parts of the system development process have beenavailable for many years. In the programming area, compilers, editors and operatingsystem utilities are commonly-used tools, and more recently those tools have beensupplemented by tools such as high-level languages, pre-compilers, code optimisers,etc. At first sight, it is tempting to believe that an effective programming supportenvironment can be created by constructing automated interfaces between thoseindividual tools.
However, attempts to construct programming support environments in this way wouldnot be successful, because the resulting environment would be clumsy,inefficient andexpensive to operate. A programming support environment that provides automated aidsis, in fact, a computersystem in its own right, and it has to be designed and constructedas a bespoke piece of software. Such software can be developed to run on general-purpose computer systems, and an example of this approach is the Unix operatingsystem, which we discuss below. Alternatively, the software can be packaged withdedicated hardware to form a programming workstation. (We discuss programmingworkstations below.)
The Unix system
Unix was developed atBell Laboratories by Ken Thompsonand Dennis Ritchie to providean automated support environment for programming. It is an operating system thatoffers comprehensive timesharingfacilities for a large numberof users. These facilitiesprovide a personal computing facility that can be used to develop andto test programs.
The main feature of Unix is its command language. The Unix command interpreter, orthe shell, receivesinstructions via a screen or a teletype type of device, and it causesUnix to execute the command.This facility allows the user to write very high-level shellprogramsthat will execute many operations.
The Unix user can create command Superstructures that can:
— Perform the routine steps of a job (standard commands can be catalogued andinvoked).
— Develop new application programs from building blocks of routines coded in aconventional way (and which have been catalogued by Unix).

The Unix system provides several Co-operating utilities that can be used both to performsimple tasks for the Programmer and to provide standard solutions to routineprogramming problems(such as re-formatting files, sorting, etc.).
The Unix facilities can be used as a rapid way of building high-powered commandprogramswithout the need to generate conventional Program code. Unix is therefore anideal tool both for prototyping and for system evolution.
Programming workstations
Programming workstations are dedicated systemsthat help the programmerdohis job.They are designed to replace coding sheets, pencils and templates, and also to replacethe tasks of submitting jobs to the computer, searching for test data files on cards ortape, retrieving detailed technical documentation from filing cabinets, etc. They supportOn-line interactive programmingin one or more languages,andtheyprovide facilities for

38

storing and retrieving data and program modules, and for compiling and testing
programs.In other words, they support the programmer's day-to-day job.

Programming workstations can be either hosted systems or stand-alone systems.
Hosted systems use that part of an organisation’s main computer system that is
dedicated to program development work and maintenance work. Stand-alone systems
are complete dedicated software and hardware systemsthat are used for programming.
Several packages are available to support programmers on a hosted basis. Many of
these packagesprovide high-level (non-procedural) languages, and weconsiderthatthis
feature provides positive assistance to enable programmers to concentrate on what
programs should do, rather than on concentrating on the wayin which they shoulddoit.
Examples of hosted-system packagesare IBM's ICCF (interactive computing and control
facility) and its earlier versions (ETSS and ETSSll). These packages run on the IBM 370,
3030 and 4300 series of mainframe computers. Another example is Hewlett Packard’s
300 system, which can be used for development as well as for running application
systems.
Stand-alone workstations (sometimes also referred to as programmers’ workbenches)
are hardware and software systems dedicated to program development work and main-
tenance work. The application systemsthat are developed on programming workstations
are usually run in a production mode on a different target machine.

Stand-alone systems need a mechanismfortransferring programsto the target machine
(for compilation, testing and production). Apart from having this inter-machine communi-
cation facility, stand-alone workstations operate in an off-line mode. Compared with
hosted workstations, they offer the following improvements and benefits:

— They provide better response times (because they do not compete for central
resources).

— They are specifically designed for a given job, and so they are less generalised
and better engineered from a humanpointof view.

— They may be used to develop programsfor several different target machines.

— They are more secure and morereliable than a more complex central facility
(which has more elements that can go wrong). In addition, the malfunction of the
development system could not adversely affect any other hosted systems.

— They tend to be cheaperthan an all-embracing central facility.

Examples of stand-alone workstations are the Programmer’s Workbench developed at
Bell Laboratories (technical name PWB/UNIX), which runs on DEC PDP-11s, and the
Pet/Maestro system developed by Softlab GmbH, which runs on the Philips X1150
minicomputer.

SYSTEMS FOR BUILDING SYSTEMS
In Foundation Report No. 11 we reviewed several systems that provide high-level inte-
grated facilities that either support or automate the system development process. In
particular, we reviewed the use of PSL/PSAfor system analysis, Autogen for automatic
code development, and Adam for generating software without programming. In the
meantime, several new ideas and products have been developed, and most of these
products have the following common facilities:

39

— Documentation aids.
— An unambiguous language that is used to define the system’s design.
— Checking and referencingfacilities.
— Mechanisms to generate code automatically from the output of the designprocess.
— Mechanismstointerlink elements of the design.

We now review briefly four products thatfit into this category of systems that eithersupport or automate the system development process.
12 Gamma

The Gamma system was developed at Software Sciences Limited by David Burnsand Dr. M. Falla. It is available as a commercial product, and it is currently at thepublic trial stage ofits development.
Gammausesa single database as a library of all the constructs that make up asystem. A single high-level language (the Gamma language) is used during thedevelopment of a system to enter, store, search, display and edit constructs. Thesystem maintains a hierarchical mapofall related constructs,andit providesaids forcross referencing, listing and checking the elements of a developing system. Gammacan include executable codein the library, and it provides code generation facilitiesfor the IBM 370 range of equipment.It also provideslinks both to Assembler routinesand Cobol routines and to

a

file handling package. Extensive data administrationfacilities and free-text-editing facilities are included in the system. Future plansinclude the developmentoffacilities for testing and displaying graphics.
Pride
Ahighlevel of automationof the system development process has been achieved byMilt Bryce of M. Bryce & Associates through his system called Pride. Milt Brycespoke aboutPride at the seventh Foundation management conference in May 1980.The transcript of his presentation contains a detailed accountof the Pride system.
System Builder
ICLis in the processof developing a new generalised Productcalled System Builder.The concept behind this new developmentis that all Processeswithin a system aremodelled as data structures, and they are envisaged as ‘state changes’ of thesystem.
A high-level (non-procedural) language with no input-output statementsis provided,and this language is used to ‘build’ a system through the use of very high-levelgeneralised functions.
The system building processconsists of defining the structuresboth for data and pro-cesses, with System Builder providing structural checks. System Builder’s owncompiler provides input-output statements. It also sequences the Operations, andoptimises the memory requirements and the storage layouts.
Elias
Elias is a system building system provided by IBM, andit is an aid for developingdatabase/data communication applications. It helps to define the database and thescreen formats. Elias generates muchof the application code of a system by the use

40

of interactive facilities, by pre-tested ‘skeletons’ and ‘bricks’ of code, and by pre-
coded database and data communicationsinterfaces. Elias also has the interesting
feature of being multilingual, and the help and service functions and dialogues are
available in several European languages.
In developing Elias, IBM used the concept of ‘Development Management Systems’
(DMS). DMS supplies both a framework and ‘off-the-shelf’ system elements that
enable a customised application to be created rapidly.

SOFTWARE DEVELOPMENT ENVIRONMENTS
In this section of the report we discuss two approachesto creating software develop-
ment environments. The first environment is one in which systems are developed on
hardware that is different from the hardware on whichthe systems will be run. Wecall
this the ‘host/target development concept’. The second environment is one in which
custom-built systems are constructed from ready-made application segments. Wecall
this the ‘customising application systems concept’.
Hosi/target development
The development of systems that run on a target machine different from the host
development machine has attracted much attention amongst commercial and military
software suppliers. Foundation Report No. 22 described the methodsused to solve this
problem for commercial packages. A different set of tools andfacilities have been
developed for military software, and we mention them here because they are now
beginning to emerge as commercial products that have a wider use.

Military systems are mostly on-line real-time systems, and they normally operate on
small target machines that are not supported by sophisticated operating system
facilities. A special software environmentis therefore needed for both their development
andtheir operation. In the United States, the Department of Defense issued directives
for the development of such software environments. The result of these directives is the
much-publicised ADA language and software support environment.

In the United Kingdom, the Ministry of Defence has successfully standardised the
development of real-time military software through the use of Mascot (Modular
approachesto software construction, operation and test). Mascot has been used as a
standard system since 1975 both by the Ministry of Defence and its sub-contractors.
Twoofthe largest sub-contractors (Software Sciences Limited and Systems Designers
Limited) have now made Mascot available as a commercial product.

Mascotis a software development environmentthat enables on-line real-time systems to
be developed on a host machine and then be transferred to a final target machine. The
Mascot environment continues to support the system whenit is running in the target
machine.
A prerequisite for using Mascot is that the system must be designed in a modular
fashion. Mascot then generates a network representation ofthis modular design, and it
supports the developmentof the system by:

— Keeping the developing system elements within the framework of the design.

— Supplying a command language (in the form of primitives) to interlink and to
control parts of the system/program.

Ai

— Providing a software environment (called the Mascot machine) for the system,both during its developmentandits operationallife. (Mascot actually provides atransfer mechanism to place and to monitor the system in its targetenvironment.)
Outside the field of military systems, Software Sciences Limited has used Mascotsuccessfully to develop distributed microprocessor-based systems(for example, theintelligence for a point-of-sale system).
Systems Designers Limited has developed a Mascot-based product called Context,whichis available as a commercial product. Context uses adatabase both to store thesoftware being developed and to monitor and checkit during its operational life. TheContext product includes the following features:
— Support for development on a host machine.
— Production of software in the object code of the target machine.
— Transfer of software to the target machine.
— Control and monitoring during the software commissioning stages.
— Maintenance support on the target machine.
— Emulation of the target machine on the host machine.

Customising application systems
In many industries, new products (or ‘applications’) are constructed from ready-madebuilding blocks. (For example, in the building industry, a builderwill not construct his ownwindow frames — he will use standard components.) In the system developmentindustry there are not Many approaches that are based on a similar building blockconcept.
Hewlett Packard has, however, produced a productthatutilises the building block con-cept. This product, which is based on Hewlett Packard’s customisable applicationsystem concept, consistsof a set of application packagesthat can be madeinto a tailor-made system by meansof a system-aided assembly facility.
The Hewlett Packard approach has three elements:
— The coneept(tailoring).
— Theset of packages (the customisable application system).
— The facilities (Application Customiser and Application Monitor).

Hewlett Packard has developed the approach for its HP3000 computer, and theapproach has been used with Hewlett Packard’s Materials Planning and Control Systemfor Manufacturers.
The approachrequires a special method to be used for constructing the packages them-selves, as well as a sophisticated application facility for assembling and using thepackages to meet specific requirements. The Packages are developed in aparameterised form, and the application facility maintains a set of tables for each

42

application. These tablesmake upthe ‘application data dictionary’, and they define the
application and its operational environment. The tailoring of the system is accomplished
by modifying the tables, and no source codeis ever modified.
With this approach, the customisable application is a truly dictionary-based system. The
dictionary is the depository of all the parts that make up the system.
In practice, the customisable application system concept needs two kinds of automated
facilities — one to tailor the application and another to run it. The Hewlett Packard
approach provides two ‘tools’ — the Application Customiser (AC)for tailoring the system
and the Application Monitor (AM) for operating and controlling the tailored application
system. ;

SUMMARY
In this chapter, we have provided a brief insight into the automated support that is
available today for the development of systems. Apart from a few isolated products, it is
clear that the programming areais the best ‘tooled-up’ part of the developmentprocess.
The analysis and the design areas are aided mainly by facilities that allow both documen-
tation and elements of the system to be recorded,and that help in cross-referencing and
consistency checking. But there are still very few real analytical and design aids.
Computer-aided manufacture of program codeis a reality today, but computer-aided
design of the system is still in the future.

43

CHAPTER 6

INTRODUCING NEW WAYS OF DEVELOPING SYSTEMS

In this report we have shownthat today there are many different approaches, methodsandtools that can be used for developing systems. We have also indicated the types ofsystems and the types of situations for which particular approaches, or methods,or toolsare either suitable or inappropriate. Many organisations have experienced considerableeffort in the past few years in standardising on a particular system developmentapproach or method. Webelieve, however,that if organisations are to develop systemsthat are truly effective, then they need to use the most appropriate approach for eachdifferent system.
In this chapter we provide guidelines that organisations can use to select and to intro-duce new system development approaches and methods. A critical examination of theavailable approaches and methods maywell reveal that the existing ‘standard’ approachis not the most appropriate approach.In this circumstance, when a new approachisintroduced the existing approach will be replaced. In other words, the organisation’smethodof creating systemswill be changed, and this means that the work system of thesystem development staff (and possibly of the users as well) will be changed. Theintroduction of a new system development approachis therefore concerned not onlywith evaluating and selecting an approach. It is also concerned with Managing thechangethatthe new approachwill bring to the work systemsboth of system developersand users.
People are, by and large, conservative. Once they develop a convenient way of doingsomething, it is not easy to persuade them to changetheir work habits. The introductionof either a new technique, or a new tool, or of a whole new approach may be resistedsimply becauseit is different, and not becauseitis wrong or does not make sense. Whena new method or a new wayof doing a job is introduced into a group of people itunsettles the security of the group, it creates a natural resistance in the group and itreinforces the cultural dependence onthe old practice.
Consequently, before we provide specific guidelines for introducing new ways ofdeveloping systems,wefirst explore both the nature of the resistance to changes insystem developmentpractices and the way in which that resistance can be overcome.

RESISTANCE TO CHANGESIN SYSTEM DEVELOPMENTPRACTICES
People resist change for four principal reasons:
— People do not take kindly to changes that other people impose on them. (Thatis,they have a low tolerance to change.)
— People are unwilling to abandon the familiar Culture the existing practiceprovides.
— Some people may misunderstand both the need for the change and theimplications of the change.

44

— People maybelieve that the changewill create a worsesituation than the existing
one.

Aperson’s willingness to accept a change maywell be conditioned by the implications of
hisaccepting that change. For example, many people may,in certain circumstances,
resist the introduction of a new method of work, but under different circumstances they
may even recommendtheintroduction of that same method. This interesting dichotomy
arises for two reasons:
1. The practitioner of an old method mayfind that the new method is much better than

the old method. He may then wonder why he ever used the old method, and the
personal, internal conflict that follows is usually resolved by his rejecting the new
method (because this is the cause of the conflict). This natural reaction (known as
cognitive dissonance) results from people’s inability to view objectively their own
practices.

2. People often resist a change in working methodsin order to save face. This is most
noticeable in those individuals who wereinstrumentalin introducing the old method.
If they accept the new method they are openly admitting failure, and (in their own
eyes) accepting that their earlier decision or belief was wrong. Thus, the rejection of
a new method maybeinstigated by individuals who do not actually use the method.

We now examinethe particular types of resistance that system developers, users and
senior managers are likely to have when new system development approaches and
methods are being introduced.

Resistance from systems developers
System developers may resist the introduction of new approaches and methodsfor a
variety of reasons, and welist the most commononesbelow:

1. Many data processing managers, system analysts and programmers have spent
several years laboriously acquiring specific technical skills. It is natural that they
should want to continue practising what they are good at, and so they will resist the
introduction of any new methods that appear to devalue their particular skills.

2. The more conservative members of the data processing community may refuse to
believe that the new methods do actually work.

3. An organisation’s existing standards manual may advocate that only conventional
methods be used. System developmentstaff will therefore be reluctant to even
consider any alternative methods.

4. The introduction of a new method into an organisation involves an element of
pioneering. Many system developers,like other staff, are not keen to be pioneers,
because they know that not all pioneers survive.

5. Unlike the technical approaches to system development, many of the new
approachesare not exact, or analytical, or deductive or deterministic. If a system
developeris to be able to use technical approaches successfully, he needs to have
both analytical skills and deductive skills. The individuals who possess suchskills
may not comprehend the importance of experimental, or evolutionary or iterative
approaches.

6. Data processing managers mayresist the introduction of approaches that require

45

the user to manage the system development process. In addition, many systemdevelopersbelieve that the best way to create organised chaosis to involve users toa greater and greater extent.
7. A new method that implies organisational changes in the system developmentfunction (and, in particular, changes in the career structure) may be deliberatelymisused, or even sabotaged, by some system developers.
Resistance from users
Many new system development methods imply that the userwill increasingly be involvedin the developmentprocess, even to the extent that he will be asked to develop his ownsystem. Users mayresist this increased involvementfor the following reasons:
1. Some users perceive computer applications as having a mystique that is beyondtheir ability to understand.
2. Some users are apprehensiveof computers in general, and of terminalsin particular.This is most noticeable in companies where either users do not know very muchabout computers orthere are not many on-line systems.
3. Someusers have misconceptions about the wayin which a technological system willreact to the use they makeofit. They may actually believe that a trivial mistake ontheir part could ruin either the equipment orthe system. Systemsthat are not ‘user-friendly’ systems encourage usersin this belief.
4. The experience many users have had during the past several years have left themwith a feeling of general dissatisfaction about computersystems. Disillusioned usersmay consider that to be involved with system developmentwill be a waste oftheirtime.
5. Users may perceive personal computing or a greater involvement with systemdevelopment as a movebythe data processing staff to transfer some of their work-load to the users.
6. Users may be fearful of being transformed from Passive receivers of systems toactive developers of systems.
7. Many users may not be willing to take on the increased responsibility that a moreactive involvement with system development implies. They mayin fact quite like thebarrier that a bulky specification (which they cannot understand) creates betweenthem and the system developers. Consequently, they may resist the introduction ofanew method that makestheir decisions morevisible.
Resistance from senior managers
Senior managers will be most involved with a new development approach or methodwhen funds have to be released for purchasing a methodology (and any relevantsoftware facilities), and for training staff, etc. They mayresist releasing funds for thefollowing reasons:
1. Senior managers are, in general, not interested in the technical details of a newapproach or method. When a methodis explained in a simplified form to them, theyperceive it as ‘plain commonsense’. It is difficult to convince them that commonsense is not very commonin practice.

46

It is difficult to justify the use of an approach or a method by meansofa cost/benefit
analysis. The future return on investmentthat will offset the cost of introducing a new
approach or method is not easy to quantify. Senior managers may not look
favourably on a proposal to commit funds where the benefits, and the timescale in
which they will be achieved, are uncertain.

3. An investment in a new approach or method requires that money be spent on
ephemeralthings, such as training courses, discussion sessions and pilot projects.
Many senior managers feel more comfortable whenthey are authorising investment
in items that can be counted ascapital assets.

4. Some senior managers may resist the introduction of a new method because they
believe that it will upset the status quo, and so will be a disrupting influence on the
organisation. They will also resist the introduction of a method if they believe that
other executives may useit to gain control of a part of the business for which they
themselves are currently accountable.

5. Manyof the new system development approaches and methodsare notyetin wide-
spread use. Most senior managers are reluctant to commit funds to products such as
these.

OVERCOMING THE RESISTANCE TO CHANGES
Thelist of possible reasons that system developers, users and senior managers may
havefor resisting the introduction of a new method for system developmentis a formid-
able one. J. P. Kotter and L. A. Schlesinger have suggested six methodsfor dealing with
resistance to change, and figure 3 summarisesthe situations in which each methodis
commonly used, and the advantages and the drawbacks of each method. These
advantages and drawbacks showclearly that not one of the six methods can guarantee
that resistance to changewill be overcome completely. We believe, however, that most
organisations will find that the first three methods (education plus communication,
participation plus involvement, and facilitation plus support) are the most effective
methods when working practices are being changed.

In most companies,it is easier to overcomeresistance to change when the new ap-
proach receives visible backing from higher management. To overcomethe resistance
to changesthat the introduction of new system development approaches and methods
brings about, the ideas that underlie the approach or the method need to be sold. They
need to be sold to senior managers, to middle managers and to technicians and users
— andthey needto be sold in that sequence. Senior managers need to understand the
reasons why the new approach or method is being introduced and the benefits it will
produce. Middle managers need a more detailed overview of the approach or the
method so that they can clearly assess the implications of using it. Experienced
technicians and users need to be convinced of the merits of the new approach or
method. Often it is quite difficult to convince them, but once they are convinced they
tend to become the most dedicated advocates of the new way.

Resistance to changes brought about by a new method of developing systemswill con-
tinue after the new method has been introduced, and the resistance can beat least
partly overcome by properly motivating those who are using that new method. It is
important to recognise that when a new approach or methodis usedfor thefirst time, it
will not be completely effective. Consequently, those who are practising the new method
must be skilfully managed, so as to ensure that their enthusiasm for the new method
does not wane.

47

 Figure 3 Methodsfor dealing with resistance to change

Method Commonusage Advantages Drawbacks
 Education plus

communication

Participation plus
involvement

Facilitation plus
support

Negotiation plusagreement

Manipulation plus
agreement

Explicit and implicit
coercion

Wherethereis either a lack
Of information or inaccurate
information and analysis.

Wheretheinitiators do not
haveall the information they
need to design the change,
and where others have
considerable powertoresist.

Where peopleare resisting
becauseof adjustmentproblems.
Where someone or some
group will clearly lose out in a
change, and wherethat group
has considerable power to
resist.
Where othertactics will not
work, or are too expensive.

Where speedis essential, and
the initiators of the change
possessconsiderable power.

Once persuaded, people will
Often help with the
implementation of the
change.

People whoparticipate will be
committed to implementing
change,and anyrelevant
information they havewill be
integrated into the change
plan.

No other approach works as
well with adjustment
problems.

Sometimesit is a relatively
easy way to avoid major
resistance.

It can be a relatively quick
and inexpensive solution to
resistance problems.

It is speedy, and can
overcomeany kind of
resistance.

Can bevery time-consuming
if lots of people are involved.

Canbe very time-consuming
if participators design an
inappropriate change.

Canbe time-consuming,
expensive, andstill fail.

Canbe too expensive in
manycasesif it alerts others
to negotiate for compliance.

Canlead to future problemsif
people feel they are being
manipulated.

Canberiskyif it leads to
people resenting the
initiators.

The most important motivating factor for technical peoment backing. Senior management should ask forrand the problemsinvolvedin,when and how best to demontheir support is asked for.
Thereis, in fact, a simple reasonthat extive whenit is first used. This reasonisthat always applies. Most organisations select experiencedstaff tonew method. Unfortunately, their experience is oftenprejudice their attitudes to the new method. Even whenththey havefirst to reduce their dependenceon the old meeffective practitioners in the new one.Thefirst users of thto ‘un-learn’ the old method, and until this un-learning prhave doubts and second thoughts about the merits of the

ple and usersis positive manage-egular feedback onthe progresswith,introducing the new method. They should take advice onStrate their interest, and they should act positively when

plains why a new methodis not completely effec-the double learning curve(illustrated in figure 4)
be the first users of ain another method that willey believe in the new method,thod before they can becomee€ new method have,in effect,ocess is completed, they willnew method.

GUIDELINES FOR INTRODUCING NEW METHODS OF DEVELOPING SYSTEMS
The introduction of a new method of workintaken lightly. A new system develoeffects on the working lives both oftthat are developed. New approachplanned way.

48

g into an organisation should not be under-pment approach or method will have far-reachinghe system developers and the users of the systemses or methods should therefore be introduced in a

 Figure 4 The double learning curve that applies to the introduction of a new method

Level of A
knowledge
and
experience

‘Un-learning’ therepractice

Learning the
new practice

t Time

Note: Until time ‘t’ is reached, technicians will have doubts and second thoughts about the new
practice.

Theplan for introducing a new methodof developing systems can be likened to the plan
for any developmentproject. Thus the plan for introducing a new method needsto allow
for three major activities that are similar to analysis activities, design activities and
implementation activities. We now discuss these three major activities as they relate toa
projectfor introducing a new system development method. The process of introducing a
new working methodis a highly-iterative one. The relevant activities are presented here
in chronological sequence butit should not be inferred from this that they need to be
executed in that precise sequence.
The analysis activities
In the contextof introducing a new system development methodinto a departmentor a
group of people, the analysis activities are primarily concerned with gathering facts,
identifying problems and making recommendations. Three types of facts need to be
gathered:
— Facts about the current working practices of the department or group. These

facts may be difficult to unearth because they may, in reality, be very different
from what the standards manual says they should be.

— Facts about the possible methods that are available. (The ways of gaining a
detailed understanding of a method are described on page 51.)

— Facts about the future plan for either system changes or operational changes
that may have an effect on systems. These facts may not be easy to gather

49

because the future plans of the company may not have been made available tothe data processing department. Alternatively, if they have been madeavailable,they may not have beentransformedinto a system strategy.
During the analysis activities, any problem areas concerning current working practicesand methods are identified (together with any potential problem areas that may becaused by the future plans). The problem areas are then matched with the availablemethods so that recommendations can be formulated for introducing a new method.
The design activities
The design activities associated with introducing a new system development method areconcernedwith the final selection of the new method. They are also concernedwith thedevelopmentof a detailed implementation plan, which should address the problems ofthe period in which the new method is being introduced. The selection of a methodrequires, as a prerequisite, a general goal, or objective, or purpose for the selection. Italso requires a reasonable understanding of a method, so that those responsible for theselection can assess the method objectively, and then compareit with other methods.
1. Setting the objectives for the selectionThere are two types of objectives — the Organisational objectives (that is, what isexpected from the changed environment brought about by the new method), and thetechnical objectives of the methoditself. Both sets of objectives are used to createthe criteria against which the methodwill be assessed (as discussed on pages 51and 52). Weset out below a checklist of the possible benefits that may be considereddesirable whensetting the objectives.

— Better control of projects or schedules. This could be achieved by a methodthat makesit easier to define the scope and the duration of the developmentproject, or that provides facilities for inspection and quality control.
— Better communication between various technical disciplines and betweensystem developers and users (thereby involving the user toa greater extentinthe development process).
— Flexibility of resources, so that there is continuity whenstaff leave, and sothat new staff can be easily integrated into the developmentproject.
— Higherefficiency in the system development process. This benefit might beachieved by a method that uses predefined building blocks,or that requiresless manual(or routine) work, or that makes better use of humanintelligence,or that requires less testing and correction work, or that makes use ofmachine-aided processes.
— Improved quality of the products producedbythe use of the method. Qualityobjectives might be stated in terms of system reliability, or system flexibility,or easier maintenance.
— Better documentation. This benefit might be achieved by a methodthatpro-duces concise graphical documentation that is a by-product of the systemdevelopment process. Alternatively, the objective might be to produceconsistent and simple documentation thatwill be updated automatically whenthe product is modified.

This list is not exhaustive, but it can be used as a basis for determining the detailedevaluation criteria that will be used when a methodis assessed.

50

2. Understanding the method
During the analysis activities, a general understanding of the methodwill have been
gained. During the design activities, a more detailed understanding is necessary, and
the following sources of information can be used:
— Published literature, such as data processing magazines(in particular EDP

Analyzer, which is a worthwhile source of information both about techniques
and experience of using a particular method).

— The vendorof a proprietary method, who will provide ample material about
his particular product. The vendorwill also run short briefing seminars and
management overview seminars, and will-publish some of his users’
experiences. Most vendors are willing to provide potential users with
references to successful users of the method, but any unsuccessful users are
difficult to trace. User groupsfor a particular method are almost non-existent.
Independent consultancies, who are in a position to provide a comparative
opinion about several methods.

— Training courses, which mayberun either by the vendoror by independent
training companies.

3. Assessing the method
A method should be assessedat two levels. First, the individual features and qualities
of the method should be assessed, and second, the method should be assessed by
comparingit with other methods. The following checklist can be used for assessing
the features and the qualities of a method:

— Thetechnical quality should be assessed in termsofits consistency,its logic,
its interface with other methods and automatedaids, its documentation, the
parts of the developmentprocessthatit aids, etc.

— The ease with which the method can be taught should be assessed.

— The implications of using the method should be assessed in terms of hard-
ware and software requirements, organisational structure, the management
style required and the method’s dependence on other methods.

— The orientation of the method should be assessed to determine whetherit is
either a technical method that helps the system designer or programmer,or
really a communication method that aids communication betweenthediffer-
ent groups of people involved in the system development process.

— The time-related factors of using the method should be assessed. These
factors include the time people take to becomeproficient in the method, the
time a proficient person takes to use the method, and the time it takes to
change the resulting system developed by using the method.

— The humanfactors of the method should be assessed. These factors include
a consideration of whether people like to use the system, and whytheylike to
use it.

Different methods can be compared with one anotherin one of two different ways.
The first way is to compare each method with a set of desired objectives and
benefits. Alternatively, in the absence of well-defined objectives, methods can be

51

compared with one another. This type of comparative analysis (or feature analysis)aids in acquiring an understanding of the commonality or the diversity that exists inseveral methods, and so it is a good way of gaining an overview about severalmethods. It can, of course, also be usedto collect knowledge about methods, and todevelop the technical objectives of introducing a new method. Comparative analysisis an effective selection mechanism when oneof the objectives of introducing a newmethodis to cause aslittle disruption as possible.
The implementation activities
The implementation activities are concerned with training the staff whowill use the newmethod, introducing the newfacilities, running pilot projects, and modifying standards.The process of implementing a new system development method takes much longerthan the process of implementing a data processing project. Experience has shownthatthe worstpossible way of implementing a new methodis to train all the staff at one andthe sametime andthento issue a directive that the new methodis to be used froma par-ticular date. People need a considerabletransition period to adjust fully to anew method,andit is not unusualfor the full benefits of a new method to take two years to achieve.
During the research for this report we spoke to vendors of system developmentmethods,to training companies, and to data processing departments that had success-fully introduced a new method. Theyall agreed that to achieve a successful implemen-tation required the following actions to be taken, and to be taken in the followingsequence:
— Appointing a person to be responsible for the implementation.
— Appointing a person (or a team) both to evaluatefully the shortlisted methods andto provide an internal consultancy facility.
— Selecting a pilot project and a project team.
— Training the project team.
— Creating guidelines for using the method.
— Implementing and evaluating the pilot project, and modifying the guidelinesifnecessary.
— Planning the trainingof staff, and selecting the projects thatwill be used to imple-ment the new method.
— Training the technical managers.
— Training the staff.
— Implementing the new method with the selected projects.
— Providing continuous support to the staff who are implementing the method.
— Appraising the success of the implementation, and modifying and extending theguidelines if necessary.
— Incorporating the method into the standard training programme.
— Providing advancedtraining for those staff who are now experiencedin using themethod.

52

We now provide specific guidelines for selecting pilot projects, and for supporting a
gradual implementation of the method:
ie Guidelines on selecting pilot projects and the pilot project team

The selected pilot projects should be technically simple to allow the project team to
concentrate on the new method. Consequently, pilot projects should be:
— Short in duration (typically three to six months in duration).
— Nottimecritical.
— Notinnovative.

The pilot project team should consist of carefully selected people who, apart from
having their proven technical ability, should be:
— Predisposed to the introduction of the new method.
— Aware that the new methodis being tested.
— Capable of evaluating the method as well as the end result of using the

method.
— Able to act as in-house consultants and trainers.

Guidelines on planning for a gradual implementation
It will take time to develop in-house expertise on using the new method. Until such
expertise has been developed, it is essential that experienced external support
should be available. Thereafter, some larger companies develop their own in-house
team of experts who may, for several years, provide guidance to project teams on
the use of the method.
Organisations should expect that there will be problems with using the new method
during the first few projects. They should also expectthat those problemswill’ rot
have been encountered during the pilot project. The problemswill be caused by the
newly-trained (and probably less experienced) staff who are using the method,
because the project tendsto be moredifficult than the pilot project was. Itis sensible
therefore to arrange for members of the pilot project team to be included as
membersof the project teamsfor the first ‘live’ projects.

A potentially dangerous situation often develops during the first live project. As
already mentioned, this project tends to be more difficult than the pilot project was,
and it has a project team that is partly inexperiencedin the new method. Those who
already have experience of using the method will be keen to demonsirate their
expertise to the other team members, and so they may be inclined to ‘over-use’ the
method. This tendencyis likely to confuse other team members. When new problems
occur that have not been encountered during the pilot project, the team will not be
equipped to deal with them easily. As a result, a panic situationis likely to occur part-
way through the project.It is most important to handle this panic situation correctly,
and the following actions need to be taken:

— Management support should be both visible and positive.
— Theproject should be rescheduled.
— Nooneshould be reprimanded or removed from the project team (even when

a team memberasks to be removed).

53

Providedthat the early panic situations are managed correctly, the correct balancebetween experienced and inexperienced staff should be established from about thethird project that uses the new method. From this time onwards, the new methodshould begin to realise its anticipated benefits.

CONCLUSION
In this chapter we have shownthat the task of introducing a new system developmentmethod is not a simple one. Those responsible for introducing a new method needtorecognise that there will be resistance to the new method from system developers, fromusers, and from senior managers.The introduction of a new method needs,therefore, tobe plannedin a waythatis not dissimilar to the plan for any other developmentproject.In particular, the plan should focus onthe early stages of implementing the method, butitshould also recognise thatit may take several yearsto realise the full benefits of the newmethod.

54

CHAPTER 7

SUMMARY AND CONCLUSIONS

This report has shown that the system developer has available today a much greater
variety of system development approaches and methods than wereavailable to him in
the past. This greater variety has resulted from advances in technology, from past
experience of developing and using computer systems, and from theories both about
systems and the system development process. The methods and approaches we have
identified in this report can be classified broadly into those that concentrate on the
developmentof the technological system itself, and those that concentrate onthevital
planning process that should precede the introduction of a technological system.
Advocates of a particular system development approach or method can always show
that, for specific circumstances, it produces impressive results. However, today’s range
of system development approaches and methods posesfor the system developer the
four major problems that we identify and discuss below.

The first problem is concerned with the fact that there is a choice of system development
approaches and methods.In the past, the system developer had only one empirically-
based development method available to him. Today, although he maybe skilled both in
choosing the technology, and in understanding the implications of his choice, he is less
skilled in choosing a development approach. In addition, he will find that there is little
overall guidance available to help him makehis choice.

The second problem is concerned with the great differences there are in the breadth of
scope the different approachesoffer. For example, some approaches (such as ISAC)
deal with the complete planning and development of a system, whereas. other
approaches (such as the structured approaches) deal only with the technical develop-
mentof a system. By contrast, many of the newer approaches (such asthe participative
approach or prototyping) concentrate only on a particular aspect of system develop-
ment, and they provide little guidance (or no guidance at all) for other areas of the
developmentprocess. As a result, many of the newer approaches can be usedonlyin
conjunction with other approaches, or methodologies,or methods. It is not an easy task
to match and to interface different approaches, andthereis little practical experience
and guidanceavailable to the system developerto assist him in this task.

The third problem is causedby the fact that there is little solid experience of using some
of the newer approaches.The ideas and the reasoning behind the newer approaches are
powerful and convincing, but they are not yet supported by an equally impressive record
of experience. Advocates of a particular approach inevitably emphasise the merits of the
approach, but each approach will haveits limitations. Unfortunately, those limitations
will not emerge until a substantial amount of experience of using the approach has been
gained. In addition, there are, as yet, few critical and objective assessments ofalterna-
tive approaches that the system developer can use to help him select the most appro-
priate approach for his particular circumstances.

The fourth problem concerns the process of introducing a new system development
approach. The introduction of a new approach needs careful planning and skilled
management of the changeover tasks.If these vital tasks are not given sufficient

55

attention, undesirable organisational consequences mayresult, and the final result maybe that the new approachwill be rejected. Most system developers havelittle experienceof changing their own working methods, and when they are planning and managing theintroduction of a new system development approach they can learn much from systemusers. In the past, system users’ working methods have been changed(if only inadver-tently) by various computer systems.
We have shown, however,that choicein the area of system development methodsis notrestricted to a choice of approach. Today, the system developer also has available awide variety of automated development aids, and most of the problems we identifiedabove apply also to the task of selecting the appropriate aids. In addition to facing theseproblems, the system developer may not yet be clear as to how he canbestfit theselected aid into the developmentprocessin the mosteffective way. His quandaryin thismatter is illustrated by the way in which high-level languages, databases, data dic-tionaries, and other similar aids are currently being used equally for prototyping, forpersonal computing and as developmentaids for certain other areas of system develop-ment. When and where the system developer should use these aids is a matterfor hisindividual choice and interpretation.
In addition, the problems wehave identified so far are exacerbated because systemdevelopersin the future will increasingly be developing system solutions that are outsidethe narrow confines of traditional data processing. Many of the approaches and themethods we have discussedin this report apply equally to the development of widerinformation processing systems, such as word processing systems,office systems andvideotex systems. These types of systemsoften offer genuine alternativesto traditionaldata processing systems. However, experience has shownthat these non-data process-ing systems can often be moreeffectiveif they co-operate with (or are backed-up by) aconventional data processing system, with both types of systems sharing (and con-tributing to) the same data resource. At the presenttime, there are no known methodo-logies that either permit a clearcut choice to be made between these alternative systemsolutions, or that make it easy to interface the data processing parts and the non-dataprocessing parts of the total system.

Someof the problems wehaveidentified (and particularly those that result from the new-ness of some approaches)will disappear with time. Butit is highly unlikely that an overallsystem development methodologywill ever be offered thatwill eliminate the needfor thesystem developer to choose the right approach and the right aids for a given systemdevelopmentsituation. Increasingly therefore the system developerwill be faced withthe need to choose betweenseveral alternative developmentapproachesand aids.If heis mentally committed to follow the single approachthat he is most familiar with, he willfind it impossible to make a rational choice, because his blinkered attitude will not allowhim to give objective consideration to any other alternative. This observation applies alsoto the selection of a system solution, or to the selection of hardware,orto the selectionof a developmentaid.

Ultimately, the chosen system solution, development approach, developmentaids andhardware represent‘tools’ at different levels eitherin the system development processorin the systemitself. In this report, we have madeit clearthat tools are appropriate onlyif they fit effectively into the wider environmentin which they will be used.If instead toolsare selected without proper consideration of the environment in which theywill be used,the most important reason forjustifying their use is neglected. If they proveto be useful,this will be only by chance. System developers already have considerable experienceofchoosing system solutions and hardware, and they need nowto acquire correspondingSkills in choosing development approachesandaids.

56

We beganthis report by emphasising that the view that a system developer holds about
systems determines the choices that he will make concerning development approaches
and aids. The closed system view washeld by most system developersat the time when
the traditional (or analytical) approaches were developed, but we believethat, today, it is
desirable for system developers to hold a more open view of the nature of systems. An
open system view will enable the system developer to detach himself from the details of
individual approaches and aids, and this detachmentwill enable him to make the most
effective choice of approaches and aids. An open system view will therefore allow the
system developer to makehis choicesfirstly on the basis of their relevance to the sur-
rounding environment in which they are to serve, and secondly on their technical merit.
Our research for this report has identified many new anddifferent system development
approaches. Each of these approacheshasits strengths and weaknesses,and organisa-
tions will have to decide for themselves how best to use the different approaches. We
believe that not only is an open system view desirable, it is also the only possible view of
systemsthat can be held if the new anddifferent approachesare to be used effectively
in employing computer-based technology.

57

BIBLIOGRAPHY

GENERAL READING
Abbait, J., Campbell, C., Jones, A. H., Land, F. F., New approaches to systems analysisand design, BCS business information systems specialist group, UK working paper,1980.
Beer, S., Brain ofthe firm, Allen Lane, Herder, 1972.
Beer, S., Platform for change, Wiley, 1975.
Donaldson, H., ‘‘General scenario for future dp (1980-1990): realising technologicaltrends within the business’, Infotec state of the art review, 1980.
Hedberg, B., “‘The humanside of information processing”’, Proceedings of conferenceon computer impact, North Holland, 1980.
Hedberg, B., Mumford, E., ‘‘The design of computer systems. Man’s vision of man as anintegral part of the system design process’, Human choice and computers, NorthHolland, 1975.
London, K., The people side of systems, McGraw-Hill (Uk), 1976.
Nolan, R. L., “Managing the crises in data processing’, Harvard Business Review,March/April 1979.
Nygaard, K., ‘‘The impactof social movements’’, The Computer Journal, Vol. 23, No. AtFebruary 1980.
Scarrott, G. G., “From computing slave to knowledgeable servant: the evolution of com-puters”, Proceedings of the Royal Society, London, A369, 1-30 (1979).
“Educating executives on new technology’’, EDP Analyzer, Vol. 18, No. 11, November1980.
“How to use advanced technology’, EDP Analyzer, Vol. 17, No. 9, September 1979.
“Introducing advanced technology’’, EDP Analyzer, Vol. 18, No. 3, March 1980.
“The coming impact of the new technology’, EDP Analyzer, Vol. 19, No. 1, January1981.

CHAPTER 3
General system theory
von Bertalanffy, L., ‘‘General system theory’, General systems, yearbook of the societyfor the advancementof general system theory, Vol. 1, 1956.

58

aeL., “The theory of open systemsin physics and biology’, Science, Vol.

Katz, D., Kahn, R. L., ‘Common characteristics of open systems’’, Systems thinking,
Penguin Modern Management Readings, Penguin Books Ltd, 1972.
Weinberg, G. M., An introduction to general systems thinking, John Wiley & Sons, N.Y.,
1975.
Young, O. R., ‘“‘A survey of general systems theory’, General systems, Vol. 9, 1964.

Socio-technical approach
Emery, F. E., Trist, E.L., “‘Socio-technical systems’, Systems thinking, Penguin Modern
Management Readings, Penguin Books Ltd, 1972.

Herbst, P. B., Socio-technical design strategies in multidisciplinary research, Tavistock
Publication, 1974.
Kelly, J. E., ““A reappraisal of socio-technical system theory’, Human Relations, Vol. 31,
No. 12, Tavistock Inst., 1978.

Work organisation
Herzberg, F., Mausner, B., Snyderman, B. B., The motivation to work, John Wiley & Sons,
N.Y., 1967.
Maslow, A., Motivation and personality, McGraw-Hill, 1954.

Mayo, E., The human problemsofan industrial civilization, Macmillan, N.Y., 1933.

McGregor, D. M., ‘“‘The human side of enterprise’, Adventures in thought and action,
(proceedings of the Fifth Anniversary Convocation of the School of Industrial Manage-
ment, MIT, Cambridge, Mass., April 1975), Technology Press, Cambridge, Mass.

Scott-Myers, M., “Who are your motivated workers’, Harvard Business Review,
January-February, 1964.
Taylor, F. W., Scientific management, McGraw-Hill, N.Y., 1947.

“The new industrial relations’, Business Week, May 11, 1981.

CHAPTER4

Structured approaches and requirement engineering

Gane, C., Sarson, T., ‘Structured Methodology: What we have learned?’’, Computer-
world Extra, 1980.

Gane,C., Sarson, T., Structured systems analysis: tools & techniques, Improved System
Technologies Inc., N.Y., 1979.

59

Jackson, M. A., Constructive methodsofprogram design, M. Jackson Systems, London,1979:
Jackson, M. A., Principles of program design, Academic Press, 1975.
Jackson, M. A., Someprinciples underlying a system development method, M. JacksonSystems, London, 1981.
de Marco,T., Concise notes on software engineering, Yourdon Press Monographs, 1979.
de Marco,T., Structured systems analysis, Yourdon Press, N.Y., 1978.
Myers, G. J., Composite/structured design, Van Nostrand Reinhold, N.Y., 1978.
Orr, K. T., Structured system development, Yourdon Press, N.Y., 1977.
Page-Jones, M., The practical guide to structured systems design, Yourdon Press, N.Y.,1980.
Peters, L. J., Tripp, L. L., ‘Comparing software design methodologies’, Datamation,November 1977.
Rudkin, R. |., Shere, K. D., ‘“‘Structured decomposition diagram: A new technique forsystems analysis’, Datamation, October, 1979.
Warnier, J. D., Logic construction of programs, H. E. Stenfert Kroese Bv., Leiden, 1974.
Weinberg, G. M., The psychology of computer programming, Van Nostrand Reinhold,N.Y., 1971.
Yourdon, E., An analysis of the M. Jackson design methodology, Yourdon Inc., N.Y.,1977,
Yourdon, E.(ed.), Classics in software engineering, Yourdon Press, N.Y., 1979.
Yourdon, E., Constantine, L. L., Structured design, Yourdon Inc., N.Y., 1975.
Yourdon, E., Structured systems development, YourdonInc., N.Y., April, 1980.
Yourdon, E., Structured walkthroughs, Yourdon Press, N.Y., 1978.
Core seminar material, Systems Designers Ltd., U.K., 1981.
JSP & JSD — An introduction, M. Jackson Systems, London, 1980.
Meta system 1000 reference manual, Structured MethodsInc., N.Y., 1979.
“Program design techniques’’, EDP Analyzer, Vol. 19, No. 3, March, 1979.
Requirementspecification techniques study, Baseline reports, Systems DesignersLtd.,U.K., 1979.
SofTech andthe structured analysis and design technique, SofTech Inc., Mass., 1978.
Stradis reference manual, McAuto/IST, Missouri, 1981.

60

“Structured software development’, Infotech state of the art report, 1979.
Structuring the analysis and design process, the key to more effective applications
development, SofTech Inc., Mass., 1976.
“The production of better software’, EDP Analyzer, Vol. 17, No. 2, February, 1979.

Database approach
Flavin, M., Information modelling, Yourdon Inc., N.Y., May, 1980.
Flint, D., Trends in database management systems, Butler Cox Foundation, Report
Series No. 12, June, 1979.
Martin, J., Computer database organization, Prentice Hall, 1977.
Palmer, |., System developmentin a shared data environment, CACIInc., International,
London, 1980.

Software engineering
Avizienis,A., ‘Can reliable computing through fault tolerance be attained in the 1980s?”,
Infotech state of the art review, 1980.
Charignon, P., A new approach to pay packages: The Pacha System, Sopra,Paris, 1980.

Charignon, P., Thoughts on the development of generalised packages, Sopra, Paris,
1980.
Fagan, M. E., ‘‘Design and code inspection to reduce errors in program development”’,
Infotech state of the art review, 1980.
Kopetz, H., ‘Design for maintainability”, Infotech state of the art review, 1980.

Manchester, P., ‘Software engineering management at IBM’’, Computerworld U.K.,
4 February, 1981.
Rustin, R. (ed.), Debugging techniques in large systems, Prentice-Hall, NYS 19741"

Smiley, D. H., ‘Process standardisation in information systems engineering’, The
Australian Computer Journal, Vol. ||, No. 2, May, 1979.

Thomas, N., ‘‘A hard plan inside IBM”; ‘‘Why FSD maths add up to management”; “‘The
FSDtools to makethe software ford’’; ‘‘Education to integration’, Computing, 26 March,
1981.
“Key issues of software engineering”, Infotech state of the art report, 1979.

“Progress in software engineering (Parts 1 & 2)", EDP Analyzer, Vol. 16, Nos. 2 & 3,
Feb/March, 1978.
“Software development”, /BM systems journal, November, 1980.

61

Planning approaches
Gilb, T., Design by objectives course manual, 1980.
Lucas, H. C., Computer based information systemsin organisations, McGraw-Hill, 1973.
Martin, J., Principles of data-base management, Prentice-Hall, 1976.
Noguenda, G. R. D., “‘On the methodologies for analysis of information systems’, MAthesis report in systems in management, University of Lancaster, Dept. of Systems,1979.
Siegel, P., Strategic planning of management information systems, Petrocelli, NS1975.
Zani, Dr. W., ‘Blueprint for M.I.S.”, Harvard Business Review, November-December,1970.
Planning for information system development, IBM customer executive education.
PRISM,Deltacom Inc., Southampton, PA., 1979.
“What information do managers need?’’, EDP Analyzer, Vol. 17, No. 6, June 1979.
Personal computing
Martin, J., Application development without programmers, SavantInstitute, 1981.
Tagg, R. M., “Query languages”, /nfotech state of the art conference, June, 1987.
Voysey, H., ‘Who pulls the string?’”’, Computer Management, September, 1980.
Wasserman, A.I., ‘‘User software engineering and the design ofinteractive systems”proceedings 5th International Conference on software engineering, San Diego, Ca.March, 1981.
“Programming by end users’’, EDP Analyzer, Vol. 19, No. 5, May, 1981.
“Supporting end user programming’”’, EDP Analyzer, Vol. 19, No. 6, June 1981.
“Spending money outside’, Computer Management, September, 1980.
Prototyping and system evolution
Alexander, C., Notes on the synthesis of form, Harvard University Press, 1964.
Bally, |., Brittan, J., Wagner, K., “A prototype approachto information system design anddevelopment’’, Information and Management, Vol. 1, 1977.
Brittan, J., ‘Design for a changing environment’, The Computer Journal, Vol. 23, No. 1,February, 1980.
Gutierrez, J. O., “Justification and theoretical evaluation of experimental techniques ininformation systems’, MSc. thesis report in analysis, design and managementofinfor-mation systems, London School of Economics, 1981.

62

Hanau,P. R., Lenorovitz, D. R., “‘A prototyping and simulation approach to interactive
computer system design’, Proceedings of ACM, 1980.
James, E. B., “The user interface’, The Computer Journal, Vol. 23, No. 1, February,
1980.
Jenkins, A. M., Naumann, J. D., “A prototype model as a MIS design technique’,
Discussion Paper No. 131, School of Business, Indiana University, September, 1980.
Vee D. D., A guide to Nomadfor applications development, National CSSInc.,
1 ;

McCracken, D. D., ‘‘Software in the ’80’s. Perils and promises’, Computerworld Extra,
1980.

McCracken, D. D., ‘The Nomad approach’’, Datamation, May, 1980.
Stamper, R., ‘‘Evolutionary development of large systems’, Lego! working paper,
London School of Economics, 1981.
“Developing systems by prototyping’’, EDP Analyzer, Vol. 19, No. 9, September, 1981.

Nomad — A creative approachto information, National CSS Inc., 1979.

Protocycle — A dynamic applications development methodology, National CSS Inc.,
1980.

Participative approach
Land, F. F., ‘‘Adapting to changing user requirements’’, Long Life Systems, Vol. 2,
Infotech state of the art review, 1980.
Kling, R., “Social analyses of computing: Theoretical perspectives in recent empirical
research’’, Computing Surveys, Vol. 12, No. 1, March, 1980.

Mumford, E., Henshall, D., A participative approach to computer system design, Asso-
ciated Business Press, London, 1979.

Mumford, E., ‘Participative system design: A description and evaluation of a consensus
approach”’, paper presented at the Trade Union Conference in Vienna, 1979.

Mumford, E., ‘Participative system design: Practice and theory”, /FIP, TC8 Working
Paper, Manchester Business School, 1980.

Mumford, E., The participative design of new technology: Four design tools to assist the
design process, Manchester Business School, 1980.

Mumford, E., Land, F., Howgood, J., ‘‘A participative approachto the design of computer
systems’, Impact of science on society, Vol. 28, No. 3, 1978.

Life cycle views
Floyd, C., “A process-oriented approachto software development”’, Systems architec-
ture, proceedings of the Sixth ACM European Regional Conference ICS, 1981.

63

Lehman, M. M., “An environment of program development and maintenance —programs, programming and programming support”, Systems architecture, proceedingsof the Sixth ACM European Regional Conference, ICS, 1981.
Lehman, M. M., “‘Introduction to the software engineering stateof the art andits future”,Infotech state of the art review, 1980.
Lehman, M. M., “Programs,life cycles and laws of software evolution’’, proceedings ofthe IEEE, Vol. 68, No. 9, September, 1980.
“Life cycle management”, Infotech state of the art report, 1980.

Systems approach
Campbell, B. T., “An examination of three systems analysis and design methodologies”,Project report, MSc. in analysis, design and management of information systems,London School of Economics, 1981.
Checkland, P. B., “Towards a systems based methodology for real world problemsolving’’, Journal of systems eng., Vol. 3, No. 7, April, 1972.
Lundeberg, M. et al., ‘“‘A systematic approach to information system development”,Information systems, Vol. 4, 1979.
Methods and techniques in DB/DC projects, IBM Nordic Education Centre, Seminar:EA32, Handout: 1977-11-14.
“The analysis of user needs’’, EDP Analyzer, Vol. 17, No. 1, Jan. 1979.

CHAPTER 5
Belady, L. A., “Manual, machine-aided and mechanical processes in softwaredevelopment and maintenance’, /nfotech state of the art review, 1980.
Bourne, T. J., “The data dictionary system in analysis and design’, /CL TechnicalJournal, November, 1979.
Bryce, M., Pride — ASDM overview, automated systems design methodology, M. Bryce& Assoc., Inc., Cincinnati, Ohio, 1981.
Falla, M. E., ‘‘Using Gammato support structured analysis’’, Gamma project workingpaper G2/WP39, Software Sciences Ltd., November, 1980.
Gutz, S., Wasserman,A. |., Spier, M. J., “Personal development systemsfor the profes-sional programmer’, Computer, April, 1981.
Inzelstein, S., ‘Managementof information systems”, /BM large systems conference,Montreux, 1980.
Kernighan, B. W., Mashey,J. R., ‘“The Unix programming environment”, Computer,April, 1981.
Maddock, R. O., Software development using Mascot, Software Sciences Ltd, April,1980.

64

Manchester, P., ‘‘Relational databases’, Computerworld UK, March, 1981.
Manchester, P., ‘‘Unix’’, Computerworld UK,8 April, 1981.
Osterweil, L., ‘Software environment research: directions for the next five years”,
Computer, April, 1981.
Pierce, R., ‘‘Computer aided software design: the Gamma system’’, Computer Bulletin,
March, 1980.
Stecher, P., Allenstein, V., “The application controller concept: A first experience’’, The
Computer Journal, Vol. 24, No. 2, 1981. ;
Teichroew, D., ‘Computer aided software development’’, Infotech state of the art
tutorial, March 1977.
Teitelman, W., Masinter, L., ‘‘The Interlisp programming environment’, Computer, April,
1981.

Voysey, H., ‘Whynot use the database design tools?’’, Computerworld UK, 3 December,
1980.
Wasserman,A.I., ‘Automated development environment’, Computer, April, 1981.

Winston, L. E., ‘‘A novel approach to computer application system design and implemen-
tation’, Hewlett-Packard Journal, April, 1981.
Zahn, C. T., C notes, a guide to the C programming language, Yourdon Press Monograph,
N.Y. 1979.
“A new view of data dictionaries’, EDP Analyzer, Vol. 19, No. 7, July, 1981.

‘Application system design aids’, EDP Analyzer, Vol. 19, No. 10, October, 1981.

Asset — An introduction to the PSL/PSA software system, Systems Designers Ltd., 1981.

Context user guide, Systems Designers Ltd., December, 1980.

IBM DP systems handbook, GE19-5234-2, September, 1980.

ICL — Data dictionary system, technical overview, International Computers Ltd., 1980.

“Programming work stations’, EDP Analyzer, Vol. 17, No. 10, October, 1979.

Slave — Product overview, Dataskil Ltd., July, 1980.

“Stand-alone programming work-stations’’, EDP Analyzer, Vol. 17, No. 11, November,
1980.
“The production of better software’, EDP Analyzer, Vol. 17, No. 2, February, 1979.

Unet communication software for Unix, 3 Com Corporation, California, August, 1980.

Xenix, Logica, U.K., 1981.

65

CHAPTER 6
Feeney, W., Sladek, F., “The systems analyst as a change agent”, Datamation,
November, 1977.

Kotter, J. P., Schlesinger, L. A., “Choosing strategies for change’, Harvard BusinessReview, March/April, 1979.
Yourdon, E., Structured systems development, Yourdon Press, N.Y., April, 1980.
“Program design techniques’, EDP Analyzer, Vol. 17, No. 3, March, 1979.
“Structured systems development”, Infotech state of the art report, 1979.

66

The Butler Cox Foundation

Report Series No 25 System Development Methods
The author of this report would welcomethe opportunity of discussing thefindings of the
report with small groups of members. Would you therefore please list below (and:
overleaf if necessary) any points on which you wouldlike the author to expand at such a
discussion. Also, would you please record your interest in follow-up work on the subject
of this report, highlighting those aspectsof the topic that are likely to be of most interest
to your organisation. Wewill then contact you to arrange a suitable venue and date for
the discussion.

Completed| byaeeeaeaeene

TIOENELE cs eee ee ean Ne De De UN PSU rReApacts ube ena eae

ORGESAT asec Ci saat ee Te eh See ee eerer Eni tee

INGGEGSS eeeeeisMaRee eeeaeaie

Pleasereturn this form to your local address of the Butler Cox Foundation shown on the
backof this report.

 Butler Cox & Partners LimitedMorley House, 26-30 Holbom Viaduct, London EC1A 2BP@ 01-583 938], Telex 8813717 LNCO
Belgium & The Netherlands |SA Butler Cox NV

Avenue Loiuse-479—Louizalaan,Bte—47-Bus,
Bruxelles 1050 Brussel

@ (02) 6471553, Telex 61963 BUTCOX

 France
La Fondation Butler Cox

Tour Akzo, 164 Rue AmbroiseCroizat,
93204 St Denis-Cedex 1, France
@ (1)8206164, Telex 610789 ASFRA

United States ofAmerica
Butler Cox & Partners Limited

216 Cooper Center, Pennsauken, NewJersey 08109, USA*@ (609) 665 3210
Switzerland and Germany

Butler Cox & Partners Limited
Morley House, 26-30 Holbom Viaduct, London EC1A 2BP

© (London) 583 9381, (Zurich) 302 0848

Italy
Sisdoconsult20123 Milano- Via Caradosso7-Italy

86.53.55 / 87.62.27, Telex 311250 PPF MI

The Nordic Region
Statskonsult

PO Box 4040, S-17104 Solna, Sweden,
208-730 03 00, Telex 127 54 SINTAB

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74

