
Computer-Aided SoftwareEngineering (CASE) ©

esearch Report 67, December 1988

FOUNDATION
Computer-Aided Software Engineering (CASE)

Research Report 67, December 1988

Butler Cox & Partners Limited
LONDON

AMSTERDAM MUNICH NEW YORK PARIS

Published by Butler Cox & Partners LimitedButler Cox House12 Bloomsbury SquareLondon WC1A 2LL
England

Copyright © Butler Cox & Partners Limited 1988
All rights reserved. No part of this publication may be reproduced by any methodwithoutthe prior consent of Butler Cox.

Availability of reportsMembers of the Butler Cox Foundation receive three copies of each report upon publication;additional copies and copies ofearlier reports may be purchased by members from Butler Cox.

Photoset and printed in Great Britain by Flexiprint Ltd., Lancing, Sussex.

FOUNDATION
Computer-Aided Software Engineering (CASE)

Research Report 67, December 1988

1 CASE: A new term to describe existing concepts
Definition of CASE tools
A brief history of CASE
The growing demandfor CASE tools
Purpose of the report

2 CASEtools promisesignificant benefits
Software quality can be improved
Developmentproductivity can be improved
Benefits depend on the use of methods

3 Deciding when and whereto use CASE tools
Clarify the objectives for using CASE tools
Recognise the limitations of CASE tools

4 Selecting appropriate CASE tools
Select tools that match the development environment
Select tools that support areas of concern
Use formalcriteria as the basis for selection

5 Managing the implementation of CASE tools
Gain support throughout the organisation
Berealistic about the costs and benefits
Prepare for organisational changes
Start with an appropriate pilot application
Extend the use of CASE tools
Prepare for the future

Report conclusion

FOUNDATION
Butler Cox & Partners Limited 1988

Contents

W
W
N
R
F
H

11
12
14
14
16
21
21
23
23
26
20
28
30
31
33
33
35

Management Summary

A Management Summary ofthis report has been published separately and distributedto all Foundation members. Additional copies ofthe Management Summary areavailablefrom Butler Cox

Chapter 1
CASE: A new term to describe

A recurring theme of Foundation Research Reports
over the years has been to provide Foundation
members with advice about how to improve the
processof developing application systems. Thelast
time we examined this subject in detail was in
Foundation Report 57, Using System Development
Methods, which was published in June 1987. In
that report, we emphasised that no one develop-
ment method was suitable for all types of de-
velopment process. We also highlighted the fact
that methods are an incompletesolution to systems
development problems because, by themselves,
they do not improve development productivity.
We concluded that earlier report by saying that
“Improvementsin productivity come from using
development tools to automate the activities
required by the methods. Indeed, many methods
are almost unusable without appropriate tools.’’
In the 18 months since Report 57 was published,
that basic message has not changed. Since then,
however, considerable media attention has been
given to computer-aided software engineering
(CASE), which is now being heralded as the solu-
tion to the application developmentproblemsthat
organisations have had for manyyears. Atfirst
sight, the concepts of CASE appear to be all-
embracing and revolutionary. In theory, they are.
The state of the art today, however, is much more
modest.
Like so many ‘hot’ topicsin the IT field, the term
CASE has been used to describe something thatis
at present essentially simple and straightforward,
but which has the potential to evolve into
something much more wide-ranging. The temp-
tation is to believe that the promised evolutionis
just around the corner.In fact, the evolution may
not occurin the directions predicted and may take
alot longer than many pundits believe. An analogy
is the development of ‘office automation’. Ten
years ago, grand theories of office automation
were extrapolated from the basic word process-
ing systems that were then coming into use. How
many of those predictions have actually been
fulfilled?
Thereality today is that, by and large, the term
‘software engineering’ is used to describe develop-

 FOUNDATION
© Butler Cox.& Partners Limited 1988

existing concepts

ment techniques that have been in common use
for several years, and CASEtools are the develop-
menttools used to automate those techniques. In-
deed, manyofthe tools described in Report 57 can
now bedescribed as CASE tools. At present, soft-
ware engineering correspondslargely with struc-
tured analysis and design techniques, and CASE
tools are the developmenttools used to automate
those techniques.
This implies that many CASE tools (and the
methods based on structured techniquesthat they
support) apply only to a limited part of the appli-
cations softwarelife cycle. As we pointed out in
Report 57, development methods covering the
whole of the life cycle (planning,analysis, design,
programming, testing, implementation, and main-
tenance) do not yet exist. Thus, by definition,
CASE tools covering the whole of the application
life cycle do notyet exist either. However,the cur-
rent generation of CASE tools is being extended,
both to link back to the planning stageof the life
cycle and to link forward to the programming
stage. Thus, the output from analyst/designer
workbenches (which are typical of mainstream
CASE tools) can now be usedas the input for code-
generation tools. Although a few products are now
beginning to address all stages of thelife cycle,
they do not yet support fully all the activities, and
it will be several years before an integrated set of
CASE tools exists, able to support fully the whole
of the applications software life cycle.

DEFINITION OF CASE TOOLS
Although the term ‘CASE tool’ is today largely
used to describe tools that support only the
analysis and design stages of the software-
developmentprocess,it is increasingly being used
to describe any tool that supports any stage of the
softwarelife cycle. In this report, we use the term
‘CASE tool’ in this wider context. However, we
specifically exclude programming languages,
fourth-generation languages and other advanced
system-building tools, and administration and
project-management tools from the definition.
Thus,tools with the following characteristics and
facilities are included in our definition:

Chapter 1 CASE: A new term to describe existing concepts

— Standalone tools based on PCs or engineeringworkstations. Typically, these tools providegraphicsandtext facilities for use by analystsand designers.In particular, the facilities areused to create and maintain the data-structure and activity diagrams required bystructured development techniques.
— Adictionary that is used to hold the data andactivity details about an application. Such adictionary can be used in conjunction with astandaloneanalysis and design tool and willtherefore be based on a PC or workstation.It mayalso be linked to a larger central dic-tionary and database management systemthat providesfacilities for holding and manag-ing the dataforall stages of the softwarelifecycle and for several separate, but related,applications. Often, the central dictionaryand database management system will bebased on a mainframe.
— Tools that ensure that the application designremains consistent as it progresses throughthe life cycle. Structured techniques requireincreasingly detailed diagrams to be developed.These tools ensure that no logical incon-sistencies are introduced as the additionaldetail is added.
— Automatic code- and database-generationfacilities that convert the output from thedesign stage to programs and database struc-tures for the target hardware and softwareenvironment.
The colour plates on pages 5 to 8 show the typesof graphical displays produced by analysis anddesign CASE tools.
A common feature of CASE tools is that theyautomate the techniques on which systemsdevelopment methods are based. Thus, CASE toolsare meant to be used by systems developmentstaff — principally analysts and designers, but alsoto a lesser extent, by programmers.
It is importantto distinguish between a CASE tooland an I-CASE or integrated-CASE tool. No fullL-CASE tools yet exist, but when they do, they willcover the entire software life cycle, and willmanageall information (data models, data dic-tionary, databases,activity models, and so on) forthe entire applications portfolio. An LCASE toolwill use an integrated database managementsystem and data dictionary to store and manageall of this information. It could also provideproject-managementfacilities.

A BRIEF HISTORY OF CASE
The term CASE was first coined in the early 1980s,but has received generalattention only from the

mid-1980s. Although the acronymis new,the ideaof automating parts of the systems developmentprocess is much older. Tools for generating codefrom decision and parametertables have existedsince the early 1970s, as has computersupport forthe production of textual descriptions of systemspecifications. Thus, thefirst generation of whatare now knownasCASEtools were (andstill are)used to create program code from other pseudolanguages. An example of oneof these early toolsis the Pacbase code generator, available from CGIInformatique, a French software supplier.
The next generation, and thefirst to be calledCASE tools, appeared in 1984. These tools providesupport for the analysis and design stages of thelife cycle, in particular by providing graphics-basedfacilities for designing application systems.Initially, these tools provided little more thanfacilities for drawing and maintaining the chartsand diagramsrequired by structured design tech-niques. The more sophisticated tools can nowcheckthe consistencyof related diagrams. One ofthe earliest examples of this type oftool, andstillone of the market leaders, is the Exceleratoranalyst/designer workbench, which is availablefrom Index Technology Corporation.
It was at this point that methods suppliers becameinterested in providing CASEtools to support theirdevelopment methods. Manyof these have enteredthe market, including James Martin Associateswith its IEF Information Engineering Facility, Ar-thur Young with IEW (Information EngineeringWorkbench), and Arthur Andersen with FOUN-DATION Integrated Environment for SoftwareEngineering. More recently, database softwarevendors have become awareof the potential forusing their database and data-dictionary productsas the basis for CASE tools, and they began, in1987/88, to provide graphics-based interfaces totheir products so they could be usedin this way.
The first commercial integrated project-supportenvironments (IPSEs) appeared at about the sametime as-second-generation CASE tools. To someextent, IPSEs fit uneasily into our definition ofCASE tools. Rather than providingdirect technicalsupport, they provide a framework for projectadministration and management within whichother CASE tools may be used. The majority ofIPSES available today supportrealtime and scien-tific software developmentandaredistinct fromIPSEs for business applications. Thefirst business-oriented IPSEs appeared in the late 1970s; themost widely used today is Maestro from Softlaband Philips.
The third generation of CASE tools, whichrepresents the state of the art today, is evolvingfrom the two previous generations.In particular,

X FOUNDATION
© Butler Cox & Partners Limited 1988

Chapter 1 CASE:

automatic links are being built between analysis
and design tools and code-generation tools, anda
few products now provide a central dictionary
used to store some information about the appli-
cations portfolio.
The characteristics of each generation, together
with representative products, are shown in
Figure 1.1.

THE GROWING DEMAND
FOR CASE TOOLS
Our own survey showedthat about 25 per cent of
Foundation members are now using tools that
correspond to ourdefinition of CASE, and that a
further 65 per cent are in the process of
implementing CASE tools, or intend to introduce

Figure 1.1 Three generations of CASE tools

Characteristics of each
generation

Typical products and
their suppliers

First generation
Appeared in the 1970s.
Coverage — only one stage
of thelife cycle, usually
programming.
Simple and unsophisticated.
Relatively low-cost.
Mostly text input — little
graphical support.

Pacbase code generator
(CGI Informatique)
Gammacode generator
(Knowledgeware Inc)
DELTAcode generator
(Delta Software Tools)
VAX Cobol Generator
(Digital Equipment Corp)

‘Second generation
Products available from:
mid-1980s.
Coverage —- more toneone

thelife cycle, usually
analysis and design.

inally simple graphic:aids. Later, provided =
consistency checking within,
and between, stages.

 U / single-useror single
pipeainalt:user. -

Third generation
State of the art in late 1980s.
Moving towardslinking front
and back ends of thelife
cycle.
First interface between
analysis and design aids and
code generators.
First appearance of
mainframe-based
developmentdictionaries to
act as repositories for
applications data.
Large investment and
significant strategic impact. IEF Information

Engineering Facility (Texas
Instruments/James Martin
Associates)
FOUNDATIONIntegrated
Environmentfor Software
Engineering (Arthur
Anderson & Co Manage-
ment Consultants)
CASE* (Oracle Corp)

FOUNDATION
s Limited 1988

A new term to describe existing concepts

them by 1990. Different types of CASE products
are supplied by different types of supplier. The
more extensive tools, which cover several stages
of the software life cycle, are often provided by
partnerships between consultancies and specialist
product developers. One example is IEF Infor-
mation Engineering Facility, which was developed
by Texas Instruments, a major US electronics
manufacturer, and is supplied and supported by
James Martin Associates.
Database vendorsare also increasingly entering
the market for CASE tools, building on their
experience of integrated data dictionaries and
database technology and techniques for managing
several logically linked data dictionaries. One
example is Oracle Corporation, a major supplier
of database management systems for DEC and
IBM environments. This company has recently
introduced a series of products (under the name
CASE*) that cover several stages of the software
life cycle.
As yet, the major computer manufacturers have
not made significant impact on the CASE-tool
marketplace. Sometimes, as with IBM,this is
because the market is still too small to attract
them; sometimes, it is because they prefer to
encourage third parties to provide products that
fit into their hardware architectures. IBM is
unlikely to produce a significant CASE product
before 1990. Meanwhile, it is encouraging third
parties to develop CASE tools that are consistent
with its Systems Application Architecture (SAA).
DEC has been moreactive in this field and has
already provided several products since the
establishmentof its CASE business centre early in
1987, in particular the Application System Develop-
ment Environment, which focuses on Cobol
generation, data dictionaries, and project manage-
ment. DEC is also encouraging third parties to
provide complementary products.
In general, the market for CASE tools is still
relatively small, but it is growing rapidly. Many
new suppliers are expected to enter the market
in the next year or so. Rapid growth and the
relative immaturity of the products will inevitably
lead to rapid changesin the products available and
in the structure of the supply-side of the market,
Any organisation considering the implementation
of CASE tools should consider the impact that
these changes will have on its choice of CASE
tools. (Our view on the mostsignificant changes
that are likely to occuris set out in Chapter 5 on
page 33.)

PURPOSE OF THE REPORT
Clearly, at their present state of development,
CASE tools are not the answer to every systems

Chapter 1 CASE: A new term to describe existing concepts

development problem. They are not appropriatefor end-user development, where fourth-generationlanguages are more appropriate. Theyare not verysuitable for maintainingexisting systems developedwithout using CASE tools. And they provide onlypartial code-generation facilities, so high-levellanguageswill continueto be used extensively forthe foreseeable future. Thus, CASE tools will needto be used in additionto, and in conjunction with,other developmenttools.
Nevertheless, significant benefits in developmentproductivity and software quality can be gainedby implementing CASEtools successfully. The pur-poseofthis report is therefore to answer the ques-tion “What are the real benefits of CASE tools andhow can they be achieved?”
This report is aimed at managers within thesystems function whoare responsible for systemsdevelopment productivity and software quality.It is relevant both to existing users of CASE toolsand to those contemplating introducing them inthe near future.
In Chapter 2, we describe the benefits that CASEtools can providein termsof software quality anddevelopment productivity. These benefits will notbe realised, however, unlessthe tools are used inconjunction with structured development tech-niques. CASE tools also need to be applied selec-tively. They are not suitable for all types ofsystems development. Chapter 3 shows how todecide when and whereto use CASE tools to besteffect. The proceduresfor selecting the most ap-propriate tools from those on offer are set out inChapter 4. It is particularly important to selecttools that match the existing development en-vironment in terms of methods, hardware, andsoftware. Furthermore, because different types ofCASEtool address different stages of the softwarelife cycle, it is important to select tools that pro-vide support for the stages that cause mostconcern.
Finally, in Chapter 5, we provide guidance aboutmanaging the implementation of CASE tools. Notonlyis it important to introducethe tools in a con-

trolled manner,it is also important to prepareforthe future and to ensure that the significant in-vestment made in methods and CASEtools will-notbe invalidated by impending technical develop-ments. .

SCOPE OF THE RESEARCH CARRIED OUT
The report was drafted by Mary Cockcroft, headof Butler Cox’s systems consultancy practice andan expert in systems development methods. Theconclusions and recommendations of the reportare the outcomeof an extensive, worldwide pro-grammeof research carried out during thefirsthalf of 1988. Researchers included RichardMugnaioni, a senior consultant based in ButlerCox’s Londonoffice, who specialises in systemsdevelopmentissues, David Flint, a principal con-sultant and author of a previous Foundationreport on advanced system-building tools, FransMolhoek, manager of Butler Cox’s office inAmsterdam,Lothar Schmidt, a senior consultantin the Munichoffice with extensive knowledge ofthe European software industry, and JohnCooper, who runs the Foundation in Australia.
In order to understand fully the current state ofthe art in CASE tools andto assess the likely futuredevelopments, we conducted an extensive reviewof the CASE-tool marketplace. Duringthis part ofthe research, we reviewed the published literatureon CASE and software engineering in general. Wealso reviewedthe productliterature of 35 leadingCASE-tool suppliers (both in the United States andin Europe) and conducted detailed interviewswith each of these suppliers. We also sought theviews of acknowledged experts on the subject,both through their publications and by interview-ing a selection of them. In addition, the views andpractices of Foundation members were gatheredin face-to-face and telephoneinterviewsin sevencountries worldwide, and in the analysis of the re-sponses from 150 Foundation members to thequestionnaire sent out at the beginning of theresearch. This questionnaire asked Foundationmembers about their present use of, and futureplans for, CASE tools.

FOUNDATION
Limited 1988

Examples of graphical displays produced by analysis
and design CASE tools

Module fiction Diagran Display Add Edit Select Help

Wini-Spec Action Diagran Disy fidd

ieBEEZEL Uslidate ©

(Source: Arthur Young’s IEW)

FOUNDATION Limited 1988 5 5

Examples of graphical displays produced by analysis
and design CASE tools

Decomposition Diagran Display Add Edit Select He PLO INS
x INCREASE PROFITABILITY + Ze Zt Liga

a

 Decomposition Diagram Display fidd Edit Selec Help
 Process Customer 05

aT
rd

(Source: Arthur Young’s IEW) a

UNDATIO

N

Examples of graphical displays produced by analysis
and design CASE tools

Entity Diagran Display fidd Edit Select Help

 Proce:
ted 8 Hidden

 et
 iption Display —fidd

Entity type 0.

M1 Gentext: Process Custoner Orders

|

+
‘

FOUNDATION
od 1988

(Source: Arthur Young’s IEW)

Examples of graphical displays produced by analysisand design CASE tools
Screen Layout

Display Edit Select firrange Help DESIGN

 ebot tory Dato Type Nowe

y
bes DECIMAL

WALPHANUMERIC, 20NED DECIMAL, SINGLE PRECIS
fa

BEntity Type Gustoner Po
Customer Pi. id

Attribute Tipe tictoner P
ePistonerFO Tora! Aacent

Attribute Type:Oe tomer Po Total Amo!
JGustonerPO DeliveryAddressAttribute Type-Oustomer PO Delivers BSt:

(Source: Arthur Young’s IEW)

FOUNDATION
© Butler Cox & Pariners Limited 1988

Chapter 2
CASE tools promise significant benefits

Early experience of using CASE tools suggests that
they can improve both software quality and
systems development productivity. In this chapter,
we describe how CASE tools can provide these
benefits. One organisation that has recognised the
potential impact of CASE tools on productivity and
software quality is NMB, a Dutch banking

institution, whose experience is described in
Figure 2.1.
SOFTWARE QUALITY CAN
BE IMPROVED
There is now a substantial body of experience to
show that using CASE tools to automate structured

Figure 2.1

NMB
NMB, a leading Dutch merchant andretail bankinginstitution, has
achieved significant improvements in software quality and
development productivity through the introduction of case tools.
The bank has four commercial divisions: international financial
services, domestic merchant banking, domesticretail banking, and
stocks. It employs nearly 12,000 people and hasassets of around
Dfl80billion ($40billion). The central information servicesfunction,
which provides computing servicesto all the divisions, consists of
350 people, 145 of whom areinvolved in systems development.
The divisions employ a further 80 people who are dedicated to
business systems planning and information analysis.
In 1980, the board of NMB,one of whose members had a specific
interestin IT, realised that a consistent, professional approach to
systems development wascrucialto the future of both information
systems and the business. As a consequence, NMB standardised
onthe IEF Information Engineering Facility, available from James
Martin Associates, although the method was adapted to meetthe
bank’s specific needs. Thefive standard phasesof the Information
Engineering method(information strategy planning, business-area
analysis, business-systems design, technical design, and pro-
gramming and implementation) were implemented, together with
a specially constructed maintenance and support phase.
In 1985, the Maestro ipse from Philips and Softlab wasintroduced
fo provide automated support for the development method. The
implementation of Maestro was part of a strategy to improvesoftware
quality and developmentproductivity. The strategy was based on
achieving two goals:
— To use, throughout the organisation, a single, consistent

development methodthat coversall phasesofthe softwarelife
cycle.

— To develop

a

fully integrated set of tools that can be used to
implement, manage, and control the use of the method.

NMB realises that these are long-term goals and expectsthatit will
take between seven and ten years to achieve them,and that they
will require an investment of more than 80 work-years,in addition
to the capital investmentin the tools themselves. The board of NMB
is fully committed to achieving the goals, a factor that makesthis
level of expenditure feasible. Maestro was chosen as the means
for achieving the long-term strategy because NMBbelievesit
provides an openframeworkthat can betailored and complemented
with tools that closely match its own development environment.

CASEtools can improve developmentproductivity and software quality

The initial intention was to use Maestro as a development-library
support tool, and as a means of providing communication and
project-managementfacilities for project teams. However, NMB soon
realised that, used in conjunction with tools for each development
phase, Maestro had the potential to act as a frameworkto cover
the entire softwarelife cycle. The development environment now
consists of 220 workstations, supported by eight networked Philips
P7000 computers.
lt has been necessary to make shorter-term tactical decisions as
well. One of these is to use the IEW (Information Engineering
Workbench) product, available from Knowledgeware and Arthur
Young, for business-area analysis and business-systems design.
NMB realisesthatit will have to replacethistoolin order to achieve
its long-term goals, but has decided to useit until tools become
available within the Maestro frameworkto cover these development
phases.
NMB is convinced that implementing casetools in this way has led
to significant improvements in development productivity and in
software quality. Since 1985, development productivity has
improved by about 30 per cent, with most of the gains coming from
automatic code generation, and from easier maintenance because
of the better documentation that is now produced. The bankis now
aiming for further productivity improvements of between 5 and 10
per cent a year. It also believes that the quality of its systems has
been increased significantly because of consistent working
practices, improved project management and documentation, and
better communication between project-team membersthrough the
use of Maestro’s electronic mail facilities. No attempt has been made
to quantify the quality improvements, however.
NMB also believes that implementing the Information Engineering
method,and the CASE tools to support it, has changedthe way the
systemsfunction is staffed and organised.In particular, the increased
emphasis on analysis and design has changed the skills
requirements. No programmers have been recruited for more than
a year; NMB now recruits andtrains only analysts and designers.
Overall, however, the numberof systems developmentstaff has
not increased, although prior to introducing the Casetools, the
numbers had increased steadily for several years.
Sofar, the implementation of Information Engineering, Maestro, and
the associated case tools has required 10 work-years of effort a
year since 1984. NMB expectsthatthis level of investmentwill
continue for a further four years.

FOUNDATION

© Butler Cox & Partners Limited 1988

Chapter 2 CASE tools promise significant benefits

design techniques improves the quality of the
applications software that is developed. Struc-
tured techniques improve software quality in two
ways: they ensure that the application systems are
a betterfit with the business needsof their users,
and they improve the technical quality of the
systems by reducing the number of software
errors.
BETTER FIT OF SYSTEMS TO THE BUSINESS
There are well-documented examples of systems
being developed and neverused becausetheyfail
to meet the business needsof the users for whom
they were developed. CASE helps to overcomethis
difficulty because it encourages developmentstaff
to place a greater emphasis on the analysis anddesign stages of the software life cycle. In par-ticular, CASE tools provide online interactive
graphics facilities to support these stages. Theeffect of using CASE tools on the level of effort
required at each stage of the life cycle is shown
in Figure 2.2.
Bill Presley, Systems Development ManageratGlaxo Pharmaceuticals, a division of the multi-national manufacturer of pharmaceutical pro-

Figure 2.2 Use of CASE tools changesthe level ofeffort required at each stage of thesoftware life cycle

4 Proportion
oftotaleffort

Mainten-
ance

Planning Analysis Design Program-
ming

Imple-
mentation

— CASEtools used to support structured techniques
—_ Traditional development

ducts, confirmed that greater emphasis is nowbeing placed on analysis and design. He believesthat implementing Arthur Young’s IEW hasincreased theproportion of the developmenteffort devoted to analysis and design from 30 to60 per cent. Using IEW, Glaxo Pharmaceuticalsdeveloped a computer-integrated manufacturingsystem on budget and to time, and with anoticeable reduction in the number of changes
requested by users, anda corresponding increasein user satisfaction.
The ‘interactive graphics facilities provided byCASE tools used at the analysis and design stagesencouragea closer working relationship betweendevelopers and users, and allow users to beinvolved directly in the systems developmentprocess. One example of this was described to usby Lee Hawkins, software support managerat TheAbbey National Building Society, a leading UKfinancial-services organisation. He has found thatCASE tools provide a commonlanguage betweendevelopers andusers, leading eventually to usersparticipating directly in the development of thedata and activity models required by structuredtechniques. This has reduced the misunder-standings that have often occurred in the pastbetween developers and users, because the CASEtools encourage users to be specific. In addition,users find it easier to understand the design ofsystems because they no longer have to workthrough voluminouspaper-based documentation.
The Department of Public Works of the DutchRijkswaterstaat, which is responsible for dykes,canals, and roads, reported a similar experience.This organisation has implemented the Exceleratoranalyst/designer workbench from Index Tech-nology Corporation, and has found that the majorbenefit of this toolis that it reduces the effort atthe design stage and results in higher-qualitysoftware. These benefits are achieved becauseExcelerator allows the software design to bepresented to usersearly in thelife cycle in a simpleand understandable way.
BETTER TECHNICAL QUALITY
As well as improvingthefit of systems to businessneeds, CASE tools help to improve the technicalquality of software. This is an important benefitbecause the cost of correcting errors detected atlater stages of the life cycle is much higher thancorrecting them at an earlier stage. A recentsurvey conducted by Barry Boehm in the UnitedStates found that errors in specifications cost1,000 times moreto correct after implementationthan during analysis.
CASEtools help to easethis situation because theyreducethe likelihood of technical errors both at

Chapter 2 CASE tools promise significant benefits

the early stages of the life cycle (during analysis
and design), and at the programming stage. By
providing automated support for the structured
techniques used during the analysis and design
stages, CASE tools reduce the likelihood of
mistakes being made. Theyalso providefacilities
for automatically checking the consistency both
of related data-structure and activity diagrams,
and of the more detailed diagramsused at the later
stages of the life cycle. Prior to the availability of
such facilities, development staff had to record
manually the complex interrelationships and
dependencies generated by structured techniques.
The inevitable result was that mistakes were made
and the technical quality of the resulting appli-
cation system was reduced.

CASE tools also help to improve the technical
quality at the programming stage. Several
Foundation members confirmed that the use of

CASE tools results in code that contains fewer
errors than code written by average programmers.

DEVELOPMENT PRODUCTIVITY
CAN BE IMPROVED
CASE tools can improve the productivity of
developmentstaff at each stage of the life cycle,
although the most important benefitsarise at the
maintenance stage as a direct result of the
improved quality of systems. Figure 2.3 shows the
main types of benefit at each stage and indicates
which may be measured and how.
At the analysis stage,it is possible both to improve
productivity and to reduce the elapsed time. The
greatest improvements at this stage will be
achieved where CASE tools are used to automate
development methodsthat have previously been
implemented manually. Savings of between 10

Productivity

Na Ny
,

be,
"e Nee

OF
eK
,it

s

Life-cycle stage
Planning

50 pe a
Graphical support and
transfer of data from
analysis stage may
reducestaffing levels by
up to 50 per cent.gical an

Potential reduction in
effort and timescale due
to greater emphasis on
analysis/design

Implementation

Maintenance an
enhancer ent

FOUNDATION
© Butler Cox & Partners Limited 1988

Figure 2.3 CASEtools provide productivity and quality benefits at each stage of the software cycle

Length oftime from end
of programming stage
to final acceptance.
Level of effort involved

Quality

SN° @ee §Ig ?se &&TIS =
Combination of
methods and tools can
be used to support
strategic systems
planning (althoughthis
is rarely done in
practice).

Long-term assessment
of fit of systems with the
business.

— st
Consistency checking
between analysis and
design stages will
reduce design errors.

As above
Better quality of analysis
anddesign will have an
impact on implemen-
tation.

11

ae |
Chapter 2. CASEtools promise significant benefits

and 30 per cent can usually be achieved. Theexperience of a manufacturing company demon-strates that CASE tools can produce productivitygains in both the analysis and design stages (seeFigure 2.4). The reduction of 20 per cent achievedby this companyin the time required betweenanalysis and implementation is representative ofthe average gains achievable at these stages.
CASE tools can also improve productivity at thelogical and physical software design stages. Theimprovementsresult from the on-screen graphicalrepresentation of data and activity diagrams, andfrom the ability to transfer information auto-matically from the analysis stage to the designstage. Finalising the design of a business appli-cation usually involves manyiterations before theusers approvethe design. Using structured designtechniques requires the data and activity diagramsto be amended at each iteration, which, donemanually, is a time-consuming and error-proneprocess. The graphical and automated docu-mentation facilities provided by CASE tools reducethe effort involved in producing and modifyingsystems designs. Thesefacilities also improve theinteraction between developers and users, thusreducing both the effort and the elapsed time re-quired between starting the analysis stage andcompleting the logical design of a system.
Major productivity gains can also be achieved byusing CASE tools (particularly automatic codegeneration) at the programming stage. A majorFrench-owned multinational company involved inthe chemical and pharmaceuticals industriesfound that, through the use of code generators,its code generationrate rose from 117 to 260 linesper person per day overa five-year period. (Theindustry average in France is 60 lines per personper day.)
Productivity improvementsin the implementationand maintenance stages arise from the higher-quality designs produced when CASE tools areused at the analysis and design stages. Theincreased emphasis on analysis and design, andthe improved working relationship betweendevelopers andusers, help to reduce the numberof software changes required during the imple-mentation stage. Thus, CASE tools reduce the needto enhance applications soon after they are imple-mented in order to meet user requirements thatwere missed or misinterpreted at the analysisstage.
The improvedtechnical quality obtained from usingCASE tools also reduces the numberof softwareerrors and, hence, the amount of maintenance re-quired after implementation. For example,Télémécanique, the French manufacturing group,has found that the code generated by the Gammacode generator (from Knowledgeware) is more

12

efficient and error-free than the average manuallyproduced code. CASE tools also automaticallygenerate complete and consistent softwaredocumentation, thus makingit easier to maintainsystems after they have been implemented.Improved quality, greater consistency, betterdocumentation, and fewer program changes meanthat both the level and the difficulty ofmaintenance are reduced, thereby reducing theproportion of developmenteffort required formaintenance activities.

The improvementsin productivity arising from thebetter-quality software developed with CASE toolsare difficult to quantify, however. There are threepotential measures. Thefirst is to measure thereduction in the numberof changes requested byusers during the development and implementationstages. The second, whichis relevant to technicalquality, is to measure the number of programerrors discovered during the implementation stage.Thethird, which is concerned with overall quality,is to measure the reduction in maintenance workcarried out by the developmentfunction. Thefirsttwo measuresapply to the developmentstages ofthe life cycle; the third becomes apparent onlyafter applications have been running for sometime.

Many Foundation members believe that usingCASE tools at the analysis stage substantiallyreduces the numberof changes requested by usersboth during developmentandafter implementation.Few of them, however, have quantitative evi-denceto support this belief. One companythat didprovide data was the manufacturing companyquotedin Figure 2.4: it found that the proportionof development effort devoted to maintenancework decreased from an estimated 70 per cent to45 per cent. Another was a French multinationalcompanyin the chemical industry that foundthat,throughits use of CGI Informatique’s Pacbase fordetailed design and implementations, the pro-portion of its effort devoted to maintenanceremained constant at around 33 percent, althoughits applications portfolio increased from 2 millionto 6.2 million lines of code.

BENEFITS DEPEND ONTHE USE OF METHODS
Many CASEtools have been designed to supportthe structured analysis and design techniquesthatform thebasis of several proprietary developmentmethods. Itis theoretically possible to implementthese methods without CASE tools, but, in prac-tice, the volumeof manually created paperworkthat is required makesit impossible to use them

FOUNDATION
© Butler Cox & Partners Limited 1988

Chapter 2 CASE tools promise significant benefits

A MANUFACTURING COMPANY
Between 1984 and 1985,this manufacturing company(which wishes
to be anonymous) examined thefeasibility of implementing structured
systems development methods. The programming department was
already using Jackson structured programming. The conclusion
reached wasthat, owing to the manualeffort involvedin introducing
methods, some sort of support tool was required if methods were
to be implemented successfully. As a result, the companyinstalled
the Maestro IPSE from Philips and Softlab. Initially, a 24-terminal
system was used for team management, for preparing textual
specifications, and for CASE development. Twofurther systems have
now beeninstalled. In addition, LBMS’s Auto-Mate Plus tool has
been used to support the LSDM method (also from LBMS) used
by the company.
This company believes that it has been successful in implement-
ing development methods only because it has had the tools
fo support the methods. Indeed, the implementation of
LBMS's Auto-Mate workbenches has actually promoted the use
of LSDM.Furthermore,it believes that the partnership of CASE tools
Figure 2.4 CASE tools can improve productivity at both the analysis and design stages

and development methods has improved both productivity and
quality.
Productivity at the maintenance stage has increased becauseof
the improved quality of the systems now being maintained. Without
methods and tools, the company estimatesthatit would be using
70 per centofits development resources on maintenanceactivities
instead of the 45 per cent actually used today. The methods and
tools also deliver more functionality and allow more applications
to be developed by fewer developmentstaff. Productivity has also
been improved becausethe CASEtoolsfacilitate better interaction
between developers and users and speed up the process of
changingspecifications. This has resulted in a 20 per cent reduction
in the elapsed time from thefeasibility stage to implementation.
Quality has also improved because of the improved interaction
between developers and users. Some users have become much
moreinvolved in the development process and have become more
supportive of the systems department. This has contributed to users
feeling that they ‘own’ the projects and systems, and has made
the task of the systems department much easier.

successfully. The result is that the productivity,
and morale, of development staff is reduced. As
a consequence,the use of structured techniques
has been discredited in many organisations; the
benefits of consistency that result from using
these techniques have been hidden by the
difficulty of implementing them.
Conversely, it is not possible to obtain the full
benefits from CASE tools unless they are used in
conjunction with the method they were designed
to support. The rigour imposed when such a
methodis implementedin conjunction with a CASE
tool leads to the improvements in quality
identified earlier. In turn, the improved quality
leads to major gains in productivity during the
programming, implementation, and maintenance
stages of the life cycle.

In addition,the full life-cycle support promised by
LCASE tools can be achieved only if integrated
development techniques are used consistently
throughout the whole life cycle. This helps to
explain whyfull -CASEtools are notyet available,
because, as we explained in Report 57, there is as

FOUNDATION
© Butler Cox & Partners Limited 1988

yet no integrated set of development techniques
that covers the whole ofthelife cycle. The major
problem area concerns the difficulty of auto-
matically translating logical designs into physical
designs.
The implication is that many CASE tools must be
selected to support particular proprietary develop-
ment methods. Others, however, particularly
analyst/designer workbenches,can be configured
to support different methods. The decision to
choose a particular combination of methods and
tools is possibly the mostdifficult and strategically
important decision that a systems director will
have to make. Once a methodandtools to support
it have been implemented, the organisation will
be committed to using the method for many years
to come. The investmentin training andinsetting
up the procedures to use the methodeffectively
will make it very difficult, and expensive, to
change to a new method. Thus, the effects of an
inappropriate combination of methodsandtools
will be evident for a long time. Thefirst stage in
making the right decision is to decide where the
methods andtools can be used with mosteffect.

13

 ee

Chapter 3
Deciding when and where to use CASE tools

The first task in selecting the types of applicationfor which CASEtools are appropriateis to identifythe stages ofthelife cycle where most problemsoccur and whereCASEtools could help to improveproductivity and quality. It is also essential to en-sure that the existing development methods arebeing used effectively; there is no point in usingCASEtools if they are not. The limitations of CASEtools must also be considered. There are somedevelopmentsituations where CASE tools are notthe most appropriate answer.

CLARIFY THE OBJECTIVESFOR USING CASE TOOLS
Applying CASEtools in an indiscriminate way maybring someisolated benefits, but it will probablynot provide value for money. Clarifying theobjectives before setting out to implement CASEtools will help the organisation to ensure that theareas of greatest concern to the business areaddressed, and that realistic expectations areestablished for the benefits.
ADDRESSING PROBLEMS
OF MAJOR CONCERN
Most systems managers are well aware thatsystems developmentcontinues to present majorproblems. Few, however, can accurately describewhatall of the problems are, let alone define howthey arise. They knowthatthere is a growing gapbetween the rate at which systems can bedeveloped and the demand from users for newsystems. They also know that user requirementsare very often not met by the systems that aredeveloped. Before the problems can be resolved,it is necessary not onlyto identify what the prob-lems are but also where and how they arise.
Manysoftware expertsinsist that the problems arecaused by the low productivity of developmentstaff, and that the solution is to concentrate ondeveloping applications more quickly. Withoutdoubt, tools that automate and speed up the pro-duction of designs and codewill increase develop-ment capacity. The real problem, however, resultsfromaninability to interpret and meet user needsand to deliver error-free code.

14

It is well knownthat

a

significant proportion ofall business software produced by systems depart-ments is either significantly reworked duringdevelopment or never used. The developmentmanager of Lend Lease, an Australian propertyand financial-services group, told us that diffi-culties experienced by the companyin identify-ing and analysing user requirements (before theintroductionof CASE tools) meantthat the first sixmonthsoflive operation were little more than afinal systems development stage. The main causeof this type of problem is that mistakes are madeat the requirements-analysis stage. A problem thatat first sight appears to bea programming problemcan,in fact, be caused by poor analysis anddesign.
Thus,thefirst step in planning to implement CASEtools should be to examine each stage of the lifecycle to identify where the causes of the most dif-ficult problemsare. In carrying out this analysis,it is important to rememberthat the root causeof a problem maylie at a muchearlier stage in thelife cycle. For example, an excessive proportionof effort spent on maintenance may be caused bymistakes originally made at the analysis and designStages. The life-cycle stages that are the rootcauses of the problems should be identified, andCASE tools should then be chosen to support thesestages.

CASE tools can be applied with benefit at moststages of thesoftwarelife cycle. In general, how-ever, the greater the numberof stages covered bya CASE tool, the higher the cost of implementingthe tool and the longer the payback period. Fora development department with 50 staff, imple-mentation costs, including the cost of hardware,software,andinitial training, are typically about$20,000 per head for workstation tools coveringonly the analysis and design stages, and about$35,000 per head for an integrated developmentenvironment that includes a mainframe-baseddevelopment dictionary, that covers severallife-cycle stages, and that can be used for differentprojects. The cost can be much higher, however.We know of one organisation that has imple-mented standalone analysis and design tools for30 developmentstaff at a cost of $46,500 perhead. (More details can be found on page 29.)

FOUNDATION

Chapter 3 Deciding when and whereto use CASE tools

These high levels of investment will mean that
many organisations will wish to phase the
introduction of CASE tools progressively to cover
a larger numberoflife-cycle stages. Identifying
those stages in which the main problemsoccur,
and placing them in orderof priority, will make
it possible to plan a phased implementation of
CASE tools. Prospective tools can then be
evaluated against the objectives set for each stage
of the life cycle.

IDENTIFYING OPPORTUNITIES FOR
IMPROVING PRODUCTIVITY AND QUALITY
Organisations considering the implementation of
CASE tools find themselves in many different
situations. The choice of tool, and the method and
timescale for implementing it, all depend on the
situation into which the tool is introduced. The
first step should therefore be to evaluate the
maturity of the development environment (in
terms of the use of structured techniques and
development standards, for example), the
productivity currently being achieved on
developmentprojects, and the quality of existing
systems.

Evaluate the maturity of the
development environment
The existing level of maturity of the systems
development function is a major influence on how
best to implement CASE tools. In particular, the
current development environment determines
manyof the constraints that will delay the intro-
duction of CASE tools, and it has a direct bearing
on the level of training that will be required.

The maturity of the development environment
applies both to the level of experience and
expertise in using development techniques such
as entity modelling and data analysis, and to the
use of other types of enabling software such as
relational database management systems and
fourth-generation languages. Other factors that
will influence the way in which CASE tools are
implementedare the complexity and size of appli-
cations, the size of the development department,
and the range of developmentskills (assembler
programming, and so on) in use.
Our research indicates that, if CASE tools are
introduced into an environment where
development techniquesare notalready practised,
it takes up to a year for development staff to
become fully proficient in using the tools,
compared with a matter of weeks when
techniquesare already used. Most of the training
requirement arises from the need to teach
development staff how to use the structured
techniques. Lend Lease, for example, expects new
recruits to take a year to becomeproficient, with

FOUNDATION
© Butler Cox & Partners Limited 1988

most of the training effort being devoted to
teaching techniques. On the other hand, develop-
ment staff at Lloyd’s of London, a major UK
insurance underwriting group, required relatively
little training whenthis organisation implemented
CASE tools. Colin Talbot, Manager, Office Systems,
Development Department, told us that this was
because a method (LSDM from LBMSplc) was
already being used by the developmentteams. The
use of this method has also reduced the time
required for new recruits to become fully pro-
ductive because Lloyd’s now favours people who
are already familiar with the LSDM method.
The maturity of the development environment
also has an impact on the amount of preparatory
work needed to reorganise the systems depart-
ment for the implementation of CASEtools.If the
department has either multiple standards and
methods of working, with little control, or no
formal working standardsatall, it should imple-
menteither a single agreed set of standards or new
standards. Failure to do this will not make the
implementation of CASE tools impossible; it will
merely mean foregoing an opportunity to ration-
alise working practices in order to achieve the
maximum benefit from implementing suchtools.
Assess existing productivity
and systems quality
Most automation aids for systems development are
typically sold on their potential to deliver pro-
ductivity gains. CASE tools, however, are also
expected to improve the quality of the software
developed by using them. To assess the benefits
of using CASE tools, it is therefore necessary to
compare ‘before’ and ‘after’ levels of develop-
ment productivity and software quality. In turn,
this means that organisations contemplating the
introduction of CASE tools should quantify their
present levels of productivity and software quality
by introducing some kind of measurement pro-
gramme, to -provide a basis for subsequent
comparisons.
Establishing such a programmeis not easy. There
is much disagreement about what measures are
appropriate, and how to make them, and no uni-
versally agreed standard measure yet exists. The
numberoflines of code produced by a programmer
in a given period provides an indication of the
efficiency but not the effectiveness of software,
which includes aspects of quality. Another com-
monly used measureis based on counting function
points, although the usefulness of this technique
depends on the type of application being de-
veloped. One function point may represent a large
numberof lines of code in a database application,
but only a few in an application that uses complex
algorithms. We believe that QSM’s Productivity
Index (PI) used in Butler Cox’s Productivity

15

a

Chapter 3 Deciding when and whereto use CASEtools

Enhancement Programme is a better way ofmeasuring development productivity. No methodof measurement is perfect, however, and measur-inglines of code or function points is better thannothing.
Less formal methods of comparison can be usefulwhere formal measures are impractical. For com-paring productivity, for example, two potentialmeasuresare the effort and elapsed time required
to develop various project types.
Comparing quality is more difficult than com-paring productivity because the comparison oftendependsonintuitive, subjective measures. Manymanagers feel that an implementation ‘has gonewell’ or ‘has been a disaster’, based on theirrelationship with the users of the software. Thistype of intuitive judgement may convince somemanagers, but a quantitative measure, no matterhow approximate, would be better. One possiblewayof quantifying software quality is to count thenumber of queries, change requests, and com-plaints madeby users during the implementationstage. Another is to measure the proportion ofoverall development effort devoted to mainte-nance and minor enhancements.
Evaluate the effectiveness
of existing methods
To be successful, many CASE tools must be usedin conjunction with a development method thatis based on structured techniques. Figure 3.1showsthat many of the Foundation members whoresponded to our survey have already imple-mented such methods and that most of theremainderplan to do so by 1990.It is essential,however, that the methods are being usedeffectively. Unless they are, it will not be possible

Figure 3.1 Use of development methods by Foundationmemberswill approach 100 per cent by1990

Do not use 95%developmentmethods 78%

Use
developmentmethods

1988 1990
(Source: Survey of Foundation members)

16

to use CASE tools effectively. The effectiveness ofdevelopment methods can be assessed againstthree criteria, each of whichis equally important.
First, the methods used must meet the require-ments of the systems department. This can bejudgedby assessing whether, together, the methodssupport all stages of the software life cycle andall the development processes being used. As wepointed out in Report 57, no single method willsupport every stage of thelife cycle, nor everydevelopment process. Some are suited to tradi-tional large-systems development where projectmanagementis all-important; others are moreapplicable to therapid, iterative style of develop-mentthat is becoming more prevalent today.
Second, the methods should be used extensivelythroughoutthe systems developmentfunction.Ifthey are used by only a few project teams or forsome types of applications, they may not be aseffective as they could be if they were used morewidely. The widespread acceptance and use ofmethods may, for example,be inhibited becausedevelopment staff perceive them as requiringunacceptable levels of manual intervention. Untilthe methods are used effectively, it will not bepossible to make the most effective use of CASEtools.
The third criterion is that the methods shouldprovide tangible benefits in terms of softwarequality. If they do, their credibility with managerswill be established. If they do not, a great deal ofeffort will be needed to bridge thecredibility gap.
The moreeffective the development methods arein termsof thesecriteria, the easier it will be toimplement CASE tools and use them effectively.However,evenif the methods are shown to be notparticularly effective, it is invariably better tointroduce CASE tools to support the existingmethods. The only exception would be where thecredibility gap is very wide indeed. Introducing anew methodat the same time as CASE tools wouldbe the most expensive element of implementingCASE.

RECOGNISE THE LIMITATIONSOF CASE TOOLS
CASEtools arestill relatively immature, andit willbe sometime before they have developed to thestage wherethey can achievetheir full potential.To date, relatively few major operational appli-cations have been implemented using CASEtools,and it is widely recognised that present-day toolshave substantiallimitations. The effects of theselimitations can, however, be minimisedif they arerecognised and managed.

FOUNDATION
ler Cox & Partners Limited 1988

Chapter 3 Deciding when and where to use CASE tools

UNDERSTANDING THE NATURE
OF THE LIMITATIONS
The CASE tools available today have three
important limitations: they do not support the
complete software life cycle, they providelittle
support for the maintenance of existing systems
originally developed with non-CASE tools, and
they are not suitable for direct use by business
users.
CASE tools provide limited
life-cycle support
Most CASE tools available today covereither just
the front-end analysis and design life-cycle stages,
or just the programming stage. A few, such as
Texas Instruments’ IEF Information Engineering
Facility, have begun to address the complete life
cycle, but they do not yet fully support all
the stages. The types of CASE tools available
today, and the extent to which they support
individual stages of the life cycle, are described
in Chapter4.
The limited coverage of existing CASE tools means
that user organisations need to integrate tools
from different suppliers if they are to create a
CASE environment that covers the whole of the
life cycle. However, several suppliers are working
to link their products to those from other sup-
pliers, the aim being to create a combination of
products that covers severallife-cycle stages. One
example is Arthur Young’s interface betweenits
IEW product and Knowledgeware’s Gammacode
generator. Users of CASE products should be
aware, however, that even when an interface
between two products has been announced,it is
often not as comprehensive as the suppliers’
literature may indicate. For example, at the time
of writing, the interface between Index Tech-
nology’s Excelerator analysis and design work-
bench, and Pansophic Systems’ Telon code
generator transfers only screen layouts and report
layouts. Details about processing logic and rules
still have to be transferred manually.

Manyother interfaces between CASE tools will be
announced in the near future, but the type of
information that can be transferred, and the
consistency of the user interface, will both be
restricted. Sometimes, user organisations may
haveto create the required interfaces themselves,
but this could lead to problemsof internal support
for the interfaces and to difficulties with the
suppliers when software problems have to be
resolved.

Two contrasting examples of how organisations
are tackling this problem are provided by Lend
Lease in Australia and a British company. Lend
Lease currently uses IEW for analysis and design,
and the Corvision application generator from

OUNDATION
© Butler Cox & Partners Limited 1988

Cortex, a US supplier of software-productivity
tools, for construction. Lend Lease wants to
establish a link so that information can be
transferred from the analysis and design stages to
the programming stage. Knowledgeware and
Cortex have now reached formal agreement on
establishing a link between their products,
avoiding the need for Lend Leaseto doso. At the
other end of the scale, we know of one British
company that is considering building a link
between Softlab’s Maestro and Oracle’s database
management system. This is an exampleof linking
two products that are used for different purposes
rather than for different stages of thelife cycle.
CASEtools offer little help
for maintaining existing systems
Although CASE tools can be used to maintain
software developed by the tools themselves (by
re-using or modifying existing designs), they
provide little support for the maintenance of
existing systems developedoriginally with non-
CASE tools. CASE tools will offer significant help
in the maintenanceof existing systems only when
they support reverse engineering — the process
whereby system designs are extracted auto-
matically from existing programs and are used as
the basis for enhancing and maintaining them.
This requires tools that are able to read existing
code and data structures, and have the intel-
ligence to extract the underlying systemsdesign.
Current support for reverse engineering is mainly in
the form of products that process existing un-
structured code and convert it to structured code.
Recent products from Bachman Associates have
started to take a more data-oriented approach,
allowing some existing physical IDMS designs to
be re-engineered into logical designs ready for
‘forward engineering’ into DB2 databases. These
productsarestill at an early stage of development,
however,and,at present, they are available only
in the United States.
At present, reverse-engineering products are
limited to restructuring code and data. We have
not been able to identify any products that are
able to extract a full systems design from existing
software. Without doubt, there is a need for such
tools. Until they exist, CASE tools will be of limited
value in maintaining, for example, the estimated
77 billion lines of Cobol code in IBM-based systems
alone. Webelieve that products able to carry out
true reverse engineering are unlikely to be
available until the mid-1990s.

CASE tools are unsuitable
for business users
Although CASE tools can help to involve business
users in the development process, they have not
yet been developed to the stage where they can

1G

Chapter 3 Deciding when and where to use CASEtools

be used directly by them. Indeed, CASE tools may
never reach the stage where they can be used
exclusively by users, because their use will con-
tinue to require knowledge and experience of
structured development techniques. In the fore-
seeable future, expertise in structured techniques
will remain firmly with professional development
staff. Users will, however, become more involved
in the development process. In particular, the
interactive graphicsfacilities available with CASE
tools will mean that users will become familiar
with the diagramming concepts that are an
integral part of structured techniques. Indeed, aswe have seen, some of the most significant
benefits of CASE tools will arise from the ability
of developers and users to work together at the
analysis and design stages of the life cycle.
For this process to work, however, users need totake an active role in the developmentof systems.The benefit of such involvementis illustrated bythe experience of Lloyd’s of London. This organi-sation believes that systems will serve the needsof the business betterif users understand, inter-pret, and help to modify the graphical repre-sentation of the system designs. The graphicalfacilities of the CASEtools in use at Lloyd’s allowusers to do these things.
AVOIDING THE LIMITATIONS
OF CASE TOOLS
The limitations of CASE tools can be avoided byusing other types of tool where appropriate, andby restricting the use of CASE tools to new de-velopments and major enhancements.
Use non-CASEtools
where appropriate
Regardless of the claims made for CASE tools, theyare not the answerto all systems developmentproblems and should not be seen as such. Othertypesof tool will be required as well to cope withthe many different aspects of development, bothwithin and outside the systems department. Thus,tools such as third- and fourth-generationlanguagesand other prototypingtools willstill berequired after the implementation of CASEtools.
Each typeof tool should be used for the job forwhichitis best suited. For example, applicationsdeveloped by businessusers, and by theiterativedevelopmentprocess (which requires rapid itera-tions through the design stage and, hence,relieson prototyping), both need fourth-generationlanguages and other prototyping tools such asscreen-layout and report generators. Figure 3.2shows how CasE andothertypes of developmenttool can be used to support different developmentprocesses.
The development processes shownin Figure 3.2were describedin detail in Foundation Report 57,

18

Using System Development Methods, and ar
summarised below: .
— The conventional development process hasbeen used for many years for the developmentof commercial and business applications.Typically, the work is subdivided into well-defined steps or phases, with the workflowbeing controlled and monitored by formal pro-ject-management techniques. Morerecently,proprietary systems development methodshave beenusedto standardise the tasks carriedout during oneor moreofthelife-cycle stages.
— The iterative development process is moreappropriate for applications where the users’requirements are less easy to specify andwhere the scale of the application is smallenough to allow a prototype to be built andrevised quickly either by using advancedsystem-building tools such as Natural, Focus,Mapper,or Linc, or by using CASE tools thatprovide screen-painting and dialogue-de-finition facilities, such as IEW and IEF Infor-mation Engineering Facility.
— The small-systems development process isappropriate for new small systems andfor smallenhancements to existing systems. Typically,small systems take less than nine months’elapsed time to develop, and require no morethan about twoto three years of effort. Thesmall-systems developmentprocess covers thesame rangeof applications as the conventionaldevelopmentprocess.
— End-user developmentrefers to applicationsdevelopedentirely by users. These applicationsprovide limited functionality and are usuallyvery small systems designed to meet an

Figure 3.2 Different developmenttools are appropriatefor different development processes

Development
process Developmenttool
Conventional kk * kk * **
Iterative

Smail-systems kk kk Kk kk kk
End-user x ke

%** Good support* Reasonable support X Notsuitable

FOUNDATION
© Butler Cox & Pé Limited 1988

Chapter 3 Deciding when and where to use CASE tools

individual or departmental requirement. Pro-
fessional development staff would normally
not be involvedin this type of development.

Restrict CASE tools to new
development or major changes
Because existing CASE tools are of little benefit for
maintaining or making minor enhancements to
existing software, their use should be restricted
to new developmentor to making major changes
to existing systems. As we explained earlier, CASE
tools will be useful in maintaining existing systems
only if existing software can be reverse-engineered
to make it conform with the development method
that the CASE tools are supporting. Tools for auto-
matic reverse engineeringarestill at a very early
stage of development. A few organisations have
attempted to carry out this process manually, but
the cost can be enormous, requiring many work-
years of effort, and the payback is not proven.
However, some organisations are convinced that
such an investment is necessary before the full
benefits can be obtained from CASE tools. One

German insurance company with an annual
systems budget of DM140 million ($85 million) is
planning to spend up to DM25 million ($15 million)
over five years on just such an exercise.
However, the availability of CASE tools does
affect the decision about whento replace exist-
ing software. In some instances, it will be more
cost-effective to redesign and reconstruct a
system than to maintain the existing soft-
ware. The increases in development productivity
brought about by the use of CASE tools, and the
easier maintenance of the software developed
mean that it is economic to replace existing
applications sooner(see Figure 3.3). Furthermore,
some systems managers who have implemented
CASE tools claim that existing applications have
to be rewritten sooner than originally planned
in order to bring as much of the workas possible
into the CASE environment. Unless this is done,
the development department will have to retain
the expertise and skills needed to maintain
software developed originally with non-CASE
tools. In turn, this will slow down the full

4 Cumulative

Figure 3.3 Use of CASEtools can bring forward the date whenit is cost-effective to redevelop existing systems

costs

Sudden increase caused
by cost of redeveloping
using conventional
techniques

/ a -Sudden increase ee aecaused by cost of ii
redeveloping using | ——
CASEtools

|
Cost of continuing f
to maintain
existing system

>
A B D Time
qe x years ————_——_|

<q x years ———_—|

Date at which decision is made to redevelop using case tools
Date at which cumulative costs of redeveloping using case tools are less than continuing to maintain existing system
Date at which decision is made to redevelop using conventional techniques
Date at which cumulative costs of redeveloping using conventional techniques are less than continuing to maintain
existing systemv0

oO
nY
r

nu
be
t

In each case, the time required to recoup the redevelopmentcosts is the same. Thus,if this time equals the maximum period
in which the redevelopmentcosts can be written off, existing systems can be redeveloped earlier by using CASEtools.

FOUNDATION
utler Cox & Partners Limited 1988 19

Chapter 3 Deciding when and where to use CASE tools

implementation of CASE tools throughout the
organisation.
Having decided whereCasEtools arelikely to pro-vide the most benefits, and identified the situa-tions where the tools should and should not beused, the next stage is to select the most
appropriate CASE-tool products.

FOUNDATION
> Butler Cox & Partners Limited 1988

20

Chapter 4
Selecting appropriate CASE tools

The most important consideration whenselecting
CASE tools is to ensure that the tools support the
development methods being used. Thefirst step
in the selection processis therefore to review the
development environment in terms of the methods
being used. It is also necessary to identify the
stages of the softwarelife cycle that the tools are
to support and to choose the CASE tools accord-
ingly. Some tools support just one or a few of the
stages. In this chapter, we show how consider-
ation of these factors can be used to create a set
of formal selection criteria, which are then used
to select the most relevant CASE-tool products.

SELECT TOOLS THAT MATCH
THE DEVELOPMENT ENVIRONMENT
In Chapter 3, we emphasised that many CASE tools
have to be used in conjunction with a develop-
ment method that is based on structured tech-
niques. Care must be taken to ensure that the tools
selected support the particular method. Not every
tool supports the techniques and diagramming
conventions used by a method, and sometools
support only one method, imposing the develop-
ment processes and rules that it contains. For
example, IEF Information Engineering Facility
supports only James Martin’s Information Engi-
neering method.
Someorganisations already makeeffective use of
a method, and,in this situation, CASE tools to sup-
port the method can be implemented without any
great difficulty. Other organisations’ use of methods
is not so successful and they will need either to
improvetheir use of the method,or to replace it
before they can implement CASE tools. Organi-
sations that do not yet use a development method
will have to choose and implement both a method
and CASE tools at the same time. The process of
selecting CASE tools therefore depends on the
methods that are already in use and how effec-
tive their useis.
WHERE METHODS ARE USED
EFFECTIVELY
Where development methods are already used
effectively, tools should be chosen to support the

FOUNDATION
Cox & Partners Limited 1988

methodsalready in place. Although it may seem
obviousto do this, many systems departments are
often tempted to select the latest tool with the
newest features, regardless of whetherit is suit-
able for use with the existing methods. Where
tools are being selected to support existing
methods, the cost of implementing the toolsis less
thanin othersituations, becauseit is not necessary
to select and introduce appropriate methodsat the
same time. In particular, it will not be necessary
to provide the training, and the support from the
method’s supplier, that is required to introduce
and use structured development techniques.
Most of the Foundation members weinterviewed
who had successfully implemented tools empha-
sised that they had not even considered replac-
ing the methods currently in use. For example,
Nationale Nederlanden, a Dutch insurance com-
pany, was already using SDM II, a systems de-
velopment method widely used in the Nether-
lands. (SDM II was developed originally by Pan-
data and was sponsored by five organisations,
including Nationale Nederlanden and the Dutch
PTT.) Nationale Nederlanden then decidedto im-
plement Pandata’s Systems Development Work-
bench (SDW) to support the method, and has
found that SDM II andits associated techniques
are now more rigorously adhered to. It has also
found that software quality is being improved
because SDW enables better documentation to be
produced and improves the consistency of the
designs.
Another organisation was already using LBMS’s
LSDM method,and, following an extensive review
of available tools, decided to support it with
LBMS’s Auto-Mate Plus analysis and design tool.
This organisation told us that it would have con-
sidered replacing LSDMonly if a tool supporting
another method provided an order-of-magnitude
improvement in productivity.
The needto select tools that support the methods
being used is strongest when the method covers
the analysis and design stages. In this situation,
there may be a CASEtool that has been designed
explicitly to support the method being used.
Sometimes, however,it is possible to select a CASE

21

rca

Mei)

Chapter 4 Selecting appropriate CASE tools

tool that can be used with a variety of methods
— Arthur Young’s IEW and Index Technology’s
Excelerator analysis and design workbench pro-
duct are two examples.

Another option is to use a tool that can be con-
figured to support different diagramming con-ventions, development standards, and methods.An example is the Virtual Software Factory pro-duct developed by Systematica, a small UK-basedsupplier of software-developmenttools.

WHERE THE USE OF METHODS
IS INEFFECTIVE
Our survey of Foundation members shows thatnearly 80 per cent of them already use methodsbased on some form of structured technique.However, several of the interviewees for theresearchfor this report told us that these methodsare often not used effectively — a view that cor-responds with the findings of Butler Cox’s con-sulting work in this area. An organisation thatfinds itself with methods in place that are notbeing used effectively will have either to improveits use of those methods or to replace themcompletely before implementing CASE tools.
The difficulty that can be encountered if CASEtools are introduced to support a poorly usedmethodis illustrated by the experience of anorganisation that had implemented a well-knowndevelopment method without thinking throughthe full implications. Subsequently, the CASE tooldesigned to support this method was also intro-duced. However, neither the method nor thetool has produced the expected benefits — therehas been no improvement in development pro-ductivity or in the quality of systems. This situa-tion has occurred because the method and toolhave not been fully accepted by the user andsystems communities, and are not used for alldevelopmentwork.In addition, this organisationuses a code generatorbut, since this is not inter-faced to the CASEtool, its prototyping capabilitiesare used instead of a design stage. This leads todesign inconsistencies and poor-quality systems.The experience of this organisation shows that ifthe method andthetools to supportit are not ful-ly effective and universally applied, the potentialbenefits of using CASE tools will not be realised.
Improve or replace the
development method
If a method is introduced as part of the imple-mentation of CASE tools, the costs associated withthe method will form the bulk of the total costs— of the order of 60 to 70 per cent according toour research. The decision to replace existingmethodsshould therefore not be taken lightly. It

bo bo
will always beless costly andless disruptive toimprove the method in place than to replace itcompletely. i
There are many reasons why existing develop-ment methods maybeusedineffectively. Theyin-clude difficulty with implementing the methods,insufficient or incomplete coverage ofthe soft-ware life cycle, and a mismatch between themethods and the developmentstyle of the organi-sation. Only after every possible way of reducingthe mismatch between the existing methodsandthe needs of the development department hasbeen examined, should replacing the methods beconsidered.
Difficulty in implementing a method shouldnotbe taken as a reason to replace it, unlessitscredibility has suffered too muchforit to be re-established. Implementing CASE tools to supportthe method will often go a long way towardssolving the problem. One company that wasalready using the Information Engineering methodand its associated techniques, and had formaldevelopment standards in place, decided toimplement IEF Information Engineering Facilitybecause of its code-generation capabilities. Theintroduction of IEF increased the interest inmethods and techniques among developmentstaff, and, as a result, the effectiveness of themethod improved considerably.
Incomplete coverage of the life cycle by anexisting method may require the use of com-plementary methods to cover more of the stages,or the extension of the existing method to supportthe missing stages. This approach may appearfragmented, but, if the methods are consistent,there is no reason whyit should not work. (Theuse of complementary methods to cover severalstages of the life cycle was discussed in detail inFoundation Report 57.)
Implement CASE tools to supportthe method
Regardless of whether an organisation decides toimproveits existing methods or to replace themcompletely, CASE tools need to be chosen carefullyto support the methods that will be used. If themethodis being improved or enhanced,tools thatsupport the existing method can be chosen. Thereis no need to wait until the improvementsto themethod have been implemented. Selecting andimplementingtools concurrently with the processof improving the method will allow developers tobecomefamiliar with the tools and to use theirfacilities within the framework of the method.Whereexisting methods are replaced completely,the new methodandthetools to support it shouldbe selected together, using the proceduresdescribed below.

FOUNDATION
Butler Cox & Partners Limited 1988

Chapter 4 Selecting appropriate CASE tools

WHEN DEVELOPMENT METHODS
ARE NOT USED
The situation where development methodsare not
used at present is the most difficult and costly in
which to implementCASEtools. It will be difficult
to convince development staff of the need to
introduce methodsbecauseit will be necessary to
persuade themthat the horror stories they might
have heard about the manual effort of imple-
menting structured techniques are not relevant
when CASEtools are used.It will also be necessary
to convince themthat the discipline and standard
working practices imposed by using structured
techniques bring worthwhile benefits. Senior busi-
ness and systems managers will also need to be
convinced that investment in a development
method is worthwhile, particularly the costs
involved in teaching developmentstaff and users
how to use structured techniques successfully.
Despite the difficulties, implementing CASE tools
in conjunction with introducing a method provides
the best opportunity for successfully introducing
such tools. It is also the best way of ensuring the
ideal combination of methods and tools, because
they can be evaluated together.
The most importantselection criterion, however,
is to ensure that the method chosen matches the
style of the organisation. If an inappropriate
method is chosen, it will be impossible to use it
successfully, regardless of how good the CASE
tools to support it are. Once the use of methods
has beendiscredited, it may be impossible to start
again. (Report 57 contains detailed advice about
how to select a development method that matches
the style of the organisation.)
Even though the selection of the tool is sub-
ordinate to the selection of the method, the
existence of tools to support a method is a
powerful incentive to choose the method. Systems
managers who have successfully implemented
methods and tools tell us that they would not
recommend introducing a method that cannot
be supported by tools.It is unlikely, however, that
there will be a clear choice between a method
that is supported by tools and onethat is not. In
practice, most development methods make use
of a limited range of structured techniques and
diagramming conventions, and some CASE tools
have been designed to support the techniques
rather than a specific method. Thus, the choice
of tool will often be determined by the level
of technical assistance, training, and support
available from thetool supplier,rather than by the
facilities provided by the tool.

SELECT CASE TOOLS THAT
SUPPORT AREAS OF CONCERN
Different generations of CASE tool and,to a cer-
tain extent, different tools within each generation,

‘ FOUNDATION
Cox & Partners Limited 1988

support different stages of the development life
cycle. Once an organisation has defined the areas
of greatest concern and, hence, the stagesof the
life cycle that need to be addressed,it can select
the appropriate tools. To do this, the systems
manager needs to know whattools exist to support
the different stages of the life cycle.

Some commentators categorise CASE tools accord-
ing to thelife-cycle stage they support — analyst/
designer workbenches or programming-support
environments, for example. We believe, however,
that it is more useful to categorise CASE tools
according to the range of stages they support,
becausethe cost and strategic impact of the tools
grows with increasing life-cycle coverage. We
define three categories of CASE tool: tools covering
asingle stage ofthelife cycle, tools that cover two
or more consecutive stages, and integrated
development environments designed to coverall
stages. A typical cross-section of products that fall
into each of these three categories is shown in
Figure 4.1 overleaf.
Tools covering a single stage usually (but not
exclusively) support the back endofthelife cycle,
typically the programming and implementation
stages. A typical example is Program Definition
Facility (PDF) from Michael Jackson Systems, used
for designing and generating programs. Another
is Gamma, a code generator from Knowledge-
ware Inc.
Tools covering several stages of the life cycle
typically support the front-endanalysis and design
stages. Most of the better known CASE products
fall into this category. A typical example is the
ADT Yourdon Analyst/Designer Toolkit, from
Yourdon International. This product covers the
analysis and design stages ofthelife cycle.

Integrated development environments are the
initial manifestation of I-CASE. They attempt to
coverall stages from planning through to imple-
mentation. In practice, none of the products
available today successfully achievesfull coverage
of all the stages, or provides complete integration
between life-cycle stages. The best-known and
most widely used product of this type is IEF
Information Engineering Facility from Texas
Instruments and James Martin Associates.
Another more recent developmentis the CASE*
series of products from Oracle. We believe that
these will go a long way towards providing a true
integrated development environment.

USE FORMAL CRITERIA AS
THE BASIS FOR SELECTION
The criteria used to select the specific tools that
best meet an organisation’s requirements will be
based on the factors discussed earlier in this

23

Chapter 4 Selecting appropriate CASE tools

Figure 4.1

Tools covering onelife-cycle stage
Telon (Pansophic SystemsInc); code
generation.
Netron CAP Development Center; (Netron
Inc) code generation.
PDF (Michael Jackson SystemsLtd);
program-design.
VAX Cobo! Generator (Digital EquipmentCorp); code generation.

Examplesof products in the three categories of CASE tools

Tools covering two or more
consecutive stages

Corvision (CortexCorp); detailand programming. :
ADT Yourdon Analyst/DesignerTool(YourdonInternational Ltd); analysis

* Framework only. Provides project database and managementfacilities to support othertools.

Integrated development environment“covering mostlife-cycle stages

IEF Information Engineering Facility
(Texas Instruments/James Martin
Associates).
FOUNDATIONIntegrated EnvironmentforSoftware Engineering (Arthur Andersen &Co Management Consultants).
CASE* (Oracle Corp).
IEW (Knowledgeware Inc/Arthur YoungInformation Engineering Services).
Maestro (Softlab Inc and Philips BusinessSystems Ltd).

chapter — the existing development environmentand thestagesofthelife cycle where the greatestproblemsoccur. Thefirst objective of establishingselection criteria is to narrow the field to ashortlist that matches the stated objectives andthe structure of the systems department. Thesecond is to select tools from the shortlist thatmeet the technical and commercial criteriaimportant to the organisation.
DEFINE THE SELECTION CRITERIA
Thefirst, and most important, groupofcriteria arethose used to narrow the field of tools that needto be considered in detail. These criteria arederived from the style of the organisation, thestated objectives of the systems department andthe type of development method currently beingused. The most appropriate category and genera-tion of tool can then be selected against thesecriteria. Other criteria formthebasis for selectingspecific tools. This second group ofcriteria areused to evaluate the technical merit of the toolsand the commercial and technical performance oftheir suppliers.

Identify appropriate categories
and generation of tools
The most sophisticated CASE tools with thegreatest life-cycle coverage are not necessarily thebest tools for a particular organisation. Imple-menting a complex integrated developmentenvironment supported by a mainframe-baseddevelopmentdictionary is an expensive exercise,and is appropriate only for large organisationsexperienced in using structured development tech-niques. Tools covering either one or a few stagesare less costly and require less effort to imple-ment, and may therefore be more appropriate for

24

less sophisticated or smaller organisations. One ofthe most importantparts of the selection processis establishing the most appropriate category oftool for a particular organisation.
Selecting the appropriate generation oftoolis alsoan important part of the process. Just as pro-gramming languages from earlier generations arestill available, there are different generations ofCASE tools on the market, each providing a dif-ferent level of functionality and different cost/benefits. (The characteristics of each generation,together with representative products, were shownin Figure 1.1 on page 3.)
The size of an organisation largely dictates themost appropriate category and generationoftool.In general, the benefits from using tools increasewith the size and complexity of the applicationsportfolio, but even small organisations with onlya few development staff can benefit from theability to speed up the production of designs anddocumentation thatresults from using an analysisor design tool.
With the exception of realtime applications (forwhich there are specialised developmenttools),the type of business application that will bedevelopedis not a particularly significant factorin selecting appropriate CASE tools. The under-lying analysis and design conceptswill be the sameregardless of the type of system being developed.Thesize of application, however, will affect thelevel of benefits that can be gained.
Define detailed evaluation criteriaThe next step in the selection processis to definethecriteria that will be used to perform a detailedevaluation of the shortlisted products. Apart from

: FOUNDATION
Butler Cox'& Partners Limited 1988

Chapter 4 Selecting appropriate CASE tools

cost, the criteria relate to two areas — the
technical merit of the product and the commercial
viability of the supplier.
The technical criteria include the ability of the
tool:
— To display graphically the data and activity

diagrams required by structured methods.
To meet the requirements of the systems
department in terms of response times and
shared use of workstations and development
dictionaries.

— To provide high level of consistency checking
between the diagrams produced at different
stages of the development process.

— To generate code automatically from the
output of the design stage.
To provide a high level of softwarereliability.

— To providelinksto other CASE tools, databases,
and data dictionaries.

— To be used in the organisation’s existing
hardware environment.

The supplier criteria are concerned with the
financial and marketposition of the supplier, the
availability of post-sales support, including
international support, the supplier’s commitment
to the product, and, where appropriate, the
relationship of the supplier with the product’s
developer. Typical detailed technical and supplier
criteria used by Butler Cox’s consultancy practice
are shownin Figure 4.2.
When considering the supplier criteria, it is
important to recognise that the market for CASE
toolsis relatively immature and that the dominant
suppliers and products are only now emerging.
Without doubt, the structure of the CASE-tool
supply industry will change considerably during
the next few years.
EVALUATE AVAILABLE PRODUCTS
AGAINST SELECTION CRITERIA
The final stage in the selection process is to use
the selection criteria defined aboveto identify the
specific CASE tools to be implemented. At first
sight, it may appearthat there is a wide range of
effective CASE tools from which to choose. The
reality is different. At a recent CASE conference
and exhibition in the United States, tens, rather
than hundreds,of suppliers were represented, and
many of the products were, in fact, only

FOUNDATION
) Butler Cox & Partners Limited 1988

Figure 4.2 Product and suppliercriteria for selecting

CASE tools

Productcriteria Supplier criteria
General
Provenreliability
Ease ofinstallation
Complete technical and
user documentation

The company
Financial strength
Commercial stability
Reasonable market share
Goodrelationships with
other CASE-tool suppliers
Broad customer base and
geographic coverage

Support
Acceptablelevel of
manpower devoted to
customer support
Provision of training
Provision of customising
support
Good response to
problems and queries

Environment
Support of acceptable
hardware bases
Ability to work within
acceptable software
environments
Appropriate multi-user
support
Ability to interface with other
environments

marginally associated with CASE. Furthermore,
many of the suppliers were small companies and
lacked the resourceseither to develop mainstream
CASE products or to support them in an
increasingly competitive market.
Assessing how well a particular product or its
supplier meets a particular criterion can, however,
be fraught with difficulties. There are few,if any,
detailed product reviews and the assessors will
usually have to rely on information provided by
the suppliers. The best course of action is to
discuss the products and suppliers with existing
users. Suppliers will generally be willing to provide
the namesof customers who can be approached
for this purpose.
Using the selection criteria will ensure that the
CASE tools that best meet the needs of the
business are chosen. However,it is at the end of
this stage that the most important task begins: the
implementation of the chosentools. We describe
how to do this in the next chapter.

Chapter 5
Managing the implementation of CASE tools

The long-term success of CASE tools depends on
how well their implementation and subsequent
use is managed. If their initial implementation
is not managed properly, their credibility will
be reduced, staff will not be motivated to use
them, and neither systems management nor user
management will feel committed to use them
in the future. The importance of managing the
implementation of CASE tools is certainly recog-
nised by Foundation members. As Figure 5.1
shows,nearly all of those who respondedto the
questionnaire believe that this is the most important
and difficult aspect of introducing CASE tools.
There are several actions required to ensure the
successful implementation of CASE tools. The first
is to gain the commitmentof both system and user
managementbefore the process of selecting and
implementing CASE tools begins. This can be
achieved through education and through presenta-
tions about, and demonstrations of, CASE tools.
The aim at this stage is to present realistic
estimates of the benefits of CASE tools and their
potential impact on the process of developing
software. It is also important to highlight the
benefits that improved software quality and
development productivity will bring to the
business.

A similar education programmeis required for the
development staff who will use the tools. This
time, the aim is to motivate them to want to use
the tools. There will also be a need for extensive
training of systems staff, not only in using the
tools, but also in using the structured techniques
thatthe tools will be used to support. In particular,
training in analysis skills will be required because
development methods based on structured tech-
niques place a much greater emphasis on the
analysis and design stages.

It is also important to create, at an early stage, an
enthusiastic team of independent staff committed
to the success of CASE tools. Once they have been
trained in using the tools, they should use them
to develop a pilot application. Thepilot application
is an important part of the implementation of
CASEtools. It is part of the learning process, and
will provide valuable lessonsforthe future.It will,
for example, provide a useful indicator of the
productivity and quality gains possible from using
CASE tools — provided, of course, that these
are measured accurately and can be compared
with equivalent measurements for applications
developed without the help of CASE tools.It is
important, however, to select a suitable pilot

Area of concern
Managing the implementation
of CASE
Impact on the systems
department
Choice of CASEtool

CASE technology

Justification

(Source: Survey of Foundation members)
Figure 5.1 Managing the implementation of CASEtools is the most significant concern

a

SS
EE
SS
0 10 20 30

Percentage of respondents quotingarea as their most significant concern

40 50 60 70 80 90
26

OUNDATION
© Butler Cox'& Partners Limite

Chapter 5 Managing the implementation of CASE tools

application. The application should be important
to the business but it should not be an extremely
urgent or critical application that has to be
developed in a very short time. Although CASE
tools will provide productivity benefits, it is
unrealistic to expect these to be achieved fully
with the pilot application.
The implementation process does not end with the
pilot application, however.It is then necessary to
extend the use of CASE tools throughout the
systems development department, ensuring that
each additional use is justified in its own right.
Finally, the CASE implementation team must
prepare for the future. CASE tools will evolve
rapidly over the next few years, andit is impor-
tant to plan, from the outset, to moveto later
generations of tools as they emerge.

GAIN SUPPORT THROUGHOUT
THE ORGANISATION
It is generally accepted that the successful im-
plementation of a new information technology
depends both on the support of senior business
managers and acceptance by the systems and user
communities. The level of senior-management
support required depends on the cost of purchas-
ing and implementing the CASE tools. Third-
generation tools covering severallife-cycle stages
will be the most expensive, and will have the
greatest strategic impact. They therefore require
the highest level of senior-managementinvolve-
ment and, hence,also require the greatest amount
of effort to convince senior managers that they
need to be involved in implementing the tools.

Senior managers need to be convinced that the
introduction of CASE tools is a business issue
rather than a technical one. They should therefore
be made aware of the benefits that will accrue to
the business from the investment in CASEtools.
Managers in the systems department should also
be involved in the decision-making process
because they will have to implementthedecisions.
Serious implementation problemscan arise if the
commitment of these managers to introducing
CASE tools is not gained in advance. For example,
a leading German insurance organisation met
significant resistance from the project managers
andgroup leaders, whofelt that they derivedlittle
direct benefit from the CASE tools that were
implemented.It was not possible to involve these
staff in the initial decision to introduce CASE tools
but, nevertheless, they were expected to take on
extra supervisory and controltasks as a result. To
counter the antagonism of these staff, this
organisation has nowinitiated a full training pro-
gramme and has arranged for full consultancy

FOUNDATION
tners Limited 1988

© Butler Cox &

support to be available. So far, however, these
moves have met with only limited success.

SYSTEMS DEVELOPMENT STAFF
The introduction of automation is usually most
strongly resisted by those whose workis to be
automated, and systems developmentstaff are no
exception. They need to be convinced that CASE
tools will bring benefits to the systems function
and to the businessas a whole.In particular, they
need to be made awareof the advantagesof using
CASEtools in terms of automating and supporting
the more difficult aspects of systems develop-
ment,facilitating the use of systems development
methods, and promoting an image of greater pro-
fessionalism. However, they should also be aware
of the significant amountof training and retrain-
ing that will be required, the need to acquire new
skills, and the changes in working practices that
will be brought about by the use of CASE tools.
Inevitably, there will be resistance to the changes.
For example, the Westpac Banking Corporation,
a leading Australian financialinstitution, believes
that, although the implementation of CASE tools
has enabled it to recruit new employees, one in
five of the existing staff were opposedto their
introduction. Failure to deal with the resistance
sensibly will result in lower staff morale and loss
of credibility for the CASE tools.
The best way of gaining the support of systems
staff is to set up a small team of key staff who will
act as the centre of expertise for CASE tools, and
who will form the project team for the pilot
application. Ideally, these people should already
be experiencedin the use of structured develop-
ment techniques. They must also be willing to pro-
mote the use of CASE tools amongtheir colleagues.
The Westpac Banking Corporation believesthat its
success in introducing CASE tools waspartly due
to its choice of a small numberof systems staff
who were willing to initiate change, to accom-
modate new ideas, and to champion the use of
CASE tools (see Figure 5.2 overleaf).

THE USER COMMUNITY
Because the implementation of CASE tools im-
proves development timescales and software
quality, it will have a direct impact on user depart-
ments. The emphasis in gaining the support of the
user community should therefore be on promoting
the benefits that CASE tools will bring in terms of
a closer fit between applications and user needs.
This will not be the only effect of CASE on users,
however. User departments should also be made
aware that the use of CASE tools meansthatit is
easier for them to be moreclosely involved in the
development process. Indeed, user involvement

27

Chapter 5 Managing the implementation of CASE tools

WESTPAC BANKING CORPORATION
The Westpac Banking Corporation is an Australian banking and
financial services organisation, with assets of A$70billion ($56billion)
and an annualinformation systems budget of around A$150 million
($120 million). It has 2,700 information systemsstaff, 600 of whom
are involved in systems development. Westpacfirst introduced
CASEtools early in 1986. Fifty per cent of the systems development
staff are now using CASE tools, supported by one workstation per
twoto three developers. Both productivity and software quality have
improved.
Westpac has a long history of trying to implement systems
development methods.Structured analysis and design techniques
were introduced in the 1970s to develop systems, but the
experimentfailed because the high level of manualeffort required
to keep the documentation up to date negated any productivity
benefits. When Westpac tackled the problem again in the mid-1980s,
it therefore had to start from scratch with new methods supported
by CASEtools.
The corporation adopted a step-by-step approach to case
implementation. The new,in-house method wasestablishedfirst.Then, small information systemsunits were created, separate from
existing departments,to exploit the new technology and to becomecentres of expertise and excellence. Only then did Westpac
Introduce case tools. Since early 1986, Westpac has been usingNetron/CAP DevelopmentCenter, a code generator from NetronInc, and IEW, from Arthur Young. It uses IEW in the early stagesof thelife cycle for defining user requirements and for systems
Figure 5.2 Small units of expert staff help to ensure successful implementation of CASE tools

analysis, and Netron/CAPfor generating Cobol source-code duringthe programming stage.
Westpac believesthatits step-by-step approach, coupled with seniormanagement promotion and commitment, middle managemententhusiasm, andthe use of a small numberof exceptional personnelto provide technical leadership, has ensured the successofits caseimplementation. It measures this success in terms of improvedproductivity and software quality. The main productivity benefit hasbeenin the programmingstage,through the generation ofre-usableCobol, and in software maintenance, through improveddocumentation and more comprehensible code.
Westpac has also found that greater emphasis on analysis anddesign has produceddefinitions of user requirements that are morerigorous,flexible, and clear. Positive feedback from users, whoapprove of an approachthat models systemsbefore theyare fullydeveloped,has also beenreceived. Usersfeelthat they have bettercontrol because they can manage the definition of their ownrequirements.
There are three important features of Westpac’s moveto castools.The first is that the corporation moved from a process-centredapproachto software development, to a data-centred approach.Second, it placed greater emphasis on specifying user requirements.With the support of IEW, staff can now spend moretime with moreusers, without any adverse impact on overall developmenttime.Third, systemsstaff can document new systems requirements andexisting systems in areas that were previously regarded as toodifficult to tackle.

is vital to the successful implementation of CASEtools.
It is therefore equally important for there to bea small nucleus of user staff who are committedto introducing CASE tools and who canact as thefocal point for promoting the use of CASEtechnology among the user community. Thesestaff should havethe respectof the rest of the usercommunity and be able to influence theiracceptance of CASE tools and the changes inworking practices required by the tools. Theyshould be involved right from the beginning,which means that user managers need to bepersuaded to release key people to work on theselection and implementation teams.
The involvement of user representatives on theCASE implementation team will help to ensure thatother team members are made aware of thebusiness implications of their actions. Ideally,these representatives should workfor the depart-ment for which the pilot application will bedeveloped, so they can experience at first handthe benefits of using CASE tools.

BE REALISTIC ABOUT
THE COSTS AND BENEFITS
In the same way that suppliers have over-sold the
benefits of CASE tools, there is a temptation for

28

systemsdirectors to emphasise their benefits andplay downtheir disadvantages.It is important toresist this temptation because raising expectationsto an unrealistic level is bound to lead to dis-appointment at a later stage. It is importanttherefore to emphasise that the cost of imple-menting CASE tools can be high and to setrealistic expectations for the benefits that can beachieved.
Manyof the Foundation members weinterviewedindicated that they had underestimated the costsand overestimated the benefits of CASE tools. AUK-based multinationaloil company,for instance,found that the costs associated with gainingsupport for the introduction of CASE tools, and thecosts required to train staff in how to use themethodsupportedby the tools were both at least50 per cent higher than expected, as was theamount of hardwarethat neededto be dedicatedto the tools. Consultancy-support costs were also
underestimated.
IMPLEMENTATION COSTS
ARE LIKELY TO BE HIGH
Although the cost of implementing CASE toolsdepends on the category and generation of thetools chosen,it can behighin all but the simplestapplications. The costs fall mainly into twocategories: technology (hardware and software),and support (training and consultancy). It is a

~ FOUNDATION

988

Chapter 5 Managing the implementation of CASE tools

mistake, however, to reduce resources in either
of the categories in order to reduce costs. Inade-
quate resources will inevitably lead to dissatis-
faction amongusers and will slow downthe rate
at which the use of CASE tools can be extended
after their initial implementation.
The high level of costs that can be required to
implement CASE tools is illustrated by a manu-
facturing organisation that has implemented
standalone analysis and designtools to support 30
development staff with one workstation per
developer. The total implementation costs in this
organisation were $1.39 million, or $46,500 per
developer, of which 45 per cent wasfor training
and consultancy support. An analysis of the
implementation costs is shownin Figure 5.3. The
costs would have been even higherif this organi-
sation had chosen to link each development
workstation to a mainframe-based development
dictionary. In addition, the training and con-
sultancy costs will, of course, continue after the
initial implementation. Some organisations have

Figure 5.3 Implementation costs for CASE tools can be
substantial

Costs of implementing analysis and design tools for 30
developmentstaff, with one workstation per developer.

Workstations $170,000
Software 600,000
Training 500,000
Consultancy support 120,000
Total $1,390,000 (or $46,500 per developer)

found that they require consultancy support for
two or three years.
Technology costs
The initial technology costs will vary according to
the generation of CASE tools chosen, and the
stages of the life cycle covered by the tools. The
later the generation, and the more extensive the
coverage, the more expensive will be the hard-
ware andsoftware costs. In general, however, our
research shows that the cost of software rep-
resents only about 20 to 35 per centof the initial
costs of implementing CASE tools in conjunction
with a developmentmethod.Figure 5.4 gives a full
breakdown of the costs of two representative
implementations, one for an integrated develop-
ment environment and the otherfor analysis and
design tools. The figure also gives the continuing
costs expected to occur duringthefirst three years
after the initial implementation.
The technology costs include the cost of hardware
and supporting software. The hardware costs
always include the cost of workstations for
development staff (we recommendat least one
workstation for every twostaff). Hardware costs
will also include increased use of central main-
frame resources where a mainframe-basedtool or
developmentdictionary is used. Workstation costs
vary greatly according to the type of equipment,
from a few thousanddollars for an MS-DOSpersonal
computer to tens of thousands for a powerful
workstation with high-resolution graphics capa-
bilities. Sometimes, the hardware costs will also
include the cost of a network to provide multi-user

Based on providing facilities for 30 developmentstaff

Cost item
Initial costs
Hardware (workstations or PCs)
Workstation software
Mainframe software
Implementation support
Training (including training in the method)
Total initalecosts7

Recurring costs (per year)
In-house technical-support group
Software maintenance
Hardware maintenance
Continuing training
Other (documentation, external meetings,. .)
Total recurring costs (per yea :
Total costs over 3 years

Total costs per developerover 3 years Average cost per developer per year

Figure 5.4 Typical costsfor installing and implementing two types of CASEtool over a three-year period

Integrated development
Analysis/design tool environment

$150,000 $150,00012,000 425,000= 250,00026,000 50,000400,000 500,000
$700,000 $1,075,000
$100,000 $100,00015,000 50,00015,00025,00020,000

"$210,000

FOUNDATION
Limited 1988

 ox & Part 29

Chapter 5 Managing the implementation of CASE tools

working, particularly where the development
workstations are not linked to a mainframe.
Supporting softwarecosts will vary with the type
of tool installed. For single-user, PC-based tools,
no additional software will be necessary. At the
other end ofthe scale, a full implementation of
an integrated development environment using a
mainframe-based development dictionary requires
not only the CASE tools, but also a database
management system to support them. Having to
install DB2, which is necessary with some tools
(notably IEF Information Engineering Facility), is
very expensive and requires careful thought. The
organisation’s whole strategy for databases and
database management systems, not just for CASE
tools, needs to be thought through and agreed.
Support costs
The support costs associated with implementing
CASE tools are likely to be more than the tech-
nology costs although this depends on the maturity
of the current development environment and the
experience of using structured techniques. For
example, the training costs will be high if a new
method has to be introduced as part of the
implementation. One Foundation membertold us
that training 50 development staff to use a new
method required each of them to attend a four-
weekcourse at a total cost of around $350,000.
This cost excluded the cost of productive time lost
during training and the learning period, which
would more than double the training cost. People
who have beentrainedin the use of a method can
take up to a year to becomefully productive.
In addition, to support the method duringits early
implementation, some consulting advice will pro-bably be required from the suppliers of themethod. The numberof consultants involved will
dependuponthesize of the development depart-ment, but a ratio of one full-time consultant to 50
development staff is typical.
Theintroduction of a new methodis also likely tolead to a need to reorganise the systems depart-
mentand to changeits procedures and practices.The personnelcosts associated with these changes
will depend on the extent to which theskills pro-file of the department has to be changed. Theimpact of these changesis discussed on page 31.
FULL BENEFITS CAN TAKE
SEVERAL YEARS TO ACHIEVE
In Chapter 2, we described the benefits that can
arise from using CASE tools. In practice, however,
the benefits are often overestimated and the time-
scale required to achieve themis underestimated.
Implementing CASE tools throughout the systems
department can require a substantial investment

30

in hardware, software, and education. Many
organisationswill authorise such investments only
if they are likely to produce a payback in.a
relatively short time — perhapsaslittle as two
years. The full benefits of CASE tools may take
longer thanthis to realise, and it is a mistake to
justify the investments on the basis of benefits
that cannot realistically be achieved within the
required paybackperiod.It is therefore sensible
to ensure that the implementation of CASE tools
can achieve short-term benefits, even if this
meansdelaying someof the longer-term benefits.
Short-term benefits are easiest to achieve with
CASE tools that cover one or a few life-cycle
stages, because these typesof tools can be imple-
mented reasonably quickly. In addition, the costs
of using them build up progressively. Integrated
development environments, however, require
a high initial investment, and whereit is impor-
tant to achieve short-term benefits, it may be
necessary to install a less sophisticated tool.
Implementing code-generating tools to support the
programming stage will usually provide the most
immediate improvement in development pro-
ductivity and software quality. These tools very
quickly increase the numberof lines of code per
programmer-day, and reduce the codingerrors.
One companytold us that it had been using the
Focus product as a meansof improving develop-
mentproductivity. It then decided to use the DB2
database management system for its mainstream
applications, which meant that it could no longer
use Focus for these applications (PL/1 was used
instead). However,the use of Focus had increased
productivity at the programmingstage by a factor
of five, so this companyhadto find an alternative
way of improving productivity when it reverted
to PL/1. It decided to install the Telon code
generator from Pansophic SystemsInc, a USsoft-
ware supplier, to increase coding productivity.
This wasa tactical decision that delivered the re-
quired short-term benefits, while providing the
time to find a product thatfitted in better with
the long-term strategy.

PREPARE FOR ORGANISATIONAL
CHANGES
Howevergood the match betweenan organisation
and the CASEtools it chooses,it is likely that both
the skills profile and the organisation of the
systems departmentwill have to changeas a result
of implementing the tools. The use of CASE tools
also requires more involvement by users in the
development process, and this will affect the
way in which user departments are organised.
The impact of these changes can be reduced by
planning ahead.

FOUNDATION
tier Cox & Part ited 1988

Chapter 5 Managing the implementation of CASE tools

CHANGESIN THE SKILLS MIX
One of the most profound changes that systems
departments will have to cope with as they imple-
ment CASE tools is the increased emphasis on
analysis and design skills, and a reduced emphasis
on programmingskills. (Figure 2.2 on page 10
showed how the use of CASE tools increases the
proportion of effort required at the analysis and
design stages and reduces the effort at the pro-
gramming stage.) In addition, as the use of CASE
tools increases, the proportion of development
resources used for software maintenance will
decrease, allowing more effort to be spent on
developing new applications.
The trend towards a reduction in the numberof
programmers wasvery evidentin a survey carried
out as part of Butler Cox’s Productivity Enhance-
ment Programme (PEP). More than 600 develop-
ment staff from seven organisations responded to
this survey. Only 16 per cent were classified as
programmers. Fifty-one per cent were classified
as analyst/programmers, and 4 per cent as analysts.
(The remainder were classified as systems
development managers, project managers, or pro-
ject leaders.)
A major consequence of the changing skills pro-
file in the systems departmentis a needto retrain
existing staff in analysis and design skills, in
addition to the training required to use new
development methodsand CASEtools. There will,
however, be someresistance because many pro-
grammerswill be either unwilling or unsuitable to
retrain as analysts. Much of the resistance can be
overcome by pointing out the ease with which
analysis and design can be carried out by using
CASE tools, and the image of increased profes-
sionalism produced by the rigorous use of the
methods they support. The team of staff pro-
moting the use of CASE tools will also have a role
to play in persuading their more conservative
colleagues to adopt the working practices
demanded by the methods andtools.
Theincreasing use of analyst/programmersis one
example of the use of CASE tools breaking down
the traditional boundaries between different
systems developmentroles. In general, there will
be a shift away from employing staff with
specialist technical skills, to staff with business
skills and skills in several developmentfunctions.
These changes will lead to a muchflatter organisa-
tional structure for the systems department,
which will typically consist of business analysts
and either analyst/programmers, or analysts and
designers who are provided with limited pro-
gramming-support staff.
In addition, there will be a need to create a
specialist team to support the use of both the

FOUNDATION
& Partners Limited 1988

methods and CASE tools, and to provide advice
about their use to the project teams. This team
could be formed from the staff who work on the
pilot project.
INCREASING USER INVOLVEMENT
In the past, several systems development tech-
niques and tools have been heralded as the
breakthrough that would allow users to be in-
volved directly in the systems development pro-
cess. Fourth-generation languages and data
modelling are two examples. However, the ex-
pected increase in user involvementhas not, by
and large, occurred.
Initially, CASE tools were not seen as a means of
increasing users’ involvement in the development
process, because analysis and design tools require
a knowledgeof structured techniquesthat are not
familiar to users. Our own research shows, how-
ever, that in many organisations, the implemen-
tation of CASE tools has resulted in increased user
involvement. For example, a major French manu-
facturing company, which uses Arthur Young’s
IEW,has found that the graphics capabilities of
the tool have encouraged users to participate in
the analysis stage, and to take more responsibility
for quality and for meeting project deadlines.
The interactive, screen-based facilities provided
by analysis and design tools encourages users to
‘sit-in’ at the analysis and design stages, and to
take a moredirect interest in the developmentof
their applications. There is no doubt that greater
involvement at these stages results in software
that better matchesthe users’ requirements. Some
users will resist the need to be involved more,
however,believing that software developmentis
the responsibility of systems professionals. Organi-
sations should make strenuousefforts to overcome
this resistance, because the ultimate success of
CASE tools in improving software quality depends
on increased user involvementat the analysis and
design stages.
The need for development staff to work more
closely with users highlights the need for analysts
and designers to have effective interpersonal com-
munication skills. Sitting beside a user who is
directly involved in the developmentprocess re-
quires very different skills from those required to
write a specification that is given to the user for
approval.

START WITH AN APPROPRIATE
PILOT APPLICATION
Thefirst application that is developed using CASE
tools should be

a

pilot project. The aim is to check
that the chosen tools (and the methods they

31

Chapter 5 Managing the implementation of CASE tools

support) will workin the particular organisation,
and to lay down the groundrules for extending
the use of the tools throughout the systems
department. The pilot application is not part of the
process of selecting CASE tools. The application
chosen should therefore be one that will provide
real business benefits and that can be used to
measure both the performance of the develop-
ment team and the quality of the software pro-
duced. It should be sufficiently important to the
business to ensure that the user department is
fully committed to implementing it successfully.
However, it should also be an application where
a short delay in implementing it would not be
disastrousforthe business. Even so, the potential
users of the pilot application should be made
awareofthe risks involved in using new methods
and tools to developit.
It is also important to select an application that
is typical of the bulk of the mainstream develop-
ment work done by the systems department. A
primary aim of the pilot project is to begin to build
up experience of using the CASE tools that can be
transferred to other project teams and appli-
cations as the use of the tools is extended. For
example, a database application should be selected
if much of the new development workis database-
oriented.
A successfulpilot application will also ensure that
the managersof the user departmentin questionare enthusiastic about the use of CASE tools. Theywill then be powerfulallies in extending the useof the tools throughout the organisation. Thecharacteristics of a successful pilot project are
listed in Figure 5.5.
MINIMISING THE RISKS
Using new tools for the first time alwayscarriesthe risk that development could take longer andcost more than if traditional approaches wereused. The deadlines for the pilot project shouldtherefore be set to take accountof this. The risksassociated with the pilot application can also beminimised by ensuring that the pilot-teammembersare fully trained in using the tools (and

Figure 5.5 Successful pilot projects have commoncharacteristics

An important business application
Realistic time constraints
User management committed to the use of CASE tools

; ully trained in both tools and methods, and,if= xperienced in theuseof the methods
Project planned effectively, productivity and quality measured,and results audited

32

the methods they support) before commencingthe
project.
Establishing realistic deadlines
One of the purposes of implementing CASE toolsis to speed up the systems development process.Thus, there is a temptation to set the deadlinesfor the pilot project to prove that this doesin facthappen. However, considerable slack should bebuilt into the timescale for the pilot applicationbecauseit is inevitable that unforeseen problemswill occur as the CASE tools are used forthefirst
time. It is usually unreasonable to expect toachievethe full productivity increasesat thepilotstage. Developing the pilot application within
existing timescales will normally be sufficient tojudge the pilot use of CASE tools to be a success.
If tight deadlinesare set, thereis a risk that theywill be missed. The result will be a demotivated
project team, and the CASE tools will be dis-credited in the eyes of user management.
Training the pilot team
The staff selected to provide the core expertise
about CASE tools should be usedforthe pilot team.
They will already be fully committed to the ideaof using CASE tools, and the pilot project willprovide them with practical experience of using
the tools.
Before starting on thepilot, all the team membersshould befully trainedin the useof the tools and,if possible, experienced in using the methodssupported by the tools. Doing this will help toshorten their learning curve and will ensure thatthe pilot application provides a good indication ofhow well the tools will perform once they have
been fully implemented.
MEASURING PERFORMANCE
Thelessons learnt from the pilot project will bemaximisedif the effort involved and the qualityof the software produced is measured accurately.These measurements will provide valuable in-formation for the future and a comparison,however broad, with the past. The ideal is todevelop the same application with and withoutCASE tools and comparethe results, but few, ifany, organisations can afford this luxury. Thealternativeis to compare the measurements fromthe pilot project with those from past projects, or,if these do not exist, with measurements fromapplications developed at the same time as thepilot project.
These comparisonsallow the impact of CASE tools
on development productivity and on software
quality to be assessed. However, the absence ofproductivity improvements does not necessarilyimply that the pilot project has shown that theCASE tools will fail to deliver the predicted
benefits. Productivity improvements usually appear

FOUNDATION
Butler Cox & Partners Limited 1988

Chapter 5 Managing the implementation of CASE tools

only in the long term; the more immediate benefit
of using CASE tools is improved software quality.

EXTEND THE USE OF CASE TOOLS
All of the decisions made and the actions taken
up to the pilot-application stage are aimed at
creating a foundation on which the use of CASE
tools can be extended throughout the organi-
sation. The implementation process does not end
with a successfulpilot application but continues
until the CASE tools are used for all aspects of
software development for which they are appro-
priate. The increasing use of the tools must,
however, be continually justified. There will
always be areas of software development where
other tools will be more appropriate.
The data gathered in the original justification
exercise and in the course ofthe pilot project will
also be useful in justifying the wider use of CASE
tools. The lessons learnt from the pilot project will
also help to extend the use of the tools, by
providing the basis for training developmentstaff,
for refining development methods so they meet
the needs of the business better, and for
improving working methodsto make the best use
of the tools.
The measuresgathered from the pilot application
must be made on a continuing basis, for all
projects, regardless of whether CASE tools are
used. Comparing development productivity at
each stageof thelife cycle will help to provide the

* quantitative information required to justify the
further use of CASE tools. Measurable improve-
ments in terms of reduced maintenance costs
resulting from better analysis and design will
appearonly in the medium to long term and will
thus be identified only by a long-term measure-
ment programme.

However, the use of CASE tools is not the only
factor contributing to improving quality and
productivity. Project-management skills, indi-
vidual technical skills and working practices, and
development schedules all play a part, and they
should also be monitored continuously.

PREPARE FOR THE FUTURE
CASEtools arestill developing rapidly, and there
will be considerable developments during the next
few years. It is necessary, therefore, to consider
the likely changes as CASE tools are initially
implemented so that the transition to later
generations of tools can be as smoothaspossible.
The most significant developments will occur in
the field of 1-CASE tools. Migrating to such tools

FOUNDATION
Butler Cox & Partners Limited 1988

will not be straightforward, and consideration
should be given to ways of protecting theinitial
investments madein CASEtools.
MOVING TOWARDSI-CASE
The ultimate aim is to provide an integrated set
of CASE tools that coverall stages of the software
life cycle, beginning with the definition of business
requirements, moving through the analysis and
design stages, then to the automatic generation of
programs,andfinally facilitating the maintenance
of operational systems. An associated goal is to
provide CASE tools that can ‘read’ existing
programsthat were notoriginally developed with
CASE tools, and automatically generate designs
that conform to the method supported by the
tools. It will be someyears before integrated CASE
tools with these abilities are available, but the
emergence of integrated development environ-
ments and the growing number of partnerships
between suppliers of different types of tools are
beginning to result in products that display some
of these characteristics. The likely future develop-
ments in CASEtools are illustrated in Figure 5.6.
The cost of developing a fully integrated set of
CASE tools to cover every aspect of the develop-
mentlife cycle is enormous, however. ITT, one of
the CASE-technology pioneers, has estimated that
such a set of LCASE tools would takefive to six
years to develop, at a cost of $85 million for the
software alone. Texas Instruments, the developer
of IEF Information Engineering Facility, is said to
have spent $50 million on developing the product,
and is spending up to $10 million per month on
promoting and marketing it in an attempt to
dominate the industry. Even the cost of develop-
ing and supporting a CASE tool that covers just one

Figure 5.6 There will be significant developmentin
CASEtools

Likely developments
Appearanceof simple reverse-engineering
tools that will create system designs from
existing programs and data structures

Timescale
1988/1989

at can be
customised to any language or methodi

for
reverse-engineering

we a Dela = Ss
Use of expert systems to provide advice
during the design stage

1990/1991

33

Chapter 5 Managing the implementation of CASE tools

stage of the life cycle can run into millions of
dollars. Because of the high costs involved, some
commentators believe that no single company has
either the resourcesor the inclination to develop
a full set of LCASE tools.
Webelieve that the large and increasing cost of
product development, as well as increasing com-
petition in the marketplace, will lead to a re-
duction in the numberof suppliers able to supply
a fully integrated set of CASE tools. Although, in
the short term, there will be an increase in the
numberof CASE-tool suppliers, in the longer term
companies providing complementary products will
merge, and smaller specialist companies whose
products complete the portfolio of more powerful
competitors will be taken over. Those whoretain
their independencewill survive in niche markets
or will form partnerships with other suppliers.
I-CASE is beginning to emerge
but progress will be slow
The concept of LCASE is based on the use of a
database and data dictionary that store infor-
mation about the business, about data, and about
the activities modelled by computer systems.
L-CASE tools will ensure that these different types
of information are integrated and used con-
sistently throughout the software life cycle and
throughout the applications portfolio. The logical
and physical databases used by operational systems
will be derived from the information held in the
data dictionary.
Most I-CASE products are likely operate in develop-
ment and operational environments that support
mainstream database management systems,
especially IBM’s DB2. Several suppliers have
already produced products in this category — one
exampleis Texas Instruments’ and James Martin’s
IEF Information Engineering Facility. This product
provides a mainframe-based development dic-
tionary that is, in fact, a DB2 application, andit
generates SQL (Structured Query Language)
statements that are compatible with DB2. Another
example is Oracle’s CASE* products, which use
Oracle’s own database management system, but
which will eventually generate SQL statements
that are DB2-compatible.
Progress towards integrated CASE tools is also
being madeas theresult of partnerships between
suppliers of different types of tool. For example,
Knowledgeware and Arthur Young have bought
Tarkenton Software’s Gammacode generator to
interface to the IEW workbench product, and
Index Technology has agreed to interface its
Excelerator analyst/designer workbench to Pan-
sophic Systems’ Telon code generator.
Three factors are, however, holding back the
emergenceof I-CASEtools.Thefirstis the difficulty

34

of producing code automatically from the output
of the analysis and design stages. The best that has
been achieved so far is to generate code from
program-structure diagramsor activity diagrams:
The second factor is the difficulty of creating
reverse-engineeringtools that can be usedto bring
existing software into the CASE environment. The
hopeis that artificial intelligence techniques can
be used to analyse existing software and extract
the underlying business processes. The third, and

possibly most important,factor is the lack of com-
monly agreed standards for CASE tools. Without
standards,it will be difficult, if not impossible, to
integrate tools from different suppliers.

The two areas where standards matter most are
in exchanging data between CASE tools, and in
allowingtools designed to operate in one hardware
and software environment to be used in a dif-
ferent environment. Some progress is being made
in both of these areas. The ANSI and the ISO
standards organisations have been workingsince
the early 1980s to define a common data-
dictionary standard known as Information
Resource Dictionary Standard (IRDS). The original
aim of this standard was to make it easier to
transfer data between data dictionaries.It is to be
extended, however, so that it can be used as a
standard for the development dictionaries used
with CASE tools.

Standards that will allow CASE tools to be used in
different hardware and software environments
are also being developed. In Europe,for example,
the Portable Common Tool Environment (PCTE)
has been proposed by a consortium of European
companies, which developed the proposalsas part
of the European Community’s Esprit research pro-
gramme. PCTEis essentially a frameworkforsoft-
waretools that defines a core standard interface
for use by tool suppliers. This standard is likely
to be adhered to more by European CASE-tool sup-
pliers than by their counterparts in the United
States, who will use their own standards, which
are essentially incompatible with PCTE. PCTE has
not, however, been formally adopted as a
standard, and commercial tools conformingto it
are not yet available. This uncertainty about stan-
dards is likely to continue for several years,
creating problems both for suppliers and user
organisations that wish to integrate discrete CASE
tools.

Migration to I-CASE will not be
straightforward
The current immaturity of CASE tools, the
impending changesin the structure of the CASE-
tool supply industry, and the increasingly rapid
advancesin thefacilities that CASE tools provide,
will inevitably mean that some organisations

OX FOUNDATION

Chapter 5 Managing the implementation of CASE tools

implementing CASE tools today will subsequently
have to migrate to other products. Furthermore,
the absence of standards means that many of
today’s products use proprietary design structures
and project-data structures, making both inte-
gration and future migration difficult. Such tools
are ‘closed’, in that they do not makeit easy to
transfer data to other tools and to other
environments.
The problemsof migrating to the next generation
of CASE tools will therefore be formidable. In
many respects, the problemsare similar to those
faced by organisations as they move from con-
ventional hierarchical databasesto relational data-
bases. In general terms, the advice given in
Foundation Report 64, Managing the Evolution
of Corporate Databases, will be relevant. Un-
doubtedly, the suppliers of more advanced in-
tegrated CASE tools will provide some degree of
automated support for migrating to the new CASE
environment. Even so, the effort required will be
significant.
PROTECTING THE INVESTMENT
IN CASE TOOLS
With the situation changing so rapidly, organisa-
tions obviously need to take steps to protect their
investment in CASE tools and the methods sup-
ported by the tools. Although the investment in
the tools themselves will be significant, it will be
small in comparison to the investment in the

methods supported by the tools. Training staff in
how to use a method,and establishing the work-
ing practices required by the method, requires
considerable investments of time and money.It
is important, therefore, to perceive the tools as
being subordinate to the method, and to make a
long-term commitment to using the method.
Hence, CASE tools should be replaced only if the
new tools support the same method.
The investment represented by data about the
organisation’s computer applications that is stored
by the CASEtools also needsto be protected. The
costs of creating this data will often represent tens
of years of effort. When migrating to new tools,
it may not be possible to transfer the data to the
new tools. It is therefore important to assess how
easy it will be to transfer data from the CASE tools
currently being implemented. Although common
data-structure standards do not yet exist, some
tools are ‘open’, in that they providefacilities for
at least the partial transfer of data to other
environments.
A second way of protecting the investment in
CASE tools, which is particularly relevant if an
integrated development environmentis being im-
plemented, is to choose products that either use
a mainstream database management system such
as DB2, or that provide interfacesto it. This will
make it possible to migrate to new tools while
maintaining the analysis and design dictionaries
in the same environment.

REPORT CONCLUSION
In this report, we have emphasised that CASE tools
are not the solution to every systems development
problem. To be effective, most CASE tools have to
be used to support a development methodthatis
based on structured techniques. The tools will
therefore be only as effective as the methods and
techniques are. Nevertheless, CASE tools can pro-
vide substantial benefits both in terms of improv-
ing software quality and increasing the pro-
ductivity of developmentstaff.
However, it is necessary to choose tools that
address the life-cycle stages where the greatest
problems occur. Different types of CASE tool sup-
port different stages of the life cycle. No CASE tool
yet fully supportsall stages, although a few pro-
ducts now partially cover the complete life cycle.
Current CASE tools also have other limitations:
they offer little help for maintaining existing
systems developed originally without CASE tools,
and they are unsuitable for use by business users.

FOUNDATION
©Butler Cox & Partners Limited 1988

The implementation of CASE tools needs to be
managed carefully. The investment in hardware
and software can be considerable — but the cost
of training staff in how to use the methods sup-
ported by the tools is even more.It will also be
necessary to change the organisational structure
of the systems department. CASE tools encourage
a greater emphasis on the design and analysis
stages, and less emphasis on the programming
stage.

Finally, it is necessary to take steps to protect the
investment made in CASE tools and the methods
they support. CASE tools are evolving rapidly and
it will probably be necessary to migrate to a new
generation of tools in the future. The tools im-
plemented today should be chosen with this in
mind. The most critical decision, however, is to
select a development method, and then choose
CASE tools to support the method.

35

Butler Cox
Butler Cox is an independent management consul-
tancy and research organisation, specialising in the
application of information technology within com-
merce, government, and industry. The company
offers a wide rangeof services both to suppliers and
usersof this technology. The Butler Cox Foundation
is a service operated by Butler Cox on behalf of sub-
scribing members.
Objectives of the Foundation
The Butler Cox Foundationsets out to study onbehalf
of subscribing membersthe opportunities and possible
threats arising from developments in thefield of
information systems.

The Foundation not only provides access to an
extensive and coherent programmeof continuous
research, it also provides an opportunity for
widespread exchange of experience and views
between its members.
Membership of the Foundation
The majority of organisations participating in the
Butler Cox Foundationare large organisations seeking
to exploit to the full the most recent developments in
information systems technology. An important
minority of the membership is formed by suppliers
of the technology. The membershipis international,
with participants from Australia, Belgium, France,
Germany,Italy, the Netherlands, Sweden, Switzer-
land, the United Kingdom,and elsewhere.

The Foundation research programme
The research programmeis plannedjointly by Butler
Cox and by the memberorganisations. Half of the
researchtopics are selected by Butler Cox and half by
preferences expressed by the membership. Each year
ashortlist of topics is circulated for consideration by
the members. Memberorganisations rank the topics
according to their own requirements andasa result
of this process, members’ preferences are determined.

Before each research projectstarts there is a further
opportunity for membersto influencethe direction of
the research. A detailed description of the project
definingits scope and theissuesto be addressedis sent
to all membersfor comment.

The report series
The Foundation publishessix reports each year. The
reports are intendedto be read primarilyby senior and
middle managers who are concerned with the
planningofinformation systems. They are, however,
written in astyle that makes them suitable to be read
both by line managers and functional managers. The
reports concentrate on defining key management
issues andonofferingadvice and guidance onhow and
when to address those issues.

BUTLER COX FOUNDATION
©Butler Cox & Partners Limited 1988

 FOUNDATION

Selected reports
8 Project Management

20 The Interface Between People and Equipment
24 Investment in Systems
25 System Development Methods
27 Developments in Videotex
28 User Experience with Data Networks
29 Implementing Office Systems
30 End-User Computing
31 A Director’s Guide to Information Technology
32 Data Management
33 Managing Operational ComputerServices
34 Strategic Systems Planning
35 Multifunction Equipment
36 Cost-effectiveSystems Development and Maintenance
37 Expert Systems
38 Selecting Local NetworkFacilities
39 Trendsin Information Technology
40 Presenting Information to Managers
41 Managing the Human Aspects of Change
42 Value Added Network Services
43 Managing the Microcomputerin Business
44 Office Systems: Applications and Organisational Impact
45 Building Quality Systems
46 Network Architectures for Interconnecting Systems
47 The Effective Use of System Building Tools
48 Measuring the Performanceof the Information Systems

Function
49 Developing and Implementing a Systems Strategy
50 Unlocking the Corporate Data Resource
51 Threats to Computer Systems
52 Organising the Systems Department
53 Using Information Technology to Improve Decision

Making
54 Integrated Networks
55 Planning the Corporate Data Centre
56 The Impact of Information Technology on Corporate

Organisation Structure
57 Using System Development Methods
58 Senior Management IT Education
59 Electronic Data Interchange
60 Expert Systems in Business
61 Competitive-Edge Applications: Myths and Reality
62 Communications Infrastructure for Buildings
63 The Future of the Personal Workstation
64 Managing the Evolution of Corporate Databases
65 Network Management.
66 Marketing the Systems Department

Forthcoming reports
Mobile Communications
Software Strategy
Electronic Document Management
Human Resources for the Systems Function
Future Information Technologies
Managing Multivendor Systems

Availability of reports
Members of the Butler Cox Foundation receive three
copies of each report upon publication; additional
copies and copies of earlier reports may be purchased
by members from Butler Cox.

Reger
LeemeeneTRUerieebee
aae
UeedSea
BorgHogguerstraat 701,eyRsBebg

Pad
eon aeae

eee aaedeneeeae

|

Germany(FIR
eeeny
eeaeBLsabes

(89)525.4001, Pax(080)52335 15
UnitedStatesofAmericaSeed10)Kast Sth Street, New York,NY 10155, USASee)
Beard

VetereeGaiOeoemreBAeest
ee
Bdeae

re

ee

|

meedeSenro
Mealya

CeoreagAOrieted
bee oned
BemSe

a

SeeeeEe
SeedSeetehetetetehonaietearedLed

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42

