—— e e ———— A~
= T = e = m & 2 aw

T = ==
) FEs H
s = L H
& & = H
— =

W s =
8 R = -
8 = - am
i & H -

Computer-Aided Software BUTLAIUUA

Engineering (CASE) - FOUNi)z;&T ION

Research Report 67, December 1988

-'-’..‘.---u-,...-

FOUNDATION

Computer-Aided Software Engineering (CASE)

Research Report 67, December 1988

Butler Cox & Partners Limited

LONDON
AMSTERDAM MUNICH NEW YORK PARIS

Published by Butler Cox & Partners Limited
Butler Cox House
12 Bloomsbury Square
London WCI1A 2LL
England

Copyright @ Butler Cox & Partners Limited 1988

All rights reserved. No part of this publication may be reproduced by any method

without the prior consent of Butler Cox.

Availability of reports
Members of the Butler Cox Foundation receive three copies of each report upon publication;
additional copies and copies of earlier reports may be purchased by members from Butler Cox.

Photoset and printed in Great Britain by Flexiprint Ltd., Lancing, Sussex.

FOUNDATION

Computer-Aided Software Engineering (CASE)

Research Report 67, December 1988

1 CASE: A new term to describe existing concepts
Definition of CASE tools
A brief history of CASE
The growing demand for CASE tools
Purpose of the report

2 CASE tools promise significant benefits
Software quality can be improved
Development productivity can be improved
Benefits depend on the use of methods

3 Deciding when and where to use CASE tools
Clarify the objectives for using CASE tools
Recognise the limitations of CASE tools

4 Selecting appropriate CASE tools
Select tools that match the development environment
Select tools that support areas of concern
Use formal criteria as the basis for selection

5 Managing the implementation of CASE tools
Gain support throughout the organisation
Be realistic about the costs and benefits
Prepare for organisational changes
Start with an appropriate pilot application
Extend the use of CASE tools
Prepare for the future

Report conclusion

FOUNDATION

© Butler Cox & Partners Limited 1988

Contents

LW =~

11
12

14
14
16

21
21
23
23

26
27
28
30
31
33
33

35

Management Summary

A Management Summary of this report has been published separately and distributed
to all Foundation members. Additional copies of the Management Summary are available
from Butler Cox

Chapter 1

CASE: A new term to describe

A recurring theme of Foundation Research Reports
over the years has been to provide Foundation
members with advice about how to improve the
process of developing application systems. The last
time we examined this subject in detail was in
Foundation Report 57, Using System Development
Methods, which was published in June 1987. In
that report, we emphasised that no one develop-
ment method was suitable for all types of de-
velopment process. We also highlighted the fact
that methods are an incomplete solution to systems
development problems because, by themselves,
they do not improve development productivity.
We concluded that earlier report by saying that
“Improvements in productivity come from using
development tools to automate the activities
required by the methods. Indeed, many methods
are almost unusable without appropriate tools.”

In the 18 months since Report 57 was published,
that basic message has not changed. Since then,
however, considerable media attention has been
given to computer-aided software engineering
(CASE), which is now being heralded as the solu-
tion to the application development problems that
organisations have had for many years. At first
sight, the concepts of CASE appear to be all-
embracing and revolutionary. In theory, they are.
The state of the art today, however, is much more
modest.

Like so many ‘hot’ topics in the IT field, the term
CASE has been used to describe something that is
at present essentially simple and straightforward,
but which has the potential to evolve into
something much more wide-ranging. The temp-
tation is to believe that the promised evolution is
just around the corner. In fact, the evolution may
not occur in the directions predicted and may take
alot longer than many pundits believe. An analogy
is the development of ‘office automation’. Ten
years ago, grand theories of office automation
were extrapolated from the basic word process-
ing systems that were then coming into use. How
many of those predictions have actually been
fulfilled?

The reality today is that, by and large, the term
‘software engineering’ is used to describe develop-

FOUNDATION

© Butler Cox & Partners Limited 1988

existing concepts

ment techniques that have been in common use
for several years, and CASE tools are the develop-
ment tools used to automate those techniques. In-
deed, many of the tools described in Report 57 can
now be described as CASE tools. At present, soft-
ware engineering corresponds largely with struc-
tured analysis and design techniques, and CASE
tools are the development tools used to automate
those techniques.

This implies that many CASE tools (and the
methods based on structured techniques that they
support) apply only to a limited part of the appli-
cations software life cycle. As we pointed out in
Report 57, development methods covering the
whole of the life cycle (planning, analysis, design,
programming, testing, implementation, and main-
tenance) do not yet exist. Thus, by definition,
CASE tools covering the whole of the application
life cycle do not yet exist either. However, the cur-
rent generation of CASE tools is being extended,
both to link back to the planning stage of.the life
cycle and to link forward to the programming
stage. Thus, the output from analyst/designer
workbenches (which are typical of mainstream
CASE tools) can now be used as the input for code-
generation tools. Although a few products are now
beginning to address all stages of the life cycle,
they do not yet support fully all the activities, and
it will be several years before an integrated set of
CASE tools exists, able to support fully the whole
of the applications software life cycle.

DEFINITION OF CASE TOOLS

Although the term ‘CASE tool’ is today largely
used to describe tools that support only the
analysis and design stages of the software-
development process, it is increasingly being used
to describe any tool that supports any stage of the
software life cycle. In this report, we use the term
‘CASE tool’ in this wider context. However, we
specifically exclude programming languages,
fourth-generation languages and other advanced
system-building tools, and administration and
project-management tools from the definition.
Thus, tools with the following characteristics and
facilities are included in our definition:

Chapter 1 CASE: A new term to describe existing concepts

— Standalone tools based on PCs or engineering
workstations. Typically, these tools provide
graphics and text facilities for use by analysts
and designers. In particular, the facilities are
used to create and maintain the data-
structure and activity diagrams required by
structured development techniques.

— A dictionary that is used to hold the data and
activity details about an application. Such a
dictionary can be used in conjunction with a
standalone analysis and design tool and will
therefore be based on a PC or workstation.
It may also be linked to a larger central dic-
tionary and database management system
that provides facilities for holding and manag-
ing the data for all stages of the software life
cycle and for several separate, but related,
applications. Often, the central dictionary
and database management system will be
based on a mainframe.

— Tools that ensure that the application design
remains consistent as it progresses through
the life cycle. Structured techniques require
increasingly detailed diagrams to be developed.
These tools ensure that no logical incon-
sistencies are introduced as the additional
detail is added.

— Automatic code- and database-generation
facilities that convert the output from the
design stage to programs and database struc-
tures for the target hardware and software
environment.

The colour plates on pages 5 to 8 show the types
of graphical displays produced by analysis and
design CASE tools.

A common feature of CASE tools is that they
automate the techniques on which systems
development methods are based. Thus, CASE tools
are meant to be used by systems development
staff — principally analysts and designers, but also
to a lesser extent, by programmers.

It is important to distinguish between a CASE tool
and an I-CASE or integrated-CASE tool. No full
I-CASE tools yet exist, but when they do, they will
cover the entire software life cycle, and will
manage all information (data models, data dic-
tionary, databases, activity models, and so on) for
the entire applications portfolio. An I-CASE tool
will use an integrated database management
system and data dictionary to store and manage
all of this information. It could also provide
project-management facilities.

A BRIEF HISTORY OF CASE

The term CASE was first coined in the early 1980s,
but has received general attention only from the

mid-1980s. Although the acronym is new, the idea
of automating parts of the systems development
process is much older. Tools for generating code
from decision and parameter tables have existed
since the early 1970s, as has computer support for
the production of textual descriptions of system
specifications. Thus, the first generation of what
are now known as CASE tools were (and still are)
used to create program code from other pseudo
languages. An example of one of these early tools
is the Pacbase code generator, available from CGI
Informatique, a French software supplier.

The next generation, and the first to be called
CASE tools, appeared in 1984. These tools provide
support for the analysis and design stages of the
life cycle, in particular by providing graphics-
based facilities for designing application systems.
Initially, these tools provided little more than
facilities for drawing and maintaining the charts
and diagrams required by structured design tech-
niques. The more sophisticated tools can now
check the consistency of related diagrams. One of
the earliest examples of this type of tool, and still
one of the market leaders, is the Excelerator
analyst/designer workbench, which is available
from Index Technology Corporation.

It was at this point that methods suppliers became
interested in providing CASE tools to support their
development methods. Many of these have entered
the market, including James Martin Associates
with its IEF Information Engineering Facility, Ar-
thur Young with IEW (Information Engineering
Workbench), and Arthur Andersen with FOUN-
DATION Integrated Environment for Software
Engineering. More recently, database software
vendors have become aware of the potential for
using their database and data-dictionary products
as the basis for CASE tools, and they began, in
1987/88, to provide graphics-based interfaces to
their products so they could be used in this way.

The first commercial integrated project-support
environments (IPSEs) appeared at about the same
time as second-generation CASE tools. To some
extent, IPSEs fit uneasily into our definition of
CASE tools. Rather than providing direct technical
support, they provide a framework for project
administration and management within which
other CASE tools may be used. The majority of
IPSEs available today support realtime and scien-
tific software development and are distinet from
IPSEs for business applications. The first business-
oriented IPSEs appeared in the late 1970s; the
most widely used today is Maestro from Softlab
and Philips.

The third generation of CASE tools, which
represents the state of the art today, is evolving
from the two previous generations. In particular,

FOUNDATION

© Butler Cox & Pariners Limited 1988

Chapter 1 CASE: A new term to describe existing concepts

automatic links are being built between analysis
and design tools and code-generation tools, and a
few products now provide a central dictionary
used to store some information about the appli-
cations portfolio.

The characteristics of each generation, together
with representative products, are shown in
Figure 1.1.

THE GROWING DEMAND
FOR CASE TOOLS

Our own survey showed that about 25 per cent of
Foundation members are now using tools that
correspond to our definition of CASE, and that a
further 656 per cent are in the process of
implementing CASE tools, or intend to introduce

Figure 1.1 Three generations of CASE tools

Characteristics of each
generation

Typical products and
their suppliers

First generation

Appeared in the 1970s,
Coverage — only one stage
of the life cycle, usually
programming.

Simple and unsophisticated.
Relatively low-cost.

Mastly text input — little
graphical support.

Pacbase code generator
(CGI Informatigue)

Gamma code generator
(Knowledgeware Inc)
DELTA code generator
(Delta Software Tools)
VAX Cobol Generator
(Digital Equipment Corp)

Second generation

Products available from l\fiaestro (Softlab Inc and

mid-1980s. : Philips Business Systems
Coverage — more thanone ~ Lid) ;
stage of the life cycle, usually — Auto- Mate Plus {LBMS ple)&
analysis and desigh. Excelerator (index

Originally simple graphical

_Technology Corp)
aids. Later, provided

IEW {}ghbwledgewére

consistency checking within, Inc/Arthur Young
and between, stages. Information Engineering
Impact on quality of software. = Services) .

Usually single-user or single
project/multi-user.

Usually PC- or workstatlon B
based: rarely fully mainframe-
based. .

 Littte integration between
stages.

PDF {Mlchael J.Jao{»(son,

Systems Ltd) : h
SPEEDBUILDER (Michael
Jackson Systems Itd).

(Yourdon International Ltd)

Third generation

State of the art in late 1980s.
Moving towards linking front
and back ends of the life
cycle.

First interface between
analysis and design aids and
code generators.

First appearance of
mainframe-based
development dictionaries to
act as repositories for
applications data.

Large investment and
significant strategic impact.

|IEF Information
Engineering Facility (Texas
Instruments/James Martin
Associates)

FOUNDATION Integrated
Environment for Software
Engineering (Arthur
Anderson & Co Manage-
ment Consuliants)

CASE* (Oracle Corp)

. FOUND%TION

ax-& Pariners L

imitedd 1988

them by 1990. Different types of CASE products
are supplied by different types of supplier. The
more extensive tools, which cover several stages
of the software life cycle, are often provided by
partnerships between consultancies and specialist
product developers. One example is IEF Infor-
mation Engineering Facility, which was developed
by Texas Instruments, a major US electronics
manufacturer, and is supplied and supported by
James Martin Associates.

Database vendors are also increasingly entering
the market for CASE tools, building on their
experience of integrated data dictionaries and
database technology and techniques for managing
several logically linked data dictionaries. One
example is Oracle Corporation, a major supplier
of database management systems for DEC and
IBM environments. This company has recently
introduced a series of products (under the name
CASE ™) that cover several stages of the software
life cycle.

As yet, the major computer manufacturers have
not made a significant impact on the CASE-tool
marketplace. Sometimes, as with IBM, this is
because the market is still too small to attract
them; sometimes, it is because they prefer to
encourage third parties to provide products that
fit into their hardware architectures. IBM is
unlikely to produce a significant CASE product
before 1990. Meanwhile, it is encouraging third
parties to develop CASE tools that are consistent
with its Systems Application Architecture (SAA).

DEC has been more active in this field and has
already provided several products since the
establishment of its CASE business centre early in
1987, in particular the Application System Develop-
ment Environment, which focuses on Cobol
generation, data dictionaries, and project manage-
ment. DEC is also encouraging third parties to
provide complementary products.

In general, the market for CASE tools is still
relatively small, but it is growing rapidly. Many
new suppliers are expected to enter the market
in the next year or so. Rapid growth and the
relative immaturity of the products will inevitably
lead to rapid changes in the products available and
in the structure of the supply-side of the market.
Any organisation considering the implementation
of CASE tools should consider the impact that
these changes will have on its choice of CASE
tools. (Our view on the most significant changes
that are likely to occur is set out in Chapter 5 on
page 33.)

PURPOSE OF THE REPORT

Clearly, at their present state of development,
CASE tools are not the answer to every systems

Chapter 1 CASE: A new term to describe existing concepts

development problem. They are not appropriate
for end-user development, where fourth-generation
languages are more appropriate. They are not very
suitable for maintaining existing systems developed
without using CASE tools. And they provide only
partial code-generation facilities, so high-level
languages will continue to be used extensively for
the foreseeable future. Thus, CASE tools will need
to be used in addition to, and in conjunction with,
other development tools.

Nevertheless, significant benefits in development
productivity and software quality can be gained
by implementing CASE tools successfully. The pur-
pose of this report is therefore to answer the ques-
tion ““What are the real benefits of CASE tools and
how can they be achieved?”

This report is aimed at managers within the
systems function who are responsible for systems
development productivity and software quality.
It is relevant both to existing users of CASE tools
and to those contemplating introducing them in
the near future.

In Chapter 2, we describe the benefits that CASE
tools can provide in terms of software quality and
development productivity. These benefits will not
be realised, however, unless the tools are used in
conjunction with structured development tech-
niques. CASE tools also need to be applied selec-
tively. They are not suitable for all types of
systems development. Chapter 3 shows how to
decide when and where to use CASE tools to best
effect. The procedures for selecting the most ap-
propriate tools from those on offer are set out in
Chapter 4. It is particularly important to select
tools that match the existing development en-
vironment in terms of methods, hardware, and
software. Furthermore, because different types of
CASE tool address different stages of the software
life cycle, it is important to select tools that pro-
vide support for the stages that cause most
concern.

Finally, in Chapter 5, we provide guidance about,
managing the implementation of CASE tools. Not
only is it important to introduce the tools in a con-

trolled manner, it is also important to prepare for
the future and to ensure that the significant in-
vestment made in methods and CASE tools will not
be invalidated by impending technical develop-
ments.

SCOPE OF THE RESEARCH CARRIED OUT

The report was drafted by Mary Cockeroft, head
of Butler Cox’s systems consultancy practice and
an expert in systems development methods. The
conclusions and recommendations of the report
are the outcome of an extensive, worldwide pro-
gramme of research carried out during the first
half of 1988. Researchers included Richard
Mugnaioni, a senior consultant based in Butler
Cox’s London office, who specialises in systems
development issues, David Flint, a principal con-
sultant and author of a previous Foundation
report on advanced system-building tools, Frans
Molhoek, manager of Butler Cox's office in
Amsterdam, Lothar Schmidt, a senior consultant
in the Munich office with extensive knowledge of
the FEuropean software industry, and John
Cooper, who runs the Foundation in Australia.

In order to understand fully the current state of
the art in CASE tools and to assess the likely future
developments, we conducted an extensive review
of the CASE-tool marketplace. During this part of
the research, we reviewed the published literature
on CASE and software engineering in general. We
also reviewed the product literature of 35 leading
CASE-tool suppliers (both in the United States and
in Europe) and conducted detailed interviews
with each of these suppliers. We also sought the
views of acknowledged experts on the subject,
both through their publications and by interview-
ing a selection of them. In addition, the views and
practices of Foundation members were gathered
in face-to-face and telephone interviews in seven
countries worldwide, and in the analysis of the re-
sponses from 150 Foundation members to the
questionnaire sent out at the beginning of the
research. This questionnaire asked Foundation
members about their present use of, and future
plans for, CASE tools.

% FOUNDATION

P

Examples of graphical displays produced by analysis
and design CASE tools

I Module Action Diagram Bisplay fdd idit Select

Oraglisr Py

Mini-Spec fction Diagron Display fidd Fdit Select fe

(Source: Arthur Young's IEW)

- FOUNDATION

© Butler Cox & Partners Limited 1988 7 5

Examples of graphical displays produced by analysis
and design CASE tools

~ Decomposition Diagram Display fdd Edit

Select

HBAONE
e

Bcal iz ispacted by Lriticn! 9;:4;253 e

AMFinity Procsszing Linits § e

Einimm New Group AFfinity
Hinims Mere Grop MCinitye
Minimm kdE Io Srop Afinity
Minia %ia,&é_ﬁpéiv =

- Decomposition Diagram Display fAdd Fdit

Becompozition Pisaram Bisplay fidd §dit Select Hels E s S e

"] ___Process Custoser Ocders .
16 Dbjects Disgrammed 1 Selected A1l L “{full Size)
i
.
(Source: Arthur Young's IEW) 3 i : »iL

Examples of graphical displays produced by analysis
and design CASE tools

$iats Flow Bisgras Bisplay fdd Fdit Select Help ALV
i - Beceive Customer Orders B .-

i

Display fdd Edit Select Help -
Process Customer Orders
f Selected B Hidden

wral) Wy U0

(Source: Arthur Young's IEW)

[Cox & Partners Limited 1988 T

Examples of graphical displays produced by analysis
and design CASE tools

Sa'eenl.awut Bisplav fdit Select firrange Help BEZIEM

!l _ Create Option Herss
Mouse Row 5 Col 36

Report Select Help

K| Data Conservation finalys
Process Receive Distoner Orders
in ooeitent of Process Process Custoser Orders

Incoming data Flows:
Doto Flow Customer Yerification ats
Dota Flow Product Avallabiiisy
Dato Flow Customer Purchoze

Outgoing data flows: k
Data Flow Product Reserugtion
Bata Flow New Customers

- i ETE

Blobal Elementary Darg Type Nowe
er

=
ﬁmm&
TACPHA, ALPRANBERIC, Z0NED DECINAL, SINGLE FREC1ch
Format

(6) =

—

1ted
(¥, N}

Report Select Help

DESIGH
Beioer o
BeEntity Type: Cu;umr 1]
Customer FAL id: .
5 Customer FO § I T 1 l
e AR s Struchire :
oner 20§ i ¥ falation dotg Strctores fa
Dustomer B) Total Amcont 0 CLETOMER-PO. \ E—
e - - Brertoey - g
Attribute Type-Customer FO Totol fres S 5 OSHR 2. 10 i
: 10 CUSTONER-PO-# PIC 77PiC77 DISE
Cuswnp ksl Belivery Azshs s 5 GBIUER‘PB—TEE&-MI PFiC 7®15
Attribute Type:Customer FU fL-E ivery z o= .P‘HE] =1

(Source: Arthur Young's IEW)

Chapter 2

CASE tools promise significant benefits

Early experience of using CASE tools suggests that
they can improve both software quality and
systems development productivity. In this chapter,
we describe how CASE tools can provide these
benefits. One organisation that has recognised the
potential impact of CASE tools on productivity and
software quality is NMB, a Dutch banking

institution, whose experience is described In
Figure 2.1.

SOFTWARE QUALITY CAN
BE IMPROVED

There is now a substantial body of experience to
show that using CASE tools to automate structured

Figure 2.1

NMB

NMB, a leading Dutch merchant and retail banking institution, has
achieved significant improvements in software quality and
development productivity through the introduction of case tools.
The bank has four commercial divisions: international financial
services, domestic merchant banking, domestic retail banking, and
stocks. |t employs nearly 12,000 people and has assets of around
DfI80 billion ($40 billion). The central information services function,
which provides computing services to all the divisions, consists of
350 people, 145 of whom are involved in systems development.
The divisions employ a further 80 people who are dedicated to
business systems planning and information analysis.

In 1980, the board of NMB, one of whose members had a specific
interest in IT, realised that a consistent, professional approach to
systems development was crucial to the future of both information
systems and the business. As a conseguence, NMB standardised
on the |EF Information Engineering Facility, available from James
Martin Associates, although the method was adapted to meet the
bank’s specific needs. The five standard phases of the Information
Engineering method (information strategy planning, business-area
analysis, business-systems design, technical design, and pro-
gramming and implementation) were implemented, together with
a specially constructed maintenance and support phase.

In 1985, the Maestro Ipse from Philips and Softlab was introduced
to provide automated support for the development method. The
implementation of Maestro was part of a strategy to improve software
quality and development productivity. The strategy was based on
achieving two goals:

— To use, throughout the organisation, a single, consistent
development method that covers all phases of the software life
cycle.

— Todevelop a fully integrated set of tools that can be used to
implement, manage, and control the use of the method.

NMB realises that these are long-term goals and expects that it will
take betwsen seven and ten years to achieve them, and that they
will require an investment of more than 80 work-years, in addition
to the capital investment in the tools themselves. The board of NMB
is fully committed to achieving the goals, a factor that makes this
level of expenditure feasible. Maestro was chosen as the means
for achieving the long-term strategy because NMB believes it
provides an open framework that can be tailored and complemented
with tools that closely match its own development environment.

CASE tools can improve development productivity and software quality

The initial intention was to use Maestro as a development-library
support tool, and as a means of providing communication and
project-management facilities for project teams. However, NMB soon
realised that, used in conjunction with tools for each development
phase, Maestro had the potential to act as a framework to cover
the entire software life cycle. The development environment now
consists of 220 workstations, supported by eight networked Philips
P7000 computers.

It has been necessary to make shorter-term tactical decisions as
well. One of these is to use the IEW (Information Engineering
Workbench) product, available from Knowledgeware and Arthur
Young, for business-area analysis and business-systems design.
NMB realises that it will have to replace this tool in order to achieve
its long-term goals, but has decided to use it until tools become
available within the Maestro framework to cover these development
phases.

NMB is convinced that implementing case tools in this way has led
to significant improvements in development productivity and in
soffware quality. Since 1985, development productivity has
improved by about 30 per cent, with most of the gains coming from
automatic code generation, and from easier maintenance because
of the better documentation that is now produced. The bank is now
aiming for further productivity improvements of between 5 and 10
per cent a year. It also believes that the guality of its systems has
been increased significantly because of consistent working
practices, improved project management and documentation, and
better communication between project-team members through the
use of Maestra's electronic mail faciliies. No attempt has been made
to quantify the guality improvements, however.

NMB also believes that implementing the Information Engineering
method, and the cast tools to support it, has changed the way the
systems function is staffed and organised. In particular, the increased
emphasis on analysis and design has changed the skills
requirements. No programmers have been recruited for more than
ayear; NMB now recruits and trains only analysts and designers.
Overall, however, the number of systems development staff has
not increased, although prior to introducing the cAse tools, the
numbers had increased steadily for several years.

So far, the implementation of Information Engineering, Maestro, and
the associated caAse tools has required 10 work-years of effort a
year since 1984. NMB expects that this level of investment will
continue for a further four years.

FOUNDATION

@ Butier Cox & Partners Limited 1988

Chapter 2

design techniques improves the quality of the
applications software that is developed. Struc-
tured techniques improve software quality in two
ways: they ensure that the application systems are
a better fit with the business needs of their users,
and they improve the technical quality of the
systems by reducing the number of software
errors.

BETTER FIT OF SYSTEMS TO THE BUSINESS

There are well-documented examples of systems
being developed and never used because they fail
to meet the business needs of the users for whom
they were developed. CASE helps to overcome this
difficulty because it encourages development staff
to place a greater emphasis on the analysis and
design stages of the software life cycle. In par-
ticular, CASE tools provide online interactive
graphics facilities to support these stages. The
effect of using CASE tools on the level of effort
required at each stage of the life cycle is shown
in Figure 2.2.

Bill Presley, Systems Development Manager at
Glaxo Pharmaceuticals, a division of the multi-
national manufacturer of pharmaceutical pro-

Figure 2.2 Use of CASE tools changes the level of
effort required at each stage of the
software life cycle

4. Proportion
of total effort

Planning Analysis Design Program- Imple- Mainten-
ming mentation ance

— CASE tools used to support structured techniques
— Traditional development

10

CASE tools promise significant benefits

ducts, confirmed that greater emphasis is now
being placed on analysis and design. He believes
that implementing Arthur Young’'s IEW has
increased the proportion of the development
effort devoted to analysis and design from 30 to
60 per cent. Using IEW, Glaxo Pharmaceuticals
developed a computer-integrated manufacturing
system on budget and to time, and with a
noticeable reduction in the number of changes
requested by users, and a corresponding increase
in user satisfaction.

The “interactive graphics facilities provided by
CASE tools used at the analysis and design stages
encourage a closer working relationship between
developers and users, and allow users to be
involved directly in the systems development
process. One example of this was described to us
by Lee Hawkins, software support manager at The
Abbey National Building Society, a leading UK
financial-services organisation. He has found that
CASE tools provide a common language between
developers and users, leading eventually to users
participating directly in the development of the
data and activity models required by structured
techniques. This has reduced the misunder-
standings that have often occurred in the past
between developers and users, because the CASE
tools encourage users to be specific. In addition,
users find it easier to understand the design of
systems because they no longer have to work
through voluminous paper-based documentation.

The Department of Public Works of the Dutch
Rijkswaterstaat, which is responsible for dykes,
canals, and roads, reported a similar experience.
This organisation has implemented the Excelerator
analyst/designer workbench from Index Tech-
nology Corporation, and has found that the major
benefit of this tool is that it reduces the effort at
the design stage and results in higher-quality
software. These benefits are achieved because
Excelerator allows the software design to be
presented to users early in the life cycle in a simple
and understandable way.

BETTER TECHNICAL QUALITY

As well as improving the fit of systems to business
needs, CASE tools help to improve the technical
quality of software. This is an important benefit
because the cost of correcting errors detected at
later stages of the life cycle is much higher than
correcting them at an earlier stage. A recent
survey conducted by Barry Boehm in the United
States found that errors in specifications cost
1,000 times more to correct after implementation
than during analysis.

CASE tools help to ease this situation because they
reduce the likelihood of technical errors both at

FOUNDATION

ers Limited 88

Chapter 2 CASE tools promise significant benefits

the early stages of the life cycle (during analysis
and design), and at the programming stage. By
providing automated support for the structured
techniques used during the analysis and design
stages, CASE tools reduce the likelihood of
mistakes being made. They also provide facilities
for automatically checking the consistency both
of related data-structure and activity diagrams,
and of the more detailed diagrams used at the later
stages of the life cycle. Prior to the availability of
such facilities, development staff had to record
manually the complex interrelationships and
dependencies generated by structured techniques.
The inevitable result was that mistakes were made
and the technical quality of the resulting appli-
cation system was reduced.

CASE tools also help to improve the technical
quality at the programming stage. Several
Foundation members confirmed that the use of

CASE tools results in code that contains fewer
errors than code written by average programmers.

DEVELOPMENT PRODUCTIVITY
CAN BE IMPROVED

CASE tools can improve the productivity of
development staff at each stage of the life cycle,
although the most important benefits arise at the
maintenance stage as a direct result of the
improved quality of systems. Figure 2.3 shows the
main types of benefit at each stage and indicates
which may be measured and how.

At the analysis stage, it is possible both to improve
productivity and to reduce the elapsed time. The
greatest improvements at this stage will be
achieved where CASE tools are used to automate
development methods that have previously been
implemented manually. Savings of between 10

Productivity
b3
Se
-]] B
@
Life-cycle stage S
Planning
Analysis Gha’p?_a%éal support for
modelling, leading to.
. productivity improve- witho
ments of up to :
59 per cent.
Design Graphical support and As above.

transfer of data from
analysis stage may
reduce staffing levels by
up to 50 per cent.

~ Better logical and

- physical design, data
iransfer, and code

, ?-‘generatlon leading to
potential prnductlwty
mproveméﬂts = el
100 per cent. e

Programming

per day

Potential reduction in

Figure 2.3 CASE tools provide productivity and quality benefits at each stage of the software cycle

Work-days to produce)
L "‘&mﬂar analy&us With an&' :

Number of lines of cod

Quality
S
@ (=) (1)
5 o & 5
& S &
o & & o
§ < g &

Combination of
methods and tools can
be used to support
strategic systems
planning (although this
is rarely done in
practice).

Long-term assessment
of fit of systems with the
business.

ainfenance stages.

Consastency cheoking
between analysis and
design stages will

reduce design errors.

As above.

Code generators i kel Number of errors
to reduce coding errors. | d ected during testi
Transfer of data from. Reduced effort in
_design stage will rec
- "mterpretanpn errors.

Implementation
effort and timescale due
to greater emphasis on
analysis/design.

‘Lower overall
: maintenance effort.

Maintenance and
enhancement

Length of time from end
of programming stage
to final acceptance.
Level of effort involved.

 Ratio of maintenance: to
d

Better quality of analysis
and design will have an
impact on implemen-
tation.

des;fghr‘lb will improve ~ mair

quahty ofe hance-e.

FOUNDATION

imited 1988

Cox & Partners L

11

l |

Chapter 2 CASE tools promise significant benefits

and 30 per cent can usually be achieved. The
experience of a manufacturing company demon-
strates that CASE tools can produce productivity
gains in both the analysis and design stages (see
Figure 2.4). The reduction of 20 per cent achieved
by this company in the time required between
analysis and implementation is representative of
the average gains achievable at these stages.

CASE tools can also improve productivity at the.

logical and physical software design stages. The
improvements result from the on-screen graphical
representation of data and activity diagrams, and
from the ability to transfer information auto-
matically from the analysis stage to the design
stage. Finalising the design of a business appli-
cation usually involves many iterations before the
users approve the design. Using structured design
techniques requires the data and activity diagrams
to be amended at each iteration, which, done
manually, is a time-consuming and error-prone
process. The graphical and automated docu-
mentation facilities provided by CASE tools reduce
the effort involved in producing and modifying
systems designs. These facilities also improve the
interaction between developers and users, thus
reducing both the effort and the elapsed time re-
quired between starting the analysis stage and
completing the logical design of a system.

Major productivity gains can also be achieved by
using CASE tools (particularly automatic code
generation) at the programming stage. A major
French-owned multinational company involved in
the chemical and pharmaceuticals industries
found that, through the use of code generators,
its code generation rate rose from 117 to 260 lines
per person per day over a five-year period. (The
industry average in France is 60 lines per person
per day.)

Productivity improvements in the implementation
and maintenance stages arise from the higher-
quality designs produced when CASE tools are
used at the analysis and design stages. The
increased emphasis on analysis and design, and
the improved working relationship between
developers and users, help to reduce the number
of software changes required during the imple-
mentation stage. Thus, CASE tools reduce the need
to enhance applications soon after they are imple-
mented in order to meet user requirements that
were missed or misinterpreted at the analysis
stage.

The improved technical quality obtained from using
CASE tools also reduces the number of software
errors and, hence, the amount of maintenance re-
quired after implementation. For example,
Télémécanique, the French manufacturing group,
has found that the code generated by the Gamma
code generator (from Knowledgeware) is more

12

efficient and error-free than the average manually
produced code. CASE tools also automatically
generate complete and consistent software
documentation, thus making it easier to maintain
systems after they have been implemented.
Improved quality, greater consistency, better
documentation, and fewer program changes mean
that both the level and the difficulty of
maintenance are reduced, thereby reducing the
proportion of development effort required for
maintenance activities,

The improvements in productivity arising from the
better-quality software developed with CASE tools
are difficult to quantify, however. There are three
potential measures. The first is to measure the
reduction in the number of changes requested by
users during the development and implementation
stages. The second, which is relevant to technical
quality, is to measure the number of program
errors discovered during the implementation stage.
The third, which is concerned with overall quality,
Is to measure the reduction in maintenance work
carried out by the development function. The first
two measures apply to the development stages of
the life cycle; the third becomes apparent only
after applications have been running for some
time.

Many Foundation members believe that using
CASE tools at the analysis stage substantially
reduces the number of changes requested by users
both during development and after implementation.
Few of them, however, have quantitative evi-
dence to support this belief. One company that did
provide data was the manufacturing company
quoted in Figure 2.4: it found that the proportion
of development effort devoted to maintenance
work decreased from an estimated 70 per cent to
45 per cent. Another was a French multinational
company in the chemical industry that found that,
through its use of CGI Informatique’s Pacbase for
detailed design and implementations, the pro-
portion of its effort devoted to maintenance
remained constant at around 33 per cent, although
its applications portfolio increased from 2 million
to 6.2 million lines of code.

BENEFITS DEPEND ON
THE USE OF METHODS

Many CASE tools have been designed to support
the structured analysis and design techniques that
form the basis of several proprietary development
methods. It is theoretically possible to implement
these methods without CASE tools, but, in prac-
tice, the volume of manually created paperwork
that is required makes it impossible to use them

. FOUNDATION

© Butler Cox & Pariners Limited 1988

Chapter 2 CASE tools promise significant benefits

A MANUFACTURING COMPANY

Between 1984 and 1985, this manufacturing company (which wishes
to be anonymous) examined the feasibility of implementing structured
systems development methods. The programming department was
already using Jackson structured programming. The conclusion
reached was that, owing to the manual effort involved in introducing
methods, some sort of support tool was required if methods were
to be implemented successfully. As a result, the company installed
the Maestro IPSE from Philips and Scftlab. Initially, a 24-terminal
system was used for team management, for preparing textual
specifications, and for CASE development. Two further systems have
now been installed. In addition, LBMS’s Auto-Mate Plus tool has
been used to support the LSDM method (also from LBMS) used
by the company.

This company believes that it has been successful in implement-
ing development methods only because it has had the tools
to support the methods. Indeed, the implementation of
LBMS's Auto-Mate workbenches has actually promoted the use
of LSDM. Furthermore, it believes that the partnership of CASE tools

Figure 2.4 CASE tools can improve productivity at both the analysis and design stages

and development methods has improved both productivity and
quality.

Productivity at the maintenance stage has increased because of
the improved quality of the systems now being maintained. Without
methods and tools, the company estimates that it would be using
70 per cent of its development resources on maintenance activities
instead of the 45 per cent actually used today. The methods and
tools also deliver more functionality and allow more applications
to be developed by fewer development staff. Productivity has also
been improved because the CASE tools facilitate better interaction
between developers and users and speed up the process of
changing specifications. This has resuited in a 20 per cent reduction
in the elapsed time from the feasibility stage to implementation.
Quality has also improved because of the improved interaction
between developers and users. Some users have become much
more involved in the development process and have become more
supportive of the systems department. This has coniributed to users
feeling that they ‘own’ the projects and systems, and has made
the task of the systems department much easier.

successfully. The result is that the productivity,
and morale, of development staff is reduced. As
a consequence, the use of structured techniques
has been discredited in many organisations; the
benefits of consistency that result from using
these techniques have been hidden by the
difficulty of implementing them.

Conversely, it is not possible to obtain the full
benefits from CASE tools unless they are used in
conjunction with the method they were designed
to support. The rigour imposed when such a
method is implemented in conjunction with a CASE
tool leads to the improvements in quality
identified earlier. In turn, the improved quality
leads to major gains in productivity during the
programming, implementation, and maintenance
stages of the life cycle.

In addition, the full life-cycle support promised by
I-CASE tools can be achieved only if integrated
development techniques are used consistently
throughout the whole life cycle. This helps to
explain why full I-CASE tools are not yet available,
because, as we explained in Report 57, there is as

FOUNDATION

© Butler Cox & Pariners Limited 1988

vet no integrated set of development techniques
that covers the whole of the life cycle. The major
problem area concerns the difficulty of auto-
matically translating logical designs into physical
designs.

The implication is that many CASE tools must be
selected to support particular proprietary develop-
ment methods. Others, however, particularly
analyst/designer workbenches, can be configured
to support different methods. The decision to
choose a particular combination of methods and
tools is possibly the most difficult and strategically
important decision that a systems director will
have to make. Once a method and tools to support
it have been implemented, the organisation will
be committed to using the method for many years
to come. The investment in training and in setting
up the procedures to use the method effectively
will make it very difficult, and expensive, to
change to a new method. Thus, the effects of an
inappropriate combination of methods and tools
will be evident for a long time. The first stage in
making the right decision is to decide where the
methods and tools can be used with most effect.

13

Chapter 3

Deciding when and where to use CASE tools

The first task in selecting the types of application
for which CASE tools are appropriate is to identify
the stages of the life cycle where most problems
occur and where CASE tools could help to improve
productivity and quality. It is also essential to en-
sure that the existing development methods are
being used effectively; there is no point in using
CASE tools if they are not. The limitations of CASE
tools must also be considered. There are some
development situations where CASE tools are not
the most appropriate answer.

CLARIFY THE OBJECTIVES
FOR USING CASE TOOLS

Applying CASE tools in an indiscriminate way may
bring some isolated benefits, but it will probably
not provide value for money. Clarifying the
objectives before setting out to implement CASE
tools will help the organisation to ensure that the
areas of greatest concern to the business are
addressed, and that realistic expectations are
established for the benefits.

ADDRESSING PROBLEMS
OF MAJOR CONCERN

Most systems managers are well aware that
systems development continues to present major
problems. Few, however, can accurately describe
what all of the problems are, let alone define how
they arise. They know that there is a growing gap
between the rate at which systems can be
developed and the demand from users for new
systems. They also know that user requirements
are very often not met by the systems that are
developed. Before the problems can be resolved,
it is necessary not only to identify what the prob-
lems are but also where and how they arise.

Many software experts insist that the problems are
caused by the low productivity of development
staff, and that the solution is to concentrate on
developing applications more quickly. Without
doubt, tools that automate and speed up the pro-
duction of designs and code will increase develop-
ment capacity. The real problem, however, results
from an inability to interpret and meet user needs
and to deliver error-free code.

14

It is well known that a significant proportion of
all business software produced by systems depart-
ments is either significantly reworked during
development or never used. The development
manager of Lend Lease, an Australian property
and financial-services group, told us that diffi-
culties experienced by the company in identify-
ing and analysing user requirements (before the
introduction of CASE tools) meant that the first six
months of live operation were little more than a
final systems development stage. The main cause
of this type of problem is that mistakes are made
at the requirements-analysis stage. A problem that
at first sight appears to be a programming problem
can, in fact, be caused by poor analysis and design.

Thus, the first step in planning to implement CASE
tools should be to examine each stage of the life
cycle to identify where the causes of the most dif-
ficult problems are. In carrying out this analysis,
it is important to remember that the root cause
of a problem may lie at a much earlier stage in the
life cycle. For example, an excessive proportion
of effort spent on maintenance may be caused by
mistakes originally made at the analysis and design
stages. The life-cycle stages that are the root
causes of the problems should be identified, and
CASE tools should then be chosen to support these
stages.

CASE tools can be applied with benefit at most
stages of the software life cycle. In general, how-
ever, the greater the number of stages covered by
a CASE tool, the higher the cost of implementing
the tool and the longer the payback period. For
a development department with 50 staff, imple-
mentation costs, including the cost of hardware,
software, and initial training, are typically about
$20,000 per head for workstation tools covering
only the analysis and design stages, and about
$35,000 per head for an integrated development
environment that includes a mainframe-based
development dictionary, that covers several life-
cycle stages, and that can be used for different
projects. The cost can be much higher, however.
We know of one organisation that has imple-
mented standalone analysis and design tools for
30 development staff at a cost of $46,500 per
head. (More details can be found on page 29.)

FOUNDATION

© Butler Cox & Pariners Limited 1988

Chapter 3 Deciding when and where to use CASE tools

These high levels of investment will mean that
many organisations will wish to phase the
introduction of CASE tools progressively to cover
a larger number of life-cycle stages. Identifying
those stages in which the main problems occur,
and placing them in order of priority, will make
it possible to plan a phased implementation of
CASE tools. Prospective tools can then be
evaluated against the objectives set for each stage
of the life cycle.

IDENTIFYING OPPORTUNITIES FOR
IMPROVING PRODUCTIVITY AND QUALITY

Organisations considering the implementation of
CASE tools find themselves in many different
situations. The choice of tool, and the method and
timescale for implementing it, all depend on the
situation into which the tool is introduced. The
first step should therefore be to evaluate the
maturity of the development environment (in
terms of the use of structured techniques and
development standards, for example), the
productivity currently being achieved on
development projects, and the quality of existing
systems.

Evaluate the maturity of the

development environment

The existing level of maturity of the systems
development function is a major influence on how
best to implement CASE tools. In particular, the
current development environment determines
many of the constraints that will delay the intro-
duction of CASE tools, and it has a direct bearing
on the level of training that will be required.

The maturity of the development environment
applies both to the level of experience and
expertise in using development techniques such
as entity modelling and data analysis, and to the
use of other types of enabling software such as
relational database management systems and
fourth-generation languages. Other factors that
will influence the way in which CASE tools are
implemented are the complexity and size of appli-
cations, the size of the development department,
and the range of development skills (assembler
programming, and so on) in use.

Our research indicates that, if CASE tools are
introduced into an environment where
development techniques are not already practised,
it takes up to a year for development staff to
become fully proficient in using the tools,
compared with a matter of weeks when
techniques are already used. Most of the training
requirement arises from the need to teach
development staff how to use the structured
techniques. Lend Lease, for example, expects new
recruits to take a year to become proficient, with

. FOUNDATION

iitler Cox & Partners Limited 1988

most of the training effort being devoted to
teaching techniques. On the other hand, develop-
ment staff at Lloyd’s of London, a major UK
insurance underwriting group, required relatively
little training when this organisation implemented
CASE tools. Colin Talbot, Manager, Office Systems,
Development Department, told us that this was
because a method (LSDM from LBMS plc) was
already being used by the development teams. The
use of this method has also reduced the time
required for new recruits to become fully pro-
ductive because Lloyd’s now favours people who
are already familiar with the LSDM method.

The maturity of the development environment
also has an impact on the amount of preparatory
work needed to reorganise the systems depart-
ment for the implementation of CASE tools. If the
department has either multiple standards and
methods of working, with little control, or no
formal working standards at all, it should imple-
ment either a single agreed set of standards or new
standards. Failure to do this will not make the
implementation of CASE tools impossible; it will
merely mean foregoing an opportunity to ration-
alise working practices in order to achieve the
maximum benefit from implementing such tools.

Assess existing productivity

and systems quality

Most automation aids for systems development are
typically sold on their potential to deliver pro-
ductivity gains. CASE tools, however, are also
expected to improve the quality of the software
developed by using them. To assess the benefits
of using CASE tools, it is therefore necessary to
compare ‘before’ and ‘after’ levels of develop-
ment productivity and software quality. In turn,
this means that organisations contemplating the
introduction of CASE tools should quantify their
present levels of productivity and software quality
by introducing some kind of measurement pro-
gramme, to .provide a basis for subsequent
comparisons.

Establishing such a programme is not easy. There
is much disagreement about what measures are
appropriate, and how to make them, and no uni-
versally agreed standard measure yet exists. The
number of lines of code produced by a programmer
in a given period provides an indication of the
efficiency but not the effectiveness of software,
which includes aspects of quality. Another com-
monly used measure is based on counting function
points, although the usefulness of this technique
depends on the type of application being de-
veloped. One function point may represent a large
number of lines of code in a database application,
but only a few in an application that uses complex
algorithms. We believe that QSM's Productivity
Index (PI) used in Butler Cox’s Productivity

15

—4ﬂ

Chapter 3 Deciding when and where to use CASE tools

Enhancement Programme is a better way of
measuring development productivity. No method
of measurement is perfect, however, and measur-
ing lines of code or function points is better than
nothing.

Less formal methods of comparison can be useful
where formal measures are impractical. For com-

paring productivity, for example, two potential

measures are the effort and elapsed time required
to develop various project types.

Comparing quality is more difficult than com-
paring productivity because the comparison often
depends on intuitive, subjective measures. Many
managers feel that an implementation ‘has gone
well’ or ‘has been a disaster’, based on their
relationship with the users of the software. This
type of intuitive judgement may convince some
managers, but a quantitative measure, no matter
how approximate, would be better. One possible
way of quantifying software quality is to count the
number of queries, change requests, and com-
plaints made by users during the implementation
stage. Another is to measure the proportion of
overall development effort devoted to mainte-
nance and minor enhancements.

Evaluate the effectiveness

of existing methods

To be successful, many CASE tools must be used
in conjunction with a development method that
is based on structured techniques. Figure 3.1
shows that many of the Foundation members who
responded to our survey have already imple-
mented such methods and that most of the
remainder plan to do so by 1990. It is essential,
however, that the methods are being used
effectively. Unless they are, it will not be possible

Figure 3.1 Use of development methods by Foundation
members will approach 100 per cent by
1990

Do not use 95%
development

methods 78%

Use
development
methods

1988 1980

(Source: Survey of Foundation members)

16

to use CASE tools effectively. The effectiveness of
development methods can be assessed against
three criteria, each of which is equally important.

First, the methods used must meet the require-
ments of the systems department. This can be
Jjudged by assessing whether, together, the methods
support all stages of the software life cycle and
all the development processes being used. As we
pointed out in Report 57, no single method will
support every stage of the life cycle, nor every
development process. Some are suited to tradi-
tional large-systems development where project
management is all-important; others are more
applicable to the rapid, iterative style of develop-
ment that is becoming more prevalent today.

Second, the methods should be used extensively
throughout the systems development function. If
they are used by only a few project teams or for
some types of applications, they may not be as
effective as they could be if they were used more
widely. The widespread acceptance and use of
methods may, for example, be inhibited because
development staff perceive them as requiring
unacceptable levels of manual intervention. Until
the methods are used effectively, it will not be
possible to make the most effective use of CASE
tools.

The third criterion is that the methods should
provide tangible benefits in terms of software
quality. If they do, their credibility with managers
will be established. If they do not, a great deal of
effort will be needed to bridge the credibility gap.

The more effective the development methods are
in terms of these criteria, the easier it will be to
implement CASE tools and use them effectively.
However, even if the methods are shown to be not
particularly effective, it is invariably better to
introduce CASE tools to support the existing
methods. The only exception would be where the
credibility gap is very wide indeed. Introducing a
new method at the same time as CASE tools would
be the most expensive element of implementing
CASE.

RECOGNISE THE LIMITATIONS
OF CASE TOOLS

CASE tools are still relatively immature, and it will
be some time before they have developed to the
stage where they can achieve their full potential.
To date, relatively few major operational appli-
cations have been implemented using CASE tools,
and it is widely recognised that present-day tools
have substantial limitations. The effects of these
limitations can, however, be minimised if they are
recognised and managed.

© Butler Cox & Pariners Limited 1988

Chapter 3 Deciding when and where to use CASE tools

UNDERSTANDING THE NATURE
OF THE LIMITATIONS

The CASE tools available today have three
important limitations: they do not support the
complete software life cycle, they provide little
support for the maintenance of existing systems
originally developed with non-CASE tools, and
they are not suitable for direct use by business
users.

CASE tools provide limited

life-cycle support

Most CASE tools available today cover either just
the front-end analysis and design life-cycle stages,
or just the programming stage. A few, such as
Texas Instruments’ IEF Information Engineering
Facility, have begun to address the complete life
cycle, but they do not yet fully support all
the stages. The types of CASE tools available
today, and the extent to which they support
individual stages of the life cycle, are described
in Chapter 4.

The limited coverage of existing CASE tools means
that user organisations need to integrate tools
from different suppliers if they are to create a
CASE environment that covers the whole of the
life cycle. However, several suppliers are working
to link their products to those from other sup-
pliers, the aim being to create a combination of
products that covers several life-cycle stages. One
example is Arthur Young’s interface between its
IEW product and Knowledgeware’s Gamma code
generator. Users of CASE products should be
aware, however, that even when an interface
between two products has been announced, it is
often not as comprehensive as the suppliers’
literature may indicate. For example, at the time
of writing, the interface between Index Tech-
nology’s Excelerator analysis and design work-
bench, and Pansophic Systems’ Telon code
generator transfers only screen layouts and report
layouts. Details about processing logic and rules
still have to be transferred manually.

Many other interfaces between CASE tools will be
announced in the near future, but the type of
information that can be transferred, and the
consistency of the user interface, will both be
restricted. Sometimes, user organisations may
have to create the required interfaces themselves,
but this could lead to problems of internal support
for the interfaces and to difficulties with the
suppliers when software problems have to be
resolved.

Two contrasting examples of how organisations
are tackling this problem are provided by Lend
Lease in Australia and a British company. Lend
Lease currently uses IEW for analysis and design,
and the Corvision application generator from

. FOUNDATION

© Butler Cox & Partners Limited 1988

Cortex, a US supplier of software-productivity
tools, for construction. Lend Lease wants to
establish a link so that information can be
transferred from the analysis and design stages to
the programming stage. Knowledgeware and
Cortex have now reached formal agreement on
establishing a link between their products,
avoiding the need for Lend Lease to do so. At the
other end of the scale, we know of one British
company that is considering building a link
between Softlab’s Maestro and Oracle’s database
management system. This is an example of linking
two products that are used for different purposes
rather than for different stages of the life cycle.

CASE tools offer little help

for maintaining existing systems

Although CASE tools can be used to maintain
software developed by the tools themselves (by
re-using or modifying existing designs), they
provide little support for the maintenance of
existing systems developed originally with non-
CASE tools. CASE tools will offer significant help
in the maintenance of existing systems only when
they support reverse engineering — the process
whereby system designs are extracted auto-
matically from existing programs and are used as
the basis for enhancing and maintaining them.
This requires tools that are able to read existing
code and data structures, and have the intel-
ligence to extract the underlying systems design.

Current support for reverse engineering is mainly in
the form of products that process existing un-
structured code and convert it to structured code.
Recent products from Bachman Associates have
started to take a more data-oriented approach,
allowing some existing physical IDMS designs to
be re-engineered into logical designs ready for
‘forward engineering’ into DB2 databases. These
products are still at an early stage of development,
however, and, at present, they are available only
in the United States.

At present, reverse-engineering products are
limited to restructuring code and data. We have
not been able to identify any products that are
able to extract a full systems design from existing
software. Without doubt, there is a need for such
tools. Until they exist, CASE tools will be of limited
value in maintaining, for example, the estimated
77 billion lines of Cobol code in IBM-based systems
alone. We believe that products able to carry out
true reverse engineering are unlikely to be
available until the mid-1990s.

CASE tools are unsuitable

for business users

Although CASE tools can help to involve business
users in the development process, they have not
yet been developed to the stage where they can

i 677

Chapter 3 Deciding when and where to use CASE tools

be used directly by them. Indeed, CASE tools may
never reach the stage where they can be used
exclusively by users, because their use will con-
tinue to require knowledge and experience of
structured development techniques. In the fore-
seeable future, expertise in structured techniques
will remain firmly with professional development
staff. Users will, however, become more involved
in the development process. In particular, the
interactive graphics facilities available with CASE
tools will mean that users will become familiar
with the diagramming concepts that are an
integral part of structured techniques. Indeed, as
we have seen, some of the most significant
benefits of CASE tools will arise from the ability
of developers and users to work together at the
analysis and design stages of the life cycle.

For this process to work, however, users need to
take an active role in the development of systems.
The benefit of such involvement is illustrated by
the experience of Lloyd’s of London. This organi-
sation believes that systems will serve the needs
of the business better if users understand, inter-
pret, and help to modify the graphical repre-
sentation of the system designs. The graphical
facilities of the CASE tools in use at Lloyd’s allow
users to do these things.

AVOIDING THE LIMITATIONS
OF CASE TOOLS

The limitations of CASE tools can be avoided by
using other types of tool where appropriate, and
by restricting the use of CASE tools to new de-
velopments and major enhancements.

Use non-CASE tools

where appropriate

Regardless of the claims made for CASE tools, they
are not the answer to all systems development
problems and should not be seen as such. Other
types of tool will be required as well to cope with
the many different aspects of development, both
within and outside the systems department. Thus,
tools such as third- and fourth-generation
languages and other prototyping tools will still be
required after the implementation of CASE tools.

Each type of tool should be used for the job for
which it is best suited. For example, applications
developed by business users, and by the iterative
development process (which requires rapid itera-
tions through the design stage and, hence, relies
on prototyping), both need fourth-generation
languages and other prototyping tools such as
screen-layout and report generators. Figure 3.2
shows how CASE and other types of development
tool can be used to support different development
processes.

The development processes shown in Figure 3.2
were described in detail in Foundation Report 57,

18

Using System Development Methods, and are
summarised below:

— The conventional development process has
been used for many years for the development
of commercial and business applications.
Typically, the work is subdivided into well-
defined steps or phases, with the workflow
being controlled and monitored by formal pro-
Jject-management techniques. More recently,
proprietary systems development methods
have been used to standardise the tasks carried
out during one or more of the life-cycle stages.

— The iterative development process is more
appropriate for applications where the users’
requirements are less easy to specify and
where the scale of the application is small
enough to allow a prototype to be built and
revised quickly either by using advanced
system-building tools such as Natural, Focus,
Mapper, or Linc, or by using CASE tools that
provide screen-painting and dialogue-de-
finition facilities, such as IEW and IEF Infor-
mation Engineering Facility.

— The small-systems development process is

appropriate for new small systems and for small
enhancements to existing systems. Typically,
small systems take less than nine months’
elapsed time to develop, and require no more
than about two to three years of effort. The
small-systems development process covers the
same range of applications as the conventional
development process.

— End-user development refers to applications

developed entirely by users. These applications
provide limited functionality and are usually
very small systems designed to meet an

Figure 3.2 Different development tools are appropriate
for different development processes

Development

process Development tool
Conventional * K +* * * * * &
lterative ST X *
Small-systems * % * % kok ok * &
End-user o * * X * X
S >
¥ 28 £ 88 £8
E TP Fy AP L
v P& F¢& & L&
¥ & && K& O
o ¥ e K Te
g o
<0
&
* % Good support
* Reasonable support
X Not suitable
. FOUNDATION

© Butler Cox & Pariners Limited 1988

Chapter 3 Deciding when and where to use CASE tools

individual or departmental requirement. Pro-
fessional development staff would normally
not be involved in this type of development.

Restrict CASE tools to new

development or major changes

Because existing CASE tools are of little benefit for
maintaining or making minor enhancements to
existing software, their use should be restricted
to new development or to making major changes
to existing systems. As we explained earlier, CASE
tools will be useful in maintaining existing systems
only if existing software can be reverse-engineered
to make it conform with the development method
that the CASE tools are supporting. Tools for auto-
matic reverse engineering are still at a very early
stage of development. A few organisations have
attempted to carry out this process manually, but
the cost can be enormous, requiring many work-
years of effort, and the payback is not proven.
However, some organisations are convinced that
such an investment is necessary before the full
benefits can be obtained from CASE tools. One

German insurance company with an annual
systems budget of DM140 million ($85 million) is
planning to spend up to DM25 million ($15 million)
over five years on just such an exercise.

However, the availability of CASE tools does
affect the decision about when to replace exist-
ing software. In some instances, it will be more
cost-effective to redesign and reconstruct a
system than to maintain the existing soft-
ware. The increases in development productivity
brought about by the use of CASE tools, and the
easier maintenance of the software developed
mean that it is economic to replace existing
applications sooner (see Figure 3.3). Furthermore,
some systems managers who have implemented
CASE tools claim that existing applications have
to be rewritten sooner than originally planned
in order to bring as much of the work as possible
into the CASE environment. Unless this is done,
the development department will have to retain
the expertise and skills needed to maintain
software developed originally with non-CASE
tools. In turn, this will slow down the full

Cumulative
costs

:

Sudden increase
caused by cost of
redeveloping using
case tools

Cost of continuing /
to maintain
existing system

Figure 3.3 Use of CASE tools can bring forward the date when it is cost-effective to redevelop existing systems

Sudden increase caused
by cost of redeveloping
using conventional
technigues

A

c

[¢———— xyears —— Pl
——— — xyears ———P

A — Date at which decision is made to redevelop using CAsE tcols

B = Date at which cumulative costs of redeveloping using CASE tools are

C = Date at which decision is made to redevelop using conventional technigues

D = Date at which cumulative costs of redeveloping using conventional technigues are less than continuing
existing system

In each case, the time required to recoup the redevelopment costs is the same. Thus, if this time

in which the redevelopment costs can be written off, existing systems can be redeveloped earlier by using CASE

B D

Time

less than continuing to maintain existing system

to maintain

equals the maximum period
tools.

. FOUNDATION

utler Cox & Partners Limited 1988

19

Chapter 3 Deciding when and where to use CASE tools

implementation of CASE tools throughout the
organisation.

Having decided where CASE tools are likely to pro-
vide the most benefits, and identified the situa-
tions where the tools should and should not be
used, the next stage is to select the most
appropriate CASE-tool products.

FOUNDATION

20
D Butler Cox & Partners Limited 1988

Chapter 4

Selecting appropriate CASE tools

The most important consideration when selecting
CASE tools is to ensure that the tools support the
development methods being used. The first step
in the selection process is therefore to review the
development environment in terms of the methods
being used. It is also necessary to identify the
stages of the software life cycle that the tools are
to support and to choose the CASE tools accord-
ingly. Some tools support just one or a few of the
stages. In this chapter, we show how consider-
ation of these factors can be used to create a set
of formal selection criteria, which are then used
to select the most relevant CASE-tool products.

SELECT TOOLS THAT MATCH
THE DEVELOPMENT ENVIRONMENT

In Chapter 3, we emphasised that many CASE tools
have to be used in conjunction with a develop-
ment method that is based on structured tech-
niques. Care must be taken to ensure that the tools
selected support the particular method. Not every
tool supports the techniques and diagramming
conventions used by a method, and some tools
support only one method, imposing the develop-
ment processes and rules that it contains. For
example, IEF Information Engineering Facility
supports only James Martin’s Information Engi-
neering method.

Some organisations already make effective use of
a method, and, in this situation, CASE tools to sup-
port the method can be implemented without any
great difficulty. Other organisations’ use of methods
is not so successful and they will need either to
improve their use of the method, or to replace it
before they can implement CASE tools. Organi-
sations that do not yet use a development method
will have to choose and implement both a method
and CASE tools at the same time. The process of
selecting CASE tools therefore depends on the
methods that are already in use and how effec-
tive their use is.

WHERE METHODS ARE USED
EFFECTIVELY

Where development methods are already used
effectively, tools should be chosen to support the

FOUNDATION

r Cox & Partners Limited 1988

methods already in place. Although it may seem
obvious to do this, many systems departments are
often tempted to select the latest tool with the
newest features, regardless of whether it is suit-
able for use with the existing methods. Where
tools are being selected to support existing
methods, the cost of implementing the tools is less
than in other situations, because it is not necessary
to select and introduce appropriate methods at the
same time. In particular, it will not be necessary
to provide the training, and the support from the
method’s supplier, that is required to introduce
and use structured development techniques.

Most of the Foundation members we interviewed
who had successfully implemented tools empha-
sised that they had not even considered replac-
ing the methods currently in use. For example,
Nationale Nederlanden, a Dutch insurance com-
pany, was already using SDM II, a systems de-
velopment method widely used in the Nether-
lands. (SDM 1I was developed originally by Pan-
data and was sponsored by five organisations,
including Nationale Nederlanden and the Dutch
PTT.) Nationale Nederlanden then decided to im-
plement Pandata’s Systems Development Work-
bench (SDW) to support the method, and has
found that SDM II and its associated techniques
are now more rigorously adhered to. It has also
found that software quality is being improved
because SDW enables better documentation to be
produced and improves the consistency of the
designs.

Another organisation was already using LBMS’s
LSDM method, and, following an extensive review
of available tools, decided to support it with
LBMS's Auto-Mate Plus analysis and design tool.
This organisation told us that it would have con-
sidered replacing LSDM only if a tool supporting
another method provided an order-of-magnitude
improvement in productivity.

The need to select tools that support the methods
being used is strongest when the method covers
the analysis and design stages. In this situation,
there may be a CASE tool that has been designed
explicitly to support the method being used.
Sometimes, however, it is possible to select a CASE

21

-—————ﬂ

Chapter 4 Selecting appropriate CASE tools

tool that can be used with a variety of methods
— Arthur Young’s IEW and Index Technology’s
Excelerator analysis and design workbench pro-
duct are two examples.

Another option is to use a tool that can be con-
figured to support different diagramming con-
ventions, development standards, and methods.
An example is the Virtual Software Factory pro-

duct developed by Systematica, a small UK-based"

supplier of software-development tools.

WHERE THE USE OF METHODS
IS INEFFECTIVE

Our survey of Foundation members shows that
nearly 80 per cent of them already use methods
based on some form of structured technique.
However, several of the interviewees for the
research for this report told us that these methods
are often not used effectively — a view that cor-
responds with the findings of Butler Cox’s con-
sulting work in this area. An organisation that
finds itself with methods in place that are not
being used effectively will have either to improve
its use of those methods or to replace them
completely before implementing CASE tools.

The difficulty that can be encountered if CASE
tools are introduced to support a poorly used
method is illustrated by the experience of an
organisation that had implemented a well-known
development method without thinking through
the full implications. Subsequently, the CASE tool
designed to support this method was also intro-
duced. However, neither the method nor the
tool has produced the expected benefits — there
has been no improvement in development pro-
ductivity or in the quality of systems. This situa-
tion has occurred because the method and tool
have not been fully accepted by the user and
systems communities, and are not used for all
development work. In addition, this organisation
uses a code generator but, since this is not inter-
faced to the CASE tool, its prototyping capabilities
are used instead of a design stage. This leads to
design inconsistencies and poor-quality systems.
The experience of this organisation shows that if
the method and the tools to support it are not ful-
ly effective and universally applied, the potential
benefits of using CASE tools will not be realised.

Improve or replace the

development method

If a method is introduced as part of the imple-
mentation of CASE tools, the costs associated with
the method will form the bulk of the total costs
— of the order of 60 to 70 per cent according to
our research. The decision to replace existing
methods should therefore not be taken lightly. It

22

will always be less costly and less disruptive t,
improve the method in place than to replace it
completely. i

There are many reasons why existing develop-
ment methods may be used ineffectively. They in-
clude difficulty with implementing the methods,
insufficient or incomplete coverage of the soft-
ware life cycle, and a mismatch between the
methods and the development style of the organi-
sation. Only after every possible way of reducing
the mismatch between the existing methods and
the heeds of the development department has
been examined, should replacing the methods be
considered.

Difficulty in implementing a method should not
be taken as a reason to replace it, unless its
credibility has suffered too much for it to be re-
established. Implementing CASE tools to support
the method will often go a long way towards
solving the problem. One company that was
already using the Information Engineering method
and its associated techniques, and had formal
development standards in place, decided to
implement IEF Information Engineering Facility
because of its code-generation capabilities. The
introduction of IEF increased the interest in
methods and techniques among development
staff, and, as a result, the effectiveness of the
method improved considerably.

Incomplete coverage of the life cycle by an
existing method may require the use of com-
plementary methods to cover more of the stages,
or the extension of the existing method to support
the missing stages. This approach may appear
fragmented, but, if the methods are consistent,
there is no reason why it should not work. (The
use of complementary methods to cover several
Stages of the life cycle was discussed in detail in
Foundation Report 57.)

Implement CASE tools to support

the method

Regardless of whether an organisation decides to
improve its existing methods or to replace them
completely, CASE tools need to be chosen carefully
to support the methods that will be used. If the
method is being improved or enhanced, tools that
support the existing method can be chosen. There
Is no need to wait until the improvements to the
method have been implemented. Selecting and
implementing tools concurrently with the process
of improving the method will allow developers to
become familiar with the tools and to use their
facilities within the framework of the method.
Where existing methods are replaced completely,
the new method and the tools to support it should
be selected together, using the procedures
described below.

Chapter 4 Selecting appropriate CASE tools

WHEN DEVELOPMENT METHODS
ARE NOT USED

The situation where development methods are not
used at present is the most difficult and costly in
which to implement CASE tools. It will be difficult
to convince development staff of the need to
introduce methods because it will be necessary to
persuade them that the horror stories they might
have heard about the manual effort of imple-
menting structured techniques are not relevant
when CASE tools are used. It will also be necessary
to convince them that the discipline and standard
working practices imposed by using structured
techniques bring worthwhile benefits. Senior busi-
ness and systems managers will also need to be
convinced that investment in a development
method is worthwhile, particularly the costs
involved in teaching development staff and users
how to use structured techniques successfully.

Despite the difficulties, implementing CASE tools
in conjunction with introducing a method provides
the best opportunity for successfully introducing
such tools. It is also the best way of ensuring the
ideal combination of methods and tools, because
they can be evaluated together.

The most important selection criterion, however,
is to ensure that the method chosen matches the
style of the organisation. If an inappropriate
method is chosen, it will be impossible to use it
successfully, regardless of how good the CASE
tools to support it are. Once the use of methods
has been discredited, it may be impossible to start
again. (Report 57 contains detailed advice about
how to select a development method that matches
the style of the organisation.)

Even though the selection of the tool is sub-
ordinate to the selection of the method, the
existence of tools to support a method is a
powerful incentive to choose the method. Systems
managers who have successfully implemented
methods and tools tell us that they would not
recommend introducing a method that cannot
be supported by tools. It is unlikely, however, that
there will be a clear choice between a method
that is supported by tools and one that is not. In
practice, most development methods make use
of a limited range of structured techniques and
diagramming conventions, and some CASE tools
have been designed to support the techniques
rather than a specific method. Thus, the choice
of tool will often be determined by the level
of technical assistance, training, and support
available from the tool supplier, rather than by the
facilities provided by the tool.

SELECT CASE TOOLS THAT
SUPPORT AREAS OF CONCERN

Different generations of CASE tool and, to a cer-
tain extent, different tools within each generation,

- FOUNDATION

© Butler Cox & Partners Limited 1988

support different stages of the development life
cycle. Once an organisation has defined the areas
of greatest concern and, hence, the stages of the
life cycle that need to be addressed, it can select
the appropriate tools. To do this, the systems
manager needs to know what tools exist to support
the different stages of the life cycle.

Some commentators categorise CASE tools accord-
ing to the life-cycle stage they support — analyst/
designer workbenches or programming-support
environments, for example. We believe, however,
that it is more useful to categorise CASE tools
according to the range of stages they support,
because the cost and strategic impact of the tools
grows with increasing life-cycle coverage. We
define three categories of CASE tool: tools covering
a single stage of the life cycle, tools that cover two
or more consecutive stages, and integrated
development environments designed to cover all
stages. A typical cross-section of products that fall
into each of these three categories is shown in
Figure 4.1 overleaf.

Tools covering a single stage usually (but not
exclusively) support the back end of the life cycle,
typically the programming and implementation
stages. A typical example is Program Definition
Facility (PDF) from Michael Jackson Systems, used
for designing and generating programs. Another
is Gamma, a code generator from Knowledge-
ware Inc.

Tools covering several stages of the life cycle
typically support the front-end analysis and design
stages. Most of the better known CASE products
fall into this category. A typical example is the
ADT Yourdon Analyst/Designer Toolkit, from
Yourdon International. This product covers the
analysis and design stages of the life cycle.

Integrated development environments are the
initial manifestation of 1-CASE. They attempt to
cover all stages from planning through to imple-
mentation. In practice, none of the products
available today successfully achieves full coverage
of all the stages, or provides complete integration
between life-cycle stages. The best-known and
most widely used product of this type is IEF
Information Engineering Facility from Texas
Instruments and James Martin Associates.
Another more recent development is the CASE*
series of products from Oracle. We believe that
these will go a long way towards providing a true
integrated development environment.

USE FORMAL CRITERIA AS
THE BASIS FOR SELECTION

The criteria used to select the specific tools that
best meet an organisation’s requirements will be
based on the factors discussed earlier in this

23

Chapter 4 Selecting appropriate CASE tools

Tools covering one life-cycle stage

Telon (Pansophic Systems Inc); code
generation.

Netron CAP Development Center; (Netron
Inc) code generation.

PDF (Michael Jackson Systems Ltd);
program-design.

VAX Cobol Generator (Digital Equipment
Corp); code generation.

design.

IDMS/Architect):

Figure 4.1 Examples of products in the three categories of CASE tools

Tools covering two or more
consecutive stages

Corvision (Cortex Corp): detailed design
and programming.

ADT Yourdon Analyst/Designer Toolkit
(Yourdon International Ltd); analysis a

Managerview (Manager Software
Products, Inc); analysis and desi
ProKit Workbench® (McDonnell
Information Systems Group)
analysis, and design. ' .
Auto-Mate Plus (LBMS plc; also marketed ~ Systems Ltd).
by Cullinet Software Inc as

analysis and .
Excelerator (index Technolo
analysis and design.

¥ Framework only. Provides project database and management facilities to support other tools.

Integrated development environment
‘covering most life-cycle stages

IEF Information Engineering Facility
(Texas Instruments/James Martin
Associates).

FOUNDATION Integrated Environment for
Software Engineering (Arthur Andersen &
Co Management Consultants).

CASE* (Oracle Corp).

IEW (Knowledgeware Inc/Arthur Young
Information Engineering Services).
Maestro (Softlab Inc and Philips Business

chapter — the existing development environment
and the stages of the life cycle where the greatest
problems occur. The first objective of establishing
selection criteria is to narrow the field to a
shortlist that matches the stated objectives and
the structure of the systems department. The
second is to select tools from the shortlist that
meet the technical and commercial criteria,
important to the organisation.

DEFINE THE SELECTION CRITERIA

The first, and most important, group of criteria are
those used to narrow the field of tools that need
to be considered in detail. These criteria are
derived from the style of the organisation, the
stated objectives of the systems department and
the type of development method currently being
used. The most appropriate category and genera-
tion of tool can then be selected against these
criteria. Other criteria form the basis for selecting
specific tools. This second group of criteria are
used to evaluate the technical merit of the tools
and the commercial and technical performance of
their suppliers.

Identify appropriate categories

and generation of tools

The most sophisticated CASE tools with the
greatest life-cycle coverage are not necessarily the
best tools for a particular organisation. Imple-
menting a complex integrated development
environment supported by a mainframe-based
development dictionary is an expensive exercise,
and is appropriate only for large organisations
experienced in using structured development tech-
niques. Tools covering either one or a few stages
are less costly and require less effort to imple-
ment, and may therefore be more appropriate for

24

less sophisticated or smaller organisations. One of
the most important parts of the selection process
is establishing the most appropriate category of
tool for a particular organisation.

Selecting the appropriate generation of tool is also
an important part of the process. Just as pro-
gramming languages from earlier generations are
still available, there are different generations of
CASE tools on the market, each providing a dif-
ferent level of functionality and different cost/
benefits. (The characteristics of each generation,
together with representative products, were shown
in Figure 1.1 on page 3.)

The size of an organisation largely dictates the
most appropriate category and generation of tool.
In general, the benefits from using tools increase
with the size and complexity of the applications
portfolio, but even small organisations with only
a few development staff can benefit from the
ability to speed up the production of designs and
documentation that results from using an analysis
or design tool.

With the exception of realtime applications (for
which there are specialised development tools),
the type of business application that will be
developed is not a particularly significant factor
in selecting appropriate CASE tools. The under-
lying analysis and design concepts will be the same
regardless of the type of system being developed.
The size of application, however, will affect the
level of benefits that can be gained.

Define detailed evaluation criteria

The next step in the selection process is to define
the criteria that will be used to perform a detailed
evaluation of the shortlisted products. Apart from

FOUNDATION

utler Cox & Pariners Limited 1988

Chapter 4 Selecting appropriate CASE tools

cost, the criteria relate to two areas — the
technical merit of the product and the commercial
viability of the supplier.

The technical criteria include the ability of the
tool:

— To display graphically the data and activity
diagrams required by structured methods.

— To meet the requirements of the systems
department in terms of response times and
shared use of workstations and development
dictionaries.

— To provide a high level of consistency checking
between the diagrams produced at different
stages of the development process.

— To generate code automatically from the
output of the design stage.

— To provide a high level of software reliability.

— To provide links to other CASE tools, databases,
and data dictionaries.

— To be used in the organisation’s existing
hardware environment.

The supplier criteria are concerned with the
financial and market position of the supplier, the
availability of post-sales support, including
international support, the supplier’s commitment
to the product, and, where appropriate, the
relationship of the supplier with the product’s
developer. Typical detailed technical and supplier
criteria used by Butler Cox’s consultancy practice
are shown in Figure 4.2.

When considering the supplier criteria, it is
important to recognise that the market for CASE
tools is relatively immature and that the dominant
suppliers and products are only now emerging.
Without doubt, the structure of the CASE-tool
supply industry will change considerably during
the next few years.

EVALUATE AVAILABLE PRODUCTS
AGAINST SELECTION CRITERIA

The final stage in the selection process is to use
the selection criteria defined above to identify the
specific CASE tools to be implemented. At first
sight, it may appear that there is a wide range of
effective CASE tools from which to choose. The
reality is different. At a recent CASE conference
and exhibition in the United States, tens, rather
than hundreds, of suppliers were represented, and
many of the products were, in fact, only

FOUNDATION

® Butler Cox & Pariners Limited 1988

Figure 4.2 Product and supplier criteria for selecting
CASE tools

Product criteria Supplier criteria

General
Proven reliability

Ease of installation

Complete technical and
user documentation

The company
Financial strength

Commercial stability
Reasoniable market share
Good relationships with
other CASE-tool suppliers
~ Broad customer base and
__geographic coverage

R
Support
Acceptable level of
manpower devoted to
customer support

Provision of training
Provision of customising
support

Good response to
problems and queries

Environment

Support of acceptable
hardware bases

Ability to work within
acceptable software
envirohments

Appropriate multi-user
support

Ability to interface with other
environments

marginally associated with CASE. Furthermore,

- many of the suppliers were small companies and

lacked the resources either to develop mainstream
CASE products or to support them in an
increasingly competitive market.

Assessing how well a particular product or its
supplier meets a particular criterion can, however,
be fraught with difficulties. There are few, if any,
detailed product reviews and the assessors will
usually have to rely on information provided by
the suppliers. The best course of action is to
discuss the products and suppliers with existing
users. Suppliers will generally be willing to provide
the names of customers who can be approached
for this purpose.

Using the selection criteria will ensure that the
CASE tools that best meet the needs of the
business are chosen. However, it is at the end of
this stage that the most important task begins: the
implementation of the chosen tools. We describe
how to do this in the next chapter.

25

Chapter 5

Managing the implementation of CASE tools

The long-term success of CASE tools depends on
how well their implementation and subsequent
use is managed. If their initial implementation
is not managed properly, their credibility will
be reduced, staff will not be motivated to use
them, and neither systems management nor user
management will feel committed to use them
in the future. The importance of managing the
implementation of CASE tools is certainly recog-
nised by Foundation members. As Figure 5.1
shows, nearly all of those who responded to the
questionnaire believe that this is the most important
and difficult aspect of introducing CASE tools.

There are several actions required to ensure the
successful implementation of CASE tools. The first
is to gain the commitment of both system and user
management before the process of selecting and
implementing CASE tools begins. This can be
achieved through education and through presenta-
tions about, and demonstrations of, CASE tools.
The aim at this stage is to present realistic
estimates of the benefits of CASE tools and their
potential impact on the process of developing
software. It is also important to highlight the
benefits that improved software quality and
development productivity will bring to the
business.

A similar education programme is required for the
development staff who will use the tools. This
time, the aim is to motivate them to want to use
the tools. There will also be a need for extensive
training of systems staff, not only in using the
tools, but also in using the structured techniques
that the tools will be used to support. In particular,
training in analysis skills will be required because
development methods based on structured tech-
niques place a much greater emphasis on the
analysis and design stages.

It is also important to create, at an early stage, an
enthusiastic team of independent staff committed
to the success of CASE tools. Once they have been
trained in using the tools, they should use them
to develop a pilot application. The pilot application
is an important part of the implementation of
CASE tools. It is part of the learning process, and
will provide valuable lessons for the future. It will,
for example, provide a useful indicator of the
productivity and quality gains possible from using
CASE tools — provided, of course, that these
are measured accurately and can be compared
with equivalent measurements for applications
developed without the help of CASE tools. It is
important, however, to select a suitable pilot

Area of concern

Managing the implementation
of CASE.

Impact on the systems
department

Choice of CASE tool

CASE technology

Justification

(Source: Survey of Foundation members)

Figure 5.1 Managing the implementation of CASE tools is the most significant concern

h
m
B e e —

B e =
_—--—--——

0 10 20 30

Percentage of respondents quoting area as their most significant concern

40 50 60 70 80 20

26

Chapter 5 Managing the implementation of CASE tools

application. The application should be important
to the business but it should not be an extremely
urgent or critical application that has to be
developed in a very short time. Although CASE
tools will provide productivity benefits, it is
unrealistic to expect these to be achieved fully
with the pilot application.

The implementation process does not end with the
pilot application, however. It is then necessary to
extend the use of CASE tools throughout the
systems development department, ensuring that
each additional use is justified in its own right.

Finally, the CASE implementation team must
prepare for the future. CASE tools will evolve
rapidly over the next few years, and it is impor-
tant to plan, from the outset, to move to later
generations of tools as they emerge.

GAIN SUPPORT THROUGHOUT
THE ORGANISATION

It is generally accepted that the successful im-
plementation of a new information technology
depends both on the support of senior business
managers and acceptance by the systems and user
communities. The level of senior-management
support required depends on the cost of purchas-
ing and implementing the CASE tools. Third-
generation tools covering several life-cycle stages
will be the most expensive, and will have the
greatest strategic impact. They therefore require
the highest level of senior-management involve-
ment and, hence, also require the greatest amount
of effort to convince senior managers that they
need to be involved in implementing the tools.

Senior managers need to be convinced that the
introduction of CASE tools is a business issue
rather than a technical one. They should therefore
be made aware of the benefits that will accrue to
the business from the investment in CASE tools.
Managers in the systems department should also
be involved in the decision-making process
because they will have to implement the decisions.
Serious implementation problems can arise if the
commitment of these managers to introducing
CASE tools is not gained in advance. For example,
a leading German insurance organisation met
significant resistance from the project managers
and group leaders, who felt that they derived little
direct benefit from the CASE tools that were
implemented. It was not possible to involve these
staff in the initial decision to introduce CASE tools
but, nevertheless, they were expected to take on
extra supervisory and control tasks as a result. To
counter the antagonism of these staff, this
organisation has now initiated a full training pro-
gramme and has arranged for full consultancy

FOUNDATION

ers Limited 1988

© Butler Cox & Part

support to be available. So far, however, these
moves have met with only limited success.

SYSTEMS DEVELOPMENT STAFF

The introduction of automation is usually most
strongly resisted by those whose work is to be
automated, and systems development staff are no
exception. They need to be convinced that CASE
tools will bring benefits to the systems function
and to the business as a whole. In particular, they
need to be made aware of the advantages of using
CASE tools in terms of automating and supporting
the more difficult aspects of systems develop-
ment, facilitating the use of systems development
methods, and promoting an image of greater pro-
fessionalism. However, they should also be aware
of the significant amount of training and retrain-
ing that will be required, the need to acquire new
skills, and the changes in working practices that
will be brought about by the use of CASE tools.

Inevitably, there will be resistance to the changes.
For example, the Westpac Banking Corporation,
aleading Australian financial institution, believes
that, although the implementation of CASE tools
has enabled it to recruit new employees, one in
five of the existing staff were opposed to their
introduction. Failure to deal with the resistance
sensibly will result in lower staff morale and loss
of credibility for the CASE tools.

The best way of gaining the support of systems
staff is to set up a small team of key staff who will
act as the centre of expertise for CASE tools, and
who will form the project team for the pilot
application. Ideally, these people should already
be experienced in the use of structured develop-
ment techniques. They must also be willing to pro-
mote the use of CASE tools among their colleagues.
The Westpac Banking Corporation believes that its
success in introducing CASE tools was partly due
to its choice of a small number of systems staff
who were willing to initiate change, to accom-
modate new ideas, and to champion the use of
CASE tools (see Figure 5.2 overleaf).

THE USER COMMUNITY

Because the implementation of CASE tools im-
proves development timescales and software
quality, it will have a direct impact on user depart-
ments. The emphasis in gaining the support of the
user community should therefore be on promoting
the benefits that CASE tools will bring in terms of
a closer fit between applications and user needs.
This will not be the only effect of CASE on users,
however. User departments should also be made
aware that the use of CASE tools means that it is
easier for them to be more closely involved in the
development process. Indeed, user involvement

27

Chapter 5 Managing the implementation of CASE tools

WESTPAC BANKING CORPORATION

The Westpac Banking Corporation is an Australian banking and
financial services organisation, with assets of A$70 billion ($56 billion)
and an annual information systems budget of around A$150 million
($120 million). It has 2,700 information systems staff, 600 of whom
are involved in systems development. Westpac first introduced
CASE tools early in 1986. Fifty per cent of the systems development
staff are now using cAse tools, supported by one workstation per
two to three developers. Both productivity and software quality have
improved.

Westpac has a long history of trying to implement systems
development methods. Structured analysis and design techniques
were introduced in the 1970s to develop systems, but the
experiment failed because the high level of manual effort required
to keep the documentation up to date negated any productivity
benefits. When Westpac tackled the problem again in the mid-1980s,
it therefore had to start from scratch with new methods supported
by CASE tools.

The corporation adopted a step-by-step approach to case
implementation. The new, in-house method was established first.
Then, small information systems units were created, separate from
existing departments, to exploit the new technology and to become
centres of expertise and excellence. Only then did Westpac
introduce casE tools. Since early 1986, Westpac has been using
Netron/CAP Development Center, a code generator from Netron
Inc, and IEW, from Arthur Young. It uses IEW in the early stages
of the life cycle for defining user requirements and for systems

Figure 5.2 Small units of expert staff help to ensure successful implementation of CASE tools

analysis, and Netron/CAP for generating Cobol source-code during
the programming stage.

Westpac believes that its step-by-step approach, coupled with senior
management promotion and commitment, middle management
enthusiasm, and the use of a small number of exceptional personnel

- to provide technical leadership, has ensured the success of its gase

implementation. It measures this success in terms of improved
productivity and software quality. The main productivity benefit has
been in the programming stage, through the generation of re-usable
Cobol, and in software maintenance, through improved
documentation and more comprehensible code.

Westpac has also found that greater emphasis on analysis and
design has produced definitions of user requirements that are more
rigorous, flexible, and clear. Positive feedback from users, who
approve of an approach that models systems before they are fully
developed, has also been received. Users feel that they have better
control because they can manage the definition of their own
requirements.

There are three important features of Westpac’s move to cAsE tools.
The first is that the corporation moved from a process-centred
approach to software development; to a data-centred approach.
Second, it placed greater emphasis on specifying user requirements.
With the support of IEW, staff can now spend more time with more
users, without any adverse impact on overall development time.
Third, systems staff can document new systems requirements and
existing systems in areas that were previously regarded as ioo
difficult to tackle.

is vital to the successful implementation of CASE
tools.

It is therefore equally important for there to be
a small nucleus of user staff who are committed
to introducing CASE tools and who can act as the
focal point for promoting the use of CASE
technology among the user community. These
staff should have the respect of the rest of the user
community and be able to influence their
acceptance of CASE tools and the changes in
working practices required by the tools. They
should be involved right from the beginning,
which means that user managers need to be
persuaded to release key people to work on the
selection and implementation teams.

The involvement of user representatives on the
CASE implementation team will help to ensure that
other team members are made aware of the
business implications of their actions. Ideally,
these representatives should work for the depart-
ment for which the pilot application will be
developed, so they can experience at first hand
the benefits of using CASE tools.

BE REALISTIC ABOUT
THE COSTS AND BENEFITS

In the same way that suppliers have over-sold the
benefits of CASE tools, there is a temptation for

28

systems directors to emphasise their benefits and
play down their disadvantages. It is important to
resist this temptation because raising expectations
to an unrealistic level is bound to lead to dis-
appointment at a later stage. It is important
therefore to emphasise that the cost of imple-
menting CASE tools can be high and to set
realistic expectations for the benefits that can be
achieved.

Many of the Foundation members we interviewed
indicated that they had underestimated the costs
and overestimated the benefits of CASE tools. A
UK-based multinational oil company, for instance,
found that the costs associated with gaining
support for the introduction of CASE tools, and the
costs required to train staff in how to use the
method supported by the tools were both at least
50 per cent higher than expected, as was the
amount of hardware that needed to be dedicated
to the tools. Consultancy-support costs were also
underestimated.

IMPLEMENTATION COSTS
ARE LIKELY TO BE HIGH

Although the cost of implementing CASE tools
depends on the category and generation of the
tools chosen, it can be high in all but the simplest
applications. The costs fall mainly into two
categories: technology (hardware and software),
and support (training and consultancy). It is a

. FOUNDATION

S Butler Cox & Part

UOX & Fanners Limnited

Chapter 5 Managing the implementation of CASE tools

mistake, however, to reduce resources in either
of the categories in order to reduce costs. Inade-
quate resources will inevitably lead to dissatis-
faction among users and will slow down the rate
at which the use of CASE tools can be extended
after their initial implementation.

The high level of costs that can be required to
implement CASE tools is illustrated by a manu-
facturing organisation that has implemented
standalone analysis and design tools to support 30
development, staff with one workstation per
developer. The total implementation costs in this
organisation were $1.39 million, or $46,500 per
developer, of which 45 per cent was for training
and consultancy support. An analysis of the
implementation costs is shown in Figure 5.3. The
costs would have been even higher if this organi-
sation had chosen to link each development
workstation to a mainframe-based development
dictionary. In addition, the training and con-
sultancy costs will, of course, continue after the
initial implementation. Some organisations have

Figure 5.3 Implementation costs for CASE tools can be
substantial

Costs of implementing analysis and design tools for 30
development staff, with one workstation per developer.

Workstations $170,000
Software 600,000
Training 500,000
Consultancy support 120,000
Total $1,390,000 (or $46,500

per developer)

found that they require consultancy support for
two or three years.

Technology costs

The initial technology costs will vary according to
the generation of CASE tools chosen, and the
stages of the life cycle covered by the tools. The
later the generation, and the more extensive the
coverage, the more expensive will be the hard-
ware and software costs. In general, however, our
research shows that the cost of software rep-
resents only about 20 to 35 per cent of the initial
costs of implementing CASE tools in conjunction
with a development method. Figure 5.4 gives a full
breakdown of the costs of two representative
implementations, one for an integrated develop-
ment environment and the other for analysis and
design tools. The figure also gives the continuing
costs expected to oceur during the first three years
after the initial implementation.

The technology costs include the cost of hardware
and supporting software. The hardware costs
always include the cost of workstations for
development staff (we recommend at least one
workstation for every two staff). Hardware costs
will also include increased use of central main-
frame resources where a mainframe-based tool or
development dictionary is used. Workstation costs
vary greatly according to the type of equipment,
from a few thousand dollars for an MS-DOS personal
computer to tens of thousands for a powerful
workstation with high-resolution graphics capa-
bilities. Sometimes, the hardware costs will also
include the cost of a network to provide multi-user

Based on providing facilities for 30 development staff

Cost item

Initial costs

Hardware (workstations or PCs)
Workstation software

Mainframe software

Implementation support

Training (including training in the method)

Total initial costs

Recurring costs (per year)

In-house technical-support group

Software maintenance

Hardware maintenance

Continuing training

Other (documentation, external meetings, . . 4

Total recurring costs (per year)
Total costs over 3 years
Total costs per developer over 3 years (

Average cost per developer per year

Figure 5.4 Typical costs for installing and implementing two types of CASE tool over a three-year period

Integrated development

Analysis/design tool environment

2120000 $150,000
125.000 e
= 250,000
25,000 o
400,000 S
$700,000 $1.075.000
$100.000 $100,000
15,000 oo
15,000 e
25.000 L
20.000 o
$175,000 e
$1.225,000 P—
. $40,833 . $56,833
R $18.944

. FOUNDATION

©® Butler Cox & Partners Limited 1988

29

Chapter 5 Managing the implementation of CASE tools

working, particularly where the development
workstations are not linked to a mainframe.

Supporting software costs will vary with the type
of tool installed. For single-user, PC-based tools,
no additional software will be necessary. At the
other end of the scale, a full implementation of
an integrated development environment using a
mainframe-based development dictionary requires

not only the CASE tools, but also a database

management system to support them. Having to
install DB2, which is necessary with some tools
(notably IEF Information Engineering Facility), is
very expensive and requires careful thought. The
organisation’s whole strategy for databases and
database management systems, not just for CASE
tools, needs to be thought through and agreed.

Support costs

The support costs associated with implementing
CASE tools are likely to be more than the tech-
nology costs although this depends on the maturity
of the current development environment and the
experience of using structured techniques. For
example, the training costs will be high if a new
method has to be introduced as part of the
implementation. One Foundation member told us
that training 50 development staff to use a new
method required each of them to attend a four-
week course at a total cost of around $350,000.
This cost excluded the cost of productive time lost
during training and the learning period, which
would more than double the training cost. People
who have been trained in the use of a method can
take up to a year to become fully productive.

In addition, to support the method during its early
implementation, some consulting advice will pro-
bably be required from the suppliers of the
method. The number of consultants involved will
depend upon the size of the development depart-
ment, but a ratio of one full-time consultant to 50
development staff is typical.

The introduction of a new method is also likely to
lead to a need to reorganise the systems depart-
ment and to change its procedures and practices.
The personnel costs associated with these changes
will depend on the extent to which the skills pro-
file of the department has to be changed. The
impact of these changes is discussed on page 31.

FULL BENEFITS CAN TAKE
SEVERAL YEARS TO ACHIEVE

In Chapter 2, we described the benefits that can
arise from using CASE tools. In practice, however,
the benefits are often overestimated and the time-
scale required to achieve them is underestimated.
Implementing CASE tools throughout the systems
department can require a substantial investment

30

in hardware, software, and education. Many
organisations will authorise such investments only
if they are likely to produce a payback in .a
relatively short time — perhaps as little as two
years. The full benefits of CASE tools may take
longer than this to realise, and it is a mistake to
justify the investments on the basis of benefits
that cannot realistically be achieved within the
required payback period. It is therefore sensible
to ensure that the implementation of CASE tools
can achieve short-term benefits, even if this
means delaying some of the longer-term benefits.

Short-term benefits are easiest to achieve with
CASE tools that cover one or a few life-cycle
stages, because these types of tools can be imple-
mented reasonably quickly. In addition, the costs
of using them build up progressively. Integrated
development environments, however, require
a high initial investment, and where it is impor-
tant to achieve short-term benefits, it may be
necessary to install a less sophisticated tool.
Implementing code-generating tools to support the
programming stage will usually provide the most
immediate improvement in development pro-
ductivity and software quality. These tools very
quickly increase the number of lines of code per
programmer-day, and reduce the coding errors.

One company told us that it had been using the
Focus product as a means of improving develop-
ment productivity. It then decided to use the DB2
database management system for its mainstream
applications, which meant that it could no longer
use Focus for these applications (PL/1 was used
instead). However, the use of Focus had increased
productivity at the programming stage by a factor
of five, so this company had to find an alternative
way of improving productivity when it reverted
to PL/1. It decided to install the Telon code
generator from Pansophic Systems Inc, a US soft-
ware supplier, to increase coding productivity.
This was a tactical decision that delivered the re-
quired short-term benefits, while providing the
time to find a product that fitted in better with
the long-term strategy.

PREPARE FOR ORGANISATIONAL
CHANGES

However good the match between an organisation
and the CASE tools it chooses, it is likely that both
the skills profile and the organisation of the
systems department will have to change as a result
of implementing the tools. The use of CASE tools
also requires more involvement by users in the
development process, and this will affect the
way in which user departments are organised.
The impact of these changes can be reduced by
planning ahead.

Chapter 5

CHANGES IN THE SKILLS MIX

One of the most profound changes that systems
departments will have to cope with as they imple-
ment CASE tools is the increased emphasis on
analysis and design skills, and a reduced emphasis
on programming skills. (Figure 2.2 on page 10
showed how the use of CASE tools increases the
proportion of effort required at the analysis and
design stages and reduces the effort at the pro-
gramming stage.) In addition, as the use of CASE
tools increases, the proportion of development
resources used for software maintenance will
decrease, allowing more effort to be spent on
developing new applications.

The trend towards a reduction in the number of
programmers was very evident in a survey carried
out as part of Butler Cox’s Productivity Enhance-
ment Programme (PEP). More than 600 develop-
ment staff from seven organisations responded to
this survey. Only 16 per cent were classified as
programmers. Fifty-one per cent were classified
as analyst/programmers, and 4 per cent as analysts.
(The remainder were classified as systems
development managers, project managers, or pro-
ject leaders.)

A major consequence of the changing skills pro-
file in the systems department is a need to retrain
existing staff in analysis and design skills, in
addition to the training required to use new
development methods and CASE tools. There will,
however, be some resistance because many pro-
grammers will be either unwilling or unsuitable to
retrain as analysts. Much of the resistance can be
overcome by pointing out the ease with which
analysis and design can be carried out by using
CASE tools, and the image of increased profes-
sionalism produced by the rigorous use of the
methods they support. The team of staff pro-
moting the use of CASE tools will also have a role
to play in persuading their more conservative
colleagues to adopt the working practices
demanded by the methods and tools.

The increasing use of analyst/programmers is one
example of the use of CASE tools breaking down
the traditional boundaries between different
systems development roles. In general, there will
be a shift away from employing staff with
specialist technical skills, to staff with business
skills and skills in several development functions.
These changes will lead to a much flatter organisa-
tional structure for the systems department,
which will typically consist of business analysts
and either analyst/programmers, or analysts and
designers who are provided with limited pro-
gramming-support staff.

In addition, there will be a need to create a
specialist team to support the use of both the

FOUNDATION

imited. 1968

Managing the implementation of CASE tools

methods and CASE tools, and to provide advice
about their use to the project teams. This team
could be formed from the staff who work on the
pilot project.

INCREASING USER INVOLVEMENT

In the past, several systems development tech-
niques and tools have been heralded as the
breakthrough that would allow users to be in-
volved directly in the systems development pro-
cess. Fourth-generation languages and data
modelling are two examples. However, the ex-
pected increase in user involvement has not, by
and large, occurred.

Initially, CASE tools were not seen as a means of
increasing users’ involvement in the development
process, because analysis and design tools require
a knowledge of structured techniques that are not
familiar to users. Our own research shows, how-
ever, that in many organisations, the implemen-
tation of CASE tools has resulted in increased user
involvement. For example, a major French manu-
facturing company, which uses Arthur Young’s
IEW, has found that the graphics capabilities of
the tool have encouraged users to participate in
the analysis stage, and to take more responsibility
for quality and for meeting project deadlines.

The interactive, screen-based facilities provided
by analysis and design tools encourages users to
‘sit-in’ at the analysis and design stages, and to
take a more direct interest in the development of
their applications. There is no doubt that greater
involvement at these stages results in software
that better matches the users’ requirements. Some
users will resist the need to be involved more,
however, believing that software development is
the responsibility of systems professionals. Organi-
sations should make strenuous efforts to overcome
this resistance, because the ultimate success of
CASE tools in improving software quality depends
on increased user involvement at the analysis and
design stages.

The need for development staff to work more
closely with users highlights the need for analysts
and designers to have effective interpersonal com-
munication skills. Sitting beside a user who is
directly involved in the development process re-
quires very different skills from those required to
write a specification that is given to the user for
approval.

START WITH AN APPROPRIATE
PILOT APPLICATION

The first application that is developed using CASE
tools should be a pilot project. The aim is to check
that the chosen tools (and the methods they

31

Chapter 5 Managing the implementation of CASE tools

support) will work in the particular organisation,
and to lay down the ground rules for extending
the use of the tools throughout the systems
department. The pilot application is not part of the
process of selecting CASE tools. The application
chosen should therefore be one that will provide
real business benefits and that can be used to
measure both the performance of the develop-
ment team and the quality of the software pro-
duced. It should be sufficiently important to the

business to ensure that the user department is

fully committed to implementing it successfully.
However, it should also be an application where
a short delay in implementing it would not be
disastrous for the business. Even so, the potential
users of the pilot application should be made
aware of the risks involved in using new methods
and tools to develop it.

It is also important to select an application that
is typical of the bulk of the mainstream develop-
ment work done by the systems department. A
primary aim of the pilot project is to begin to build
up experience of using the CASE tools that can be
transferred to other project teams and appli-
cations as the use of the tools is extended. For
example, a database application should be selected
if much of the new development work is database-
oriented.

A successful pilot application will also ensure that
the managers of the user department in question
are enthusiastic about the use of CASE tools. They
will then be powerful allies in extending the use
of the tools throughout the organisation. The
characteristics of a successful pilot project are
listed in Figure 5.5.

MINIMISING THE RISKS

Using new tools for the first time always carries
the risk that development could take longer and
cost more than if traditional approaches were
used. The deadlines for the pilot project should
therefore be set to take account of this. The risks
associated with the pilot application can also be
minimised by ensuring that the pilot-team
members are fully trained in using the tools (and

Figure 5.5 Successful pilot projects have common
characteristics

An important business application
Realistic time: constraints
User management committed to the use of case tools

Project team ful'ly trained in both tools and methods, and, if
possible, experienced in the use of the methods:

Project planned effectively, productivity and quality measured,
and results audited

32

the methods they support) before commencing the
project.

Establishing realistic deadlines

One of the purposes of implementing CASE tools
is to speed up the systems development process.
Thus, there is a temptation to set the deadlines
for the pilot project to prove that this does in fact
happen. However, considerable slack should be
built into the timescale for the pilot application
because it is inevitable that unforeseen problems
will occur as the CASE tools are used for the first
time. It is usually unreasonable to expect to
achieve the full productivity increases at the pilot
stage. Developing the pilot application within
existing timescales will normally be sufficient to
Jjudge the pilot use of CASE tools to be a success.
If tight deadlines are set, there is a risk that they
will be missed. The result will be a demotivated
project team, and the CASE tools will be dis-
credited in the eyes of user management.

Training the pilot team

The staff selected to provide the core expertise
about CASE tools should be used for the pilot team.
They will already be fully committed to the idea
of using CASE tools, and the pilot project will
provide them with practical experience of using
the tools.

Before starting on the pilot, all the team members
should be fully trained in the use of the tools and,
if possible, experienced in using the methods
supported by the tools. Doing this will help to
shorten their learning curve and will ensure that
the pilot application provides a good indication of
how well the tools will perform once they have
been fully implemented.

MEASURING PERFORMANCE

The lessons learnt from the pilot project will be
maximised if the effort involved and the quality
of the software produced is measured accurately.
These measurements will provide valuable in-
formation for the future and a comparison,
however broad, with the past. The ideal is to
develop the same application with and without
CASE tools and compare the results, but few, if
any, organisations can afford this luxury. The
alternative is to compare the measurements from
the pilot project with those from past projects, or,
if these do not exist, with measurements from
applications developed at the same time as the
pilot project.

These comparisons allow the impact of CASE tools
on development productivity and on software
quality to be assessed. However, the absence of
productivity improvements does not necessarily
imply that the pilot project has shown that the
CASE tools will fail to deliver the predicted
benefits. Productivity improvements usually appear

¥ FOUNDATION

S Butler Cox & Partners Limited 1988

Chapter 5 Managing the implementation of CASE tools

only in the long term; the more immediate benefit
of using CASE tools is improved software quality.

EXTEND THE USE OF CASE TOOLS

All of the decisions made and the actions taken
up to the pilot-application stage are aimed at
creating a foundation on which the use of CASE
tools can be extended throughout the organi-
sation. The implementation process does not end
with a successful pilot application but continues
until the CASE tools are used for all aspects of
software development for which they are appro-
priate. The increasing use of the tools must,
however, be continually justified. There will
always be areas of software development where
other tools will be more appropriate.

The data gathered in the original justification
exercise and in the course of the pilot project will
also be useful in justifying the wider use of CASE
tools. The lessons learnt from the pilot project will
also help to extend the use of the tools, by
providing the basis for training development staff,
for refining development methods so they meet
the needs of the business better, and for
improving working methods to make the best use
of the tools.

The measures gathered from the pilot application
must be made on a continuing basis, for all
projects, regardless of whether CASE tools are
used. Comparing development productivity at
each stage of the life cycle will help to provide the

* quantitative information required to justify the
further use of CASE tools. Measurable improve-
ments in terms of reduced maintenance costs
resulting from better analysis and design will
appear only in the medium to long term and will
thus be identified only by a long-term measure-
ment programme.

However, the use of CASE tools is not the only
factor contributing to improving quality and
productivity. Project-management skills, indi-
vidual technical skills and working practices, and
development schedules all play a part, and they
should also be monitored continuously.

PREPARE FOR THE FUTURE

CASE tools are still developing rapidly, and there
will be considerable developments during the next
few years. It is necessary, therefore, to consider
the likely changes as CASE tools are initially
implemented so that the transition to later
generations of tools can be as smooth as possible.
The most significant developments will occur in
the field of 1-CASE tools. Migrating to such tools

FOUNDATION

© Butler Cox & Pariners Limited 1988

will not be straightforward, and consideration
should be given to ways of protecting the initial
investments made in CASE tools.

MOVING TOWARDS I-CASE

The ultimate aim is to provide an integrated set
of CASE tools that cover all stages of the software
life cycle, beginning with the definition of business
requirements, moving through the analysis and
design stages, then to the automatic generation of
programs, and finally facilitating the maintenance
of operational systems. An associated goal is to
provide CASE tools that can ‘read’ existing
programs that were not originally developed with
CASE tools, and automatically generate designs
that conform to the method supported by the
tools. It will be some years before integrated CASE
tools with these abilities are available, but the
emergence of integrated development environ-
ments and the growing number of partnerships
between suppliers of different types of tools are
beginning to result in products that display some
of these characteristics. The likely future develop-
ments in CASE tools are illustrated in Figure 5.6.

The cost of developing a fully integrated set of
CASE tools to cover every aspect of the develop-
ment life cycle is enormous, however. ITT, one of
the CASE-technology pioneers, has estimated that
such a set of I-CASE tools would take five to six
vears to develop, at a cost of $85 million for the
software alone. Texas Instruments, the developer
of IEF Information Engineering Facility, is said to
have spent $50 million en developing the product,
and is spending up to $10 million per month on
promoting and marketing it in an attempt to
dominate the industry. Even the cost of develop-
ing and supporting a CASE tool that covers just one

Figure 5.6 There will be significant development in
CASE tools

Likely developments Timescale

1986/1989

Appearance of simple reverse-engineering
tools that will create system designs from
ex1st!ng programs and data structures

increasmg avallabahty of tools that can be 1989/90

customlsed to any language or method

Avaﬂab i|ty of expert system support for Early 1990

reverse-engineering
‘Developme | Ealy 1980
standards -

Use of expert systems to provide adv 1990/1991

during the design stage

33

Chapter 5 Managing the implementation of CASE tools

stage of the life cycle can run into millions of

“dollars. Because of the high costs involved, some
commentators believe that no single company has
either the resources or the inclination to develop
a full set of I-CASE tools.

We believe that the large and increasing cost of
product development, as well as increasing com-
petition in the marketplace, will lead to a re-
duction in the number of suppliers able to supply
a fully integrated set of CASE tools. Although, in
the short term, there will be an increase in the
number of CASE-tool suppliers, in the longer term
companies providing complementary products will
merge, and smaller specialist companies whose
products complete the portfolio of more powerful
competitors will be taken over. Those who retain
their independence will survive in niche markets
or will form partnerships with other suppliers.

I-CASE is beginning to emerge

but progress will be slow

The concept of I-CASE is based on the use of a
database and data dictionary that store infor-
mation about the business, about data, and about
the activities modelled by computer systems.
I-CASE tools will ensure that these different types
of information are integrated and used con-
sistently throughout the software life cycle and
throughout the applications portfolio. The logical
and physical databases used by operational systems
will be derived from the information held in the
data dictionary.

Most I-CASE products are likely operate in develop-
ment and operational environments that support
mainstream database management systems,
especially IBM’s DB2. Several suppliers have
already produced products in this category — one
example is Texas Instruments’ and James Martin’s
IEF Information Engineering Facility. This product
provides a mainframe-based development dic-
tionary that is, in fact, a DB2 application, and it
generates SQL (Structured Query Language)
statements that are compatible with DB2. Another
example is Oracle’s CASE™ products, which use
Oracle’s own database management system, but
which will eventually generate SQL statements
that are DB2-compatible.

Progress towards integrated CASE tools is also
being made as the result of partnerships between
suppliers of different types of tool. For example,
Knowledgeware and Arthur Young have bought
Tarkenton Software's Gamma code generator to
interface to the IEW workbench product, and
Index Technology has agreed to interface its
Excelerator analyst/designer workbench to Pan-
sophic Systems’ Telon code generator.

Three factors are, however, holding back the
emergence of I-CASE tools. The first is the difficulty

34

of producing code automatically from the output
of the analysis and design stages. The best that has
been achieved so far is to generate code from
program-structure diagrams or activity diagrams:
The second factor is the difficulty of creating
reverse-engineering tools that can be used to bring
existing software into the CASE environment. The
hope is that artificial intelligence techniques can
be used to analyse existing software and extract
the underlying business processes. The third, and

- possibly most important, factor is the lack of com-

monly agreed standards for CASE tools. Without
standards, it will be difficult, if not impossible, to
integrate tools from different suppliers.

The two areas where standards matter most are
in exchanging data between CASE tools, and in
allowing tools designed to operate in one hardware
and software environment to be used in a dif-
ferent environment. Some progress is being made
in both of these areas. The ANSI and the ISO
standards organisations have been working since
the early 1980s to define a common data-
dictionary standard known as Information
Resource Dictionary Standard (IRDS). The original
aim of this standard was to make it easier to
transfer data between data dictionaries. It is to be
extended, however, so that it can be used as a
standard for the development dictionaries used
with CASE tools.

Standards that will allow CASE tools to be used in
different hardware and software environments
are also being developed. In Europe, for example,
the Portable Common Tool Environment (PCTE)
has been proposed by a consortium of European
companies, which developed the proposals as part
of the European Community’s Esprit research pro-
gramme. PCTE is essentially a framework for soft-
ware tools that defines a core standard interface
for use by tool suppliers. This standard is likely
to be adhered to more by European CASE-tool sup-
pliers than by their counterparts in the United
States, who will use their own standards, which
are essentially incompatible with PCTE. PCTE has
not, however, been formally adopted as a
standard, and commercial tools conforming to it
are not yet available. This uncertainty about stan-
dards is likely to continue for several years,
creating problems both for suppliers and user
organisations that wish to integrate discrete CASE
tools.

Migration to I-CASE will not be
straightforward

The current immaturity of CASE tools, the
impending changes in the structure of the CASE-
tool supply industry, and the increasingly rapid
advances in the facilities that CASE tools provide,
will inevitably mean that some organisations

. FOUNDATION

& Farners eg 13co

Chapter 5

implementing CASE tools today will subsequently
have to migrate to other products. Furthermore,
the absence of standards means that many of
today’s products use proprietary design structures
and project-data structures, making both inte-
gration and future migration difficult. Such tools
are ‘closed’, in that they do not make it easy to
transfer data to other tools and to other
environments.

The problems of migrating to the next generation
of CASE tools will therefore be formidable. In
many respects, the problems are similar to those
faced by organisations as they move from con-
ventional hierarchical databases to relational data-
bases. In general terms, the advice given in
Foundation Report 64, Managing the Evolution
of Corporate Databases, will be relevant. Un-
doubtedly, the suppliers of more advanced in-
tegrated CASE tools will provide some degree of
automated support for migrating to the new CASE
environment. Even so, the effort required will be
significant.

PROTECTING THE INVESTMENT
IN CASE TOOLS

With the situation changing so rapidly, organisa-
tions obviously need to take steps to protect their
investment in CASE tools and the methods sup-
ported by the tools. Although the investment in
the tools themselves will be significant, it will be
small in comparison to the investment in the

Managing the implementation of CASE tools

methods supported by the tools. Training staff in
how to use a method, and establishing the work-
ing practices required by the method, requires
considerable investments of time and money. It
is important, therefore, to perceive the tools as
being subordinate to the method, and to make a
long-term commitment to using the method.
Hence, CASE tools should be replaced only if the
new tools support the same method.

The investment represented by data about the
organisation’s computer applications that is stored
by the CASE tools also needs to be protected. The
costs of creating this data will often represent tens
of years of effort. When migrating to new tools,
it may not be possible to transfer the data to the
new tools. It is therefore important to assess how
easy it will be to transfer data from the CASE tools
currently being implemented. Although common
data-structure standards do not yet exist, some
tools are ‘open’, in that they provide facilities for
at least the partial transfer of data to other
environments.

A second way of protecting the investment in
CASE tools, which is particularly relevant if an
integrated development environment is being im-
plemented, is to choose products that either use
a mainstream database management system such
as DB2, or that provide interfaces to it. This will
make it possible to migrate to new tools while
maintaining the analysis and design dictionaries
in the same environment.

REPORT CONCLUSION

In this report, we have emphasised that CASE tools
are not the solution to every systems development
problem. To be effective, most CASE tools have to
be used to support a development method that is
based on structured techniques. The tools will
therefore be only as effective as the methods and
techniques are. Nevertheless, CASE tools can pro-
vide substantial benefits both in terms of improv-
ing software quality and increasing the pro-
ductivity of development staff.

However, it is necessary to choose tools that
address the life-cycle stages where the greatest
problems occur. Different types of CASE tool sup-
port different stages of the life cycle. No CASE tool
yet fully supports all stages, although a few pro-
ducts now partially cover the complete life cycle.
Current CASE tools also have other limitations:
they offer little help for maintaining existing
systems developed originally without CASE tools,
and they are unsuitable for use by business users.

FOUNDATION

& Butler Cox & Partners Limited 1988

The implementation of CASE tools needs to be
managed carefully. The investment in hardware
and software can be considerable — but the cost
of training staff in how to use the methods sup-
ported by the tools is even more. It will also be
necessary to change the organisational structure
of the systems department. CASE tools encourage
a greater emphasis on the design and analysis
stages, and less emphasis on the programming
stage.

Finally, it is necessary to take steps to protect the
investment made in CASE tools and the methods
they support. CASE tools are evolving rapidly and
it will probably be necessary to migrate to a new
generation of tools in the future. The tools im-
plemented today should be chosen with this in
mind. The most critical decision, however, is to
select a development method, and then choose
CASE tools to support the method.

35

Butler Cox

Butler Cox is an independent management consul-
tancy and research organisation, specialising in the
application of information technology within com-
merce, government, and industry. The company
offers a wide range of services both to suppliers and
users of this technology. The Butler Cox Foundation
is a service operated by Butler Cox on behalf of sub-
scribing members.

Objectives of the Foundation

The Butler Cox Foundation sets out to study on behalf
of subscribing members the opportunities and possible
threats arising from developments in the field of
information systems.

The Foundation not only provides access to an
extensive and coherent programme of continuous
research, it also provides an opportunity for
widespread exchange of experience and views
between its members.

Membership of the Foundation

The majority of organisations participating in the
Butler Cox Foundation are large organisations seeking
to exploit to the full the most recent developmentsin
information systems technology. An important
minority of the membership is formed by suppliers
of the technology. The membership is international,
with participants from Australia, Belgium, France,
Germany, Italy, the Netherlands, Sweden, Switzer-
land, the United Kingdom, and elsewhere.

The Foundation research programme

The research programme is planned jointly by Butler
Cox and by the member organisations. Half of the
research topics are selected by Butler Cox and half by
preferences expressed by the membership. Each year
ashortlist of topics is circulated for consideration by
the members. Member organisations rank the topics
according to their own requirements and as a result
of this process, members’ preferences are determined.

Before each research project starts there is a further
opportunity for members to influence the direction of
the research. A detailed description of the project
definingits scope and the issuesto be addressed issent
to all members for comment.

The report series

The Foundation publishes six reports each year. The
reports are intended to be read primarily by senior and
middle managers who are concerned with the
planning of information systems. They are, however,
written in a style that makes them suitable to be read
both by line managers and functional managers. The
reports concentrate on defining key management
issues and on offering advice and guidance on how and
when to address those issues.

BUTLER COX FOUNDATION

© Butler Cox & Pariners Limited 1988

e

|
(

Selected reports
8 Project Management

20 The Interface Between People and Equipment

24 Investment in Systems

25 System Development Methods

27 Developments in Videotex

28 User Experience with Data Networks

29 Implementing Office Systems

30 End-User Computing

31 A Director’s Guide to Information Technology

32 Data Management

33 Managing Operational Computer Services

34 Strategic Systems Planning

35 Multifunction Equipment

36 Cost-effective Systems Development and Maintenance

37 Expert Systems

38 Selecting Local Network Facilities

39 Trends in Information Technology

40 Presenting Information to Managers

41 Managing the Human Aspects of Change

42 Value Added Network Services

43 Managing the Microcomputer in Business

44 Office Systems: Applications and Organisational Impact

45 Building Quality Systems

46 Network Architectures for Interconnecting Systems

47 The Effective Use of System Building Tools

48 Measuring the Performance of the Information Systems
Function

49 Developing and Implementing a Systems Strategy

50 Unlocking the Corporate Data Resource

51 Threats to Computer Systems

52 Organising the Systems Department

53 Using Information Technology to Improve Decision
Making

54 Integrated Networks

55 Planning the Corporate Data Centre

56 The Impact of Information Technology on Corporate
Organisation Structure

57 Using System Development Methods

58 Senior Management IT Education

59 Electronic Data Interchange

60 Expert Systems in Business

61 Competitive-Edge Applications: Myths and Reality

62 Communications Infrastructure for Buildings

63 The Future of the Personal Workstation

64 Managing the Evolution of Corporate Databases

65 Network Management

66 Marketing the Systems Department

Forthcoming reports

Mobile Communications

Software Strategy

Electronic Document Management

Human Resources for the Systems Function
Future Information Technologies

Managing Multivendor Systems

Availability of reports

Members of the Butler Cox Foundation receive three
copies of each report upon publication; additional
copies and copies of earlier reports may be purchased
by members from Butler Cox.

Thast bt €uon & Partosers Limited
Buther Cox Houwse, 12 Bloomelnry Square,
Lesnwbomn WO LA 211, Englasd
W{DL)AI] 0101, Telex SK137IT BUTCOX G
Fax (01)53) 6250

Blgpivemm ased the Netheviawis
Hastler Cox BV
Burg Hogguerstraat 701,
1064 EX Amsterdam
A (020) 130055, Fux (020) 131157

Frawer
Butler Cox SARL
Tour Ak, 164 Rue Ambrokse Croizat,
1204 St Denis-Cédex 1, France
W AE20.01.04, Téldcophour (1) 48.20.72.08

Gormany (FR)
Butler Cox Gmbl)
Richarnd- Wagner-Str, 139,
HO00 Minchon 2
W(O80) 5 25 4001, Pax (089)5 2335 15

Ulwited Sterten of Amevica
Butler Cox Ine.
A0 Bast Ty Sument, Now York, NY 10055, USA
W22 KIRK

Awntvalio and New Zealand

W (02236 6161, Pux(02) 206 6100

Hovdarwd
S Comuiting
72 Mevrton Square, Duldin 2, lrolamd
W0)) Tesnss TRz, Telex 31057 1.
Fax (01) Twan

Fealy
SENIw
D025 Mk, Via Carmiloss 7, Italy
WO A 51, Tedes SN0, Pax (1) 45) 882

T Newirfir Khugrenms
Seatdoamaalt A1
Storn Varvegstan 1. 21 100 Malsn, Ssedvs
TR 1N 30, Teden | TR SINTAIS

Spram
oo natred Waruigy St assmBRands Sy S,
Beralin e Casliw, 8§ 2716, DS Mande il Spuases
W00 § T2 i

il

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42

