

--"-------..

FOUN DATION

Computer-Aided Software Engineering (CASE)

Management Summary
Report 67, December 1988

Butler Cox & Partners Limited

LONDON
AMSTERDAM MUNICH NEW YORK PARIS

Published by Butler Cox & Partners Limited
Butler Cox House
12 Bloomsbury Square
London WC1A 2LL
England

Copyright © Butler Cox & Partners Limited 1988

All rights reserved. No part of this publication may be reproduced by any method
without the prior consent of Butler Cox.

Availability of reports
Members of the Butler Cox Foundation receive three copies of each report upon publication;

additional copies and copies of earlier reports may be purchased by members from Butler Cox.

Photoset and printed in Great Britain by Flexiprint Ltd., Lancing, Sussex.

-

Computer-Aided

(CASE)

Software Engineering

Management Summary

This document sunvmarises the main
management messages from Foun-

Figure 1 Typical graphical display produced by a CASE tool

dation Report 67, published in
December 1988. The full report is
available to members of the Butler Cox
Foundation.

Considerable media attention has
been paid to computer-aided software
engineering (CASE), which is being
heralded as the solution to the appli-

cation-development problems that
organisations have had for many
years. At first sight, the concepts of
CASE appear to be all-embracing and
revolutionary. In reality, the state of

s is

rity daiysis iz £

31 is impiied by Critical Sisdess Forter

AFfimi vy Proosssing Linlis k

Minimm New Erop &finity =8

the art today is much more modest.
Nevertheless, the CASE tools now

Einimes Wore Grap Bfiminy = 20

Finim &35 To Srop Affimity = 85

available can provide substantial

Miniwm ledble #7inity -~ - =64

benefits, provided they are introduced

and used carefully and their limi-

tations are recognised. In particular, the tools
should be chosen to support specific development
techniques. It is vital to use the right combination
of techniques and tools. Inappropriate techniques,
or inappropriate tools to support the techniques,
will only make the problems of systems
development worse.

At present, software engineering corresponds
largely with structured analysis and design
techniques, and CASE tools are the developmeént
tools used to automate those techniques. (Figure 1
shows a typical graphical display produced by an
analysis/design CASE tool.) Increasingly, however,
the term is being used to describe any tool that
supports any stage of the software-development
life cycle.

Use CASE tools to improve
software quality and
development productivity

Early experience with CASE tools shows that they
can improve both software quality and systems
development productivity.

The tools improve software quality in two ways:
they ensure that the application systems match the
business needs of their users and they improve the
technical quality of the systems by reducing the
number of software errors. Systems developed

£ FOUNDATION

© Butier Cox & Partners Limited 1988

with CASE tools meet the needs of the busi-
ness better because the tools and techniques
encourage development staff to place greater
emphasis on the analysis and design stages of the
software life cycle.

The reduction in software errors brought about by
CASE tools is an important benefit because the cost
of correcting errors detected at later stages of the
life cycle is much higher than correcting them at an
earlier stage —up to 1,000 times higher, according
to arecent survey in the United States. CASE tools
reduce the likelihood of technical errors, both at the
early stages of the life cycle by providing automated
support for the structured techniques used during
the analysis and design stages, and at the pro-
gramming stage. They also provide facilities for
automatically checking the consistency of the
successively more detailed versions of systems
designs produced by methods based on structured
techniques. Prior to the availability of such facili-
ties, development staff had to record manually the
complex interrelationships and dependencies
generated by the methods. The inevitable result
was that mistakes were made and the technical

quality of the resulting application system was
reduced.

CASE tools also improve the productivity of develop-
ment staff at each stage of the life cycle. The
greatest improvements at the analysis stage will be
achieved where CASE tools are used to automate
development methods that have previously been

A Management Summary

implemented manually. Improvements of between
10 and 30 per cent are common, and result from the
on-screen graphical representation of systems
designs (which eliminates the need to draw the
designs on paper), and the ability to transfer
information automatically from the analysis stage
to the design stage. These facilities also reduce the
effort and the elapsed time required between
starting the analysis stage and completing the
logical design of a system. Major productivity gains
can also be achieved at the programming stage by
using automatic code generators.

The greatest productivity improvements arise at
the implementation and maintenance stages,
however, as a direct result of the improved quality
of systems. The increased emphasis on analysis and
design, and the improved working relationship
between developers and users, help to reduce the
number of software changes required during the
implementation stage. Thus, CASE tools reduce the
need to enhance applications soon after they are
implemented in order to meet user requirements
that were missed or misinterpreted at the analysis
stage. In addition, CASE tools automatically
generate complete and consistent software docu-
mentation, thus making it easier to maintain
systems after they have been implemented.

However, it is not possible to obtain the full benefits
from CASE tools unless they are used in conjunction
with the method, or development technique, that
they were designed to support. CASE tools are not
a substitute for structured techniques or develop-
ment methods; they are a necessary support for
them.

Recognise the limitations of
CASE tools

CASE tools are still relatively immature and it will
be some time before they have developed to the
stage where they can achieve their full potential.
It is widely recognised that present-day tools have
substantial limitations.

CASE tools provide limited
life-cycle support

Most CASE tools available today cover either just the
front-end analysis and design life-cycle stages, or
just the programming stage. A few, such as Texas
Instruments’ IEF Information Engineering Facility,
have begun to address the complete life cycle, but
they do not yet fully support all the stages.

The limited coverage of tools means that user
organisations need to integrate different products
from different suppliers if they are to create a CASE
environment that covers the whole of the life cycle.

0o

However, several suppliers are working to link
their products to those from other suppliers, the
aim being to create a combination of products that
covers several life-cycle stages. Users of CASE
products should be aware, however, that even
when an interface between two products has been
announced, it is often not as comprehensive as the
suppliers’ literature may indicate.

Many new interfaces between CASE tools will be
announced in the near future, but the type of
information that can be transferred, and the con-
sistency of the user interface, will both be re-
stricted. Sometimes, user organisations may have
to create the required interfaces themselves, but
this could lead to problems of internal support for
the interfaces, and to difficulties with the suppliers
when software problems have to be resolved.

CASE tools offer little help for
maintaining existing systems

Although CASE tools can be used to maintain
software developed by the tools themselves (by
re-using or modifying existing designs), they pro-
vide little support for the maintenance of existing
systems developed originally without CASE tools.
CASE tools will offer significant help in the
maintenance of existing systems only when they
support reverse engineering — the process whereby
systems designs are extracted automatically from
existing programs and are used as the basis for
enhancing and maintaining them. This requires
tools that are able to read existing code and data
structures, and that have the intelligence to extract
the underlying systems design.

At present, reverse-engineering products are
limited to restructuring code and data. We have not
been able to identify any products that are able to
extract a full systems design from existing software.
Without doubt, there is a need for such tools. Until
they exist, CASE tools will be of limited value in
maintaining, for example, the estimated 77 billion
lines of Cobol code in IBM-based systems alone. We
believe that products able to carry out true reverse
engineering are unlikely to be available until the
mid-1990s.

CASE tools are unsuitable for
business users

Although CASE tools can help to involve business
users in the development process, they have not yet
been developed to the stage where they can be used
directly by them. Indeed, CASE tools may never
reach this stage because their use will continue to
require knowledge and experience of structured
development techniques. Users will, however,
become more involved in the development process.
Indeed, some of the most significant benefits of

X FOUNDATION

2 Butler Cox & Partners Limited 1988

CASE tools will arise when users: work with
developers at the analysis and design stages of the
life cycle.

Apply CASE tools carefully
to realise their promise

Because the implementation of CASE tools will
require asignificant commitment both of fundsand
of effort, systems directors must apply them where
the greatest benefits can be derived. The cost of
implementing CASE tools can be considerable — in
excess of $40,000 per developer once the total costs
of workstations, software, training, and support
from the method supplier are taken into account
(see Figure 2).

Select CASE tools to suit the method,
not vice versa

Because CASE tools have to be used in conjunction
with a development method — usually based on
structured techniques — care must be taken to
ensure that the tools selected support the particular
method. Not every tool supports the techniques
used by amethod, and some tools support only one
method, imposing the development processes and
rules that it contains. For example, IEF Information
Engineering Facility supports only James Martin’s
Information Engineering method.

Some organisations already make effective use of
a method, and, in this situation, CASE tools to
support the method can be implemented without
any great difficulty. Other organisations’ use of
methods is not so successful and they will need
either to improve their use of the method, or to
replace it before they can implement CASE tools.
Organisations that do not yet use a development
method will have to choose and implement both a
method and CASE tools at the same time. (In fact,
this is the best way of ensuring the ideal com-
bination of methods and tools, because they canbe
evaluated together.) The process of selecting CASE
tools therefore depends on the methods that are
already in use and how effectively they have been
implemented. (An earlier Foundation Report, No 57

Figure 2 Implementation costs for CASE tools can be
substantial

Costs of implementing analysis and design tools for 30
development staff, with one workstation per developer.

Workstations $170,000
Software 600,000
Training 500,000
Consultancy support 120,000
Total $1,390,000 (or $46.500

per developer)

£ FOUNDATION

Cox & Partners Limited 1988

Management Summary A

— Using System Development Methods — provided
advice about selecting and using methods.)

Even though the selection of the toolis subordinate
to the selection of the method, the existence of tools
to support a method is a powerful incentive to
choose the method. Systems managers who have
successfully implemented methods and tools tell us
that they would not recommend introducing a
method that cannot be supported by CASE tools. It
is unlikely, however, that there will be a clear
choice between a method that is supported by tools
and one that is not. In practice, most development
methods are based on a limited range of structured
techniques and diagramming conventions, and
some CASE tools have been designed to support the
techniques rather than a specific method. Thus, the
choice of tool will often be determined by the level
of technical assistance and support available from
the tool supplier, rather than by the facilities
provided by the tool.

Ensure that tools support
the areas of concern

Different types of CASE tool support different
stages of the development life cycle. Once an
organisation has defined the areas of greatest
concern and, hence, the stages of the life cycle that
need to be addressed, it can select the appropriate
tools. There are three categories of CASE tool —
those that cover asingle stage of the life cycle, those
that cover two or more consecutive stages, and
integrated development environments designed to
cover all stages. The cost and strategic impact of the
tools grows with increasing life-cycle coverage. A
typical cross-section of products that fall into each
of the three categories is shown in Figure 3,
overleaf.

Tools covering a single stage usually (but not
exclusively)support the back end of the life cycle,
typically the programming and implementation
stages. Tools covering several stages of the life cycle
typically support the front-end analysis and design
stages. Most of the better known CASE products fall
into this category. Integrated development
environments are designed to cover all stages from
planning through to implementation. In practice,
none of the products available today successfully
achieves full coverage of all the stages, or provides
complete integration between life-cycle stages.

Choose CASE tools with
an eye to the future

CASE tools are still developing rapidly, and there
will be considerable developments during the next
few years. (The likely future developments are
illustrated in Figure 4, overleaf.) It is necessary to

A Management Summary

Tools covering one life-cycle stage

Telon (Pansophic Systems Inc); code
generation.

Netron CAP Development Center; (Netron
Inc) code generation.

PDF (Michael Jackson Systems Ltd);
program-design.

VAX Cobol Generator (Digital Equipment
Corp); code generation.

Figure 3 Examples of products in the three categories of CASE tools

Tools covering two or more
consecutive stages

-Cer\ﬁlsion (Ce#tex G@m} detailed design

¥ Framework only. Provides project database and management facilities to support other tools.”

Integrated development environment
covering most life-cycle stages

IEF Information Engineering Facility
(Texas Instruments/James Martin
Associates).

FOUNDATION Integrated Environment for
Software Engineering (Arthur Andersen &
- Co Management Consultants).

. CASE* (Oracle Corp).

IEW (Knowledgeware Inc/Arthur Young
Information Engineering Services).

| Maestro (Softlab Inc and Philips Business
| Systems Lid).

consider the likely changes as CASE tools are
initially implemented, so that the transition to later
generations of tools can be as smooth as possible.
The most significant changes will result from the
introduction of integrated (or I-CASE) tools, which
will be used to develop systems and manage
information about the complete applications
portfolio. Migrating to such tools will not be
straightforward, and thought should be given to
ways of protecting the initial investments made in
CASE tools.

Three factors are holding back the emergence of
I-CASE tools. The first is the difficulty of producing
code automatically from the output of the analysis
and design stages. The best that has been achieved
so far is to generate code from program-structure
diagrams or activity diagrams. The second factor is
the difficulty of creating reverse-engineering tools
that can be used to bring existing software into the
CASE environment. The hope is that artificial
intelligence techniques can be used to analyse
existing software and extract the underlying
systems designs. The third, and possibly most
important, factor is the lack of commonly agreed
standards for CASE tools. Without standards, it will
be difficult, if not impossible, to integrate tools from
different suppliers. The uncertainty about
standards is likely to continue for several years,
creating problems both for suppliers and for user
organisations that wish to integrate discrete CASE
tools.

Introduce CASE tools in
a pilot application

The first application that is developed using CASE
tools should be a pilot project. The aim is to check

Figure 4 There will be significant development in
CASE tools

Likely developments

Appearance of simple reverse-engineering
tools that will create system designs from
existing programs and data structures

Timescale
1988/1989

Increasing availability 0? tools that can be 1989/90

customised to any Ianguage or method
Use of meﬁ m: a@ﬁeaémee
during the maﬁys:é stage -

990

Ci=
-

Early 1990

Availability of expert-system support for
reverse- engineering

e,

Use of expert systems to prov:de adwce 1990/1991 ;

during the design stage

that the chosen tools (and the methods they
support) will work in the particular organisation
and to lay down the ground rules for extending
the use of the tools throughout the systems
department.

The application chosen should be one that will
provide real business benefits, and should
therefore be sufficiently important to the busi-
ness to ensure that the user department is fully
committed to using the CASE tools success-
fully. Satisfied users will be powerful allies in
extending the use of the tools throughout the
organisation. It is also important to select an
application that is typical of the bulk of the
mainstream development work done by the
systems department.

{ FOUNDATION

9 Butler Cox & Partners Limited 1988

Before starting on the pilot, all the team members
should be fully trained in the use of the tools and,
if possible, experienced in using the structured
techniques supported by the tools. Doing this will
ensure that the pilot application provides a good
indication of how well the tools will perform once
they have been fully implemented.

One of the purposes of implementing CASE tools
is to speed up the systems development process
and there is a temptation to set deadlines for the
pilot project to prove that this does, in fact,
happen. However, considerable slack should be
built into the timescale because it is inevitable
that unforeseen problems will occur as the CASE
tools are used for the first time. It is usually
unreasonable to expect an increase in productivity
at the pilot stage. If tight deadlines are set, there is
arisk that they will be missed and the result will be
a demotivated project team and discredited CASE
tools.

Plan for organisational
changes

However good the match between an organisation
and the CASE tools it chooses, it is likely that both
the skills profile and the structure of the systems
department will have to change as a result of
implementing the tools. The impact of these
changes can be reduced by planning ahead.

Changes in the skills mix

Using CASE tools increases the emphasis on analysis
and design skills, and reduces the emphasis on
programming skills. (The effect of using CASE tools
on the level of effort required at each stage of the
life cycle is shown in Figure 5.) In addition, as the
use of CASE tools increases, the proportion of
development resources used for software main-
tenance will decrease, allowing more effort-to be
spent on developing new applications.

A major consequence of the changing skills profile
is a need to retrain existing programming staff in
analysis and design skills, in addition to the training
required to use new development methods and
CASE tools. Some programmers, however, will be
unsuitable for retraining, and others will be un-
willing to retrain as analysts. Much of their
resistance can be overcome by pointing out the ease
with which analysis and design can be carried out
by using CASE tools, and the increased profession-
alism that results from the rigorous use of the
methods they support.

The increasing use of analyst/programmers is one
example of the use of CASE tools breaking down the
“traditional boundaries between different systems

C0X FOUNDATION

Management Summary A

development roles. The trend is away from
employing staff with specialist technical skills, to
staff with business skills and skills in several
development functions. These changes will lead to
a much flatter organisational structure for the
systems department, which will typically consist of
business analysts and either analyst/programmers,
or analysts and designers who are provided with
limited programming-support staff.

Inaddition, there will be a need to create a specialist
team to support the use of both the methods and
CASE tools, and to provide advice about their use to
the project teams. This team should include staff
who worked on the pilot project.

Greater user involvement

In the past, several systems development tech-
niques and tools have been heralded as the
breakthrough that would allow users to be involved
directly in the systems development process.
Fourth-generation languages and data modelling
are two examples, although the expected increase
of user involvement in developing mainstream
applications has not, by and large, occurred. Our

Figure 5 Use of CASE tools changes the level of

effort required at each stage of the software
life cycle

4 Proportion
of total effort

Planning Analysis Design Program-
ming mentation: ance

Imple- Mainten-

— CASE tools used to support structured techniques
— Traditional development

A Management Summary

research shows, however, that in many organi-
sations, the implementation of CASE tools has
resulted in increased user involvement.

There is no doubt that the greater user involvement
at the analysis and design stages made possible by
CASE tools results in software that matches the
users’ requirements better. Some users will resist
the need to be involved more, however, believing
that software development is the responsibility of
systems professionals. Organisations should make
strenuous efforts to overcome this resistance,
because the ultimate success of CASE tools in
improving software quality depends on increased
user involvement at the analysis and design
stages.

The need for development staff to work more
closely with users highlights the need for analysts
and designers to have effective interpersonal

Software Engineering

communication skills. Sitting beside a user who is
directly involved in the development process
requires very different skills from those required
to write a specification that is given to the user for
approval.

Once a method and the CASE tools to support it have
been implemented, the organisation will be com-
mitted to using them for years to come. The invest-
ment in training and in setting up the procedures
to use the method effectively, together with the
investment in the tools themselves, will make it
very difficult to change them. The decision to
choose a particular combination of methods and
tools is therefore one of the most strategically
important decisions a systems director has to make
because the effects of an inappropriate choice will
be evident for along time. The full report contains
detailed advice about how to make the right
decision. ‘

Computer-Aided

(CASE)

% FOUNDATION

Butler Cox & Partners Limited 1988

Butler Cox is an independent management consultancy and research
organisation, specialising in the applicalion of information technology
within commerce, government, and industry. The company offers a wide
range of services hoth to suppliers and users of this technology.

The Butler Cox Foundation is one of the services provided by Butler Cozx.
It provides the executives responsible for information systems in large
organisations with a continuous analysis of mejor developments in the
technology and its application.

The Foundation publishes six Research Reports each year together with a
series of special Position Papers. The progranvme of activities includes a wide
range of meetings that provide Foundation members with a regular
opportunity to exchange experiences and views with their counterparts in
other large organisations.

Butler Cox & Partners Limited
Butler Cox House, 12 Bloomsbury Square,
London WC1A 2LL, England
2(01)831 0101, Telex 8813717 BUTCOX G
Fax (01) 831 6250

Belgium and the Netherlands
Butler Cox BV
Burg Hogguerstraat 791,
1064 EB Amsterdam
= (020) 139955, Fax (020) 131157

France
Butler Cox SARL
Tour Akzo, 164 Rue Ambroise Croizat,
93204 St Denis-Cédex 1, France
=(1)48.20.61.64, Télécopieur (1)48.20.72.58

Germany (FR)
Butler Cox GmbH
Richard-Wagner-Str. 13,
8000 Miinchen 2
= (089)5234001, Fax (089)523 35 15

United States of America
Butler Cox Inc.
150 East 58th Street, New York, NY 10155, USA
| =(212)891 8188

Australia and New Zealand
Mr J Cooper
Butler Cox Foundation
3rd Floor, 275 George Street, Sydney 2000, Australia
= (02)236 6161, Fax (02) 236 6199

Ireland
SD Consulting
72 Merrion Square, Dublin 2, Ireland
= (01) 766088/762501, Telex 31077 EI,
Fax (01) 767945

Ttaly
SISDO
20123 Milano, Via Caradosso 7, Italy
= (02)498 4651, Telex 350309, Fax (02) 481 8842

The Nordic Region
Statskonsult AB
Stora Varvsgatan 1, 21120 Malmo, Sweden
2 (040) 103040, Telex 12754 SINTABS

Spain
Associated Management Consultants Spain SA
Rosalia de Castro, 84-2°D, 28035 Madrid, Spain
= (91)7230995

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11

